Agreement between 2 independent groups of raters S. Vanbelle

Biostatistics, University of Liège, Belgium

Summary

A novel agreement index, based on a population model is proposed. It extends the basic concept of Cohen's kappa coefficient [1] for two groups of raters and reduces to it in case of one rater in each group. Sampling variability is derived by the Jackknife method [2].

Example: Script Concordance Test (SCT) [3]

Aim: Evaluate the ability of students to solve unclear clinical situations **Test:** N items (description of a situation + diagnosis assumption) **Principle:** Evaluate impact of new information on the assumption using a 5-point Likert scale: (-2) Eliminated \rightarrow (+2) Only possibility **Particularity:** No correct answers \rightarrow experts define a "gold standard"

New agreement index (Binary scale)

Population \mathcal{R}_g (g = 1, 2) of raters and \mathcal{I} of items • $X_{ir,q} = 1$ if rater $r \in \mathcal{R}_q$ classifies item *i* in category 1 • $P(X_{ir,g} = 1) = E(X_{ir,g}|\mathcal{I}) = P_i, g \text{ over } \mathcal{R}_g \text{ and } E(P_{i,g}) = \pi_g, var(P_{i,g}) = \sigma_g^2 \text{ over } \mathcal{I}$ • In \mathcal{R}_g , $ICC_g = \sigma_g^2/\pi_g(1 - \pi_g)$ [6] (=1 if perfect agreement in \mathcal{R}_g)

Theoretical agreement: $\Pi_T = E[P_{i,1}P_{i,2} + (1 - P_{i,1})(1 - P_{i,2})]$ Agreement expected by chance: $\Pi_E = \pi_1 \pi_2 + (1 - \pi_1)(1 - \pi_2)$ **Perfect agreement** when $P_{i,1} = P_{i,2} = P_i$ with $E(P_i) = \pi$, $var(P_i) = \sigma^2$ $\rightarrow \Pi_T = \Pi_M = 1 - 2\pi(1 - \pi)(1 - ICC)$

New agreement index: $\kappa = (\Pi_T - \Pi_E)/(\Pi_M - \Pi_E)$

Position of the problem	Study [4]
Group G_1 of R_1 raters	Medical experts ($R_1 = 10$)
Group G ₂ of R ₂ raters	Students in medicine
N items	SCT with 48 items
K-categorical scale	5-point Likert scale
Agreement(G_1, G_2)=?	Agreement(experts,students)=?

Study aim: Year 7 students ($R_2 = 27$) better than year 5 ($R_2 = 20$)?

Case of 2 isolated raters (Cohen's κ coefficient [1])

2 raters, N items, 1 K-category scale $\rightarrow K \times K$ contingency table

Rater 2	• $p_o = 0.55 + 0.22 = 0.77$
Rater 1 Yes No Total	• $p_0 = 0.33 \pm 0.22 = 0.77$ The 2 raters agree on 77% of the items.
Yes 0.55* 0.12 0.67	
No 0.11 0.22 0.33	• $p_e = 0.66 imes 0.67 + 0.34 imes 0.33 = 0.55$
Total 0.66 0.34 1	55% of agreements only expected by chance.
$^*p_{jk} = n_{jk}/N, j, k = 1, \cdots, K$	• $\hat{\kappa} = (0.77 - 0.55)/(1 - 0.55) = 0.69$
Observed proportion of	agreement: $p_o = \sum_{j=1}^{K} p_{jj}$

Comparison of the methods

Index	Perfect agreement	Π_M
New	Same probability distribution in both populations	\leq 1
Schouten	 Perfect agreement in both populations 	= 1
Consensus	+ consensus always possible	= 1
\rightarrow Schoute	n's index = special case when $ICC = 1$.	

Results of the SCT example ($\hat{\kappa} \pm SE$ **)**

Method	Ν	Year 5	Year 7	p-value ^(a)	
Majority rule	39	0.73 ± 0.08	0.77 ± 0.07	0.58	
Schouten index	48	0.35 ± 0.04	$\textbf{0.40} \pm \textbf{0.03}$	0.028	
New index	48	0.53 ± 0.05	0.60 ± 0.04	0.030	
^(a) Comparison with the bootstrap method (1000 iterations) [7]					

Consensus

Schouten

New index

Proportion of agreement expected by chance: $p_e = \sum_{j=1}^{K} p_{j.} p_{.j}$ Cohen's κ coefficient (agreement corrected for chance): $\hat{\kappa} = \frac{p_o - p_e}{1 - p_o}$

- **Interpretation:** $\hat{\kappa} = 1$ Perfect agreement
 - $\hat{\kappa} = 0$ Agreement not better than chance
 - $\hat{\kappa} < 0$ Agreement lower than chance.

Existing methods for 2 groups of raters

• **Consensus**: Summarize responses of each group in 1 quantity \rightarrow Agreement between the 2 consensuses

Example:

Rule Consensus category

Majority category chosen by the majority of the raters in the group category chosen by at least x% of the raters in the group х%

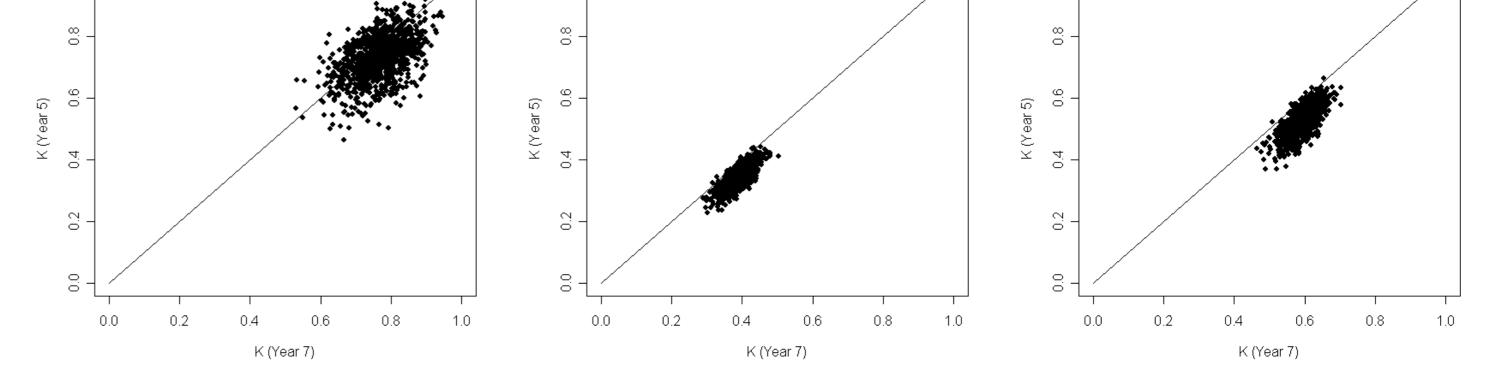
Drawbacks: (Orange cell = Consensus category)

Majority rule 80% rule

20

10

Category of a binary scale	No	Yes	No	Yes
Not always defined	50 ^(a)	50	60	40
Different rules \rightarrow different conclusions	70	30	70	30



Conclusion: Year 7 students better agree with experts than Year 5.

Discussion

- New index quantifies the agreement between 2 groups of raters
- Based on a population model
- Weighted and intraclass versions were derived
- Possess same interpretation and properties as Cohen's κ
- Reduce to Cohen's kappa coefficient when 1 rater in each group
- Better than consensus approach (always defined and account for variability in the groups)
- Schouten's index is a special case (more restrictive definition of perfect agreement)
- Better estimate Π_M ?

Bibliography

Different consensus strength \rightarrow same answer 80 60 40 90 (variability in the group not taken into account) 90 10

^(a)% of raters selecting the category

- Schouten [5]: Consider all pairs of raters with 1 rater of each group
- **Principle:** $\bar{p}_o =$ mean p_o between all pairs \bar{p}_e = mean p_e between all pairs **Drawbacks**: $\hat{\kappa} = (\bar{p}_o - \bar{p}_e)/(1 - \bar{p}_e)$

Many pairs Definition of perfect agreement too restrictive (see later)

- [1]Cohen, J. (1960) A Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational and Psychological Measurement, 20, 37-46.
- [2] Efron, B. & Tibshirani, R.J. (1993). An introduction to the bootstrap. *Chapman and Hall, New York*.
- [3] Charlin, B., Gagnon, R., Sibert, L., & Van der Vleuten, C. (2002). Le test de concordance de script: un instrument d'évaluation du raisonnement clinique. Pédagogie Médicale, 3, 135–144.
- [4] Vanbelle, S., Massart, V., Giet, G., & Albert, A. Test de concordance de script: un nouveau mode d'établissement des scores limitant l'effet du hasard. Pédagogie Médicale, 8, 71-81.
- [5] Schouten H.J.A. (1982). Measuring pairwise interobserver agreement when all subjects are judged by the same observers. Statistica Neerlandica, 36, 45-61.
- [6] Kraemer, H.C. (1979). Ramifications of a population model for κ as a coefficient of reliability. *Psychometrika*, 44, 461–472.
- [7] Vanbelle, S. & Albert, A. A bootstrap method for comparing correlated kappa coefficients . Journal of Statistical Computation and Simulation, in press.