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Table des notations. 
 
 
 
Afin de faciliter la lecture du présent travail, une table des notations utilisées est présentée. 
Les variables des équations utilisées ainsi que les paramètres des programmes utilisés sont 
repris. 
 
 

α F   Paramètre de pondération des forces de l’algorithme HHT. 

αM   Paramètre de pondération des forces d’inertie de l’algorithme CH. 
β   Paramètre de l’algorithme de Newmark. 
γ   Paramètre de l’algorithme de Newmark. 
ε   Erreur d’intégration d’un système linéaire à un degré de liberté. 
θ   Paramètre de l’algorithme SMG. 
ω   Pulsation d’un système à un degré de liberté. 
Ω   Pulsation d’un système à un degré de liberté multipliée par le pas de temps.
  
 

hn   Durée du pas de temps numéro n. Si aucune confusion n’est possible, l’indice 
est omis. 

ITER Numéro de l’itération. 

tn    Temps au début du pas de temps numéro n ou à la fin du pas numéro n-1. 
.

  Dérivée temporelle. 
 

Ct   Matrice d’amortissement. 

e  Erreur d’intégration. 

Ecin   Energie cinétique. 

E pot   Energie potentielle. 

F int   Vecteur des forces internes. 

F iner   Vecteur des forces d’inertie. 

F ext   Vecteur des forces extérieures. 

K t   Matrice de raideur. 

M   Matrice des masses. 

qn   Vecteur des positions au temps tn   après convergences des itérations. 

qi
n   Vecteur des positions au temps tn  après l’itération numéro i. 
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qn
0   Vecteur des positions au temps tn  avant la première itération. 

q in,   Position au temps tn pour le degré de liberté i. 

q i,0   Position initiale du degré de liberté i. 

nddl  Nombre de degré de liberté. 
R   Résidu de l’équation d’équilibre. 

S t   Matrice d’itération. 

TESF  Résidu adimensionnalisé de l’équation d’équilibre. 

W ext   Travail des forces extérieures. 
 
 
IT1K  Paramètre MECANO désignant le numéro de la première itération pour 

laquelle il y a remise à jour de la matrice d’itération (1 par défaut). 
IT2K   Paramètre MECANO désignant le numéro de la deuxième itération pour 

laquelle il y a remise à jour (IT1K+1  par défaut). 
IT3K Paramètre MECANO désignant la fréquence (en itérations ) de remise à jour  

de la matrice d’itération après l’itération IT2K (1 par défaut). 
ITMA Nombre maximum d’itérations pour un pas de temps (par défaut 10 pour 

MECANO et 7 pour METAFOR). 
PRCR Paramètre désignant la précision requise pour le résidu adimensionnel (TESF) 

(par défaut 1E-5 pour MECANO et 1E-4 pour METAFOR). 
PRCK Paramètre MECANO désignant le seuil du résidu adimensionnel sous lequel la 

matrice d’itération n’est plus remise à jour (10*PRCR par défaut). 
PRCU Seuil de tolérance de l’erreur d’intégration (1E-3 par défaut) 
RDOWN Facteur de division du pas de temps (par défaut 2 pour MECANO et 3 pour 

METAFOR) 
RUP  Facteur de multiplication du pas de temps de MECANO (2  par défaut). 
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Introduction. 
 
 
 
La nécessité de pouvoir modéliser  des impacts devient de plus en plus grande. En effet de 
nombreuses industries s’intéressent à des problèmes de sécurité (constructeurs automobiles, 
industries aéronautiques…). Afin  d’améliorer la résistance aux chocs des structures, il 
devient nécessaire de modéliser des phénomènes d’impacts (perte d’aubes d’un moteur 
d’avion, collision frontale d’une voiture …) lors de la conception des pièces mécaniques. Dès 
lors un  code d’éléments finis doit permettre de simuler ces phénomènes.  
 
Lors d’un impact, les déplacements et les déformations de la pièce étudiée sont conséquents. 
En effet, les pièces se déplacent en translation et en rotation.  Suite à ces déplacements, elles 
rentrent en contact avec des matrices, d’autres pièces ou se replient sur elles mêmes (auto-
contact). Sous l’effet de ces contacts et des forces extérieures, des phénomènes de plasticité 
apparaissent. Les déformations ne sont pas linéaires et l’équilibre ne peut pas se calculer sur 
la configuration initiale. Il faut donc avoir recours à une théorie incrémentielle et nous nous  
plaçons dans le cadre non linéaire des grands déplacements et des  grandes déformations.  
 
De plus ces phénomènes sont dynamiques. En effet étant données les vitesses des pièces 
lorsqu’elles entrent en contact, les forces d’inerties sont non négligeables et doivent être 
prises en compte. Les équations d’équilibre doivent donc être intégrées afin d’obtenir les 
réponses temporelles. Cette intégration se fait à l’aide d’un schéma explicite ou implicite. Un 
tel schéma résout les équations d’équilibre pour des temps choisis. Ces temps choisis (t0, 
t1,…) sont séparés par une durée (h) appelée « pas de temps ». Un schéma implicite calcule 
des positions en un temps tn en fonction des valeurs des vitesses et des accélérations des 
temps tn et tn-1. Il est donc itératif contrairement au schéma explicite pour lequel les positions 
du temps tn ne dépendent que des vitesses et des accélérations au temps tn-1. Signalons 
l’existence de schémas d’intégration qui utilisent, outre les valeurs des inconnues en tn et tn-1, 
les valeurs des inconnues en des pas  antérieures à tn-1. Ce sont des schémas à plusieurs pas. 
 
Un schéma d’intégration a la particularité d’introduire de l’amortissement numérique dans le 
système. Si cet amortissement est positif, de l’énergie est créée et la solution calculée tend, 
après quelques pas de temps, vers des valeurs très élevées. Le système est alors instable. Si 
l’amortissement est négatif, le système est stable mais la perte d’énergie s’accompagne d’une 
perte de précision. Les schémas explicites ne sont stables que pour de petites valeurs du pas 
de temps. Par contre, pour un choix judicieux des paramètres d’intégration, les schémas 
implicites sont stables quelle que soit la durée du pas de temps. Ils sont alors dits 
inconditionnellement stables et présentent l’avantage de permettre l’utilisation de pas de 
temps de durée plus importante. La précision d’intégration des schémas implicites est fonction 
de la dissipation numérique d’énergie. Le calcul est itératif, la précision dépend donc aussi de 
l’erreur tolérée pour ces itérations. Les équations sont résolues pour certains pas de temps. 
Une erreur de discrétisation est alors introduite et cette erreur est d’autant plus faible que la 
durée du pas de temps est petite. Bien que les opérations d’un schéma implicite soient plus 
coûteuses (inversion de la matrice d’itération), le temps de calcul reste souvent inférieur à 
celui d’un schéma explicite. En effet il nécessite moins de pas de temps. Il est dès lors souvent 
avantageux d’utiliser ce schéma pour des raisons de coût de calcul. Ce travail s’intéresse 
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uniquement à ces derniers schémas. Le code METAFOR  que nous utilisons permet la 
résolution de problèmes dynamiques implicites en grands déplacements et grandes 
déformations. 
 
Un des problèmes de l’implicite, lié à la non-linéarité des modèles, est la convergence des 
schémas d’intégration. En effet la résolution des équations d’équilibre se fait par un schéma 
de Newton-Raphson dont la convergence n’est pas toujours assurée. Un des paramètres 
influençant la convergence est la durée du pas de temps utilisé lors de l’intégration. Si ce pas 
de temps est trop grand, le système ne converge plus. Mais un pas de temps trop petit 
demande un temps de calcul prohibitif qui rend toute utilisation industrielle onéreuse voire 
impossible. Insistons sur le fait qu’il ne s’agit pas de réduire le temps de calcul de quelques 
pourcents mais de permettre la résolution  de problèmes industriels en quelques dizaines 
d’heures plutôt qu’en plusieurs semaines. Considérons un problème non linéaire intégré avec 
un pas de temps constant. La durée du pas de temps doit alors être choisie de manière à 
permettre la convergence des itérations aux moments les plus délicats (prises de contact …). . 
Prenons l’exemple d’un calcul de perte d’aube. Avant la perte, le problème converge très bien 
avec des durées importantes du pas de temps. Lorsque la perte survient, il y a création d’un 
balourd et les forces aux paliers augmentent. De plus des sous l’effet de ce balourd, des prises 
de contact apparaissent. La durée du pas de temps doit alors être réduite d’un facteur 
important. Suite à la rupture d’aube, la vitesse de rotation de l’arbre du moteur diminue pour 
s’annuler. Dans ce cas les forces en jeu diminuent et le problème redevient linéaire. La durée 
du pas de temps peut donc être augmentée. Pour une stratégie de pas de temps fixe, 
l’utilisateur choisit un pas de temps et se rend compte après plusieurs heures de calcul que ce 
pas de temps ne permet pas la convergence, il doit donc recommencer avec une durée de pas 
de temps inférieur. Cette durée est alors souvent très petite ce qui correspond à une perte de 
temps CPU pour la plupart des périodes de calculs du problème (dans notre exemple, avant la 
perte d’aube et quand la vitesse de rotation du moteur décroît). De plus aucune garantie de 
précision n’est donnée à l’utilisateur. En non linéaire, une stratégie automatique de la durée 
du pas de temps s’avère donc indispensable dans l’industrie. De plus la durée du pas de temps 
doit pouvoir garantir la précision des résultats. 
 
Ce travail propose une gestion du choix de la durée du pas de temps. Pour ce faire nous 
choisissons d’utiliser un indicateur de l’erreur d’intégration numérique. La gestion développée 
s’adapte aux différents schémas d’intégration implicites étudiés. Elle garantit une précision 
sur les résultats obtenus tout en assurant un coût de calcul réduit. Cette stratégie est d’abord 
validée sur des cas généraux de grandes déformations afin de mettre en évidence son large 
domaine d’application. Ensuite, elle est validée sur des cas industriels.  Pour l’étude de ces 
cas industriels, la nouvelle gestion du pas de temps est associée à un nouveau critère de 
convergence ainsi qu’à un nouveau schéma de décision de remise à jour de la matrice 
d’itération. L’intérêt principal de l’étude de cas industriels est leur nombre important de 
degrés de liberté ainsi que la variation des phénomènes physiques qui apparaissent au cours 
du temps. Les intérêts pratiques (gain de temps de calcul, garantie de précision et diminution 
du nombre de paramètres utilisateur) des nouveaux schémas sont alors clairement mis en 
évidence. Nous sommes ainsi parvenus à réduire fortement les temps de calcul de ces cas. 
Le présent document est divisé en 6 chapitres : 
 

- Dans un premier temps, les différents schémas d’intégration implicites (Newmark, 
Hilber-Hugues-Taylor, Chung-Hulbert (PONTHOT [XI])  et le schéma   du point 
milieu généralisé (PONTHOT [XI]) qui existent sont rappelés. 
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- Ensuite une étude bibliographique est présentée. Nous y résumons les différentes 
méthodes du calcul de l’erreur d’intégration numérique et du choix du pas de 
temps qui y correspond. Signalons dès à présent que seul quelques articles se 
penchent sur le choix de la durée du pas de temps. Nous avons dénombré 
seulement cinq articles (GERADIN [II], NEUMANN et SCWEIZERHOF [IV], 
HULBERT et JANG [V], CASSANO et CARDONA [X] et PONTHOT [XI]) qui 
se sont intéressés à une stratégie automatique de pas de temps des schémas 
implicites. Les quatre premiers articles développent une théorie sur le calcul de 
l’erreur d’intégration mais  seuls GERADIN, CASSANO et CARDONA 
développent une théorie sur le choix de la durée du pas de temps. Cette théorie est 
cependant basée sur l’hypothèse de linéarité et le même schéma est appliqué en 
non linéaire. Le seul article qui adapte un  schéma aux non-linéarités est celui de 
HULBERT et JANG. Il n’est donc pas exagéré d’affirmer que le « time-steping » 
des schémas implicites n’est que peu étudié malgré son importance. 

- Dans la troisième partie nous montrons comment adapter ces différentes erreurs 
pour les différents schémas d’intégration implicites (Newmark (N), Hilber-
Hugues-Taylor (HHT), Chung-Hulbert (CH) et le schéma   du point milieu 
généralisé (SMG) ). 

- Une proposition de la gestion du pas de temps est alors proposée. Cette gestion se 
base sur le calcul de l’erreur d’intégration et tient compte des non-linéarités.  

- Afin de valider la gestion proposée, des cas tests de grandes déformations sont 
calculés dans la cinquième partie du travail. Ces cas tests sont résolus grâce à la 
nouvelle gestion du pas de temps et nous mettons en évidence ses avantages. Ces 
avantages sont l’assurance d’avoir une convergence des itérations ainsi qu’une 
bonne précision de l’intégration pour un temps de calcul acceptable. 

- Par soucis de généralité des cas fortement non linéaires de grandes déformations 
ont d’abord été testés. Afin de montrer que la méthode reste pertinente dans des 
cas industriels quasi linéaires, des cas tests d’entreprises (*) sont calculés grâce à 
la proposition de gestion du pas de temps implémentée dans le module MECANO 
de SAMCEF. Il s’agit de problèmes à trois dimensions  modélisés par des super-
éléments. Ces super-éléments sont reliés entre eux par des éléments non linéaires 
qui permettent de simuler le contact aubes-carter ou les jeux des paliers. Dans ce 
genre de problèmes où le nombre de degrés de liberté est important, l’opération la 
plus coûteuse est l’inversion de la matrice d’itération. Cette opération doit donc 
être évitée autant que possible. Nous proposons un critère de remise à jour de cette 
matrice qui, associé à la nouvelle gestion du pas de temps ainsi qu’à un nouveau 
critère de divergence des itérations, permet de réduire fortement le temps de calcul. 

 
 
 
 
 
 
 
 
 
 
 
(*) Obtenus dans le cadre d’un stage au sein de l’entreprise SNECMA (août-décembre 1999) 
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2. Rappel des principaux schémas implicites  
d’intégration. 

 
 
 
Le système continu étudié est discrétisé en éléments finis. Le système discrétisé obtenu est 
caractérisé par un certain nombre de degré de liberté. Les inconnues relatives à ces degrés de 
liberté, sont regroupées dans un vecteur des positions ( q ), un vecteur des vitesses ( q& ) et dans 
un vecteur des accélérations ( q&& ). Le système est soumis à un ensemble de forces extérieures 

(vecteur F ext ). Ces forces peuvent être directement appliquées sur la structure où provenir 
de phénomènes de contacts, de frottements … Ces forces dépendent donc de la position et de 
la vitesse de la structure. Elles sont alors non linéaires. Sous l’effet de ces forces, la structure 

se déforme. Ces déformations entraîne la création de forces internes (vecteur F int ). Ces 
forces internes sont non linéaires. Les principales causes de non-linéarité proviennent des 
déformations plastiques et des non-linéarités géométriques. Les dernières forces sont les 
forces d’inerties. Elles peuvent s’exprimer par le produit de la matrice constante des masses 
(M)  par le vecteur des accélérations. L’équation d’équilibre à résoudre s’écrit alors au temps 
tn+1: 
 

),(),( 11ext111 qqFqqFqM nnnnintn &&&& +++++ =+      (2.1) 
 

avec qq nn &,  connus. 
 
Afin de résoudre l’équation (2.1), nous devons lier les vitesses et les accélérations aux 
positions afin d’avoir le même nombre d’équations que d’inconnues. Un développement en 
série de Taylor donne en considérant h le pas de temps égal à tn+1-tn: 
 

 

] [














+=

++=

∈∃

++

++

qhqq

q
h

qhqq

nnn

nnnn

&&&&

&&&

ς

ξ

ςξ

1

2

1 2

:10,

       (2.2) 

 
Pour des raisons pratiques, les accélérations de la relation (2.2) ne peuvent être calculées. 
Elles doivent donc être approximées.  
 
Un choix consiste à prendre les accélérations au temps tn. Les positions et les vitesses sont 
alors connus ainsi que les forces internes et extérieures. La relation (2.1) donne alors 
directement les accélérations. Ce schéma est dit explicite car aucune itération n’est nécessaire. 
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Il a l’inconvénient d’être numériquement instable car l’amortissement numérique est négatif 
sauf dans certains cas pour de très petites valeurs du pas de temps. 
 
Dans le but de pouvoir travailler avec des pas de temps plus important, les accélérations de la 
relation (2.2) sont calculées à partir des accélérations du temps tn+1. Dès lors, les vitesses et les 
positions du temps tn+1 dépendent de la solution (accélérations) du temps tn+1. Il en va donc de 
même pour les forces internes et externes. La relation (2.1) ne peut donc être résolue 
qu’itérativement. Le schéma est alors dit implicite. Il vient pour les schémas (N), (CH) et 
(HHT) : 
 

 










+−+=

+−++=

++

++

qhqhqq

qhqhqhqq

nnnn

nnnnn

&&&&&&

&&&&&

11

1
22

1

)1(

)
2
1(

γγ

ββ
    (2.3) 

 
Les paramètres ∃ et ( conditionnent la précision et la stabilité de l’intégration. En fonction des 
paramètres ∀M et ∀F du schéma (§2.2), des valeurs optimales de précision et de stabilité 
inconditionnelle (ne dépendant pas de la taille du pas de temps) peuvent être déduites de 
l’étude d’un système linéaire à un degré de liberté. 
 
Le schéma SMG propose d’utiliser une accélération constante dans l’intervalle de temps tn, 
tn+1. Cette accélération est prise en tn+2. Le système (2.1) est alors résolu en tn+2 et les 
inconnues sont les positions, les vitesses et les accélérations en ce point. Si h désigne la durée 
du  pas de temps entre les temps tn et tn+1, alors 2h est le pas de temps entre les temps tn et tn+T. 
Il vient alors : 
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Etant donné leur caractère itératif, les schémas implicites se décomposent en deux parties : la 
prédiction et la correction. 
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2.1. Prédiction. 
 
 
Une première valeur des inconnues est prédite à partir des valeurs en tn. Pour les schémas N, 
CH, HHT il vient : 
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Et pour le schéma SMG, il vient : 
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Ces valeurs sont alors corrigées de manière à satisfaire les équations d’équilibres. 
 

2.2. Corrections. 
 
 
Pour le schéma de Newmark, les  positions, vitesses et accélérations du temps tn+1 doivent 
satisfaire l’équation d’équilibre (2.1) en utilisant les relations (2.3). Les valeurs optimales de 
∃ et ( sont alors respectivement [XI] 0.25 et 0.5. La précision maximale sur les amplitudes et 
les fréquences d’un système linéaire à un degré de liberté est alors garantie tout en gardant 
une stabilité numérique pour toutes valeurs du pas de temps. Dans ces conditions aucun 
amortissement numérique est introduit. Pour un système sous contraintes cinématiques, des 
modes numériques de fréquences tendant vers l’infini apparaissent [II]. Ces modes génèrent 
de l’instabilité numérique s’ils ne sont pas amortis [II]. Un amortissement numérique doit 
donc être introduit. Une solution consiste à utiliser un schéma de Newmark amorti. Les 

paramètres d’intégration sont alors αγ += 5.0  et ( )25.025.0 += γβ  avec ∀>0. 
La précision d’intégration est alors affectée car si les modes numériques sont amortis, les 
modes physiques aussi. Toutefois dans des cas où les déformations plastiques sont 
importantes, l’amortissement numérique est négligeable par rapport à l’amortissement 
physique et la précision redevient acceptable.  
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Une solution élégante consiste à introduire de l’amortissement numérique qui affecte 
principalement les modes de hautes fréquences. Ce sont les modes numériques créateurs 
d’instabilités. Le schéma consiste alors à pondérer  l’équation d’équilibre (2.1) entre les pas n 
et n+1 afin de diminuer les instabilités numériques. Hilbert, Hughes et Taylor ont proposé de 
pondérer les forces internes et extérieures grâce au paramètre ∀F alors que Wood, Bossak et 
Zienkiewicz pondèrent les forces d’inerties grâce au paramètre ∀M. Chung et Hulbert ont 
obtenu la forme générale (CH) suivante :  
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Une étude d’un système linéaire permet de garantir une précision du deuxième ordre avec une 
dissipation maximale des hautes fréquences pour un choix des paramètres ∀F=(∀M+1)/3, 
(=0.5-∀M-∀F et ∃=0.25(1-∀M-∀F)². Remarquons que comme il a été dit pour Newmark, un 
choix différent des paramètres ( et ∃ peut être bénéfique en non-linéaire [XI]. Si ∀M est choisi 
négatif, les forces d’inerties d’un système linéaire sont alors évaluées en un temps supérieur à 
tn+1. Si ∀M=0 alors le schéma est le schéma HHT et ∀F doit alors être choisit entre 0 et 1/3. Si 
en plus ∀F=0 le schéma devient celui de N. 
 
Les équations (2.7) et (2.3) sont résolues par itérations. Définissons les valeurs  (l’indice 
supérieur se rapportant au numéro de l’itération et l’indice inférieur au numéro du pas de 
temps) : 
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alors (2.7) se linéarise en : 
 

RqKqCqM tt
FM −=∆+∆−+∆− ))(1()1( &&& αα   (2.8) 
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Etant donné (2.3), il vient : 
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Et en définissant St la matrice d’itération : 
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(2.8) devient finalement: 
 

 RqS t −=∆                     (2.11) 

 
La relation (2.11) fournit )q ce qui donne grâce à (2.9) qq &&& ∆∆ , . Les itérations continuent 
jusqu’à satisfaire le critère de convergence (PRCR est la précision requise): 
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FF
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extint
<

+
                 (2.12) 

 
Lors de l’établissement de la relation (2.7), les forces sont pondérées entre deux pas de temps. 
Pour un système linéaire, la pondération reviendrait à évaluer les forces au temps tn+1-∀. Pour 
un système non linéaire ce n’est plus vrai. Le schéma proposé par PONTHOT [XI] propose 
d’évaluer toutes les forces de manière rigoureuse au  même temps tn+2. Dans ce cas (SMG), 
l’équation d’équilibre devient: 
 

 0)],(),([ =−+ +++++ qqFqqFqM nnextnnintn &&&& θθθθθ              (2.13) 
 
2 doit être pris légèrement supérieur à l’unité pour avoir un algorithme stable. Les équations 
(2.13) et (2.4) sont résolues par itérations. Définissons les valeurs  (l’indice supérieur se 
rapportant au numéro de l’itération et l’indice inférieur au numéro du pas de temps) : 
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Etant donné (2.4) nous déduisons : 
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Et en définissant St la matrice d’itération : 
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(2.13) devient: 
 

 RqS t −=∆                     (2.16) 

 
(2.16) fournit )q ce qui donne grâce à (2.14) qq &&& ∆∆ , . Les itérations continuent jusqu’à 
satisfaire (2.12). Il reste alors à calculer les valeurs au pas de temps n+1 par : 
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Dans le cas 2=1, nous retrouvons (N) avec ∃=0.5 et (=1. 
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3. Etude bibliographique de la gestion automatique du 
pas de temps. 

 
 
 
L’étude bibliographique se penche sur deux aspects. Le premier se consacre au calcul de 
l’erreur d’intégration et le second au choix de la durée du pas de temps qui en découle. 
Comme il est signalé dans l’introduction, peu d’auteurs se sont intéressés au sujet. La raison 
de la brièveté des théories exposées dans ce paragraphe ne provient donc pas d’un manque de 
recherche. 
 

3.1. Calcul de l’erreur d’intégration. 
 
 
Les auteurs se basent tous sur l’erreur de troncature du développement des positions du 
schéma implicite (relations (2.3) et (2.4)). Ce raisonnement n’implique aucune hypothèse 
quant aux non-linéarités du problème.  
 
Pour GERADIN [II], l’erreur est basée sur l’erreur de troncature effectuée sur les positions. 
Les algorithmes implicites utilisent (relation (2.2)) un développement en série de Taylor de la 
position :  
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Cependant le développement utilisé ne prend pas en compte le troisième ordre. L’erreur est 

donc de l’ordre : )(
6
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tq
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. Nous pouvons encore développer )(
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tq . En effet : 
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L’erreur peut donc se mettre sous la forme  
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Afin de pouvoir comparer cette erreur a celle d’un système linéaire de pulsation Τ à un degré 
de liberté, les auteurs passent aux coordonnées modales et il vient, en nommant le vecteur des 
positions initiales q0, pour le schéma  HHT (Annexe 2) : 
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avec l’erreur du système linéaire à un degré de liberté ε (Σ=Τh) évalué en Σk=0.6 (Annexe 2): 
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Une autre manière d’exprimer l’erreur est de calculer la différence entre la valeur d’un 
développement de Taylor d’un ordre supérieur et la valeur calculée comme cela est proposé 
par JEUMAN et SCHWEIZERHOF [IV]. Les erreurs calculées sont la différence entre la 
position calculée par ce développement et celle calculée par le schéma. Le même calcul peut 
se faire à partir des vitesses. Il vient dès lors (Annexe 1) pour un schéma autre que SMG: 
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La relation (3.1) représente une estimation de l’erreur sur la position au 4ème ordre, la relation 
(3.4) représente une estimation de l’erreur sur la position au 5ème ordre et sur les vitesses au 
4ème ordre.  
 
 
Pour HULBERT et JANG [V] l’erreur de troncature prend la forme (autre schéma que 
SMG) : 
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qui est une expression comparable à (3.1). Cependant les auteurs ne passent pas par les 
coordonnées modales comme GERADIN [II]. De plus l’adimensionalisation de l’erreur  est 
différente. L’erreur est divisée par un facteur dépendant de q∆ . Il vient alors [V] : 

 

( )
( )















−−
=

−=

+

+

++

ref

qqh
e

qqrefref

n

nn

nnnn

1

1
2

11

6
1

,
10
9max

&&&&β
                     (3.6) 

 



Détermination automatique de la taille du pas de temps pour les schémas implicites en 
dynamique non-linéaire. 
Chapitre 3 : Etude bibliographique de la gestion automatique du pas de temps. 
 

Page 18 

Pour un système à un degré de liberté linéaire, l’erreur adimensionnelle peut être reliée au pas 
de temps h et à la période T [V] : 
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Une fois un rapport h/T fixé, la relation (3.7) fournit une tolérance à l’erreur adimensionnelle. 
 
 
Pour DUTTA et RAMAKRISHNAN [IX], l’erreur est calculée comme  (3.5). Elle est 
cependant adimensionnalisée par la norme maximale des positions durant les calculs. 
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Pour CASSANO et CARDONA [X], l’erreur est similaire à (3.1). Elle n’est cependant pas 
adaptée aux coordonnées modales. L’adimensionnalisation se fait à partir d’une position 
caractéristique. L’erreur adimensionnelle est calculée pour chacun des nœuds et l’erreur 
maximale est ensuite retenue. Au nœud i nous avons [X] : 
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Avec L la taille d’un élément et N le nombre d’éléments 
L’erreur adimensionnelle devient donc : 
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3.2. Comparaison des différents estimateurs d’erreurs.  
 
 
Le calcul des erreurs (3.1) et (3.5) à (3.9) se base sur l’erreur de troncature du développement 
de Taylor. Les erreurs (3.4) se calculent à un ordre supérieur et donnent donc une meilleure 
image de l’erreur entre la position calculée et la position exacte. Cependant le calcul de 
l’erreur est   coûteux. En effet le nombre d’opérations est beaucoup plus important et les 

vecteurs au temps tn-1 doivent être stockés Les autres erreurs sont de la forme 
référence

qhe
&&∆= ²  

 
L’erreur (3.2) passe par les coordonnées modales. Ce raisonnement a l’avantage de pouvoir 
comparer de manière rigoureuse l’erreur du système à plusieurs degrés de liberté couplés avec 
l’erreur d’un système à un degré de liberté. Cependant cette comparaison n’est rigoureuse que 
dans le cas d’un système linéaire non amorti (Annexe 2). Les autres erreurs calculent q&&∆ . 
 
Une autre différence provient du choix des valeurs d’adimensionalisation. Les erreurs ( 3.3) et 
(3.5) gardent cette valeur constante au cours du temps à l’inverse des autres qui la recalculent 
régulièrement.  
 
Enfin l’expression (3.9) ne moyenne pas l’erreur sur les différents nœuds. Cela conduit à un 
critère plus sévère comme il apparaîtra clairement dans la suite (§4.3). 
 

3.3. Gestion de la durée du pas de temps. 
 
 
Seuls GERADIN [II], CARDONA et CASSANO [X] développent une théorie pour établir 
une formule de prédiction sur la durée du pas de temps à partir de l’erreur d’intégration. Cette 
formule de prédiction est développée pour les cas linéaires.  
 
 
Pour GERADIN [II], lorsque les itérations de la phase de correction au temps tn ont convergé,  
l’erreur d’intégration (e) est calculée selon (3.2).  
 
Le premier test (Figure 1) consiste a vérifier que l’erreur (e) est inférieure au seuil de 
tolérance choisi (PRCU). Dans le cas contraire, il est rejeté. Alors, le pas de temps  hn est 
divisé par deux, le temps tn est recalculé (tn=tn-1+hn) et le système est à nouveau résolu pour ce 
nouveau temps. 
 
Dans le cas ou l’erreur (e) est bien inférieure à ce seuil (PRCU), les calculs au temps tn sont 
acceptés et le nouveau pas de temps hn+1 est calculé pour définir le nouveau temps de calcul 
tn+1. Le but poursuivi par l’algorithme est d’obtenir une erreur légèrement inférieure à la 
moitié de la tolérance (c’est-à-dire PRCU/2).  
 
Dès lors si l’erreur est supérieure à PRCU/2, la durée du pas de temps est réduite afin de 
diminuer l’erreur du pas suivant. La relation (3.3) permet d’établir le rapport entre le pas de 
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temps et l’erreur pour un système linéaire à un degré de liberté. En effet, il vient 
3

0

)(lim Ω÷Ω
→Ω

ε  et 2)(lim Ω÷Ω
∞→Ω

ε . En se rappelant que Σ est le produit entre le pas de temps 

et la pulsation, la formule liant la durée du pas de temps à l’erreur s’écrit : 
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Dans cette relation, h1 est le pas actuel, e1 est l’erreur actuelle, e2 est l’erreur désirée et h2 est 
le pas de temps théorique qui amène l’erreur voulue. Dans le cas présent, l’erreur doit être 
ramenée de e à PRCU/2. L’exposant  ? est choisit égal à trois. La nouvelle durée du pas de 
temps vaut donc : 
 

 ( ) 3
1

1 2e
PRCUhh nn =+                 (3.11) 

 
 
Le rapport entre le nouveau pas de temps et l ‘ancien est toutefois limité par l’intervalle 

]9.0,5.0[ . Il doit être inférieur à 0.9 pour réduire suffisamment  la durée du pas de temps 

et supérieur à 0.5 pour ne pas le réduire exagérément. 
 
Si l’erreur est très petite, le pas de temps est inutilement trop petit. Un gain de temps de calcul 
peut être obtenu en l’augmentant et ce sans dégrader la qualité de la solution. En se référant à 
la formule (3.10), et pour un exposant 0 égal à trois, le pas de temps peut être doublé si 
l’erreur est inférieure ou égale à un seizième.  
 
Dans le cas où l’erreur est comprise entre un demi et un seizième, le pas de temps est gardé 
constant. 
 
Le principal désavantage de ce schéma en non linéaire est que l’augmentation ou la division 
du pas de temps ne correspond pas toujours à une modification physique du système. En effet 
des variations de l’erreur peuvent être dues à des modes numériques et non à des modes 
physiques. De plus, l’erreur peut varier périodiquement sur des petits intervalles de temps. Il 
est alors inutile de modifier l’erreur régulièrement. En effet dans ces conditions, des pas de 
temps augmentés sont alors régulièrement rejetés ou des divisions inutiles apparaissent. De 
plus la formule (3.10) à été établie pour un système linéaire à un degré de liberté. Dans le cas 
de non-linéarités importante, elle ne peut être appliquée impunément. Enfin, ce schéma ne 
tient pas compte des éventuels problèmes de convergence. 
 
La Figure 1 représente le schéma de choix du pas de temps. 
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e>PRCU/2 

Calcul de l’erreur : e 

hn :=hn/2 

oui 

oui 

 

RAT= [ ] 3
1

2e
PRCU  

e>PRCU 

non 

non 

e<PRCU/16 

non oui 

RAT=1 

Pas accepté, calcul du 
nouveau temps tn+1=tn+hn+1 

RAT=2 

Résolution du système 
au temps tn 

Pas refusé, calcul 
du nouveau temps 

tn=tn-1+hn 

0.5<RAT<0.9 

hn+1=RAT hn 

Résolution du système au 
temps tn+1 

 

Figure 1 : schéma du pas dans MECANO [II] 
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Pour NEUMANN et SCHWEIZERHOF [IV] ainsi que pour HULBERT et JANG [V], 
l’erreur est considérée proportionnelle à h² (ce qui suppose  q&&∆  presque indépendant de h vu 
les expression (3.4) et (3.5)). Pour DUTTA et RAMAKRISHNAN [IX] l’erreur est supposée 
proportionnelle à h3 sans démonstration. Nous retrouvons donc la formule (3.10) qui est 
cependant délicate d’application dans un cas non linéaire. Les deux schémas de gestion du pas 
de temps qui suivent sont proposés pour tenir compte  des non-linéarités. Ces deux schémas 
se basent toujours sur la relation (3.1). 
 
 
Le schéma proposé par DUTTA et RAMAKRISHNAN [IX] utilise le calcul de l’erreur (3.8). 
L’intervalle de temps de calcul est divisé par l’utilisateur en « nt » sous-domaines. Dans 
chacun de ces sous-domaines le pas de temps h est gardé constant (Figure 2). Un sous 
domaine correspond donc à une succession de pas constant.  
 
 

 
Figure 2 : Division en sous-domaines. 
 
Le pas de temps du sous-domaine i est alors calculé à partir de l’erreur du sous-domaine i-1. 
Soient ni-1 le nombre de pas du sous-domaine i-1, ek,i-1 l’erreur sur le kième pas du sous-
domaine i-1,l’erreur moyenne du sous-domaine i-1 est définie : 

 [ ]
n

e
e

i

k
ik

i

ni

1

1
1,

1

1

−

=
−

−

∑
−

=  

 
Le pas de temps du sous-domaine i est alors calculé par (PRCU étant la précision requise) : 

 [ ]
3
1

,1
1 








=

−
−

ii
ii e

PRCUhh  

 
Le principal désavantage de cette méthode est de devoir définir l’espace temporel en sous-
domaines de taille fixée. De plus des chocs qui interviennent brusquement ne donnent pas de 
rapides modifications du pas de temps. 
 
 

 

 

t

Sous-domaine 2 

h2 

t8 

Sous-domaine 1 

h1 

t7 t0 … t3 t2 t1 t9 … 
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Afin de ne réagir qu’au modifications physiques et durables du système, un schéma avec 
compteur est proposé par HULBERT et JANG [V]. En définissant TOL1 l’erreur sous 
laquelle la durée du pas de temps peut être augmentée, TOL2 l’erreur au-delà de laquelle la 
durée du pas de temps doit être diminuée et LCOUT la limite du compteur, le schéma est le 
suivant : 
 

- Si TOL1<e<TOL2 alors le pas est accepté et hn+1=hn. 

- Si e>TOL2 alors le pas est rejeté et  
- Si hn>hn-1 alors hn=hn-1. 
- Sinon hn devient hn(TOL2/e)1/2 

- Si e<TOL1 pendant LCOUNT pas successifs alors les pas sont acceptés et 
hn+1=hn(TOL1/e)1/2. 

 
 
Il existe aussi des schémas qui ne passent pas par le calcul d’une erreur d’intégration. Citons 
les deux suivants. 
 
 
Pour PONTHOT [XI] la taille du pas de temps dépend du nombre d’itérations nécessaire à la 
convergence du pas précédent. Cette technique est expliquée plus en détail au §6. 
 
 
Pour GIVOLI et HENISBERG [XII], la taille du pas de temps doit satisfaire permettre de 
limiter la différence de position entre les pas temps, soit : 
 

 δ=
−

+

+

q

qq

n

nn

1

1
                       (3.12) 

 
Le pas de temps hn+1 entre les temps tn et tn+1 peut alors être calculé [XII] pour les schémas 
CH, N, HHT : 
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           (3.13) 

 
 
La durée du pas de temps dépendant des valeurs au temps suivant, il ne peut être calculé 
qu’itérativement. Le pas de temps prend d’abord la valeur du pas précédent, les inconnues en 
tn+1 sont alors calculée et le pas de temps peut alors être déduit de (3.13). La nouvelle valeur 
du  temps tn+1 est alors calculée et les inconnues qui y correspondent sont recalculées. Les 
deux désavantages de cette méthode sont : 

- Le nombre d’itération par pas de temps augmente fort car le pas est déterminé à 
posteriori. 

- Borner le saut de déplacement ne nous semble pas judicieux en grandes 
déformations et en grands déplacements. En effet, dans le cas de prise de contact, 
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le pas de temps doit être petit pour garantir une certaine précision et la 
convergence des itérations. Or pendant ces prises de contact, la variation des 
positions est relativement faible, la relation (3.12) va donc être facilement 
satisfaite. A l’opposé dans le cas d’une translation a vitesse constante, la durée du 
pas de temps peut être très grande sans poser de problème d’intégration car 
l’intégration se fait exactement. Les sauts de positions peuvent donc être grands 
mais alors la relation (3.12) n’est plus vérifiée. 

 
Dans la suite du présent travail, nous proposons d’améliorer le schéma de GERADIN (Figure 
1). Nous introduirons alors un système de compteur comme l’ont fait HULBERT et JANG 
pour que les variations du pas de temps ne proviennent plus que de variations physiques et 
durables du système. Nous adapterons également la durée du pas de temps afin de tenir 
compte des éventuels problèmes de convergence rencontrés. En effet, dans certains cas la 
durée du pas de temps est suffisamment petite pour intégrer avec une bonne précision mais ne 
permet pas la convergence des itérations de Newton-Raphson.  
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4. Calcul de l’erreur d’intégration. 
 
 
 
Nous allons montrer comment rendre le calcul de l’erreur indépendant du schéma utilisé ainsi 
que des paramètres d’intégration. Pour ce faire l’erreur d’un système linéaire à un degré de 
liberté est calculée analytiquement. Cette valeur servira de valeur de référence aux erreurs 
calculée numériquement. Ensuite plusieurs possibilités de calcul de l’erreur du §3.1 sont 
rendues indépendantes du schéma d’intégration. Ces différentes erreurs sont alors évaluées 
sur des cas test. Pour ces cas test le pas de temps est fixe afin de pouvoir comparer les erreurs.  
 

4.1. Calcul d’erreurs d’intégration indépendantes du 
schéma. 

 
 
L’erreur d’un système linéaire non amorti à un degré de liberté est calculée. Cette valeur qui 
dépend du schéma d’intégration et des paramètres d’intégration sert de valeur de référence. 
Soit l’algorithme CH. L’équation du système de pulsation Τ est : 
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La solution exacte du système est (Σ=Τh): 
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L’algorithme CH se résout par le système (2.3) et (2.7). Ces équations deviennent pour un 
système linéaire à un degré de liberté : 
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              (4.3) 

 
Ce dernier système peut se mettre sous la forme : 
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avec : 
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(4.2) et (4.4) donnent alors : 
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Et il vient de (4.5) la relation : 
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Définissons ε  l’erreur moyenne adimensionelle sur une période : 
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Etant donné que : 
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(4.7) devient en utilisant (4.6) : 
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Cette expression de l’erreur reste évidemment valable pour les schémas N et HHT, il suffit de 
prendre les valeurs des paramètres adéquates. 
 
Quant au schéma SMG, (4.2) est remplacé grâce à (2.4) et (2.13) par : 
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Qui peut se mettre sous la forme : 
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avec : 
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Dès lors, l’erreur moyenne sur une période adimensionnalisée s’écrit : 
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ε              (4.11) 

 
La Figure 3 illustre l’évolution de ε  en fonction de Σ pour les différents schémas. Pour un 
système linéaire à un degré de liberté Σ = 0.6 fournit une solution acceptable. Nous fixons 
donc Σ à cette valeur pour obtenir une valeur de référence , pour chaque schéma. La Figure 3 
montre que cette valeur peut varier d’un facteur 3 à 4 ce qui est significatif pour le calcul de 
l’erreur. 
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Figure 3 : Evolution de l'erreur pour les différents schémas. 
 
Remarques : 
 

- (4.11) et (4.8) ont la même expression si 2=1.1 et ∀M=0, ∀F=0, ∃=0.5 et (=1 
comme la théorie le prévoit. 

- Le même raisonnement peut se faire pour les erreurs (4.4) (Annexe I). 
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4.2. Expressions utilisées de l’erreur d’intégration. 
 
 
Plusieurs expressions de l’erreur d’intégration sont implémentées et comparées. Les erreurs 
calculées numériquement sont divisées par la valeur de référence établie au §4.1 afin d’avoir 
une erreur indépendante du schéma et des paramètres d’intégration. Notons que les 
expressions (3.4) ne sont pas reprises. En effet, aucun avantage n’a été obtenu qui justifie le 
coût supplémentaire entraîné. La valeur d’adimensionnalisation de l’erreur est gardée 
constante au cours du calcul. Ce choix se justifie par le raisonnement suivant : dans le cas 
d’un système amorti, la variation des positions diminue. La valeur d’adimensionnalisation 
diminuerait donc, ce qui augmenterait l’erreur et réduirait le pas de temps. Or le choix du pas 
de temps peut se justifier de deux manières. Il doit être suffisamment petit en regard de la 
période du mouvement afin de l’intégrer correctement et il doit être suffisamment petit pour 
permettre la convergence des itérations. Dans le cas d’un amortissement du système, rien ne 
justifie donc de réduire la durée du pas de temps. D’autant plus que dans les cas qui nous 
concernent, au moment où le contact a déjà eu lieu, la convergence devient plus facile alors 
que la variation des positions diminue. Nous nous attendons donc a pouvoir travailler avec 
des pas de temps plus grands et non plus petits (le cas de la barre élastique (§ 4.3.1) illustre 
clairement ce raisonnement). 
 
Les différentes erreurs suivantes ont été implémentées (nddl est le nombre de degré de liberté 
et l’indice 0 caractérise le système au temps initial). 
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Erreur e2 : 
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Erreur e3 : 
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Erreur e4 : 
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ε est calculé par (4.8) sauf pour le schéma SMG où il calculé par (4.11). 
 
Les erreurs (4.12) et (4.13) viennent de l’expression (3.2) alors que les erreurs (4.14) et (4.15) 
viennent de (3.1). 
 

4.3. Comparaison des quatre expressions de l’erreur 
d’intégration. 

 
 
Les erreurs e1, e2, e3 et e4 vont être comparées sur trois cas test différents. Chacun des ces 
cas test est résolu par un schéma différent. Le pas de temps est pris constant pour pouvoir 
mettre en rapport l’évolution de l’erreur  avec la physique du phénomène. 
 

4.3.1. Barre élastique percutant un mur. 
 
Il s’agit d’une barre parfaitement élastique (Figure 4) ayant un module de Poisson nul. De 
plus les degrés de liberté selon l’axe y et z sont fixés. Le problème est donc unidimensionnel 
selon l’axe x. La barre est animée selon l’axe x d’une vitesse de 5,1 m/s.  
 
Le métal a les caractéristiques suivantes : ∆=7895 kg/m³, E=206840N/mm². La barre a une 
longueur selon x de 247,65 mm et une épaisseur selon y de 40 mm. Elle est à une distance 
initiale du mur de 0.25 mm et le contact se fait sans frottement. Le problème est en état plan 
de déformation et se calcule par un schéma HHT (∀F=0.2). Le pas de temps vaut 1E-6s.  
 
Le profil de la vitesse d’un point de la face qui entre en contact est représenté à la Figure 5. 
En se rappelant que la célérité d’une onde dans un métal élastique vaut smE /5120=ρ , il 
faut un temps de 1E-4s pour que l’onde parcoure un aller-retour dans la barre. C’est donc le 
temps qu’il faut à la barre pour quitter le mur une fois qu’elle est rentrée en contact comme il 
apparaît sur la Figure 5.  La barre repart alors en sens inverse avec la même vitesse. 
Cependant l’onde ne s’est pas parfaitement annulée lorsqu’elle est revenue sur le mur (le 
schéma d’intégration est non conservatif). Des oscillations apparaissent alors toutes les 1E-4s. 
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Figure 4 : Schéma de la barre élastique.  
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Figure 5 : vitesse d'un point de la barre élastique. 

 
La Figure 6 et la Figure 7 illustrent l’évolution des quatre erreurs  proposées lors de 
l’intégration HHT. Quand la barre n’est pas encore en contact avec le mur, l’accélération est 
nulle et les algorithmes implicites sont alors exacts. L’erreur calculée doit donc bien être 
nulle. Quand la barre quitte le mur, la vitesse n’est pas rigoureusement constante à cause des 
schémas d’intégration. Cependant les oscillations dans le profil des vitesses disparaissent par 
dissipation numérique (HHT avec ∀F =0.2), et l’erreur tend vers zéros. Entre 5E-5s et 15E-5s, 
l’erreur subit bien un pic provenant de la prise de contact. L’erreur e4 subit de plus fortes 
variations car elle prend l’erreur du point qui subit le plus fort l’onde alors que les autres 
erreurs moyennent l’ensemble des points. Les trois autres erreurs ont la même allure (Figure 
7). 
 

 

<=0 V=5 m /s 

x 

y 
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Figure 6 : Evolution des différentes erreurs pour la barre élastique. 
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Figure 7 : Evolution des erreurs e1-3 pour la barre élastique. 
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4.3.2. La barre de Taylor. 
 
 
Il s’agit d’une barre ayant les propriétés suivantes : ∆ = 8930 kg/m³, E=117E9 kg/m² et 
<=0.35. Le matériau est élasto-plastique avec une limite élastique initiale de 4E8 N/m² et un 
coefficient d’écrouissage de 1E8 N/m².  
 
Le problème est axisymétrique. Le rayon est de 3.2 mm alors que la hauteur de la barre vaut 
32.4 mm. La barre rencontre un mur avec une vitesse de 227 m/s.  
 
Le contact se fait sans frottement. L’intégration se fait par le schéma SMG avec 2=1.1 et le 
pas de temps=1.7E-7s. La déformation en t=8E-5s est illustrée sur la Figure 8. 
 

Figure 8 : Déformation et contraintes de Von-Mises (N/mm²) de la barre de Taylor. 

 
 
La Figure 9 représente l’évolution des erreurs d’intégration pour le cas de la barre de Taylor. 
Les quatre courbes montrent bien une erreur importante au moment de l’impact et une 
diminution de cette erreur après le choc. Les erreurs e2 et e4 ont le désavantage d’être peu 
régulières. En effet, si nous considérons que l’erreur liée à l’évolution physique du problème 
est un lissage des courbes d’erreur obtenues, alors, les erreurs e2 et e4 oscillent avec de plus 
grandes amplitudes autour de cette courbe lissée. 
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Figure 9 : Evolution des erreurs pour la barre de Taylor. 

4.3.3. Cas de l’amortisseur de choc. 
 
Un cylindre creux s’écrase sans frottement sur une matrice concave (Figure 10). Le problème 
est axisymétrique. Le matériau (∆=2700kg/m³, E=67E9 N/m², <=0.33)  élasto-plastique a une 
limite élastique initiale de 150E6 N/m² et un coefficient d’écrouissage de 44.7E6 N/m². 
L’intégration se fait par un schéma de CH avec ∀M=-0.8 et un pas de temps de 1.32E-6s. 
 

Figure 10 : Schéma de l'amortisseur. 
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La configuration atteinte après 1.25E-3 s est illustrée à la Figure 11. 
 

 
 
Figure 11 : Configuration déformée et contraintes de Von-Mises (N/mm²) de l'amortisseur. 
 
 
Les erreurs obtenues sont illustrées à la Figure 12.  A nouveau, les erreurs sont importantes au 
moment du contact. Les quatre erreurs se stabilisent ensuite. L’erreur e4 subit de plus fortes 
variations. 
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Figure 12 : Evolution des erreurs pour l'amortisseur. 
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4.3.4. Comparaison des erreurs. 
 
Les quatre erreurs réagissent conformément à nos attentes quel que soit le schéma utilisé.   
 
L’erreur e4 prend en compte le nœud où les déformations sont les plus importantes. Elle 
réagit donc plus que les autres mais cela a deux inconvénients. Le premier est que l’erreur ne 
se stabilise pas et donc que le pas de temps risque de varier inutilement. Le second est que 
nous risquons de travailler avec des pas trop petits sans réelle nécessité. Dans un cas l’erreur 
e2 a montré des oscillations que n’avaient ni e1 ni e3.  Ces oscillations sont indésirables. 
 
Nous pouvons donc déjà avancer les conclusions suivantes : 
 

- L’erreur e4 est plus stricte puisqu’elle considère le degré de liberté subissant la 
plus forte erreur.  

- L’intérêt de passer par les forces d’inertie ne se justifie pas en non-linéaire. En 
effet les erreurs e1 et e2 n’apportent aucune information supplémentaire à e3. Au 
contraire, l’erreur e2 a montré des oscillations plus importantes qui ne peuvent être 
mises en relation avec l’évolution physique du problème. 

 
Nous allons maintenant comparer les solutions obtenues lorsque ces erreurs gèrent la durée du 
pas de temps afin de confirmer ces conclusions. Avant cela un algorithme de gestion de la 
durée du pas de temps est proposé. 
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5. Gestion de la durée du pas de temps. 
 
 
 
Un schéma de gestion de la durée du pas de temps en fonction de l’erreur d’intégration est 
proposé. Il se base sur le schéma de GERADIN [II] (Figure 1). Cependant afin de le rendre 
plus efficace quand il y a des non-linéarités importantes, il est modifié. 
 
L’erreur d’intégration calculée au §4.2 doit atteindre une valeur fixée à PRCU/2. PRCU est la 
tolérance de l’erreur d’intégration que l’utilisateur se fixe. Une première étape consiste à 
savoir si les itérations de Newton du schéma implicite ont convergé (Figure 13). 
 

 
Figure 13 : Description du test de convergence. 

 

5.1. Les itérations n’ont pas convergé (boîte 1). 
 
 
Dans le cas ou les itérations n’ont pas convergé, la durée du pas de temps est réduite et le 
calcul au temps tn se refait avec le nouveau pas de temps. Le facteur de réduction (division de 
la durée du pas) est un paramètre utilisateur RDOWN. Si un problème de convergence est 
intervenu cela veut dire que la durée du pas de temps permet d’avoir une erreur d’intégration 
suffisamment faible mais n’est pas assez petite pour permettre la convergence. Si le problème 
de convergence survient pour un autre pas de temps que le premier, nous décidons alors de 
diminuer l’erreur de référence PRCU. De cette manière nous travaillons avec une erreur qui 
assure la précision de l’intégration mais aussi la convergence des itérations. Une condition est 
imposée sur le numéro du pas car pour le premier pas nous ne savons pas encore si l’erreur 
d’intégration est inférieure à la précision tolérée PRCU. Le schéma est décrit à la Figure 14. 
 
Si le problème converge sans difficulté lors des prochaines itérations, le seuil PRCU peut à 
nouveau être augmenté pour se rapprocher de sa valeur initiale. Il faut cependant remarquer 

 

Itérations de Newton du schéma implicite au temps tn.

Convergence 
des itérations. 

non oui 

Aller en boîte 1. Aller en boîte 2. 
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que cela ne peut se faire qu’après un nombre assez élevé (ordre de 100) de pas de temps sous 
peine de recréer des problèmes de convergence. Il faut donc attendre que la physique (prises 
de contact…) se soit stabilisée.  
 
 

 
Figure 14 : Description de la boîte 1. 

 
 

5.2. Les itérations ont convergé (boîte 2). 
 
 
Si les itérations ont convergé, il faut s’assurer que l’intégration s’est faite avec suffisamment 
de précision. Cette précision s’évalue en considérant le rapport entre l’erreur calculée au §4.2 
et la précision voulue PRCU. Trois possibilités se présentent : 
 

- L’erreur obtenue est trop grande et la durée du pas de temps doit être réduite. Nous 
considérons l’erreur comme étant trop grande si elle est supérieure à PRCU/2. 

 
- L’erreur est trop petite, l’intégration pourrait se faire avec une bonne précision en 

travaillant avec des pas plus grands. Une limite SEUIL est fixée, sous laquelle le 
pas de temps est considéré comme étant trop petit. 

 
- L’erreur appartient à l’intervalle [PRCU/2 ; SEUIL]. La durée du pas de temps est 

alors idéale. 
 
Nous obtenons alors le schéma de décision de la Figure 15. 
 

 

Premier 
pas de 
temps. 

RAT=1/RDOWN 
hn := hn .RAT 
  

Retour à l’itération 1 au temps tn 

oui 
non 

PRCU :=PRCU/3 
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Figure 15 : Description de la boîte 2. 

5.2.1. L’erreur est trop grande (boîte 3). 
 
Quand l’erreur d’intégration est supérieure à l’erreur recherchée (PRCU/2), la taille du pas de 
temps doit être réduite. Cependant il faut s’assurer que la variation d’erreur provient bien 
d’une perte de précision due a un changement de l’évolution de la physique du problème et 
que cette variation persiste pour plusieurs pas.  
 
Afin de s ‘assurer que la variation d’erreur provient bien d’une variation de la physique du 
problème, nous introduisons un compteur. Si l’erreur est un certain nombre de fois (CO) 
d’affilée supérieure à PRCU/2, alors la taille du pas de temps est réduite, sinon elle est gardée 
constante. Une valeur de CO égale à 3 donne des résultats satisfaisants pour l’ensemble des 
problèmes. L’erreur prise en compte pour calculer le nouveau pas de temps est alors l’erreur 
maximale des CO itérations (ERRO). ICO est l’index de ce compteur. 
 
L’introduction de ce compteur a le désavantage d’empêcher une variation rapide de la durée 
du pas de temps  en cas de variation brusque de la physique du problème (comme l’apparition 
d’un contact à haute vitesse). Nous posons donc une limite au rapport erreur sur tolérance 
(ERR/PRCU) au-delà de laquelle le pas de temps est immédiatement réduit. Cette limite est 
prise égale à l’unité. De plus si ce rapport dépasse une autre limite (REJL), la taille du pas de 
temps est réduite mais le pas de temps est rejeté afin de garantir une certaine précision. La 
valeur du seuil REJL égale 1.5  garanti une bonne précision. Pour le premier pas de temps elle 
est prise égale à 1 par sécurité. Dans ces deux cas il ne faut pas oublier de réinitialiser le 
compteur ICO et l’erreur maximale ERRO à zéros. 
 
La variation du pas de temps obéit toujours à une loi du type (3.10), c’est à dire 

( ) η
1

1
2 −

+ =
PRCU

ehh nn avec PRCU/2 la valeur de l’erreur que l’on cherche à obtenir. En 

 

Calcul de l’erreur e. 

e>PRCU/2

oui 

Aller en boîte 3 

non 

e>SEUIL 

oui 

Aller en boîte 4 

non 

Aller en boîte 5 
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effet quel que soit le schéma d’intégration, un mouvement linéaire obéit à la relation (3.1) 
avec ]3,2[∈η . Cependant en non linéaire la valeur de 0 ne peut être prédite. Nous prenons 
donc 0<2 quand le pas de temps doit être réduit afin de s’assurer qu’il le sera assez. 
 
La Figure 16 illustre le schéma de décision pour une erreur trop grande. 
 

 
Figure 16 : Description de la boîte 3. 

5.2.2. L’erreur est dans le bon intervalle (boîte 4). 
 
Dans ce cas la durée du pas de temps n’est pas modifiée, et il vient le schéma trivial de la 
Figure 17. 
 

 
Figure 17 : Description de la boîte 4. 

 

e>REJL 

[ ] 3
2

2
1

REJLRAT=  

hn :=hn .RAT 
ICO=0 
ERRO=0 

Retour à l’itération 1 
au temps tn 

oui non 

e>1 

[ ] 3
2

2e
PRCURAT =  

hn+1 :=hn .RAT 
ICO=0 
ERRO=0 

Aller à l’itération 1 
au temps tn+1 

oui 
non 

ICO=CO 

oui 
non 

ICO :=ICO+1 
 

[ ] 3
2

2ERRO
PRCURAT=

hn+1 :=hn .RAT 
ICO=0 
ERRO=0 

RAT=1 
hn+1 :=hn RAT 
ERRO= 
max(e,ERRO) 

 

RAT=1 
hn+1=hn.RAT 

 

Aller à l’itération 1 au 
temps tn+1. 
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5.2.3. L’erreur est trop petite (boîte 5). 
 
Le pas de temps n’est pas directement augmenté. Nous vérifions que si l’erreur est inférieure 
à la limite SEUIL multiplié par PRCU, cela est dû à  un adoucissement de la physique du 
problème. Un nouveau compteur est alors introduit. Si pendant CT pas consécutifs, l’erreur 
reste inférieure au seuil, alors le pas de temps est augmenté. 
 
L’erreur prise en considération pour se fixer la durée du nouveau pas est l’erreur maximale 
(ERRT) des CT derniers pas. Nous utilisons une loi du type (3.10), c’est à dire : 
 

η
1

1
2 −

+ 




=

PRCU
e

hh nn  

 
avec PRCU/2 la valeur de l’erreur désirée. Cependant, nous prenons 0>3 afin de ne pas 
augmenter exagérément le pas de temps. ICT est l’index de ce compteur. 
 
L’introduction d’un compteur avant d’augmenter le pas de temps peut ralentir la vitesse 
d’augmentation du pas dans le cas où rien ne justifie de travailler avec un petit pas (comme 
pour le cas de la barre élastique avant le contact et loin après le contact (§4.3.1). Dès lors si le 
pas de temps augmente plusieurs fois de suite sans jamais être réduit, nous augmentons 
progressivement la valeur SEUIL en le multipliant par DUT1 et diminuons CT. Afin de tenir 
compte du cas où l’erreur est nulle, nous limitons l’erreur à SEUIL/10. Les valeurs initiales de 
CT et de SEUIL respectivement égales à 5 et 1/16 permettent de garantir une bonne précision 
en ne pénalisant pas le temps CPU. Le paramètre DUT1 peut être pris égal à 1.3. 
 
Le schéma est illustré à la Figure 18. 
 

5.3. Compléments des boîtes 1 à 5. 
 
 
Les valeurs des paramètres ICO, ICT, ERRO et  ERRT  doivent être réinitialisées à leur 
valeur initiale quand le schéma passe par une boîte qui  n’est pas propre au paramètre. Ainsi  
les paramètres ICO et ERRO doivent être ramenés à zéro si le schéma passe par la boîte 1, 4 
ou 5. Il en va de même pour les paramètres ICT et ERRT si le schéma passe par la boîte 1, 3 
ou 4.Les paramètres SEUIL et CT doivent être ramenés à respectivement 1/16 et 5 si le 
schéma passe par la boîte 1 ou 3. Si l’erreur appartient à l’intervalle 
[PRCU*SEUIL ;PRCU/2], ces paramètres   gardent leurs valeurs sinon un adoucissement 
physique du problème n’est jamais détecté. 
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Figure 18 : Description de  la boîte 5. 

 

 

CT=5 

ICT=CT 

ICT :=ICT+1 

oui non 

[ ]51
2ERRT
PRCURAT =  

hn+1=hn.RAT 
SEUIL :=SEUIL.DUT1 
ICT :=0 

RAT =1 
hn+1=hn.RAT 
ERRT :=max(e,ERRT) 

oui non 

CT :=4 CT :=3 

Aller à l’itération 1 
du temps tn+1. 
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6. Applications pour des problèmes de grandes 
transformations. 

 
 
 
L’algorithme proposé au §5 va être appliqué pour différents cas tests et pour plusieurs schémas 
d’intégration implicite.  
 
Nous nous plaçons dans le cadre général des grandes déformations afin de prouver la 
généralité de l’algorithme. L’erreur peut être calculée par e1, e2, e3 ou e4. Quel que soit le 
schéma d’intégration ou le choix de l’erreur d’intégration, la tolérance de l’erreur 
d’intégration PRCU de départ est pris égale à 0.001 (sauf pour le calcul par e3 ou il est pris 
égal à 0.003 afin de garder le nombre de pas de temps environ constant pour les quatre 
erreurs). Le fait que la tolérance PRCU puisse  être prise toujours égal à la même valeur, quel 
que soit le schéma d’intégration et quel que soit le problème, montre que les valeurs 
d’adimensionnalisations étaient correctes et que l’erreur calculée est bien physique.  
 
Dans chaque cas nous comparons les résultats obtenus  avec ceux provenant de la gestion du 
pas exposée par PONTHOT [XI]. Cette gestion (appelée « opti ») se base sur le nombre 
d’itérations du pas précédent pour calculer la valeur du nouveau pas. Si le nombre d’itérations 
est 0 (pas de correction), le pas de temps est multiplié par 1.4, si le nombre d’itérations est 1 
ou 2, le pas de temps est multiplié par 1.25. Dans le cas ou le nombre d’itérations est 3 ou 4, 
le pas est gardé constant et si le nombre d’itérations est supérieur à 4 alors le pas de temps est 

divisé par la racine carrée de la différence entre le nombre d’itérations et 4 ( 4−iter ). Le 
but poursuivit par ce schéma est de converger à chaque pas de temps en 3 ou 4 itérations. La 
durée du pas de temps est alors supposée être suffisamment petite pour amener la 
convergence des itérations avec une certaine précision d’intégration. Si le pas converge en 
moins de 3 itérations, la durée du pas de temps est augmentée pour diminuer le temps CPU. 
  

6.1. La barre élastique. 
 
 
Il s’agit de la barre décrite au §4.3.1. Elle est maintenant calculée par la méthode du pas de 
temps automatique. Nous comparons les résultats obtenus pour les quatre calculs de l’erreur 
d’intégration et par la méthode « opti » ( choix de h selon le nombre d’itérations du pas 
précédent).  
 
La Figure 19 donne le profil de la vitesse au point qui rentre en contact avec le nœud. La 
méthode « opti » ne donne pas assez de points pour représenter les deux « cassures » de 
vitesse et ne donne de vitesse constante à aucun des deux paliers.  
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Figure 19 : Vitesse de la barre élastique par  pas automatiques. 

 
La Figure 20 compare les coûts des calculs. La méthode opti est la moins chère et les quatre 
autres méthodes donnent des solutions et des coûts proches.  L’avantage du calcul par la 
méthode de l’erreur d’intégration est de mesurer une grandeur pour y adapter le pas de temps. 
Ceci explique pourquoi le profil de vitesse obtenu par la méthode « opti » est moins proche de 
la réalité. 
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Figure 20 : Coût du calcul de la barre élastique. 
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6.2. La barre de Taylor. 
 
 
 
Il s’agit de la barre décrite au §4.3.2. Ne disposant pas de solution analytique, les résultats 
sont comparer à un résultat de référence. Cette référence est obtenue pour un calcul avec un 
pas de temps fixe choisi petit (1.7E-7s). Le schéma d’intégration est le SMG et nous 
comparons les déformées en t=8E-5s.  
 
 
La Figure 22 montre les déformations et les contraintes de Von-Mises obtenues pour les 
différents calculs. L’écart entre les contraintes de la configuration de référence et celles 
obtenues par la méthode « opti » est de 5%. Cet écart est de 2.5% si le calcul se fait en passant 
par l’erreur d’intégration. La carte de déformée est semblable  dans tous les cas. Le coût des 
calculs est illustré Figure 21.  
 
Le coût en temps CPU du calcul par les méthodes e1 e2 et e3 est de 15 a 30% (65% pour e4) 
supérieur à celui de la méthode « opti ». Cependant il faut noter que le nombre d’itérations 
n’est que de 10 % supérieur. Si le nombre de degrés de liberté était plus important, une plus 
grosse partie du temps CPU viendrait du calcul de la matrice d’itération. Le coût deviendrait 
alors proportionnel au nombre d’itération et la méthode de calcul par l’erreur d’intégration 
serait plus rentable. 
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Figure 21 : Comparaison des coûts de la barre de Taylor. 
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Figure 22 : Déformée et contraintes de Von-Mises de la barre de Taylor.  
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6.3. L’amortisseur. 
 
 
Il s’agit de l’amortisseur défini au §4.3.3 Le schéma d’intégration est de CH. Comme pour le 
cas de la barre de Taylor, aucune solution analytique n’existe. Nous comparons donc les 
résultats avec ceux obtenus pour un pas de temps petit (1.27E-6s).  
 
 
La Figure 24 montre que les résultats obtenus sont de même qualité pour toutes les méthodes.  
 
 
La méthode « opti » est la moins chère (Figure 23). Vient ensuite le calcul par e3 qui coûte 35 
% d’itérations et de temps CPU en plus. Le calcul par e1, e2 ou e4 demande 75% d’itération 
et de temps CPU en plus. 
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Figure 23 : Coût des calculs de l'amortisseur. 
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Figure 24 : Déformée et contraintes de Von-Mises de l'amortisseur. 
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Le cylindre en flambement. 
  
 
Il s’agit d’un cylindre creux de rayon interne égal à  13.5 mm, de rayon externe égal à 15.875 
mm et de longueur égale à 180 mm. Le matériau a les propriétés suivantes : ∆ = 7850 kg/m², 
E=210000 N/mm², <=0.3, limite élastique initiale =700 N/mm² et coefficient 
d’écrouissage=808 N/mm². 
Le bord supérieur du cylindre subit un déplacement de 100 mm en un temps =1.1e-2s à 
vitesse constante et le bord inférieur rencontre une matrice rigide (Figure 25). Le contact avec 
cette matrice se fait sans frottement. Le cylindre entre en flambement et un côté du cylindre se 
replie pour entrer en contact avec lui-même. Ces contacts se font avec un frottement de 
Coulomb de :=0.15. 
 

 
Figure 25 : Schéma du cylindre en flambement. 
 
Le schéma d’intégration est CH avec ∀M =-0.87 et il y a remaillage au cours des calculs. Pour 
ce problème, la principale difficulté est le calcul de la prise de contact lors de la déformation 
des côtés du cylindre. Le pas de temps doit être suffisamment petit pour permettre la 
convergence quelle que soit l’erreur d’intégration ou le nombre d’itérations du pas précédent. 
Le fait de diviser la valeur de l’erreur de référence (PRCU) si l’algorithme rencontre des 
problèmes de convergence va permettre d’avoir un pas de temps optimum. Les résultats 
obtenus par les méthodes « opti »  et  par le calcul de l’erreur d’intégration sont comparés à 
une méthode à pas fixe choisi petit (3E-7 s).  
 
 
La Figure 26 montre que les résultats obtenus pour toutes les méthodes sont comparables. Par 
e1 et e2 il y a un écart de 2% avec la solution de référence. De plus deux boucles se touchent 
uniquement pour ces erreurs. Cet écart est de 1% par « opti » et de 0.1% par e3 et e4. Ceci est 
expliqué par le fait que les méthodes e3 et e4 ont travaillé avec un pas de temps un rien 
inférieur à celui pour e1 et e2. 
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Figure 26 : Déformées et contraintes de Von-Mises du cylindre en flambement. 
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La Figure 27 montre que la gestion du pas de temps qui se base sur l’erreur d’intégration 
permet de travailler avec un pas de temps qui permet la convergence. En effet, le nombre 
d’itérations est pratiquement identique au nombre de pas de temps. La convergence est donc 
très rapide. Par la méthode « opti », quand le pas converge avec une seule itération par pas de 
temps, la durée du pas de temps est augmentée ce qui ne permet plus de converger au pas 
suivant. Le nombre d’itérations est alors cinq à six fois plus grand que par la méthode de 
l’erreur d’intégration et le temps CPU quatre a cinq fois plus grand. 
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Figure 27 : Coûts des calculs du cylindre en flambement. 
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Comparaisons des méthodes. 
 
 
Dans les différents cas analysés, la méthode proposée donne de bons résultats aussi bien sur la 
qualité des résultats obtenus que sur le temps CPU nécessaire. Le choix de la méthode du 
calcul de l’erreur d’intégration n’est pas évident. En effet, les quatre calculs proposés se 
basent sur l’erreur du développement de Taylor. Dès lors les résultats obtenus sont 
comparables. Le calcul par e4 est un rien plus sévère car il prend l’erreur maximale pour tous 
les degrés de liberté et pas une moyenne comme les autres (dans le cas de la barre élastique, 
c’est la méthode qui a permis de mieux représenter le palier des vitesses (§6.1)). Il permet 
donc de mieux tenir compte de variations locales mais le coût en terme de temps CPU est un 
peu plus élevé (entre 10 et 25%). Le calcul par la méthode e3 permet d’obtenir une meilleure 
précision ou un coût plus faible  (10%) que les méthodes e1 et e2. Les méthodes e1 et e2  
passent par les coordonnées modales. Le principal avantage est leur étude théorique plus 
rigoureuse dans le cas linéaire. En non-linéaire cet avantage est perdu et les méthodes 
présentent le désavantage de devoir calculer les forces d’inerties. 
 
La méthode « opti » a présenté deux désavantages. Le premier est, que dans le cas de la barre 
élastique, le nombre de pas de temps ne permettait pas de représenter convenablement les 
paliers de vitesses (§6.1). La gestion proposée a permis de mieux le représenter. De plus en 
cas de nécessité il suffit de réduire le paramètre de tolérance PRCU pour mieux s’approcher 
de la solution exacte. Le second est dans le cas du cylindre en flambement où le nombre 
d’itérations du pas précédent n’était plus une bonne image de la taille maximale du pas 
nécessaire à la convergence. Le temps CPU était alors prohibitif (300% supérieur). 
 
En conclusion, nous retiendrons que le calcul de l’erreur par e4 est plus sévère et plus onéreux 
alors que le calcul par e3 constitue un bon compromis précision-prix. 
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7. Applications à des cas industriels « quasi-linéaires ». 
 
 
 
Après avoir testé des cas dans le cadre général des grandes déformations, la gestion du pas de 
temps proposée au §5  est validée dans le contexte plus particulier de problèmes industriels 
quasi linéaires. Ces problèmes ont été obtenus lors d’un stage à la SNECMA. Pour des raisons 
de confidentialité, nous ne sommes pas autorisés à révéler certaines précisions concernant les 
problèmes étudiés. Ainsi, les cas tests ne sont pas décrit et seuls les courbes obtenues sont 
représentées en omettant les graduations. Pour les mêmes raisons, le nombre de degrés de 
liberté utilisés n’est pas révélé. 
 
Le programme utilisé est le module MECANO de SAMCEF qui résout les équations par un 
schéma HHT. Ces problèmes consistent en la modélisation en trois dimensions de parties de 
moteurs ou de moteurs complets. L’étude dynamique est pertinente afin de modéliser des 
phénomènes comme la perte d’aube, l’excitation d’un mode propre par des phénomènes 
extérieurs ou d’autres situations où la connaissance de la réponse transitoire est nécessaire 
pour le dimensionnement des pièces. La plupart des éléments sont linéaires. Ils sont connectés 
entre-eux par des éléments de raideur non linéaire. Dans de telles situations, le nombre 
d’éléments non linéaires des matrices d’itération (2.10) et (2.15) est de quelques uns pour un 
nombre total d’éléments important. Le système peut donc être qualifié de « quasi-linéaire ».  
Le nombre de degrés de liberté étant important, l’opération la plus coûteuse est l’inversion de 
la matrice d’itération (2.11). Cependant, le système étant quasi linéaire cette opération peut-
être supprimée du schéma d’intégration sous certaines conditions. Soit le système b(x)=0, il 
est résolu par la méthode de Newton Raphson : 
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         (7.1) 

Il peut être résolu en recalculant a(xi) à chaque itération ou bien en gardant a(x0) de la 
première itération. En effet comme le montre la Figure 28 , la convergence du système (7.1)  
peut encore être possible en utilisant une matrice inversée approchée a0.  Dans ce cas, le 
nombre d’itérations nécessaire à la convergence est plus important mais ces itérations sont 
moins onéreuses. Ce schéma s’appelle le schéma de Newton-Raphson modifié.  
 
Dans un premier temps, nous expliquons la gestion du pas de temps et de la remise à jour 
existant actuellement dans MECANO. Ensuite nous proposons une gestion de la remise à jour 
de la matrice d’itération plus performante. Le critère de détection de divergences des 
itérations est aussi étudié. Enfin, nous comparons les résultats obtenus sur des cas industriels 
en utilisant les nouveaux schémas de remise à jour et de gestion du pas de temps  et les 
anciens. 
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Figure 28 : Influence de la remise à jour ou non de la matrice d'itération. 
 

7.1. Description des schémas existants. 
 
Le schéma, existant dans MECANO, de gestion de la durée du pas de temps ainsi que le 
schéma du choix de réactualisation de la matrice d’itération sont décrits. 
 

7.1.1. Schéma de gestion de la durée du pas de temps. 
 
Le calcul de l’erreur d’intégration se fait par la relation (4.13). La détermination du pas de 
temps se fait comme cela est proposé dans [II] (Figure 1). Le problème de cette gestion est 
qu’elle réagit mal aux non linéarités car le pas de temps peut être modifié pour des raisons ne 
provenant pas d’une modification de la physiques du phénomène ou pour des modifications 
qui ne sont pas durables dans le temps. C’est la raison pour laquelle nous avons introduit un 
compteur dans la proposition de gestion du pas de temps (§5). Les conséquences des 
variations inutiles de la durée du pas de temps sont : 
 

- Une augmentation du nombre de pas rejetés et donc du temps CPU. 
- Des variations trop fréquentes de la durée du pas de temps et donc obligation de 

remettre à jour la matrice d’itération (§7.1.2). 
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7.1.2. Schéma de la remise à jour de la matrice d’itération. 
 
Actuellement le passage d’un schéma à l’autre est conditionné par l’utilisateur. Un seuil de 
relaxation (PRCK) sur le résidu de l’équation d’intégration (TESF est le résidu 
adimensionnalisé de la relation (2.11)) est défini. Des numéros d’itération ( IT1K,IT2K,IT3K) 
sélectionne le passage d’un schéma à l’autre. Le schéma est de Newton Raphson pur si : 
 

 TESF > PRCK  
ITER=IT1K ou ITER = IT2K+n.IT3K  

 
sont vérifiés simultanément (ITER est le n° de l’itération, n = 0,1,2…). Sinon le schéma est de 
Newton-Raphson modifié. Par exemple pour des valeurs de paramètres IT1K, IT2K , IT3K, 
PRCK et PRCR valant respectivement : 2, 4, 2, 1E-4, 1E-5, il y a remise à jour aux itérations 
2, 4, 6, 8, 10, 12 … tant que TESF reste supérieur à 1E-4. Une fois que TESF devient 
inférieur à 1E-4, il n’y a plus remise à jour. Quand TESF devient inférieur à 1E-5, alors les 
itérations ont convergées.   
 
La matrice d’itération est en plus recalculée pour la première itération d’un pas de temps car 
elle dépend de la valeur du pas de temps (2.9). A l’heure actuelle, MECANO n’est pas 
capable de ne pas la recalculer (et de ne pas l’inverser) si le pas de temps n’a pas changé. 
 
Dans le cas où ITER atteint le nombre maximal d’itérations toléré (ITMA)  le pas est rejeté 
parce qu’il n’y a pas eu de convergence et le pas est divisé par RDOWN. 
 
Les problèmes liés à ce schéma sont : 
 

- L’utilisateur doit définir les itérations pour lesquelles il y a remise à jour ou non de 
la matrice d’itération. Le choix de la remise à jour ne peut donc évoluer au cours 
du temps et il ne dépend donc pas de l’évolution de la physique du problème. 

- Le fait de remettre à jour la matrice d’itération à chaque première itération même 
si la durée du pas n’a pas évolué coûte. 

- Le critère de non-convergence des itérations ne tient pas compte de la vitesse de 
convergence. Un problème peut converger en beaucoup d’itérations alors qu’il 
peut diverger après deux itérations. Le nombre d’itérations n’est donc pas un 
critère de convergence pertinent. 

 

7.2. Proposition d’un schéma de choix de remise à jour de la 
matrice d’itération. 

 
La réactualisation de la matrice d’itération est l’opération la plus coûteuse lors de l’intégration 
numérique. Elle doit donc être évitée autant que possible. Cependant dans le cas de problèmes 
non linéaires, instationnaires (vitesse de rotation du moteur qui varie) ou quand des 
contraintes cinématiques existent, la remise à jour de la matrice devient nécessaire pour avoir 
une convergence des itérations de corrections (§2.2). 
Il s’avère donc intéressant de choisir si la réactualisation doit avoir lieu en fonction des pas 
précédents et même des itérations précédentes.  
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7.2.1. Recherche d’un critère de réactualisation. 
 
Ce critère doit tenir compte de deux points : 
 

- Le fait de ne pas réactualiser systématiquement doit préserver la convergence du 
problème. 

- Le fait de ne pas réactualiser doit s’accompagner d’un gain de temps. Pour certains 
problèmes (fortement non linéaires et de petite taille), le nombre d’itération 
augmente quand il n’y a pas de réactualisation et ces itérations ne sont pas 
beaucoup moins chères. 

 
Nous avons vu au §2.2 que les itérations s’arrêtent si le résidu de l’équation d’équilibre 
devient inférieur à un seuil (TESF<PRCR). Or l’évaluation de TESF fait intervenir les forces 
extérieures et d’inerties. Ces dernières ne dépendent pas de  la matrice d’itération. Nous 
pouvons donc dire, si TESF devient inférieur à PRCR, que le problème a convergé. Cela reste 
vrai dans le cas où la matrice d’itération n’aurait pas été modifiée alors que des paramètres 
(vitesse de rotation …) ont changé. Il est donc possible d’utiliser l’évolution de TESF pour 
savoir quand la réactualisation s’avère nécessaire. 
Le gain de temps réalisé quand la réactualisation n’a pas lieu dépend du système. La 
différence de temps de calcul dépend de la taille du système mais aussi de l’organisation des 
matrices (une matrice bande est plus facilement inversée qu’une matrice pleine de même 
taille). Nous pouvons donc utiliser la valeur NT (nombre de ddl) et le rapport entre le temps 
de calcul avec réactualisation et sans réactualisation calculé au cours du problème. 
 

7.2.2. Algorithme développé. 
 
L’algorithme proposé garde l’ancienne formulation : la réactualisation a alors lieu pour les 
itérations IT1K,IT2K+n IT3K, n=0,1,2,…  
Dans le cas où le problème est supposé pouvoir se passer d’une réactualisation à chaque 
itération, une nouvelle gestion est proposée en parallèle. Cette dernière n’intervient donc que 
si IT1K est choisi grand (>15). 
 
Cette nouvelle formulation a nécessité les modifications suivantes : 
 

- La première itération subit une réactualisation si h a changé, 
- Une valeur de référence est introduite :  

[ ]15;2
___'_
___'_

1 ∈=
ationréactualissansitérationunedCPU
ationréactualisavecitérationunedCPU

VALREF   

- Une seconde valeur de référence est introduite : 

[ ])15,1max();1,5max(
1000

2 VALREFVALREF
NT

VALREF ∈=  

- Si après VALREF1 itérations la convergence n’a pas eu lieu, nous forçons la  
réactualisation à chaque itération. Ainsi nous sommes sûrs que le fait de ne pas 
réactualiser ne coûte pas plus cher que réactualiser à chaque itération. 
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- Entre l’itération 1 et l’itération VALREF1, la réactualisation n’a lieu que si le 
TESF n’est pas multiplié par une valeur (<1) inférieure à RAPRES=VALREF1/10 

[ ]95.0;75.0∈ . 
- Si pour un numéro d’itération (ITER) inférieur à VALREF1 la remise à jour à été 

nécessaire, elle est forcée pour les itérations suivantes. 
- Si lors de la dernière itération du pas précédent, une réactualisation a lieu, une 

réactualisation a aussi lieu lors de la première itération du pas suivant. La 
convergence du pas précédent étant difficile (car ayant nécessité des 
réactualisations), il peut s’avérer profitable de commencer le pas suivant par une 
nouvelle réactualisation. 

- Si après 5 itérations avec remise à jour, TESF n’a pas diminué de 2, nous 
considérons que le problème diverge et le pas est divisé par le facteur de réduction 
(RDOWN). 

 
Remarques : 
 

- Au début du problème, VALREF1 vaut VALREF2, le temps de pouvoir calculer le 
rapport des temps CPU. 

- Une réactualisation de la matrice d’itération se fait en deux itérations. Lors de la 
première elle est recalculée, lors de la seconde itération elle est inversée. Lorsque 
la réactualisation est choisie, elle intervient donc avec une itération de retard. Pour 
éviter ce phénomène une modification de la structure du programme serait 
nécessaire.  

- Afin de rendre cette proposition d’algorithme plus efficace, la modification 
suivante est souhaitable : Si après une itération sans remise à jour TESF n’a pas été 
multiplié par une valeur (<1) inférieure à RAPRES, l’itération suivante se fait bien 
entendu avec remise à jour, mais au lieu de repartir des dernières valeurs obtenues, 
il serait souhaitables de repartir des pénultièmes valeurs obtenues (c’est à dire 
celles à partir desquelles l’itération sans remise à jour a été effectuée). Un certain 
nombre d’itérations avec remise à jour serait alors évité. Cette modification n’a pas 
été apportée à MECANO car elle nécessite la modification de la structure 
mentionnée à la remarque précédente. Pour contourner ce problème, nous avons 
introduit la commande suivante. Si les premières itérations sont faites sans remise 
à jour, et que le résidu n’a pas diminué de RAPRES, alors le pas est rejeté puis 
repris avec une remise à jour à l’itération 1. Il va de soi que ce n’est pas la manière 
la plus belle de programmer. 

- Les deux propositions précédentes permettraient de réduire le temps de calcul de 
manière appréciable dans certains cas. En effet elles permettraient d’éviter des 
divergences qui sont toujours coûteuses (plusieurs itérations avec remise à jour). 

- Nous avons été contraints d’introduire plusieurs paramètres arbitraires (intervalle 
de variation de RAPRES,VALREF1, VALREF2,nombre (5) d’itérations qui 
n’amènent pas la diminution  (0.5) de TESF voulue avant rejet du pas…). Le choix 
plus ou moins arbitraire de ces valeurs se justifie par le fait qu’elles assurent le 
fonctionnement de l’algorithme pour des cas divers. Il est tentant lors d’un test sur 
un problème d’optimiser ces valeurs afin d’obtenir le CPU minimum, mais cette 
optimisation ne peut se faire qu’à posteriori ce que nous cherchons justement à 
éviter en proposant un algorithme qui gère lui-même  les divers paramètres. 
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Les avantages de cette proposition sont : 
 

- L’utilisateur ne doit plus choisir des paramètres pour gérer la remise à jour. 
- Le critère de remise à jour permet d’éviter nombre de remises à jour inutiles tout 

en conservant la convergence des itérations. 
- Le critère de divergence implémenté évite le calcul d’itérations inutiles. 

 
 
Deux problèmes industriels vont être calculés grâces aux gestions proposées. Nous 
comparerons les résultats obtenus avec ceux obtenus par les anciennes gestions. Les 
problèmes étant quasi-linéaires, l’erreur utilisée est l’erreur e2 (4.13). Pour des raisons 
pratiques nous n’avons pas pu implémenter l’erreur e3 dans MECANO. Etant donné le 
caractère quasi-linéaire des cas tests, l’erreur e2 convient. Cependant il serait intéressant de 
pouvoir refaire ces calculs avec l’erreur e3 afin de généraliser son utilisation au domaine 
quasi-linéaire. 
 

7.3. Calculs de cas industriels. 
 
 
Nous allons valider les gestions du pas de temps et de la remise à jour de la matrice d’itération 
sur des problèmes industriels. Pour ce faire nous comparons les résultats obtenus pour les 
deux algorithmes suivants : 

- Ancienne gestion du pas et de la remise à jour. 
- Nouvelle gestion du pas et de la remise à jour. 

Dans ces deux cas, les paramètres ( tolérance de l’erreur d’intégration « PRCU », tolérance 
sur le résidu des itérations « PRCR »…) sont identiques. 
 

7.3.1. Cas 1  
 
Pour des raisons de confidentialités, nous ne sommes pas autorisés à révéler le problème 
étudié ainsi que les valeurs des courbes obtenues. Cependant nous pouvons préciser qu’il ne 
s’agit pas d’un cas trivial à un degré de liberté. La modélisation comprend plusieurs milliers 
de degrés de libertés, les  forces sont instationnaires et des phénomènes non-linéaires 
apparaissent au cours du temps. 
 

7.3.1.a. Comparaisons des résultats. 
 
 
Les paramètres du calcul sont  : 
 

- Ancienne gestion : tolérance de l’erreur d’intégration  « PRCU » 1e-3, tolérance du 
résidu des itérations « PRCR » 1e-3, seuil de relaxation de remise à jour de la 
matrice d’itération  « PRCK » 1e-3, itération de remise à jour « IT1K » 3, «  
IT2K » 6 et « IT3K » 1. 
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- Nouvelle gestion : PRCU 1e-3,PRCR 1e-3,PRCK 1e-3, IT1K 100, même pas 
initial que l’ancienne gestion. 

 
Il faut remarquer que pour l’ancienne gestion, il y a une réactualisation pour chaque première 
itération. Le choix IT1K 3 est nécessaire à la convergence des premiers pas de temps (ainsi 
que la durée du pas initial). 
 
 
Les graphiques des déplacements (Figure 29) et du bilan d’énergie (Figure 30) indiquent que 
la qualité des solutions obtenues par les deux méthodes est la même. Le bilan d’énergie est un 
bon indicateur de la précision de l’intégration. Il consiste à évaluer aux cours du temps la 
différence entre la somme des énergies cinétiques et potentielles et le travail de forces 

extérieures ( WEEB extpotcin −+= ). Si ce bilan est positif, l’intégration numérique a 

crée de l’énergie. Cela correspond à un schéma d’intégration instable. Si ce bilan d’énergie est 
négatif, il y a eu dissipation d’énergie au cours du temps. Cette dissipation peut provenir de 
phénomènes physiques (plastification…) ou du schéma d’intégration numérique. Dans le cas 
présent la différence entre des courbes du bilan d’énergie ne provient que des effets 
numériques. La différence doit donc être aussi réduite que possible. La  perte d’énergie de la 
nouvelle méthode reste faible (0.5%).  
 
La nouvelle méthode est donc assez précise et le temps de calcul (Figure 31) a été réduit de 
60%. 
 

temps 

q ancienne gestion
nouvelle gestion

 

Figure 29 :  Déplacements du cas 1. 
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Figure 30 : Bilan d'énergie  du cas 1. 
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Figure 31 : Coût des calculs du cas 1. 

 

7.3.2. Cas 2. 
 
Pour des raisons de confidentialités, nous ne sommes pas autorisés à révéler le problème 
étudié ainsi que les valeurs des courbes obtenues. Toutefois, comme pour le cas 1, Le 
problème comporte plusieurs milliers de degrés de libertés, les forces sont instationnaires et 
des phénomènes non-linéaires apparaissent. 
 

7.3.2.a. Comparaisons des résultats. 
 
Nous comparons l’ancienne gestion à la nouvelle gestion du pas de temps et de la 
réactualisation de la matrice d’itération. 
Pour les deux problèmes nous avons les paramètres suivants : tolérance du résidu  « PRCR » 
1e-4, tolérance de l’erreur d’intégration « PRCU » 1e-3. 
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Pour la gestion automatique du pas de temps, les itérations de remise à jour de la matrice 
d’itération sont IT1K est pris égal à 3, IT2K à 5 et IT3K à 1. Le nombre maximum d’itération  
« ITMA »  est 25. Ce sont ces paramètres qui amènent une convergence en un minimum de 
temps. 
 
Les graphiques des efforts (Figure 32), (Figure 33) et des déplacements  (Figure 34) obtenus 
par les deux calculs sont identiques. Le graphique de l’évolution de la durée du pas de temps ( 
Figure 36) montre que le pas de temps se stabilise mieux grâce à la nouvelle gestion. En effet, 
des pics et des creux sont remplacés par des paliers. Cette stabilisation évite de devoir 
recalculer la matrice d’itération uniquement parce que le pas de temps à changé Le gain de 
temps obtenu par la nouvelle gestion est de 40% (Figure 35). 
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Figure 32 : Effort du cas 2. 
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Figure 33 : Effort du cas 2. 
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Figure 34 : Déplacement du cas 2. 
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Figure 35 : Coût des calculs du cas 2. 
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Figure 36 : Evolution du pas de temps du cas 2. 
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Conclusions. 
 
 
 
Dans un premier temps, une étude de l’erreur d’intégration a été effectuée. Nous avons rendu 
cette erreur indépendante du schéma d’intégration. Quatre estimateurs de l’erreur 
d’intégration ont été comparés. Nous avons montré que l’évolution de ces erreurs avec le 
temps correspondait bien à l’évolution de la physique du problème. Toutefois, en non-linéaire, 
les erreurs e3 et e4 sont apparues meilleurs indicateurs de cette évolution. L’erreur e4, plus 
sévère demandait un temps de calcul supérieur pour un faible gain de précision par rapport à 
l’erreur e3. Les erreurs e1 et e2 développées en linéaires utilisaient les forces d’inerties. 
Aucun avantage n’est apparu en non-linéaire où les temps de calcul sont plus grands et la 
précision moindre que pour une utilisation de e3. Par contre, lors de l’étude des cas quasi-
linéaires industriels, l’erreur e2 a pu être utilisée avec succès. 
 
 
Une  gestion de la durée du pas de temps se basant sur la mesure de l’erreur d’intégration a été 
ensuite présentée. Cette gestion se base sur le schéma proposé par GERADIN [II]. Il a été 
amélioré afin que les modifications du pas de temps n’interviennent que pour des 
modifications physiques et durables du problème. La durée du pas de temps permet d’intégrer 
les équations du mouvement avec une précision requise par l’utilisateur.  Afin de pouvoir 
converger quand de fortes non-linéarités sont présentes, le pas de temps est choisi 
volontairement petit. Ce choix se fait grâce à deux critères. Le premier est : pour augmenter la 
durée du pas de temps nous devons absolument être sûrs que le problème n’est plus dans une 
phase de choc. Nous avons donc introduit un système de compteur. Le deuxième est : si 
malgré le compteur le pas de temps augmentait trop que pour pouvoir converger, alors le 
paramètre de précision qui conditionne l’erreur d’intégration acceptable est diminué. Quand le 
problème redevient quasi-linéaire, les problèmes de convergence sont moindres, et la durée du 
pas de temps peut augmenter très rapidement afin de diminuer le temps CPU. 
 
Cette gestion a été validée dans le cadre général des grandes déformations. Elle a permis de 
garantir une précision de l’intégration des équations tout en limitant le temps CPU. Ensuite, 
des problèmes industriels quasi-linéaires ont été calculés grâce à cette gestion afin de mettre 
en évidence son efficacité dans des cas plus particuliers. Pour ces problèmes un schéma de 
décision de remise à jour de la matrice d’itération et un nouveau critère de convergence ont 
été développés. Les nouvelles méthodes ont permis de résoudre les problèmes en un temps 
nettement inférieur (ordre de 50%) avec l’avantage de demander moins de paramètres 
utilisateurs. Il faut remarquer que le nouveau schéma de gestion du pas de temps a facilité 
l’utilisation du critère de réactualisation de la matrice d’itération. En effet, l’algorithme de 
gestion du pas de temps proposé permet de conserver la durée du pas de temps constante sur 
des intervalles de temps  assez long. La matrice d’itération ne doit dès lors pas être 
réactualisée uniquement parce que la durée du pas de temps à été modifiée. 
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Perspectives. 
 
 
 
L’erreur e3 peut être testée sur des cas quasi-linéaires afin de généraliser son utilisation. 
 
Le critère de convergence des itérations développé au §7.2.2 peut être implémenté dans le cas 
général des grandes déformations. Il pourrait permettre un gain CPU pour des problèmes de 
plus grande dimension. De même, la proposition de gestion de la remise à jour de la matrice 
d’itération pourrait être étendue aux problèmes de grandes déformations.  En effet quand les 
conditions de contacts ne se modifient plus, certaines itérations pourraient se faire sans remise 
à jour de la matrice d’itération. De plus cette gestion proposée peut-être modifiée en tenant 
comptes des remarques du §7.2.2. Ces remarques proposent de repartir des valeurs de 
l’itération précédente si une itération sans remise à jour n’a pas convergé. 
 
Les problèmes d’emboutissage de tôles sont généralement résolus par des schémas explicites. 
Cependant une théorie implicite peut présenter l’avantage de nécessiter un temps CPU plus 
faible. Les codes d’emboutissage commencent donc à être développés en implicite. Ces 
problèmes de mise à forme sont caractérisés par des forces d’inerties très faibles. Le problème 
est alors physiquement quasi-statique. Or l’algorithme de gestion développé se base sur une 
mesure de l’erreur obtenue à partir du saut d’accélération. Il serait donc intéressant de voir si 
la mesure du saut d’accélération reste pertinente quand les accélérations sont faibles. 
L’algorithme développé pourrait ainsi s’appliquer dans des problèmes d’emboutissage. 
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Annexe 1 : Erreurs aux ordres supérieurs  
 
 
 
L’erreur du développement en série de Taylor peut  être calculée à l’ordre 5 pour les 
déplacements et à l’ordre 4 pour les vitesses. La valeur de référence pour un système linéaire 
à un degré de liberté est aussi calculée dans le cas du schéma HHT. 
Il s’agit d’exprimer l’erreur et de calculer la différence entre la valeur d’un développement 
d’un ordre supérieur et la valeur calculée comme cela est proposé dans [V]. Les erreurs 
calculées sont la différence entre le déplacement de l’ordre supérieur et celui calculé, et la 
différence entre la vitesse de l’ordre supérieur et celle calculée. 
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Nous allons calculer les valeurs de l’ordre supérieur à partir d’un développement en série de 
Taylor : 
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Le schéma d’intégration étant le HHT, nous avons les valeurs calculées : 
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Nous avons alors les relations (3.4) : 
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Les équations (2.3) et (2.7) pour un système à un degré de liberté peuvent se résoudre par le 
système : 
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avec (2.5) adapté au schéma HHT: 
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α  est l’amortissement numérique, γβ ,  sont deux paramètres dits de Newmark. 
 
Exprimons l’erreur sur le déplacement au 5ème ordre (A1.1.a) pour un système à un degré de 
liberté. Les équations du système sont : 

)cos()()0(0² 00 tqtqqtqqq ωω =⇒===+&&  
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Grâce à (A1.2), il vient : 
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De la même manière les valeurs en tn sont calculées en fonction des valeurs en tn-1 : 
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Les trois accélérations nécessaires au calcul de (A1.1) valent : 
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En remplaçant ces trois expressions dans la formule (A1.1a), il vient : 
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avec :  
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Il reste maintenant à calculer 
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pour obtenir l’erreur moyenne adimensionnelle. L’intégrale effectuée, il vient : 
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En procédant de la même manière pour l’erreur sur les vitesses au 4ème ordre, mais en partant 
du système : 
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nous arrivons à l’erreur adimensionnelle suivante : 
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avec : 
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Annexe 2 : Expression de l’erreur pour un système multi 
degrés de liberté. 

 
 
L’expression de l’erreur (3.1) peut être étendue pour un système à plusieurs degrés de libertés. 
Plaçons-nous dans le cas linéaire non amorti. 
 
Dans un premier temps, l’erreur est exprimée pour un système  multi degrés de libertés 
découplés. Si l’erreur est choisie inférieure à un seuil, les modes qui ne participent pas à la 
réponse sont filtrés.  
 
Supposons le système de m équations linéaires découplées :  

 

 miyy iii ,...,10²
..

==+ ω , les déplacements initiaux sont y0i.  

 
Un vecteur comprenant les erreurs pour chaque degré de liberté est défini grâce à (3.1). 
L’erreur moyenne est alors choisie comme la norme de ce vecteur : 

 

 
..

6
²

y
h

e ∆=                     (A2.1)  

 

En appliquant la relation (4.8) au système linéaire à un degré de liberté 02
..

=+ yy iii ω , il 
vient : 

 

[ ] )(0 hyeE iii ωε= . 

 
ε  et Σ étant défini dans la relation (4.8). 
La stratégie de choix de h est la suivante : Ok est fixé à 0.6, quand h est fixé, nous sommes en 
présence de deux types de ? i, ceux qui amène Oi> Ok et ceux qui amène Oi≤ Ok. Nous allons 
voir, comment choisir h de manière à ce que les modes qui ne participent pas à la 
réponse soient filtrés. C’est-à-dire avoir : 
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Développons (A2.1) : 
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ce qui implique : 
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or la courbe e(O) étant strictement croissante,  nous avons pour mik ≤≤  : ki εε ≥ . Il vient 
alors :  
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           (A2.2) 
 
Il apparaît donc que si h est choisi pour vérifier la condition 
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alors les amplitudes des modes ayant Oi> Ok ne participent  pas à la réponse car nous avons la 
relation :  
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Filtrer ces modes correspond en fait à introduire une dissipation numérique. 
 
Les systèmes qui nous intéressent sont à plusieurs degrés de liberté couplés. Il importe donc 
d’étudier ce cas. Il se ramène à un système à plusieurs degrés de liberté découplés. En effet, 

supposons le système de m équations linéaires couplées : 0
..

=+ KqqM , le vecteur des 
déplacements initiaux est q0. Appelons ?  la matrice des vecteurs propres (la colonne i 
correspond au mode i). Les vecteurs propres sont normés de manière à satisfaire ? TM? =I, 
nous avons alors, en utilisant les coordonnées modales y, avec q=? y, au système matriciel 

? TM?
..

y + ? TK? y=0. Par définition de ? , nous avons ? TK? =diag(? i²). Nous retrouvons 

alors le système découplé étudié dans le point précédent : miyy iii ,...,10²
..

==+ ω . En 
utilisant  la relation (A2.2), et en explicitant le dernier terme :  
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En  remarquant que : 
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Nous arrivons à  la relation :  
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Il reste à adimensionnaliser cette dernière expression, par le même raisonnement que 
précédemment  : 
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Donc,  si h permet d’avoir : 
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les modes qui ne participent pas sont filtrés car : 
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