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Détermination automatique de la taille du pas de temps pour les schémas implicites en
dynamique non-linéaire.
Table des notations.

Table des notations.

Afin de faciliter la lecture du présent travail, une table des notations utilisées est présentée.
Les variables des équations utilisées ainsi que les parametres des programmes utilisés sont

repris.

ar

SEQCD@U

ITER
th

Ecin
E pot
Fint
Finer

Fext

Gn
Gn

Parametre de pondération des forces de |’ a gorithme HHT.

Parametre de pondération des forces d’inertie de I’ algorithme CH.

Paramétre de |’ algorithme de Newmark.

Parametre de |’ algorithme de Newmark.

Erreur d'intégration d' un systeme linéaire a un degré de liberté.

Paramétre de |’ algorithme SMG.

Pulsation d’ un systéme a un degré de liberté.

Pulsation d’un systéme a un degré de liberté multipliée par le pas de temps.

Durée du pas de temps numéro n. Si aucune confusion n’est possible, I’indice

est omis.
Numéro de I’ itération.

Temps au début du pas de temps numéro n ou alafin du pas numéro n-1.

Dérivée temporelle.

Matrice d’ amortissement.
Erreur d intégration.

Energie cinétique.

Energie potentielle.

Vecteur des forcesinternes.
Vecteur desforces d'inertie.
Vecteur des forces extérieures.
Matrice de raideur.

Matrice des masses.

Vecteur des positions au temps t, aprés convergences des itérations.

Vecteur des positions au temps t, aprés|’itération numeroi.
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Détermination automatique de la taille du pas de temps pour les schémas implicites en
dynamique non-linéaire.
Table des notations.

o

qni

Uo,i

’

nddl
R

o
TESF
Wext

IT1IK
IT2K
IT3K
ITMA
PRCR
PRCK

PRCU
RDOWN

RUP

Vecteur des positions au temps t, avant lapremiéreitération.

Position au temps t, pour le degré de libertéi.

Position initiale du degré de libertéi.

Nombre de degré de liberté.

Résidu de |’ éguation d’ équilibre.

Matrice d'itération.

Résidu adimensionnalisé de |’ équation d’ équilibre.
Travail des forces extérieures.

Paramétre MECANO désignant le numéro de la premiére itération pour
laquelleil y aremise ajour de lamatrice d'itération (1 par défaut).

Parametre MECANO désignant le numéro de la deuxieme itération pour
laquelleil y aremise ajour (IT1IK+1 par défaut).

Paramétre MECANO désignant la fréquence (en itérations ) de remise a jour
delamatrice d'itération apres |'itération I T2K (1 par défaut).

Nombre maximum d’itérations pour un pas de temps (par défaut 10 pour
MECANO et 7 pour METAFOR).

Paramétre désignant la précision requise pour le résidu adimensionnel (TESF)
(par défaut 1E-5 pour MECANO et 1E-4 pour METAFOR).

Parametre MECANO désignant le seuil du résidu adimensionnel sous lequel la
matrice d’itération n’est plus remise ajour (10* PRCR par défaut).

Seuil detolérance de I’ erreur d'intégration (1E-3 par défaut)

Facteur de division du pas de temps (par défaut 2 pour MECANO et 3 pour
METAFOR)

Facteur de multiplication du pas de temps de MECANO (2 par défaut).
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Détermination automatique de la taille du pas de temps pour les schémas implicites en
dynamique non-linéaire.
Introduction.

| ntroduction.

La nécessité de pouvoir modéliser des impacts devient de plus en plus grande. En effet de
nombreuses industries s intéressent a des problémes de sécurité (constructeurs automobiles,
industries aéronautiques...). Afin d'améliorer la résistance aux chocs des structures, il
devient nécessaire de modéliser des phénoménes d’impacts (perte d'aubes d’un moteur
d avion, collision frontale d’ une voiture ...) lors de la conception des piéces mécaniques. Dés
lorsun code d’ ééments finis doit permettre de ssimuler ces phénomenes.

Lors d un impact, les déplacements et les déformations de la piéce étudiée sont conséquents.
En effet, les piéces se déplacent en trandation et en rotation. Suite a ces déplacements, elles
rentrent en contact avec des matrices, d autres pieces ou se replient sur elles mémes (auto-
contact). Sous I’ effet de ces contacts et des forces extérieures, des phénomeénes de plasticité
apparaissent. Les déformations ne sont pas linéaires et |’ équilibre ne peut pas se calculer sur
la configuration initiale. Il faut donc avoir recours & une théorie incrémentielle et nous nous
placons dans le cadre non linéaire des grands déplacements et des grandes déformations.

De plus ces phénomenes sont dynamiques. En effet étant données les vitesses des pieces
lorsqu’elles entrent en contact, les forces d'inerties sont non négligeables et doivent étre
prises en compte. Les équations d équilibre doivent donc étre intégrées afin d obtenir les
réponses temporelles. Cette intégration se fait al’aide d’ un schéma explicite ou implicite. Un
tel schéma résout les équations d équilibre pour des temps choisis. Ces temps choisis (to,
t1,...) sont séparés par une durée (h) appelée « pas de temps ». Un schéma implicite calcule
des positions en un temps t, en fonction des valeurs des vitesses et des accélérations des
temps t, et t,.1. 11 est donc itératif contrairement au schéma explicite pour lequel les positions
du temps t, ne dépendent que des vitesses et des accélérations au temps t,.;. Signalons
I’ existence de schémas d’intégration qui utilisent, outre les valeurs des inconnues en t, et t, 1,
les valeurs des inconnues en des pas antérieures at,.;. Ce sont des schémas a plusieurs pas.

Un schéma d'intégration a la particularité d’introduire de I’ amortissement numérique dans le
systéme. Si cet amortissement est positif, de I’ énergie est créée et la solution calculée tend,
apres quelques pas de temps, vers des valeurs tres élevées. Le systeme est dors instable. Si
I’ amortissement est négatif, le systéme est stable mais la perte d’ énergie s accompagne d’ une
perte de précision. Les schémas explicites ne sont stables que pour de petites valeurs du pas
de temps. Par contre, pour un choix judicieux des parametres d'intégration, les schémas
implicites sont stables quelle que soit la durée du pas de temps. Ills sont alors dits
inconditionnellement stables et présentent |I’avantage de permettre I’ utilisation de pas de
temps de durée plus importante. La précision d intégration des schémas implicites est fonction
de la dissipation numérique d énergie. Le calcul est itératif, la précision dépend donc aussi de
I’ erreur tolérée pour ces itérations. Les équations sont résolues pour certains pas de temps.
Une erreur de discrétisation est alors introduite et cette erreur est d’autant plus faible que la
durée du pas de temps est petite. Bien que les opérations d’ un schéma implicite soient plus
colteuses (inversion de la matrice d'itération), le temps de calcul reste souvent inférieur a
celui d'un schéma explicite. En effet il nécessite moins de pas de temps. |1 est des lors souvent
avantageux d'utiliser ce schéma pour des raisons de co(t de calcul. Ce travail Sintéresse
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Détermination automatique de la taille du pas de temps pour les schémas implicites en
dynamique non-linéaire.
Introduction.

uniquement a ces derniers schémas. Le code METAFOR que nous utilisons permet la
résolution de problémes dynamiques implicites en grands déplacements et grandes
déformations.

Un des problémes de I'implicite, lié a la non-linéarité des modéles, est la convergence des
schémas d'intégration. En effet la résolution des équations d’ équilibre se fait par un schéma
de Newton-Raphson dont la convergence n’est pas toujours assurée. Un des parameétres
influencant la convergence est la durée du pas de temps utilisé lors de I’intégration. Si ce pas
de temps est trop grand, le systeme ne converge plus. Mais un pas de temps trop petit
demande un temps de calcul prohibitif qui rend toute utilisation industrielle onéreuse voire
impossible. Insistons sur le fait qu'il ne s agit pas de réduire le temps de calcul de quelques
pourcents mais de permettre la résolution de problémes industriels en quelques dizaines
d heures plutét gu’ en plusieurs semaines. Considérons un probleme non linéaire intégré avec
un pas de temps constant. La durée du pas de temps doit alors étre choisie de maniére a
permettre la convergence des itérations aux moments les plus délicats (prises de contact ...). .
Prenons |’ exemple d’un calcul de perte d' aube. Avant la perte, le probléme converge tres bien
avec des durées importantes du pas de temps. Lorsque la perte survient, il y a création d’un
balourd et les forces aux paliers augmentent. De plus des sous I’ effet de ce balourd, des prises
de contact apparaissent. La durée du pas de temps doit alors étre réduite d' un facteur
important. Suite a la rupture d’ aube, la vitesse de rotation de I’ arbre du moteur diminue pour
s'annuler. Dans ce cas les forces en jeu diminuent et le probléme redevient linéaire. La durée
du pas de temps peut donc étre augmentée. Pour une stratégie de pas de temps fixe,
I’ utilisateur choisit un pas de temps et se rend compte aprés plusieurs heures de calcul que ce
pas de temps ne permet pas la convergence, il doit donc recommencer avec une durée de pas
de temps inférieur. Cette durée est alors souvent tres petite ce qui correspond a une perte de
temps CPU pour la plupart des périodes de calculs du probléme (dans notre exemple, avant la
perte d' aube et quand la vitesse de rotation du moteur décroit). De plus aucune garantie de
précision n’'est donnée a I’ utilisateur. En non linéaire, une stratégie automatique de la durée
du pas de temps s avére donc indispensable dans I'industrie. De plus la durée du pas de temps
doit pouvoir garantir la précision des résultats.

Ce travail propose une gestion du choix de la durée du pas de temps. Pour ce faire nous
choisissons d' utiliser un indicateur de |’ erreur d’intégration numérique. La gestion dével oppée
s adapte aux différents schémas d'intégration implicites étudiés. Elle garantit une précision
sur les résultats obtenus tout en assurant un colt de calcul réduit. Cette stratégie est d'abord
validée sur des cas généraux de grandes déformations afin de mettre en évidence son large
domaine d application. Ensuite, elle est validée sur des cas industriels. Pour |’étude de ces
cas industriels, la nouvelle gestion du pas de temps est associée a un nouveau critére de
convergence ains qu'a un nouveau schéma de décision de remise a jour de la matrice
d'itération. L’intérét principal de I’éude de cas industriels est leur nombre important de
degrés de liberté ainsi que la variation des phénomeénes physiques qui apparaissent au cours
du temps. Les intéréts pratiques (gain de temps de calcul, garantie de précision et diminution
du nombre de paramétres utilisateur) des nouveaux schémas sont alors clairement mis en
évidence. Nous sommes ainsi parvenus a réduire fortement les temps de calcul de ces cas.

Le présent document est divisé en 6 chapitres:

- Dans un premier temps, les différents schémas d’ intégration implicites (Newmark,

Hilber-Hugues-Taylor, Chung-Hulbert (PONTHOT [XI]) et le schéma du point
milieu généralisé (PONTHOT [X1]) qui existent sont rappel és.

Page 8



Détermination automatique de la taille du pas de temps pour les schémas implicites en
dynamique non-linéaire.
Introduction.

Ensuite une étude bibliographique est présentée. Nous y résumons les différentes
méthodes du calcul de I’erreur d'intégration numérique et du choix du pas de
temps qui y correspond. Signalons dés a présent que seul quelques articles se
penchent sur le choix de la durée du pas de temps. Nous avons dénombré
seulement cing articles (GERADIN [l1], NEUMANN et SCWEIZERHOF [IV],
HULBERT et JANG [V], CASSANO et CARDONA [X] et PONTHOT [XI]) qui
se sont intéressés a une stratégie automatique de pas de temps des schémas
implicites. Les quatre premiers articles développent une théorie sur le calcul de
I"erreur d'intégration mais seuls GERADIN, CASSANO e CARDONA
dével oppent une théorie sur le choix de la durée du pas de temps. Cette théorie est
cependant basée sur | hypothése de linéarité et le méme schéma est appliqué en
non linéaire. Le seul article qui adapte un schéma aux non-linéarités est celui de
HULBERT et JANG. Il n’est donc pas exagéré d affirmer que le « time-steping »
des schémas implicites n’ est que peu étudié malgré son importance.

Dans la troisiéme partie nous montrons comment adapter ces différentes erreurs
pour les différents schémas d'intégration implicites (Newmark (N), Hilber-
Hugues-Taylor (HHT), Chung-Hulbert (CH) et le schéma  du point milieu
généralisé (SMQG) ).

Une proposition de la gestion du pas de temps est aors proposée. Cette gestion se
base sur le calcul de I’ erreur d’intégration et tient compte des non-linéarités.

Afin de valider la gestion proposée, des cas tests de grandes déformations sont
calculés dans la cinquiéme partie du travail. Ces cas tests sont résolus grace a la
nouvelle gestion du pas de temps et nous mettons en évidence ses avantages. Ces
avantages sont |’assurance d’avoir une convergence des itérations ains qu’une
bonne précision de I’ intégration pour un temps de calcul acceptable.

Par soucis de généralité des cas fortement non linéaires de grandes déformations
ont d’'abord été testés. Afin de montrer que la méthode reste pertinente dans des
cas industriels quasi linéaires, des cas tests d’ entreprises (*) sont calculés grace a
la proposition de gestion du pas de temps implémentée dans le module MECANO
de SAMCEF. Il s agit de problemes a trois dimensions modélisés par des super-
éléments. Ces super-éléments sont reliés entre eux par des ééments non linéaires
qui permettent de simuler le contact aubes-carter ou les jeux des paliers. Dans ce
genre de problémes ou le nombre de degrés de liberté est important, |’ opération la
plus colteuse est I'inversion de la matrice d’itération. Cette opération doit donc
étre évitée autant que possible. Nous proposons un critére de remise a jour de cette
matrice qui, associé a la nouvelle gestion du pas de temps ainsi qu’a un houveau
critere de divergence des itérations, permet de réduire fortement le temps de calcul.

(*) Obtenus dans e cadre d' un stage au sein de I’ entreprise SNECMA (ao(t-décembre 1999)
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Détermination automatique de la taille du pas de temps pour les schémas implicites en
dynamique non-linéaire.
Chapitre 2 : Rappel des principaux schémas implicites d' intégration.

2. Rappel des principaux schémas implicites
d’intégration.

Le systéme continu étudié est discrétisé en éléments finis. Le systéme discrétisé obtenu est
caractérisé par un certain nombre de degré de liberté. Les inconnues relatives a ces degrés de
liberté, sont regroupées dans un vecteur des positions (), un vecteur des vitesses ((]) et dans

un vecteur des accélérations ((j). Le systéme est soumis a un ensemble de forces extérieures

(vecteur F eyt ). Ces forces peuvent étre directement appliquées sur la structure ot provenir
de phénomeénes de contacts, de frottements ... Ces forces dépendent donc de la position et de
la vitesse de la structure. Elles sont alors non linéaires. Sous I’ effet de ces forces, la structure
se deforme. Ces déformations entraine la création de forces internes (vecteur Fip). Ces

forces internes sont non linéaires. Les principales causes de non-linéarité proviennent des
déformations plastiques et des non-linéarités géomeétriques. Les dernieres forces sont les
forces d'inerties. Elles peuvent s exprimer par le produit de la matrice constante des masses
(M) par le vecteur des accélérations. L’ équation d’ équilibre a résoudre s écrit alors au temps
Tt

M qn+1 + Fint (qn+1’ qn+1) = Fext (qn+]_’ qn+]_) (2-1)

avec (], {,, connus.

Afin de résoudre I'équation (2.1), nous devons lier les vitesses et les accélérations aux
positions afin d’avoir le méme nombre d’ éguations que d’inconnues. Un développement en
série de Taylor donne en considérant h le pas de temps égal a th.-ty:

i -

i$ x,vi Jo1]:

:l: h2

|’ qn+1 = qn + h qn + 7 qn+x (2.2)
|

%qn+1 = qn +h qn+V

Pour des raisons pratiques, les accélérations de la relation (2.2) ne peuvent étre calculées.
Elles doivent donc étre approximées.

Un choix consiste a prendre les accélérations au temps t,. Les positions et les vitesses sont

alors connus ainsi que les forces internes et extérieures. La relation (2.1) donne alors
directement les accél érations. Ce schéma est dit explicite car aucune itération n’ est nécessaire.
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dynamique non-linéaire.
Chapitre 2 : Rappel des principaux schémas implicites d' intégration.

Il alI’inconvénient d'étre numériquement instable car I’ amortissement numérique est négatif
sauf dans certains cas pour de trés petites valeurs du pas de temps.

Dans le but de pouvoir travailler avec des pas de temps plus important, les accélérations de la
relation (2.2) sont calculées a partir des accélérations du temps t,.1. Déslors, les vitesses et les
positions du temps t,.; dépendent de la solution (accélérations) du temps tn.1. |1 en va donc de
méme pour les forces internes et externes. La relation (2.1) ne peut donc étre résolue
gu'itérativement. Le schéma est aors dit implicite. 1l vient pour les schémas (N), (CH) et
(HHT) :

::qn+1 = qn + hqn + hz(% ) b)qn + hzb qn+1
(2.3)

1
I'
I qn+1 = qn + h(l - g) qn + hg qn+1
1

Les paramétres $ et ( conditionnent la précision et la stabilité de I’ intégration. En fonction des
parameétres " y et " ¢ du schéma (82.2), des valeurs optimales de précision et de stabilité
inconditionnelle (ne dépendant pas de la taille du pas de temps) peuvent étre déduites de
I’ étude d’ un systeme linéaire a un degré de liberté.

Le schéma SMG propose d' utiliser une accélération constante dans I’ intervalle de temps t,,
t1. Cette accélération est prise en th.o. Le systéme (2.1) est adors résolu en tn., €t les
inconnues sont les positions, les vitesses et les accél érations en ce point. Si h désigne la durée
du pas detemps entre lestempst, et tn.+1, dors 2h est le pas de temps entre les temps t,, €t tp.t.
[l vient alors:

2
n+1= qn+hqn+h7qn+q

O 0
1

n+1l qn + h qn+q
Un+1 = Un+q (2.4)

. 2.2
qn+q = qn + hq qn + gz—h qn+q

|

|

|

I . 1y .
fUneq = Un + 00 bpyg

Etant donné leur caractére itératif, les schémas implicites se décomposent en deux parties: la
prédiction et la correction.
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Détermination automatique de la taille du pas de temps pour les schémas implicites en
dynamique non-linéaire.
Chapitre 2 : Rappel des principaux schémas implicites d' intégration.

2.1. Pr édiction.

Une premiére valeur des inconnues est prédite a partir des valeurs en tn. Pour les schémas N,
CH, HHT il vient :

}-qgﬂ =g, +hg, + hz(% - b)a,

[ N

|, q2+1 = qn + h(l - g) qn (2-5)
|

¥q2+1 =0

Et pour le schéma SMG, il vient :

Lhsg = Oneq *+ A G,

[ Goeg = G

o _

flneg = O (2.6)

Ces valeurs sont alors corrigées de maniéere a satisfaire les équations d’ équilibres.

2.2. Corrections.

Pour le schéma de Newmark, les positions, vitesses et accélérations du temps tn+; doivent
satisfaire I’ équation d’ équilibre (2.1) en utilisant les relations (2.3). Les valeurs optimales de
$ et ( sont alors respectivement [X1] 0.25 et 0.5. La précision maximale sur les amplitudes et
les fréquences d'un systéme linéaire a un degré de liberté est alors garantie tout en gardant
une stabilité numérique pour toutes valeurs du pas de temps. Dans ces conditions aucun
amortissement numérique est introduit. Pour un systéme sous contraintes cinématiques, des
modes numériques de fréquences tendant vers I'infini apparaissent [I1]. Ces modes génerent
de I'instabilité numérique S'ils ne sont pas amortis [11]. Un amortissement numérique doit
donc étre introduit. Une solution consiste a utiliser un schéma de Newmark amorti. Les

paramétres d'intégration sont dlors g = 0.5 +a et b = 0.25(9 + 0.5)2 avec " >0.

La précision d’intégration est aors affectée car si les modes numériques sont amortis, les
modes physiques aussi. Toutefois dans des cas ou les déformations plastiques sont
importantes, |’amortissement numérique est négligeable par rapport a I’amortissement
physique et la précision redevient acceptable.
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dynamique non-linéaire.
Chapitre 2 : Rappel des principaux schémas implicites d' intégration.

Une solution élégante consiste a introduire de |'amortissement numérique qui affecte
principalement les modes de hautes fréquences. Ce sont les modes numériques créateurs
d'instabilités. Le schéma consiste alors a pondérer |’équation d équilibre (2.1) entre les pas n
et n+1 afin de diminuer les instabilités numériques. Hilbert, Hughes et Taylor ont proposé de
pondérer les forces internes et extérieures grace au parametre " ¢ alors que Wood, Bossak et
Zienkiewicz pondérent les forces d'inerties grace au paramétre " . Chung et Hulbert ont
obtenu laforme générale (CH) suivante :

],'(1 -amM by tamMd, + (- ap)lFint @ps1 Gne9 - Fext @ne1s Gned] (2.7)
t+arlFint @, 99 - Fex@,,9)] =0

Une étude d’ un systéme linéaire permet de garantir une précision du deuxiéme ordre avec une
dissipation maximale des hautes fréquences pour un choix des paramétres " =(" u+1)/3,
(=0.5-" y-" £ et $=0.25(1-" »-" F)2 Remarquons que comme il a été dit pour Newmark, un
choix différent des paramétres (et $ peut étre bénéfique en non-linéaire [X1]. Si " \ est chois
négatif, les forces d'inerties d’ un systéme linéaire sont alors évaluées en un temps supérieur a
te1. S " v=0 alorsle schémaest le schéma HHT et " ¢ doit alors étre choisit entre O et /3. Si
enplus" =0 le schémadevient celui de N.

Les équations (2.7) et (2.3) sont résolues par itérations. Définissons les valeurs (I’indice
supérieur se rapportant au numéro de I’itération et I’'indice inférieur au numéro du pas de
temps) :

i+1 _

i i

.:.qn+1 - qn+1 + m
T4itl —

.:.qn+1 -

Oney + D
'I' - 1 (Fint - Fext)

i i
Ons1Gner

_ T (Fint - Fex)
fiq

qin+1’qin+l
_ <(1 - aM)M qin+1 + awm M qln + (1 - aF)[Fint (q|n+1’ q|n+1) - Fext (q|n+1’ q|n+])]>
R +ar[Fint (qn’qn) - Fext(qn’qn)]

aors(2.7) selinéariseen :

(1-aw)M D+ (- apC'Dg+K'Dg =-R (2.8)
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Chapitre 2 : Rappel des principaux schémas implicites d' intégration.

Etant donné (2.3), il vient :

T~ _ g

! % bh

I L (2.9)

| R

{ DY bh2 Dq
Et en définissant S lamatrice d’itération :

_ g (1- am

st = (1- aF)(Kt + bh Ct) + TZM M (2.10)
(2.8) devient finalement:

st Dg = -R (2.12)

La relation (2.11) fournit )q ce qui donne grace a (2.9) Dq, Dg. Les itérations continuent
jusqu’ a satisfaire le critére de convergence (PRCR est |a précision requise):

R < PRCR (2.12)
Fint| + | Fed

Lors de I’ établissement de larelation (2.7), les forces sont pondérées entre deux pas de temps.
Pour un systéme linéaire, la pondération reviendrait a évaluer les forces au temps t,.1.- . Pour
un systeme non linéaire ce n'est plus vrai. Le schéma propose par PONTHOT [XI] propose
d évaluer toutes les forces de maniére rigoureuse au méme temps tn.2. Dans ce cas (SMG),
I’ équation d’ équilibre devient:

M qn+q + [Fint (qn+q ’qn+q) - Fext (qn+q ,qn+q)] =0 (2.13)

2 doit étre pris |égérement supérieur a I’ unité pour avoir un algorithme stable. Les équations
(2.13) et (2.4) sont résolues par itérations. Définissons les valeurs (I’indice supérieur se
rapportant au numéro de I’ itération et I’ indice inférieur au numéro du pas de temps) :
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dynamique non-linéaire.

Chapitre 2 : Rappel des principaux schémas implicites d' intégration.

Sl
: qln-:-q - qln+q + D:I

i qn+q qn+q

T I R | + m

i qn+q - qn+q

: ct = 1 (Fint - Fext)

.I'. Ca

.:. oo
: Kt = ) (Fint - Fext)

! On+q -z
i

Etant donné (2.4) nous déduisons :

I
N

ﬁa-Dq

2
Do
2 g2

g 8

—_—— — ———i —

Et en définissant S; lamatrice d'itération :

(2.13) devient:
s'Dg = -R

R=M qiI’l+q + [Fint (qln+q 7qln+q) -

Fext (qin+q , q|n+q)]

(2.14)

(2.15)

(2.16)

(2.16) fournit )g ce qui donne gréce a (2.14) Dg,Dg. Les itérations continuent jusqu’a
satisfaire (2.12). |l reste dors a calculer les valeurs au pas de temps n+1 par :

i

I qn+1 = qn+q

| On+1 = On hqn+1
! h
{qn+1 =0y * hqn + 7qn+1

Dans le cas 2=1, nous retrouvons (N) avec $=0.5 et (=1.

(2.17)
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Détermination automatique de la taille du pas de temps pour les schémas implicites en
dynamique non-linéaire.
Chapitre 3 : Etude bibliographique de la gestion automatigue du pas de temps.

3. Etude bibliographique de la gestion automatique du
pasdetemps.

L’ étude bibliographique se penche sur deux aspects. Le premier se consacre au calcul de
I’erreur d’'intégration et le second au choix de la durée du pas de temps qui en découle.
Comme il est signalé dans I'introduction, peu d’ auteurs se sont intéressés au sujet. La raison
de |la briéveté des théories exposées dans ce paragraphe ne provient donc pas d’ un manque de
recherche.

3.1 Calcul del’erreur d’intégration.

Les auteurs se basent tous sur I'erreur de troncature du développement des positions du
schéma implicite (relations (2.3) et (2.4)). Ce raisonnement n'implique aucune hypothése
quant aux non-linéarités du probléme.

Pour GERADIN [11], I’erreur est basée sur I’ erreur de troncature effectuée sur les positions.

Les algorithmes implicites utilisent (relation (2.2)) un développement en série de Taylor de la
position :

ot + 1) = o + ha® + 2 aw + T aw + omy.

Cependant le développement utilisé ne prend pas en compte le troisiéme ordre. L’ erreur est
3
h ..
donc del’ordre: 3 g(t) . Nous pouvons encore développer q(t) . En effet :
ot +h) » o) + hatt).

L’ erreur peut donc se mettre sous laforme

e:%‘d(t+h)- d(t)‘ :%‘Dd‘ (3.2)

Afin de pouvoir comparer cette erreur a celle d’ un systeme linéaire de pulsation T a un degré
de liberté, les auteurs passent aux coordonnées modales et il vient, en nommant le vecteur des
positions initiales o, pour le schéma HHT (Annexe 2) :
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e= b2 [D g [XM'q)]}é (32)
69(Wl<) [‘%M qo]/y2

avec |’ erreur du systéme linéaire a un degré de liberté € (S=Th) évalué en S=0.6 (Annexe 2):

1- WAL+ 1w
e (W) = S &
3p[1+(1-a|:)b VVZ]

(3.3)

Une autre maniere d’ exprimer I’erreur est de calculer la différence entre la valeur d’un
développement de Taylor d un ordre supérieur et la valeur calculée comme cela est propose
par JEUMAN et SCHWEIZERHOF [IV]. Les erreurs calculées sont la différence entre la
position calculée par ce développement et celle calculée par e schéma. Le méme calcul peut
sefaire a partir des vitesses. Il vient déslors (Annexe 1) pour un schéma autre que SMG:

I 2 € . S
I €dep,n+l ~ % gqn_1+ (2 - 24b) q,+ (24b - 3) qn+18 + O(hY)

(34)

evit,n+1 ~ %

A

|
|
| . -0
i .1+ (4 - 129) g+ (12g - 5) In+1 + O(h%
|

DMD> D~

Larelation (3.1) represente une estimation de I’ erreur sur la position au 4°™ ordre, la relation
(3.4) représente une estimation de I’ erreur sur la position au 5™ ordre et sur les vitesses au
4°° ordre.

Pour HULBERT et JANG [V] I'erreur de troncature prend la forme (autre schéma que
SMG) :

e=(b - Dy (35)

qui est une expression comparable a (3.1). Cependant les auteurs ne passent pas par les
coordonnées modales comme GERADIN [I1]. De plus I’adimensionalisation de I’ erreur est
différente. L’ erreur est divisée par un facteur dépendant de Dq. Il vient alors[V] :

‘ |

jref ., = max(% refn,‘qn,,l - 0,

(3.6)

(b i é)hz‘qnﬂ' An
ref

i
I
|
I
i
i o
f n+1
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Pour un systéme a un degré de liberté linéaire, I’ erreur adimensionnelle peut étre reliée au pas
detempsh et alapériode T [V] :

e =4p2[p - 1)t @37

Une fois un rapport h/T fixé, larelation (3.7) fournit une tolérance al’ erreur adimensionnelle.

Pour DUTTA e RAMAKRISHNAN [IX], I'erreur est calculée comme (3.5). Elle est
cependant adimensionnalisée par la norme maximale des positions durant les calculs.

e = (b _ é)hz‘qnﬂ " G ‘n=1..,n+1 (3.9)

max |
nl

Pour CASSANO et CARDONA [X], I'erreur est similaire a (3.1). Elle n’est cependant pas
adaptée aux coordonnées modales. L’adimensionnalisation se fait a partir d'une position
caractéristique. L’erreur adimensionnelle est calculée pour chacun des noauds et |’ erreur
maximale est ensuite retenue. Au noaud i nous avons [X] :

degré de trandlation
L e

Orer,i = ‘qn+1,i‘ +

— — — —

%0 degré de rotation

g — F‘qnﬂ,i ) qn,i

—_) N — = = — —

Avec L lataille d'un éément et N e nombre d’ ééments
L’ erreur adimensionnelle devient donc :

69
B i=1, nddlé

0
: (3.9
i g
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3.2. Compar aison des différents estimateursd’erreurs.

Le calcul des erreurs (3.1) et (3.5) a(3.9) se base sur I’ erreur de troncature du dével oppement
de Taylor. Les erreurs (3.4) se calculent a un ordre supérieur et donnent donc une meilleure
image de |'erreur entre la position calculée et la position exacte. Cependant le calcul de
I"erreur est  colteux. En effet le nombre d’ opérations est beaucoup plus important et les
vecteurs au temps t,.; doivent étre stockés Les autres erreurs sont delaforme e =————— h,2 D4
référence

L’ erreur (3.2) passe par les coordonnées modales. Ce raisonnement a |’ avantage de pouvoir
comparer de maniére rigoureuse I’ erreur du systeme a plusieurs degrés de liberté couplés avec
I”erreur d’un systéme a un degré de liberté. Cependant cette comparaison n’ est rigoureuse que
dans le cas d’un systeme linéaire non amorti (Annexe 2). Les autres erreurs calculent Dgj.

Une autre différence provient du choix des valeurs d’ adimensionalisation. Les erreurs ( 3.3) et
(3.5) gardent cette valeur constante au cours du temps al’inverse des autres qui la recalculent
régulierement.

Enfin I’expression (3.9) ne moyenne pas I’ erreur sur les différents noauds. Cela conduit a un
critere plus sévére comme il apparaitra clairement dans la suite (84.3).

3.3. Gestion de la dur ée du pas de temps.

Seuls GERADIN [I1], CARDONA et CASSANO [X] développent une théorie pour établir
une formule de prédiction sur la durée du pas de temps a partir de |’ erreur d’ intégration. Cette
formule de prédiction est développée pour les cas linéaires.

Pour GERADIN [I1], lorsque les itérations de |a phase de correction au temps t, ont converge,
I”erreur d’intégration (€) est calculée selon (3.2).

Le premier test (Figure 1) consiste a verifier que I'erreur (€) est inférieure au seuil de
tolérance choisi (PRCU). Dans le cas contraire, il est rgeté. Alors, le pas de temps h, est
divisé par deux, le tempst, est recalculé (t,=tn.1+hy) €t le systéme est & nouveau résolu pour ce
nouveau temps.

Dans le cas ou I’ erreur (€) est bien inférieure a ce seuil (PRCU), les calculs au temps t,, sont
acceptés et le nouveau pas de temps hn.; est calculé pour définir le nouveau temps de calcul
t1. Le but poursuivi par I’agorithme est d’ obtenir une erreur légerement inférieure a la
moitié de latolérance (C' est-a-dire PRCU/2).

Deés lors si I'erreur est supérieure a PRCU/2, la durée du pas de temps est réduite afin de
diminuer I’ erreur du pas suivant. La relation (3.3) permet d’ établir le rapport entre le pas de
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temps et I'erreur pour un systéme linéaire a un degré de liberté. En effet, il vient
limeW) , WP et |[ime(W) , WP. En serappelant que S est le produit entre |e pas de temps
W® 0 W® ¥

et lapulsation, laformule liant la durée du pas detemps al’ erreur s écrit :

(3.10)

—_
M: D> D~
N
w
Oy

2= s "

Dans cette relation, hy est e pas actuel, e; est I erreur actuelle, e est I erreur désirée et h, est
le pas de temps théorique qui amene I’ erreur voulue. Dans le cas présent, I’ erreur doit étre
ramenée de e a PRCU/2. L’exposant ? est choisit égal a trois. La nouvelle durée du pas de
temps vaut donc :

hn+1 = hn (% 3 (3.11)

Le rapport entre le nouveau pas de temps et | ‘ancien est toutefois limité par I'intervalle
[0.5, 0.9]. 1l doit étre inférieur & 0.9 pour réduire suffisamment la durée du pas de temps
et supérieur a 0.5 pour ne pas le réduire exagérément.

Si I’erreur est trés petite, le pas de temps est inutilement trop petit. Un gain de temps de calcul
peut étre obtenu en I’ augmentant et ce sans dégrader 1a qualité de la solution. En se référant a
la formule (3.10), et pour un exposant O égal a trois, le pas de temps peut étre doublé si
I’ erreur est inférieure ou égale a un seizieme.

Dans le cas ou |’ erreur est comprise entre un demi et un seizieme, le pas de temps est gardé
constant.

Le principal désavantage de ce schéma en non linéaire est que I’ augmentation ou la division
du pas de temps ne correspond pas toujours a une modification physique du systeme. En effet
des variations de I'erreur peuvent étre dues a des modes numériques et non a des modes
physiques. De plus, I’ erreur peut varier périodiguement sur des petits intervalles de temps. |l
est aors inutile de modifier I erreur réguliérement. En effet dans ces conditions, des pas de
temps augmentés sont alors régulierement rejetés ou des divisions inutiles apparaissent. De
plus laformule (3.10) a été établie pour un systeme linéaire a un degré de liberté. Dans le cas
de non-linéarités importante, elle ne peut étre appliquée impunément. Enfin, ce schéma ne
tient pas compte des éventuel s problémes de convergence.

LaFigure 1 représente le schéma de choix du pas de temps.
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Résolution du systéme
au temps t,

!

Calcul del’erreur : €

e>PRCU

non

non

>
Pas refusg, calcul
du nouveau temps
tn:tn-l'l'hn
h, :=h./2
| <
oui
oui
[
RAT:[ PRCUY}3
2e
0.5<RAT<0.9
\ 4

oui
_<_

RAT=2

e>PRCU/2 >

e<PRCU/16

non

RAT=1

!

hn+1:RAT hn

!

Pas accepté, calcul du
nouveau temps ty1 =t +hne1

!

Résolution du systéme au
temps th.1

Figure 1: schéma du pasdans MECANO [11]
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Pour NEUMANN et SCHWEIZERHOF [IV] ains que pour HULBERT et JANG [V],
I’ erreur est considérée proportionnelle a h? (ce qui suppose Dg presque indépendant de h vu
les expression (3.4) et (3.5)). Pour DUTTA et RAMAKRISHNAN [IX] I’ erreur est supposee
proportionnelle & h® sans démonstration. Nous retrouvons donc la formule (3.10) qui est
cependant délicate d’ application dans un cas non linéaire. Les deux schémas de gestion du pas
de temps qui suivent sont proposés pour tenir compte des non-linéarités. Ces deux schémas
se basent toujours sur larelation (3.1).

Le schéma proposé par DUTTA et RAMAKRISHNAN [IX] utilise le calcul de |’ erreur (3.8).
L’intervalle de temps de calcul est divisé par I'utilisateur en «nt » sous-domaines. Dans
chacun de ces sous-domaines le pas de temps h est gardé constant (Figure 2). Un sous
domaine correspond donc a une succession de pas constant.

Sous-domaine 1 Sous-domaine 2

hy h,

to t1 to t3 " t7 ts to

Figure 2 : Division en sous-domaines.

L e pas de temps du sous-domaine i est alors calculé a partir de I’ erreur du sous-domaine i-1.
Soient n;; le nombre de pas du sous-domaine i-1, ec;.1 I’erreur sur le k'™ pas du sous-
domainei-1,I’ erreur moyenne du sous-domainei-1 est définie:

le] ka_lek,i-l
el = *——
i-1 N1

Le pas de temps du sous-domaine i est alors calculé par (PRCU étant la précision requise) :

1
e 03

hi = hi-1 F;R_Ctj_ =
i-1,i g

Le principal désavantage de cette méthode est de devoir définir |’ espace temporel en sous-
domaines de taille fixée. De plus des chocs qui interviennent brusguement ne donnent pas de
rapides modifications du pas de temps.
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Afin de ne réagir qu’ au modifications physiques et durables du systéme, un schéma avec
compteur est proposé par HULBERT et JANG [V]. En définissant TOL1 I’erreur sous
laquelle la durée du pas de temps peut étre augmentée, TOL2 I’ erreur au-dela de laquelle la
durée du pas de temps doit étre diminuée et LCOUT la limite du compteur, le schéma est le
suivant :

. SiTOL1<e<TOLZ2 dorsle pas est accepté et hp.a=h,,
- Sie>TOL2adorslepasest regjeté et
- Si hy>hn.1 dors hp=hp1.
- Sinon h, devient h,(TOL 2/e)¥?
- S e<TOL1 pendant LCOUNT pas successifs aors les pas sont acceptés et
hns1=hn(TOL 1/e) V2.

Il existe aussi des schémas qui ne passent pas par le calcul d une erreur d’intégration. Citons
les deux suivants.

Pour PONTHOT [XI] lataille du pas de temps dépend du nombre d’itérations nécessaire a la
convergence du pas précédent. Cette technique est expliquée plus en détail au 86.

Pour GIVOLI et HENISBERG [XIl1], la taille du pas de temps doit satisfaire permettre de
limiter la différence de position entre les pas temps, soit :

an+1' On - (3.12)

‘qn+1

Le pas de temps hy.1 entre les temps t, et tnq peut aors étre calculé [XI11] pour les schémas
CH, N, HHT :

|
| dan+1
hn+1 = MIN '
% HQn

i

2ddn. i
(1- 2b) g, + 2b qnﬂi

(3.13)

La durée du pas de temps dépendant des valeurs au temps suivant, il ne peut étre calculé
qu'itérativement. Le pas de temps prend d’ abord la valeur du pas précédent, les inconnues en
th+1 sont alors calculée et le pas de temps peut alors étre déduit de (3.13). La nouvelle valeur
du temps t,.; est aors calculée et les inconnues qui y correspondent sont recalculées. Les
deux désavantages de cette méthode sont :
- Le nombre d'itération par pas de temps augmente fort car le pas est déterminé a
posteriori.
- Borner le saut de déplacement ne nous semble pas judicieux en grandes
déformations et en grands déplacements. En effet, dans le cas de prise de contact,
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le pas de temps doit étre petit pour garantir une certaine précision et la
convergence des itérations. Or pendant ces prises de contact, la variation des
positions est relativement faible, la relation (3.12) va donc étre facilement
satisfaite. A I’ opposé dans le cas d'une trandation a vitesse constante, la durée du
pas de temps peut étre tres grande sans poser de probléme d'intégration car
I"intégration se fait exactement. Les sauts de positions peuvent donc étre grands
mais alorslarelation (3.12) n’est plus vérifiée.

Dans la suite du présent travail, nous proposons d améliorer le schéma de GERADIN (Figure
1). Nous introduirons alors un systeme de compteur comme I’ont fait HULBERT et JANG
pour que les variations du pas de temps ne proviennent plus que de variations physiques et
durables du systéme. Nous adapterons également la durée du pas de temps afin de tenir
compte des éventuels problemes de convergence rencontrés. En effet, dans certains cas la
durée du pas de temps est suffisamment petite pour intégrer avec une bonne précision mais ne
permet pas la convergence des itérations de Newton-Raphson.
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4. Calcul del’erreur d’'intégration.

Nous allons montrer comment rendre le calcul de I’ erreur indépendant du schéma utilisé ainsi
gue des parametres d'intégration. Pour ce faire |’ erreur d’un systeme linéaire a un degré de
liberté est calculée analytiqguement. Cette valeur servira de valeur de référence aux erreurs
calculée numériquement. Ensuite plusieurs possibilités de calcul de I'erreur du 83.1 sont
rendues indépendantes du schéma d’intégration. Ces différentes erreurs sont alors évaluées
sur des cas test. Pour ces castest |e pas de temps est fixe afin de pouvoir comparer les erreurs.

4.1. Calcul dereurs dintégration indépendantes du
schéma.

L’ erreur d’un systéme linéaire non amorti a un degré de liberté est calculée. Cette valeur qui
dépend du schéma d’intégration et des parameétres d’ intégration sert de valeur de référence.
Soit I’ algorithme CH. L’ équation du systéme de pulsation T est :

bg+wia =q
I (4.1)
fat =0 =q
La solution exacte du systéme est (S=Th):
: q = gy cos(w t )
i hg = -qusin(wt) (4.2)
i
[

heg = - VVZqOCOS(Wt)

L’algorithme CH se résout par le systeme (2.3) et (2.7). Ces éguations deviennent pour un
systeme linéaire a un degré de liberté :

N

|
: qn+1

On + hqn+(%' b)hzqn+ b h2qn+1
aA=0,*Q-9h d,+9h Gy (4.3)

1
[
| O

|

| (l_ aM) qn+1+a|\/| qn + (l_ aF)Wan+1+aF qn

A

Ce dernier systeme peut se mettre sous laforme:
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e 0 .

¢ ®q, ¢

ENGyy 1= AW cha, =

€2ty - 3 n g
n+l g

avec .

i

|

: %el-aM-aFV\lzb 1-am

f ¢

AW = ginE OW (-adb - 9w rl-ay 1-g-aw Wb - P ap)
: g - W @r - DW

i

i g

I DW) =1-ay +(L-apWh

1-

(4.2) et (4.4) donnent alors:

& Dg
gth

® gycoswt) O
= [AW - 1] ¢- Wggsinwt) *
§- WP h?coswt) %

o

Etil vient de (4.5) larelation :

(1- a,:)v\/z‘sin(wt) + Woostw t)

0x] = g

l1-am +(1-apWh

Définissons € I’ erreur moyenne adimensionelle sur une période :

t=<P 2 .
w e
e = 2— O dt
P =06 ‘%‘
Etant donné que :
t:gg
wW
W o Jacoswt) + bsinwt)| dt
2p 1=

am -

2

2b

-am *(1-apb - YW

(4.4)

- o o O

Q B I EY B

(4.5)

(4.6)

(4.7)
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(4.7) devient en utilisant (4.6) :

VV2
1- ap W 1"‘7

" T3 [1-am + (- ap) WAh]

(4.8)

Cette expression de |’ erreur reste évidemment valable pour les schémas N et HHT, il suffit de
prendre les valeurs des parametres adéquates.

Quant au schéma SMG, (4.2) est remplacé grace a (2.4) et (2.13) par :
i h?
'Ohey = On h qn + 2 qn+q
| h On+1 = h O * h? qn+q
1 . .
h2 =
: On+1 In+q q2 h? (4.9)
: qn+q = qn + q h qn + an+q
PN = Ndy + 0%ty
an+q + W2 qn+q = O

Qui peut se mettre souslaforme:

ge On+1 9 é;% On 9
ENns == AWEhG, (4.10)
2 4 H hzqni
“One1 5 7
avec .

‘a?el+W2 2.1 1+W2 2 09

¢ 7((1 - 1) 7((1 - Q) -

g -

¢ W T

:# - (2 =

AW 2+q2w2§ g W 1+ 5@ -2 0+

g -

G- WPq? - WAQ 0~

: ;

Page 27



Détermination automatique de la taille du pas de temps pour les schémas implicites en
dynamique non-linéaire.
Chapitre 4 : Calcul del’erreur d'intégration.

Deéslors, I’ erreur moyenne sur une période adimensionnalisée s écrit :

. WZJ[quZ +21- qz)]2 +4g7 W

(4.12)

3p [2 + quz]

La Figure 3 illustre I’ évolution de € en fonction de S pour les différents schémas. Pour un
systéme linéaire a un degré de liberté S = 0.6 fournit une solution acceptable. Nous fixons
donc S a cette valeur pour obtenir une valeur de référence , pour chague schéma. La Figure 3

montre que cette valeur peut varier d' un facteur 3 a4 ce qui est significatif pour le calcul de
I”erreur.

1,00E-01 1,00E+01

NEWMARK
...... NEWMARK AMORTI
——e——HHT

CH
—¥— SMG
OMEGA=0,6

epsilon

,00E-02 ~

,00E-03 ~

1-00F-04
uuuuuuu

pulsation.h

Figure3: Evolution del'erreur pour les différents schémas.

Remarques::
- (411) et (4.8) ont la méme expression s 2=1.1 et " y=0, " =0, $=0.5 et (=1

comme lathéorie le prévoit.
- Leméme raisonnement peut se faire pour les erreurs (4.4) (Annexel).
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4.2. Expressions utilistesdel’erreur d’intégration.

Plusieurs expressions de I’ erreur d'intégration sont implémentées et comparées. Les erreurs
calculées numériguement sont divisées par la valeur de référence établie au 84.1 afin d avoir
une erreur indépendante du schéma et des paramétres d'intégration. Notons que les
expressions (3.4) ne sont pas reprises. En effet, aucun avantage n’a été obtenu qui justifie le
colt supplémentaire entrainé. La valeur d adimensionnalisation de I'erreur est gardée
constante au cours du calcul. Ce choix se justifie par le raisonnement suivant : dans le cas
d' un systéme amorti, la variation des positions diminue. La valeur d adimensionnalisation
diminuerait donc, ce qui augmenterait I’ erreur et réduirait le pas de temps. Or le choix du pas
de temps peut se justifier de deux maniéres. Il doit étre suffisasmment petit en regard de la
période du mouvement afin de I’intégrer correctement et il doit étre suffisamment petit pour
permettre la convergence des itérations. Dans le cas d’un amortissement du systeme, rien ne
justifie donc de réduire la durée du pas de temps. D’autant plus que dans les cas qui nous
concernent, au moment ou le contact a d§ja eu lieu, la convergence devient plus facile alors
gue la variation des positions diminue. Nous nous attendons donc a pouvoir travailler avec
des pas de temps plus grands et non plus petits (le cas de la barre élastique (§ 4.3.1) illustre
clairement ce raisonnement).

Les différentes erreurs suivantes ont été implémentées (nddl est le nombre de degré de liberté
et I'indice O caractérise le systéme au tempsinitial).

Erreur el :
nddl
2 & absDgj DM )]
o = o rngI (4.12)
2, absidg (M ag)]
Erreur 2 :
nddl
h? ig—l D G; DM qi)
iil qO,i (M qo)|
Erreur €3 :
e3 = (4.14)
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Erreur e4 :
2
_ h i:m%dl abs(D G;]
i=1,.. nddl Ao,

€ est calculé par (4.8) sauf pour le schéma SMG ou il calculé par (4.11).

Les erreurs (4.12) et (4.13) viennent de |’ expression (3.2) alors que les erreurs (4.14) et (4.15)
viennent de (3.1).

4.3. Comparaison des quatre expressons de |'erreur
d’intégr ation.

Les erreurs €1, €2, €3 et e4 vont étre comparées sur trois cas test différents. Chacun des ces
cas test est résolu par un schéma différent. Le pas de temps est pris constant pour pouvoir
mettre en rapport |’ évolution de I’ erreur avec la physique du phénomene.

4.3.1. Barre éastique per cutant un mur.

Il sagit d' une barre parfaitement élastique (Figure 4) ayant un module de Poisson nul. De
plus les degrés de liberté selon I’axe y et z sont fixés. Le probleme est donc unidimensionnel
selon |’axe x. Labarre est animée selon |’ axe x d’ une vitesse de 5,1 m/s.

Le métal a les caractéristiques suivantes: D=7895 kg/m?3, E=206840N/mm?. La barre a une
longueur selon x de 247,65 mm et une épaisseur selon y de 40 mm. Elle est a une distance
initiale du mur de 0.25 mm et le contact se fait sans frottement. Le probléme est en état plan
de déformation et se calcule par un schémaHHT (" =0.2). Le pas de temps vaut 1E-6s.

Le profil de lavitesse d'un point de la face qui entre en contact est représenté a la Figure 5.
En se rappelant que la célérité d'une onde dans un métal élastique vaut /E/r =5120m/s, il

faut un temps de 1E-4s pour que I’onde parcoure un aler-retour dans la barre. C'est donc le
temps qu'il faut ala barre pour quitter le mur une fois qu’ elle est rentrée en contact comme il
apparait sur la Figure 5. La barre repart alors en sens inverse avec la méme vitesse.
Cependant I’onde ne s'est pas parfaitement annulée lorsgu’ elle est revenue sur le mur (le
schéma d’ intégration est non conservatif). Des oscillations apparaissent alors toutes les 1E-4s.
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A Y
000 000
G0 V=5m/s
— >
000) 000 —>
X

Figure4: Schémadelabarre élastique.
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. AL 1%

temps (s)

Figure5: vitesse d'un point delabarre éastique.

La Figure 6 et la Figure 7 illustrent I’évolution des quatre erreurs proposees lors de
I"intégration HHT. Quand la barre n’est pas encore en contact avec le mur, |’ accélération est
nulle et les algorithmes implicites sont alors exacts. L’ erreur calculée doit donc bien étre
nulle. Quand la barre quitte le mur, la vitesse N’ est pas rigoureusement constante a cause des
schémas d'intégration. Cependant les oscillations dans le profil des vitesses disparaissent par
dissipation numérique (HHT avec " ¢ =0.2), et I’ erreur tend vers zéros. Entre 5E-5s et 15E-5s,
I”erreur subit bien un pic provenant de la prise de contact. L’ erreur e4 subit de plus fortes
variations car elle prend |’erreur du point qui subit le plus fort I'’onde aors que les autres
erreurs moyennent |’ ensemble des points. Les trois autres erreurs ont la méme allure (Figure

7).
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erreur
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Figure 6 : Evolution des différentes erreurspour la barre dlastique.
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Figure 7 : Evolution deserreursel-3 pour labarre éastique.
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4.3.2. LabarredeTaylor.

Il Sagit d'une barre ayant les propriétés suivantes: D = 8930 kg/m3, E=117E9 kg/m? et
<=0.35. Le matériau est élasto-plastique avec une limite élastique initiale de 4E8 N/m2 et un
coefficient d’ écrouissage de 1E8 N/mz.

Le probléme est axisymétrique. Le rayon est de 3.2 mm alors que la hauteur de la barre vaut
32.4 mm. Labarre rencontre un mur avec une vitesse de 227 m/s.

Le contact se fait sans frottement. L’intégration se fait par le schéma SMG avec 2=1.1 €t le
pas de temps=1.7E-7s. La déformation en t=8E-5s est illustrée sur la Figure 8.

SAMCEF — BACON @ VvV T7.0-2

sigma equivalente won-Mises {(J2)
Deplacements nodawx (DX, DY)

Pas 420

T 0.3000E-04

Echelle geometrigue

0.10e-02

‘f'

8

\“}:‘L\%\T

Echelle de la deformee 1.00

N
§
“l\l- [

489.7 441.3 2026 i1.1

- -D-i ra|

Figure 8 : Déformation et contraintes de Von-Mises (N/mm2) delabarrede Taylor.

La Figure 9 représente |’ évolution des erreurs d’intégration pour le cas de la barre de Taylor.
Les quatre courbes montrent bien une erreur importante au moment de I'impact et une
diminution de cette erreur aprés le choc. Les erreurs €2 et e4 ont le désavantage d’ étre peu
régulieres. En effet, si nous considérons que I’ erreur liée a |’ évolution physique du probléme
est un lissage des courbes d’ erreur obtenues, alors, les erreurs €2 et e4 oscillent avec de plus
grandes amplitudes autour de cette courbe lissée.
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erreur

0,001 -
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0,00001 -

0,000001
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Figure9: Evolution deserreurspour labarrede Taylor.

4.3.3. Casdel’amortisseur de choc.

Un cylindre creux s écrase sans frottement sur une matrice concave (Figure 10). Le probléme
est axisymétrique. Le matériau (D=2700kg/m3, E=67E9 N/m?, <=0.33) élasto-plastique a une
limite élastique initiale de 150E6 N/m? et un coefficient d’écrouissage de 44.7E6 N/m2
L’ intégration se fait par un schémade CH avec " \=-0.8 et un pas de temps de 1.32E-6s.

63 mm

V=32m/s

constant 397 mm

Figure 10 : Schéma del'amortisseur.
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Laconfiguration atteinte apres 1.25E-3 s est illustrée ala Figure 11.

SAMCEF — BACON : V 7.0-9

sigma equivalente won-Mises {J2)
Deplacements nodaux (DX, DV}
Pas 340
T 0.1250E-02
Echelle geometrigue
0.010

183.7 1e6.2 78 - "

- -  —

Figure 11 : Configuration déformée et contraintes de Von-Mises (N/mm?2) del'amortisseur.

Les erreurs obtenues sont illustrées ala Figure 12. A nouveau, les erreurs sont importantes au
moment du contact. Les quatre erreurs se stabilisent ensuite. L’ erreur e4 subit de plus fortes
variations.

100
10
el
— 1 T T T T T T
§ 0,00+9;2,0(')E- 4,00E- 6,00E- 8,00E- 1,00E- 1,20E- 1,4DE- e2
= OATR . Ol 04 » G4~ .04 . 03 03 03 % e3
@ 01 S N VR
: R N e4
0,01 -
0,001

temps (s)

Figure 12 : Evolution des erreurspour I'amortisseur.
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4.3.4. Comparaison deserreurs.

Les quatre erreurs réagissent conformément a nos attentes quel que soit le schéma utilisé.

L’erreur e4 prend en compte le noaud ou les déformations sont les plus importantes. Elle
réagit donc plus que les autres mais cela a deux inconvénients. Le premier est que |’ erreur ne
se stabilise pas et donc que le pas de temps risque de varier inutilement. Le second est que
nous risquons de travailler avec des pas trop petits sans réelle nécessité. Dans un cas |’ erreur
€2 amontré des oscillations que N’ avaient ni €l ni €3. Ces oscillations sont indésirables.

Nous pouvons donc déja avancer les conclusions suivantes :

- L’erreur e4 est plus stricte puisqu’elle considére le degré de liberté subissant la
plus forte erreur.

- L’intérét de passer par les forces d'inertie ne se justifie pas en non-linéaire. En
effet les erreurs el et e2 n’ apportent aucune information supplémentaire a €3. Au
contraire, I’ erreur €2 a montré des oscillations plus importantes qui ne peuvent étre
mises en relation avec I’ évolution physique du probleme.

Nous allons maintenant comparer les solutions obtenues lorsque ces erreurs gérent la durée du

pas de temps afin de confirmer ces conclusions. Avant cela un algorithme de gestion de la
durée du pas de temps est propose.
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5. Gestion de la durée du pas de temps.

Un schéma de gestion de la durée du pas de temps en fonction de I’ erreur d'intégration est
propose. |l se base sur le schéma de GERADIN [I1] (Figure 1). Cependant afin de le rendre
plus efficace quand il y a des non-linéarités importantes, il est modifié.

L’ erreur d’intégration calculée au §4.2 doit atteindre une valeur fixée a PRCU/2. PRCU et la
tolérance de I'erreur d’intégration que I’ utilisateur se fixe. Une premiere étape consiste a
savoir s lesitérations de Newton du schémaimplicite ont convergé (Figure 13).

Itérations de Newton du schéma implicite au tempst,,.

Convergence
desitérations.

Aller en boite 1. Aller en boite 2.

Figure 13 : Description du test de convergence.

5.1. Lesitérations n’ ont pas conver gé (boite 1).

Dans le cas ou les itérations n’ont pas converge, la durée du pas de temps est réduite et le
calcul au tempst, se refait avec le nouveau pas de temps. Le facteur de réduction (division de
la durée du pas) est un parametre utilisasteur RDOWN. Si un probleme de convergence est
intervenu cela veut dire que la durée du pas de temps permet d’ avoir une erreur d'intégration
suffisamment faible mais n’ est pas assez petite pour permettre la convergence. Si le probleme
de convergence survient pour un autre pas de temps que le premier, nous décidons aors de
diminuer I’ erreur de référence PRCU. De cette maniére nous travaillons avec une erreur qui
assure la précision de I’intégration mais aussi la convergence des itérations. Une condition est
imposée sur le numéro du pas car pour le premier pas nous ne savons pas encore si |’ erreur
d'intégration est inférieure ala précision tolérée PRCU. Le schéma est décrit ala Figure 14.

Si le probléme converge sans difficulté lors des prochaines itérations, le seuil PRCU peut a
nouveau étre augmenté pour se rapprocher de sa valeur initiale. |l faut cependant remarquer
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que cela ne peut se faire qu’ aprés un nombre assez élevé (ordre de 100) de pas de temps sous
peine de recréer des problemes de convergence. Il faut donc attendre que la physique (prises
de contact...) se soit stabilisée.

!

RAT=1/RDOWN
hn:=h, .RAT

PRCU :=PRCU/3

Retour al’itération 1 au tempst, }

Figure 14 : Description dela boite 1.

5.2. L esitérations ont conver gé (boite 2).

Si les itérations ont convergg, il faut s'assurer que I'intégration s’ est faite avec suffisamment
de précision. Cette précision s’ évalue en considérant le rapport entre I’ erreur calculée au 84.2
et la précision voulue PRCU. Trois possibilités se présentent :

- L’erreur obtenue est trop grande et la durée du pas de temps doit étre réduite. Nous
considérons |’ erreur comme étant trop grande si elle est supérieure a PRCU/2.

- L’erreur est trop petite, I'intégration pourrait se faire avec une bonne précision en
travaillant avec des pas plus grands. Une limite SEUIL est fixée, sous laguelle le
pas de temps est considéré comme étant trop petit.

- L’erreur appartient al’intervalle [PRCU/2 ; SEUIL]. La durée du pas de temps est
aorsidéae.

Nous obtenons alors le schéma de décision de la Figure 15.

Page 38



Détermination automatique de la taille du pas de temps pour les schémas implicites en
dynamique non-linéaire.
Chapitre 5 : Gestion de la durée du pas de temps.

Calcul del’erreur e.
, |
oui non ]
oui non
Aller en boite 3 Aller en boite 4 Aller en boite 5
Figure 15 : Description dela boite 2.
5.2.1. L’erreur est trop grande (boite 3).

Quand I’ erreur d’intégration est supérieure al’ erreur recherchée (PRCU/2), lataille du pas de
temps doit étre réduite. Cependant il faut s assurer que la variation d’erreur provient bien
d'une perte de précision due a un changement de I’ évolution de la physique du probléme et
gue cette variation persiste pour plusieurs pas.

Afin de s*‘assurer que la variation d erreur provient bien d une variation de la physique du
probléme, nous introduisons un compteur. Si I'erreur est un certain nombre de fois (CO)
d’ affilée supérieure a PRCU/2, alors lataille du pas de temps est réduite, sinon elle est gardée
constante. Une valeur de CO égale a 3 donne des résultats satisfaisants pour I’ensemble des
problémes. L’ erreur prise en compte pour calculer le nouveau pas de temps est alors |’ erreur
maximale des CO itérations (ERRO). ICO est I'index de ce compteur.

L’ introduction de ce compteur a le désavantage d’ empécher une variation rapide de la durée
du pas de temps en cas de variation brusque de la physique du probleme (comme I’ apparition
d un contact a haute vitesse). Nous posons donc une limite au rapport erreur sur tolérance
(ERR/PRCU) au-dela de laquelle le pas de temps est immédiatement réduit. Cette limite est
prise égale al’ unité. De plus si ce rapport dépasse une autre limite (REJL), lataille du pas de
temps est réduite mais le pas de temps est rejeté afin de garantir une certaine précision. La
valeur du seuil REJL égale 1.5 garanti une bonne précision. Pour le premier pas de temps elle
est prise égale a 1 par sécurité. Dans ces deux cas il ne faut pas oublier de réinitialiser le
compteur 1CO et I’ erreur maximale ERRO a zéros.

La variation du pas de temps obéit toujours a une loi du type (3.10), c'est a dire

hn+1 = hn (PF\%SU ) % avec PRCU/2 lavaleur de I’ erreur que |’ on cherche a obtenir. En
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effet quel que soit le schéma d’intégration, un mouvement linéaire obéit a la relation (3.1)
avec hi[2,3]. Cependant en non linéaire la valeur de 0 ne peut étre prédite. Nous prenons

donc 0<2 quand le pas de temps doit étre réduit afin de s’ assurer gu'’il le sera assez.

LaFigure 16 illustre le schéma de décision pour une erreur trop grande.

oui

non

oui

non

ICO :=ICO+1

oui

non

:#]% raT = [PROUS _ PRCL(J)]%
RAToREIL _ [ 2e RAT=2ERR RAT=1
h,:=h, .RAT e =y RAT Bt :=h, .RAT hne1:=h, RAT
1CO=0 1CO=0 1CO=0 ERRO=
ERRO=0 ERRO=0 ERRO=0 max(e,ERRO)
v v Y v

Retour al’itération 1 Aller al’itération 1

au tempst, au temps tp,q

Figure 16 : Description dela boite 3.

52.2. L'erreur est dansle bon intervalle (boite 4).

Dans ce cas la durée du pas de temps n’'est pas modifiée, et il vient le schéma trivia de la

Figure 17.

RAT=1
hn+1=hn. RAT

#

Aller al’itération 1 au
temps th.1.

Figure 17 : Description de la boite 4.
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5.2.3. L’erreur est trop petite (boite 5).

Le pas de temps n’est pas directement augmenté. Nous vérifions que si I’ erreur est inférieure
a la limite SEUIL multiplié par PRCU, cela est di a un adoucissement de la physique du
probléme. Un nouveau compteur est alors introduit. Si pendant CT pas consécutifs, |’ erreur
reste inférieure au seuil, aors e pas de temps est augmenté.

L’ erreur prise en considération pour se fixer la durée du nouveau pas est |’ erreur maximale
(ERRT) des CT derniers pas. Nous utilisons une loi du type (3.10), c'est adire:

& 2e o%

hn+1 = M §PRCU 4

avec PRCU/2 la valeur de I'erreur désirée. Cependant, nous prenons 0>3 afin de ne pas
augmenter exagérément le pas de temps. ICT est I’index de ce compteur.

L’introduction d’'un compteur avant d augmenter le pas de temps peut ralentir la vitesse
d augmentation du pas dans le cas ou rien ne justifie de travailler avec un petit pas (comme
pour le cas de la barre élastique avant le contact et loin aprés le contact (84.3.1). Déslorssi le
pas de temps augmente plusieurs fois de suite sans jamais étre réduit, nous augmentons
progressivement la valeur SEUIL en le multipliant par DUT1 et diminuons CT. Afin de tenir
compte du cas ou I’ erreur est nulle, nous limitons |’ erreur & SEUIL/10. Les valeursinitiales de
CT et de SEUIL respectivement égales a 5 et 1/16 permettent de garantir une bonne précision
en ne pénalisant pas le temps CPU. Le paramétre DUT1 peut étre pris égal a1.3.

Le schémaest illustré alaFigure 18.

5.3. Complémentsdes boites1 a 5.

Les valeurs des paramétres ICO, ICT, ERRO et ERRT doivent étre réinitialisées a leur
valeur initiale quand le schéma passe par une boite qui N’ est pas propre au parameétre. Ainsi
les paramétres ICO et ERRO doivent étre ramenés a zé&ro si le schéma passe par la boite 1, 4
ou 5. Il en va de méme pour les parametres ICT et ERRT s le schéma passe par la boite 1, 3
ou 4.Les parametres SEUIL et CT doivent étre ramenés a respectivement 1/16 et 5 s le
schéma passe par la boite 1 ou 3. S I'ereur appartient a [|'intervalle
[PRCU*SEUIL ;PRCU/2], ces paramétres gardent leurs valeurs sinon un adoucissement
physique du probléme n’ est jamais détecté.
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f

ICT :=ICT+1
oui non
RAT =1
RAT=|PRCU | hya=hy RAT
2ERRT ERRT :=max(e,ERRT)
hne1=hn.RAT
SEUIL :=SEUIL.DUT1
ICT :=0
oui non

Y

Aller al'itération 1
du temps ty.;.

Figure 18 : Description de la boite 5.
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6. Applications pour des problemes de grandes
transformations.

L’ algorithme proposé au 85 va étre appliqué pour différents cas tests et pour plusieurs schémas
d'intégration implicite.

Nous nous placons dans le cadre général des grandes déformations afin de prouver la
généralité de I'algorithme. L’ erreur peut étre calculée par €l, €2, €3 ou ed. Quel que soit le
schéma d’intégration ou le choix de I'erreur d'intégration, la tolérance de |I'erreur
d intégration PRCU de départ est pris égale a 0.001 (sauf pour le calcul par €3 ou il est pris
égal a 0.003 afin de garder le nombre de pas de temps environ constant pour les quatre
erreurs). Le fait que latolérance PRCU puisse étre prise toujours égal ala méme valeur, quel
que soit le schéma d'intégration et quel que soit le probleme, montre que les valeurs
d’ adimensionnalisations étaient correctes et gque |’ erreur calculée est bien physique.

Dans chague cas nous comparons les résultats obtenus avec ceux provenant de la gestion du
pas exposée par PONTHOT [XI]. Cette gestion (appelée «opti ») se base sur le nombre
d itérations du pas précédent pour calculer la valeur du nouveau pas. Si le nombre d’itérations
est 0 (pas de correction), le pas de temps est multiplié par 1.4, si le nombre d’itérations est 1
ou 2, le pas de temps est multiplié par 1.25. Dans le cas ou le nombre d’itérations est 3 ou 4,
le pas est gardé constant et si le nombre d’itérations est supérieur a4 aors le pas de temps est

divisé par laracine carrée de la différence entre le nombre d'itérations et 4 (+/iter - 4). Le
but poursuivit par ce schéma est de converger a chague pas de temps en 3 ou 4 itérations. La
durée du pas de temps est alors supposée étre suffisamment petite pour amener la
convergence des itérations avec une certaine précision d’intégration. Si le pas converge en
moins de 3 itérations, la durée du pas de temps est augmentée pour diminuer le temps CPU.

6.1. Labarreéastigue.

Il sagit de la barre décrite au 84.3.1. Elle est maintenant calculée par la méthode du pas de
temps automatique. Nous comparons les résultats obtenus pour les quatre calculs de I’ erreur
d'intégration et par la méhode «opti » ( choix de h selon le nombre d'itérations du pas
précédent).

La Figure 19 donne le profil de la vitesse au point qui rentre en contact avec le ncaud. La

méthode « opti » ne donne pas assez de points pour représenter les deux « cassures» de
vitesse et ne donne de vitesse constante a aucun des deux paliers.
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Figure 19 : Vitesse dela barre dastique par pasautomatiques.

La Figure 20 compare les codts des calculs. La méthode opti est la moins cheére et les quatre
autres méthodes donnent des solutions et des colts proches. L’avantage du calcul par la
méthode de I’ erreur d’intégration est de mesurer une grandeur pour y adapter le pas de temps.
Ceci explique pourguoi le profil de vitesse obtenu par la méthode « opti » est moins proche de
laréalité.

300
250 -
Oel
200 - Oe2
150 1 de3
Oe4d
100 -
O opti
50
. [

nombre de pas nombre d'itérations CPU (0,01s)

Figure 20 : Codt du calcul dela barre élastique.
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6.2. LabarredeTaylor.

Il S'agit de la barre décrite au 84.3.2. Ne disposant pas de solution analytique, les résultats
sont comparer a un résultat de référence. Cette référence est obtenue pour un calcul avec un
pas de temps fixe choisi petit (1.7E-7s). Le schéma d'intégration est le SMG et nous
comparons les déformées en t=8E-5s.

La Figure 22 montre les déformations et les contraintes de Von-Mises obtenues pour les
différents calculs. L’écart entre les contraintes de la configuration de référence et celles
obtenues par la méthode « opti » est de 5%. Cet écart est de 2.5% si le calcul sefait en passant
par I’erreur d’intégration. La carte de déformée est semblable dans tous les cas. Le colt des
calculsestillustré Figure 21.

Le colt en temps CPU du calcul par les méthodes el e2 et €3 est de 15 a 30% (65% pour e4)
supérieur a celui de la méthode « opti ». Cependant il faut noter que le nombre d’itérations
n'est que de 10 % supérieur. Si le nombre de degrés de liberté était plus important, une plus
grosse partie du temps CPU viendrait du calcul de la matrice d'itération. Le co(t deviendrait
aors proportionnel au nombre d'itération et la méthode de calcul par I'erreur d’intégration
serait plus rentable.

600 O opti W référence
500 - Oel Oe2
400 Oe3 Oe4
300 -
200
100 |

0|

nombre de pas nombre d'itérations CPU(0,1s)

Figure 21 : Comparaison des coltsdelabarrede Taylor.
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Figure 22 : Déformée et contraintesde Von-Misesde la barre de Taylor.
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6.3. L’amortisseur.

Il s'agit de I’amortisseur défini au 84.3.3 Le schéma d'intégration est de CH. Comme pour le
cas de la barre de Taylor, aucune solution analytique n’existe. Nous comparons donc les
résultats avec ceux obtenus pour un pas de temps petit (1.27E-65).

La Figure 24 montre que les résultats obtenus sont de méme qualité pour toutes les méthodes.

La méthode « opti » est la moins chere (Figure 23). Vient ensuite le calcul par €3 qui colte 35
% d'itérations et de temps CPU en plus. Le calcul par €1, €2 ou e4 demande 75% d'itération
et de temps CPU en plus.

1200 O opti M référence
1000 - Oel Oe2
] Oe3 Oe4
800
600 - — [] ] —
400 - —
200
0 i
nombre de pas  nombre d'itérations CPU (0,1s)

Figure 23 : Colt descalculs del'amortisseur.
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Figure 24 : Déformée et contraintes de Von-Misesde I'amortisseur.
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L e cylindre en flambement.

Il s'agit d’un cylindre creux de rayon interne égal a 13.5 mm, de rayon externe égal a 15.875
mm et de longueur égale & 180 mm. Le matériau a les propriétés suivantes: D = 7850 kg/m?,
E=210000 N/mm?, <=0.3, limite éastique initidle =700 N/mm2 et coefficient
d’ écrouissage=808 N/mm2.

Le bord supérieur du cylindre subit un déplacement de 100 mm en un temps =1.1e-2s a
vitesse constante et le bord inférieur rencontre une matrice rigide (Figure 25). Le contact avec
cette matrice se fait sans frottement. Le cylindre entre en flambement et un c6té du cylindre se
replie pour entrer en contact avec lui-méme. Ces contacts se font avec un frottement de
Coulomb de :=0.15.

9090 mm/s

Contact avec Contact sans
frottement frottement

Figure 25 : Schéma du cylindre en flambement.

Le schémad’intégration est CH avec " \, =-0.87 et il y aremaillage au cours des calculs. Pour
ce probléme, la principale difficulté est le calcul de la prise de contact lors de la déformation
des c6tés du cylindre. Le pas de temps doit étre suffisamment petit pour permettre la
convergence quelle que soit I’ erreur d'intégration ou le nombre d’ itérations du pas précédent.
Lefait de diviser lavaleur del’ erreur de référence (PRCU) s I’ algorithme rencontre des
probleémes de convergence va permettre d’ avoir un pas de temps optimum. Les résultats
obtenus par les méthodes « opti » et par le calcul del’ erreur d’intégration sont comparés a
une méthode a pas fixe choisi petit (3E-7 ).

La Figure 26 montre gque les résultats obtenus pour toutes les méthodes sont comparables. Par
el et e2 il y aun écart de 2% avec la solution de référence. De plus deux boucles se touchent
uniquement pour ces erreurs. Cet écart est de 1% par « opti » et de 0.1% par €3 et e4. Ceci est
expliqué par le fait que les méthodes €3 et e4 ont travaillé avec un pas de temps un rien
inférieur a celui pour el et €2.
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Figure 26 : Déformées et contraintes de Von-Mises du cylindre en flambement.
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La Figure 27 montre que la gestion du pas de temps qui se base sur |’ erreur d'intégration
permet de travailler avec un pas de temps qui permet la convergence. En effet, le nombre
d'itérations est pratiquement identique au nombre de pas de temps. La convergence est donc
tres rapide. Par la méthode « opti », quand le pas converge avec une seule itération par pas de
temps, la durée du pas de temps est augmentée ce qui ne permet plus de converger au pas
suivant. Le nombre d’itérations est aors cing a six fois plus grand que par la méthode de
I”erreur d’intégration et le temps CPU quatre a cing fois plus grand.

35000 |
30000 - O opti W référence
Oel Oe2
25000 7 De3 De4
20000 -
15000 -
10000 -
5000 -
0 i
nombre de pas nombre d'itérations CPU(0,1s)

Figure 27 : Coltsdes calculs du cylindre en flambement.
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Compar aisons des méthodes.

Dans les différents cas analysés, la méthode proposée donne de bons résultats aussi bien sur la
qualité des résultats obtenus que sur le temps CPU nécessaire. Le choix de la méthode du
calcul de I'erreur d'intégration n'est pas évident. En effet, les quatre calculs proposés se
basent sur I'erreur du développement de Taylor. Des lors les résultats obtenus sont
comparables. Le calcul par e4 est un rien plus sévére car il prend I’ erreur maximale pour tous
les degrés de liberté et pas une moyenne comme les autres (dans le cas de la barre élastique,
c’'est la méthode qui a permis de mieux représenter le palier des vitesses (86.1)). || permet
donc de mieux tenir compte de variations locales mais le colt en terme de temps CPU est un
peu plus élevé (entre 10 et 25%). Le calcul par la méthode €3 permet d’ obtenir une meilleure
précision ou un codt plus faible (10%) que les méthodes el et €2. Les méthodes el et e2
passent par les coordonnées modales. Le principal avantage est leur étude théorique plus
rigoureuse dans le cas linéaire. En non-linéaire cet avantage est perdu et les méthodes
présentent le désavantage de devoir calculer les forces d inerties.

La méthode « opti » a présenté deux désavantages. Le premier est, que dans le cas de la barre
élastique, le nombre de pas de temps ne permettait pas de représenter convenablement les
paliers de vitesses (86.1). La gestion proposée a permis de mieux le représenter. De plus en
cas de nécessité il suffit de réduire le parametre de tolérance PRCU pour mieux s approcher
de la solution exacte. Le second est dans le cas du cylindre en flambement ou le nombre
d'itérations du pas précédent n’était plus une bonne image de la taille maximale du pas
nécessaire ala convergence. Le temps CPU était alors prohibitif (300% supérieur).

En conclusion, nous retiendrons que le calcul de |’ erreur par e4 est plus sévere et plus onéreux
alorsquele calcul par €3 constitue un bon compromis précision-prix.
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7. Applications a des casindustriels « quasi-linéair es ».

Apres avoir testé des cas dans le cadre général des grandes déformations, la gestion du pas de
temps proposée au 85 est validée dans le contexte plus particulier de problémes industriels
quasi linéaires. Ces problémes ont été obtenus lors d' un stage ala SNECMA. Pour des raisons
de confidentialité, nous ne sommes pas autorisés a révéler certaines précisions concernant les
problémes étudiés. Ainsi, les cas tests ne sont pas décrit et seuls les courbes obtenues sont
représentées en omettant les graduations. Pour les mémes raisons, le nombre de degrés de
liberté utilisés n’ est pas révélé.

Le programme utilisé est le module MECANO de SAMCEF qui résout les équations par un
schéma HHT. Ces problémes consistent en la modélisation en trois dimensions de parties de
moteurs ou de moteurs complets. L’ étude dynamique est pertinente afin de modéliser des
phénomeéenes comme la perte d aube, I'excitation d’'un mode propre par des phénomeénes
extérieurs ou d’ autres situations ou la connaissance de la réponse transitoire est nécessaire
pour le dimensionnement des pieces. La plupart des éléments sont linéaires. |Is sont connectés
entre-eux par des éléments de raideur non linéaire. Dans de telles situations, le nombre
d ééments non linéaires des matrices d’itération (2.10) et (2.15) est de quelques uns pour un
nombre total d’éléments important. Le systéme peut donc étre qualifié de « quasi-linéaire ».
Le nombre de degrés de liberté étant important, I’ opération la plus colteuse est I'inversion de
la matrice d'itération (2.11). Cependant, le systéme étant quasi linéaire cette opération peut-
étre supprimée du schéma d’intégration sous certaines conditions. Soit le systéme b(x)=0, il
est résolu par la méthode de Newton Raphson :

Lagg=1200
I p X) (7.2)
17 ala)

Il peut étre résolu en recalculant a(xj) a chaque itération ou bien en gardant a(xg) de la
premiere itération. En effet comme le montre la Figure 28 , la convergence du systeme (7.1)
peut encore étre possible en utilisant une matrice inversée approchée al. Dans ce cas, le
nombre d'itérations nécessaire a la convergence est plus important mais ces itérations sont
moins onéreuses. Ce schéma s appelle le schéma de Newton-Raphson modifié.

Dans un premier temps, nous expliquons la gestion du pas de temps et de la remise a jour
existant actuellement dans MECANO. Ensuite nous proposons une gestion de laremise a jour
de la matrice d'itération plus performante. Le critere de détection de divergences des
itérations est aussi étudié. Enfin, nous comparons les résultats obtenus sur des cas industriels
en utilisant les nouveaux schémas de remise a jour et de gestion du pas de temps et les
anciens,
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Newton Raphson Classique Newton Raphson sans réactualisation
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Figure 28 : Influence delaremise ajour ou non delamatriced'itération.

7.1. Description des schémas existants.

Le schéma, existant dans MECANO, de gestion de la durée du pas de temps ains que le
schéma du choix de réactualisation de lamatrice d’ itération sont décrits.

7.1.1. Schéma de gestion de la durée du pas detemps.

Le calcul de I'erreur d’intégration se fait par la relation (4.13). La détermination du pas de
temps se fait comme cela est proposeé dans [I1] (Figure 1). Le probléme de cette gestion est
qu’elle réagit mal aux non linéarités car le pas de temps peut étre modifié pour des raisons ne
provenant pas d’une modification de la physiques du phénomene ou pour des modifications
qui ne sont pas durables dans le temps. C’est la raison pour laquelle nous avons introduit un
compteur dans la proposition de gestion du pas de temps (85). Les conséquences des
variations inutiles de la durée du pas de temps sont :

- Une augmentation du nombre de pas rejetés et donc du temps CPU.
- Des variations trop fréguentes de la durée du pas de temps et donc obligation de
remettre ajour lamatrice d'itération (87.1.2).
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7.1.2. Schémadelaremiseajour delamatriced’itération.

Actuellement le passage d'un schéma a I’ autre est conditionné par I’ utilisateur. Un seuil de
relaxation (PRCK) sur le résidu de I'équation d'intégration (TESF est le résidu
adimensionnalisé de larelation (2.11)) est défini. Des numéros d'itération ( IT1K,IT2K,IT3K)
sélectionne le passage d’ un schémaal’ autre. Le schéma est de Newton Raphson pur s :

TESF > PRCK
ITER=IT1IK ou ITER = IT2K+n.IT3K

sont vérifiés simultanément (ITER est le n® del’itération, n=0,1,2...). Sinon le schéma est de
Newton-Raphson modifié. Par exemple pour des valeurs de parametres IT1K, IT2K , IT3K,
PRCK et PRCR valant respectivement : 2, 4, 2, 1E-4, 1E-5, il y aremise a jour aux itérations
2, 4, 6, 8, 10, 12 ... tant que TESF reste supérieur a 1E-4. Une fois que TESF devient
inférieur a 1E-4, il n'y a plus remise a jour. Quand TESF devient inférieur a 1E-5, aors les
itérations ont convergées.

La matrice d'itération est en plus recalculée pour la premiére itération d’ un pas de temps car
elle dépend de la valeur du pas de temps (2.9). A I'heure actuelle, MECANO n’'est pas
capable de ne pas larecalculer (et de ne pas |’ inverser) si le pas de temps n’a pas changé.

Dans le cas ou ITER atteint le nombre maximal d’itérations toléré (ITMA) le pas est regjeté
parce qu'il n'y apas eu de convergence et le pas est divisé par RDOWN.

Les problémes liés a ce schéma sont :

- L’utilisateur doit définir les itérations pour lesguellesil y aremise ajour ou non de
la matrice d'itération. Le choix de la remise a jour ne peut donc évoluer au cours
du temps et il ne dépend donc pas de I’ évolution de la physique du probléme.

- Lefait de remettre a jour la matrice d'itération a chaque premiéere itération méme
s ladurée du pas n’a pas évolué codte.

- Le critere de non-convergence des itérations ne tient pas compte de la vitesse de
convergence. Un probléme peut converger en beaucoup d'itérations aors qu'il
peut diverger aprés deux itérations. Le nombre d'itérations n'est donc pas un
critére de convergence pertinent.

7.2. Proposition d’un schéma de choix deremise a jour dela
matrice d’itération.

Laréactualisation de lamatrice d'itération est I opération la plus colteuse lors de |’ intégration
numeérique. Elle doit donc étre évitée autant que possible. Cependant dans le cas de problémes
non linéaires, instationnaires (vitesse de rotation du moteur qui varie) ou quand des
contraintes cinématiques existent, la remise a jour de la matrice devient nécessaire pour avoir
une convergence des itérations de corrections (82.2).

Il s 'avere donc intéressant de choisir si la réactualisation doit avoir lieu en fonction des pas
précédents et méme des itérations précédentes.
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7.2.1. Recherched’un criterede réactualisation.

Ce critere doit tenir compte de deux points :

- Le fait de ne pas réactualiser systématiquement doit préserver la convergence du
probléme.

- Lefait de ne pas réactualiser doit s accompagner d’ un gain de temps. Pour certains
problémes (fortement non linéaires et de petite taille), le nombre d'itération
augmente quand il n'y a pas de réactualisation et ces itérations ne sont pas
beaucoup moins chéres.

Nous avons vu au 82.2 que les itérations s arrétent si le résidu de I’équation d’ équilibre
devient inférieur a un seuil (TESF<PRCR). Or I’ évaluation de TESF fait intervenir les forces
extérieures et d'inerties. Ces dernieres ne dépendent pas de la matrice d'itération. Nous
pouvons donc dire, st TESF devient inférieur a PRCR, que le probléme a convergé. Celareste
vrai dans le cas ou la matrice d'itération n'aurait pas été modifiée alors que des parametres
(vitesse de rotation ...) ont changé. Il est donc possible d’ utiliser |’ évolution de TESF pour
savoir quand laréactualisation s avere nécessaire.

Le gain de temps réalisé quand la réactualisation n'a pas lieu dépend du systeme. La
différence de temps de calcul dépend de la taille du systéme mais aussi de I’ organisation des
matrices (une matrice bande est plus facilement inversée qu’'une matrice pleine de méme
taille). Nous pouvons donc utiliser la valeur NT (nombre de ddl) et le rapport entre le temps
de calcul avec réactualisation et sans réactualisation calculé au cours du probléme.

7.2.2. Algorithme développé.

L’ algorithme proposé garde I’ ancienne formulation : la réactualisation a alors lieu pour les
itérations ITAIK,IT2K+n IT3K, n=0,1,2,...

Dans le cas ou le probleme est supposé pouvoir se passer d’'une réactualisation a chague
itération, une nouvelle gestion est proposée en parallele. Cette derniére n’intervient donc que
s IT1K est chois grand (>15).

Cette nouvelle formulation a nécessité |es modifications suivantes :

- Lapremiereitération subit une réactualisation si h achange,

- Unevaeur de référence est introduite :

CPU _d'une_itération _avec réactualisation i
CPU _d'une_itération sans_réactualisation

- Une seconde valeur de référence est introduite :

VALREF 2 = %T [max(5,VALREF1); max(VALREF115)]

- Si aprés VALREF1 itérations la convergence n'a pas eu lieu, nous forcons la
réactualisation a chaque itération. Ainsi nous sommes sirs que le fait de ne pas
réactualiser ne colte pas plus cher que réactualiser a chaque itération.

VALREF1= [225]
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Entre I'itération 1 et I'itération VALREFL, la réactualisation n'a lieu que s le
TESF n’est pas multiplié par une valeur (<1) inférieure a RAPRES=VALREF1/10
i [0.75,0.95|.

Si pour un numéro d'itération (ITER) inférieur a VALREFL laremise a jour a été
nécessaire, €lle est forcée pour les itérations suivantes.

Si lors de la derniere itération du pas précédent, une réactualisation a lieu, une
réactualisation a aussi lieu lors de la premiere itération du pas suivant. La
convergence du pas précédent étant difficile (car ayant nécessité des
réactualisations), il peut s avérer profitable de commencer le pas suivant par une
nouvelle réactualisation.

Si apres 5 itérations avec remise a jour, TESF n'a pas diminué de 2, nous
considérons que le probléme diverge et le pas est divisé par le facteur de réduction
(RDOWN).

Remarques::

Au début du probleme, VALREF1 vaut VALREF2, le temps de pouvoir calculer le
rapport des temps CPU.

Une réactualisation de la matrice d’itération se fait en deux itérations. Lors de la
premiére elle est recalculée, lors de la seconde itération elle est inversée. Lorsque
laréactualisation est choisie, elle intervient donc avec une itération de retard. Pour
éviter ce phénomene une modification de la structure du programme serait
nécessaire.

Afin de rendre cette proposition dalgorithme plus efficace, la modification
suivante est souhaitable : Si apres une itération sans remise ajour TESF n’a pas été
multiplié par une valeur (<1) inférieure &8 RAPRES, I’itération suivante se fait bien
entendu avec remise a jour, mais au lieu de repartir des dernieres val eurs obtenues,
il serait souhaitables de repartir des pénultiémes valeurs obtenues (c'est a dire
celles a partir desguelles I’ itération sans remise a jour a été effectuée). Un certain
nombre d’itérations avec remise a jour serait alors évité. Cette modification n’a pas
été apportée a MECANO car elle nécessite la modification de la structure
mentionnée a la remarque précédente. Pour contourner ce probléme, nous avons
introduit la commande suivante. Si les premiéeres itérations sont faites sans remise
ajour, et que le résidu n’a pas diminué de RAPRES, dors le pas est regjeté puis
repris avec uneremise ajour al’itération 1. Il va de soi que ce n’est pas lamaniere
la plus belle de programmer.

Les deux propositions précédentes permettraient de réduire le temps de calcul de
maniére appréciable dans certains cas. En effet elles permettraient d’éviter des
divergences qui sont toujours colteuses (plusieurs itérations avec remise a jour).
Nous avons été contraints d’introduire plusieurs paramétres arbitraires (intervalle
de variation de RAPRESVALREF1, VALREF2,nombre (5) d'itérations qui
n’amenent pas ladiminution (0.5) de TESF voulue avant rejet du pas...). Le choix
plus ou moins arbitraire de ces valeurs se justifie par le fait qu’ elles assurent le
fonctionnement de I algorithme pour des cas divers. |1l est tentant lors d'un test sur
un probléme d optimiser ces valeurs afin d’ obtenir le CPU minimum, mais cette
optimisation ne peut se faire qu’'a posteriori ce que nous cherchons justement a
éviter en proposant un algorithme qui gere lui-méme les divers parameétres.
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L es avantages de cette proposition sont :

- L’utilisateur ne doit plus choisir des parameétres pour gérer laremise ajour.

- Le critére de remise a jour permet d éviter nombre de remises a jour inutiles tout
en conservant la convergence des itérations.

- Lecritere de divergence implémenté évite le calcul d'itérationsinutiles.

Deux problemes industriels vont étre calculés gréces aux gestions proposées. Nous
comparerons les résultats obtenus avec ceux obtenus par les anciennes gestions. Les
problemes étant quasi-linéaires, |'erreur utilisée est I'erreur €2 (4.13). Pour des raisons
pratiques nous n'avons pas pu implémenter I’erreur €3 dans MECANO. Etant donné le
caractére quasi-linéaire des cas tests, |’ erreur e2 convient. Cependant il serait intéressant de
pouvoir refaire ces calculs avec I'erreur €3 afin de généraliser son utilisation au domaine
quasi-linéaire.

7.3. Calculsde casindustriels.

Nous allons valider les gestions du pas de temps et de laremise a jour de lamatrice d'itération
sur des problemes industriels. Pour ce faire nous comparons les résultats obtenus pour les
deux algorithmes suivants :

- Ancienne gestion du pas et de laremise ajour.

- Nouvelle gestion du pas et de laremise ajour.
Dans ces deux cas, les parameétres ( tolérance de I’ erreur d’intégration « PRCU », tolérance
sur le résidu desiitérations « PRCR »...) sont identiques.

7.3.1. Casl

Pour des raisons de confidentialités, nous ne sommes pas autorisés a révéler le probléme
étudié ainsi que les valeurs des courbes obtenues. Cependant nous pouvons préciser gu’il ne
s agit pas d' un cas trivial a un degré de liberté. La modélisation comprend plusieurs milliers
de degrés de libertés, les forces sont instationnaires et des phénoménes non-linéaires
apparaissent au cours du temps.

7.3.1a. Comparaisonsdesreésultats.

Les parametres du calcul sont :

- Ancienne gestion : tolérance de I’ erreur d’intégration « PRCU » 1e-3, tolérance du
résidu des itérations « PRCR » 1e-3, seuil de relaxation de remise a jour de la
matrice d'itération «PRCK » le-3, itération de remise a jour «IT1K » 3, «
IT2K » 6 et « IT3K » 1.
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- Nouvelle gestion: PRCU 1e-3,PRCR 1le-3,PRCK 1e-3, IT1IK 100, méme pas
initial que |’ ancienne gestion.

Il faut remarquer que pour I’ ancienne gestion, il y a une réactualisation pour chaque premiere
itération. Le choix IT1K 3 est nécessaire a la convergence des premiers pas de temps (ainsi
que ladurée du pasinitial).

L es graphiques des déplacements (Figure 29) et du bilan d énergie (Figure 30) indiquent que
la qualité des solutions obtenues par les deux méthodes est laméme. Le bilan d' énergie est un
bon indicateur de la précision de I'intégration. Il consiste a évaluer aux cours du temps la
différence entre la somme des énergies cinétiques et potentielles et le travail de forces

extérieures (B = Egin + Epot - Wext)- Si ce bilan est positif, I'intégration numérique a

crée del’ énergie. Cela correspond a un schéma d’ intégration instable. Si ce bilan d’ énergie est
négatif, il y a eu dissipation d'énergie au cours du temps. Cette dissipation peut provenir de
phénomenes physiques (plastification...) ou du schéma d’intégration numérique. Dans le cas
présent la différence entre des courbes du bilan d'énergie ne provient que des effets
numeériques. La différence doit donc étre aussi réduite que possible. La perte d’ énergie de la
nouvelle méthode reste faible (0.5%).

La nouvelle méthode est donc assez précise et le temps de calcul (Figure 31) a été réduit de
60%.

%J x nouvelle gestion

P ﬁ%‘ — ancienne gestion

temps

Figure29: Déplacementsdu cas 1.
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0,1

——ancienne gestion
—— nouvelle gestion

bialn d'énergie (%)

temps

Figure 30 : Bilan d'énergie du cas1.

CPU

Hancienne gestion
H nouvelle gestion

Figure31: Codt descalculsdu cas 1.

71.3.2. Cas2.

Pour des raisons de confidentialités, nous ne sommes pas autorisés a révéler le probléme
étudié ains que les valeurs des courbes obtenues. Toutefois, comme pour le cas 1, Le
probléme comporte plusieurs milliers de degrés de libertés, les forces sont instationnaires et
des phénomenes non-linéaires apparai ssent.

7.3.2.a. Comparaisonsdesreésultats.

Nous comparons |’ancienne gestion a la nouvelle gestion du pas de temps et de la
réactualisation de la matrice d’ itération.

Pour les deux problémes nous avons les parameétres suivants : tolérance du résidu « PRCR »
le-4, tolérance de |’ erreur d’intégration « PRCU » 1e-3.
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Pour la gestion automatique du pas de temps, les itérations de remise a jour de la matrice
d'itération sont IT1K est priséga a3, IT2K a5 et IT3K a 1. Le nombre maximum d’itération
«ITMA » est 25. Ce sont ces parametres qui amenent une convergence en un minimum de
temps.

Les graphiques des efforts (Figure 32), (Figure 33) et des déplacements (Figure 34) obtenus
par les deux calculs sont identiques. Le graphique de I’ évolution de la durée du pas de temps (
Figure 36) montre que |e pas de temps se stabilise mieux grace alanouvelle gestion. En effet,
des pics et des creux sont remplacés par des paliers. Cette stabilisation évite de devoir
recalculer la matrice d'itération uniquement parce que le pas de temps a changé Le gain de
temps obtenu par la nouvelle gestion est de 40% (Figure 35).

— ancienne gestion
,/p\"x- = nouvelle gestion

temps

Figure 32 : Effort du cas 2.

— ancienne gestion
x nouvelle gestion

temps

Figure 33 : Effort du cas 2.
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— ancienne gestion
= nouvelle gestion
X
X
(X
X
X

temps

Figure 34 : Déplacement du cas 2.

@ancienne gestion
Ml nouvelle gestion
CPU

Figure 35: Colt descalculsdu cas 2.
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pas

— ancienne gestion
x nouvelle gestion

temps

Figure 36 : Evolution du pas detempsdu cas 2.
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Dans un premier temps, une étude de I’ erreur d’intégration a été effectuée. Nous avons rendu
cette erreur indépendante du schéma dintégration. Quatre estimateurs de |’erreur
d'intégration ont été comparés. Nous avons montré que I’ évolution de ces erreurs avec le
temps correspondait bien al’ évolution de la physique du probléme. Toutefois, en non-linéaire,
les erreurs €3 et e4 sont apparues meilleurs indicateurs de cette évolution. L’ erreur e4, plus
severe demandait un temps de calcul supérieur pour un faible gain de précision par rapport a
I"erreur €3. Les erreurs €l et €2 développées en linéaires utilisaient les forces d'inerties.
Aucun avantage n'est apparu en non-linéaire ou les temps de calcul sont plus grands et la
précision moindre que pour une utilisation de €3. Par contre, lors de I’ étude des cas quasi-
linéaires industriels, |’ erreur €2 a pu étre utilisée avec succes.

Une gestion de ladurée du pas de temps se basant sur lamesure de I erreur d’ intégration a été
ensuite présentée. Cette gestion se base sur le schéma proposé par GERADIN [I1]. Il a été
amélioré afin que les modifications du pas de temps n’'interviennent que pour des
modifications physiques et durables du probleme. La durée du pas de temps permet d’ intégrer
les éguations du mouvement avec une précision requise par I'utilisateur. Afin de pouvoir
converger quand de fortes non-linéarités sont présentes, le pas de temps est choisi
volontairement petit. Ce choix se fait grace a deux criteres. Le premier est : pour augmenter la
durée du pas de temps nous devons absolument étre sirs que le probléme n’est plus dans une
phase de choc. Nous avons donc introduit un systeme de compteur. Le deuxieme est: si
malgré le compteur le pas de temps augmentait trop que pour pouvoir converger, aors le
parametre de précision qui conditionne I’ erreur d’ intégration acceptable est diminué. Quand le
probléme redevient quasi-linéaire, les problémes de convergence sont moindres, et la durée du
pas de temps peut augmenter trés rapidement afin de diminuer le temps CPU.

Cette gestion a été validée dans le cadre général des grandes déformations. Elle a permis de
garantir une précision de I’intégration des équations tout en limitant le temps CPU. Ensuite,
des problemes industriels quasi-linéaires ont été calculés grace a cette gestion afin de mettre
en évidence son efficacité dans des cas plus particuliers. Pour ces problemes un schéma de
décision de remise a jour de la matrice d'itération et un nouveau critére de convergence ont
été développés. Les nouvelles méthodes ont permis de résoudre les problémes en un temps
nettement inférieur (ordre de 50%) avec |'avantage de demander moins de parametres
utilisateurs. |l faut remarquer que le nouveau schéma de gestion du pas de temps a facilité
I"utilisation du critere de réactualisation de la matrice d'itération. En effet, |’agorithme de
gestion du pas de temps proposé permet de conserver la durée du pas de temps constante sur
des intervalles de temps assez long. La matrice d'itération ne doit dés lors pas étre
réactualisée uniquement parce que la durée du pas de temps a été modifiée.
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L’ erreur €3 peut étre testée sur des cas quasi-linéaires afin de généraliser son utilisation.

Le critére de convergence des itérations développé au §7.2.2 peut étre implémenté dans le cas
général des grandes déformations. |l pourrait permettre un gain CPU pour des probléemes de
plus grande dimension. De méme, |a proposition de gestion de la remise a jour de la matrice
d itération pourrait étre étendue aux problémes de grandes déformations. En effet quand les
conditions de contacts ne se modifient plus, certaines itérations pourraient se faire sans remise
a jour de la matrice d'itération. De plus cette gestion proposée peut-étre modifiée en tenant
comptes des remarques du 87.2.2. Ces remarques proposent de repartir des valeurs de
I’itération précédente si une itération sans remise a jour n’a pas converge.

L es problemes d’ emboutissage de téles sont généralement résolus par des schémas explicites.
Cependant une théorie implicite peut présenter I’ avantage de nécessiter un temps CPU plus
faible. Les codes d emboutissage commencent donc a étre développés en implicite. Ces
problemes de mise a forme sont caractérisés par des forces d'inerties tres faibles. Le probléme
est alors physiquement quasi-statique. Or I’ agorithme de gestion développé se base sur une
mesure de I’ erreur obtenue a partir du saut d’ accélération. Il serait donc intéressant de voir si
la mesure du saut d'accélération reste pertinente quand les accélérations sont faibles.
L’ algorithme dével oppé pourrait ainsi s appliquer dans des problémes d’ emboutissage.
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Annexel: Erreursaux ordressupérieurs

L’erreur du développement en série de Taylor peut étre calculée a I'ordre 5 pour les
déplacements et a |’ ordre 4 pour les vitesses. La valeur de référence pour un systéme linéaire
aun degré de liberté est aussi calculée dans le cas du schéma HHT.

Il S'agit d’ exprimer |’erreur et de calculer la différence entre la valeur d un développement
d un ordre supérieur et la valeur calculée comme cela est proposé dans [V]. Les erreurs
calculées sont la différence entre le déplacement de I’ ordre supérieur et celui calculé, et la
différence entre la vitesse de |’ ordre supérieur et celle calcul ée.

| €dep,n+1 = Osup,n+1 = Gn+1
T evit,n+1 ~ qsup n+1 -~ qn+l

Nous allons calculer les valeurs de |’ ordre supérieur a partir d’ un dével oppement en série de
Taylor :

i 2 3 4
! o, h®  h'..
I,qsup,n+1 » g, + hg, + 5 0y ¥ 5 Un T 57 A0t O(h”)
fOsp.nsr » G + hly + = G, + 5 Ayt O
avec
‘I . T
. Uh+1~ Un-2
[ > 5n o+ Oh?)
I o .o _ .o .o
g, » On+1 22” " On-1 o(3%)
f h
et donc

: qSUp,n+1 » Oy *+ hqn + h2|. 214 On-1 * % A, + %qn+1J + O(hs)
i
':‘qsup,n+1 » gy + h [' 12 On-1 * 3 qn qn+1] + O(h4)

Le schémad’intégration étant le HHT, nous avons les valeurs calculées :
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i

:qn+1_qn+hqn+—[l 2b)q'n+2bq'n+1]
1
1qn+1_qn h[l g q +gqn+1]
|

Nous avons alors lesrelations (3.4) :

i 2 - . -0

i edp et = g g1t (2 - 24D) G+ (240 - 3) Gy g + O

: u (AL.2)
i itn+1 = 7 g n-1t (4 - 129 q,* (129 - 5) Insa *+ Oh?)

Les équations (2.3) et (2.7) pour un systeme a un degré de liberté peuvent se résoudre par le
systeme:

D=1+(1+a)bWe

é u é u
éq U éq u
é n+1 U é nu
é . é U
éhq 0u=AWeéhqg U (A1.2)
é n+1U é nu
é . é .u
g?q é&?q |
@ n+1j 8 nf

avec (2.5) adapté au schéma HHT:
iW=w.h
| , 1
i S1+abWe 1 b 3
| N 2
i 1€ u
% A(W):Bg -gW  1- (1+a)(@- b)W 1-g- (1+a)( b)V\Fu
i é 1 u
M S - W - 1+a)WA - (1+a)(=- b)Ww
: g (1+a) ( )(2 ) %
T
1
I

a estI’amortissement numeérique, b,g sont deux parametres dits de Newmark.

Exprimons I’ erreur sur le déplacement au 5™ ordre (A1.1.a) pour un systéme a un degré de
liberté. Les éguations du systeme sont :

g+wgq=0 qt=0)=qy, P q(t) =qgycoswt)
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Gracea(Al.2), il vient:
W = S[-Weq, - (1+a)Weng, - (1+a)d - bwereg]

De laméme maniére les valeurs en t, sont calculées en fonction des valeursen t,.1 :

Ea, 2 &0y 9 & doooswt) 9
Chay s = AWGEN Gy, += AW G- Wogsinwt) +

2 2 2 - _ 2 x
&h? t o §h2 .15 g W h” cos(w t ) £

Les trois accél érations nécessaires au calcul de (A1.1) valent :

h? Q.1 = - W gy cos(W t )

he g, = %{ Wegycoswt) + (1+a)WPapsinwt) + (1+a)@ - b)w‘qocos<ww}
: W\ (1+abwe) g, coswt ) - Wy, sin(wit ) - (1 b)We g, coswt )
LA We gvvzqocos(ww [1- 1+a)(@- b)W]qoan(Wt>u
Bi (1+a) )(g L\Nl u
-,- é @1 g- 1+a b)V\IZ g, coswt) g
1 (1+a)(1 b)W[ V\/qucos(wt)+(1+a)\/\/3qosmwt)+(1+a)(1 b)v\f‘qocos(wt)]b

En remplacant cestrois expressions dans laformule (A1.1a), il vient :

h? dn+1:

— =G =

€dep,n+1 ~ Bgycos(wt) + Cgysin(wt)

avec .
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| yps2-24b ¢ V\P+(1+a)(—- b)w*! !

T 8 H :

I i ] al

i - E§1L+abvv2- Z. bgl\FH h

B:i':’. I € u I{/

24:::+24bD 3!- (1+;)V\Fg gV\F- al- g - (1+a)( b)V\FE\Nzul i

i : e : _

! ii- (1+a)(—- b)We , il

| ; D g V\F+(1+a)(—- b)w“E L:

! b
}_2 ZLIPPRY: tj
— 1 l '|',
Y Y- v
24++ 24bD 32\/\; +(1+a)E[1 (A+a)(g - b)V\F] (1+a)2(__ b)%&

s0it :

r

Il reste maintenant acalculer (W) = gedep L 1
ed

el _ lim 1§ edt
E(V\b — — T®¥
CO

pour obtenir I’ erreur moyenne adimensionnelle. L’ intégrale effectuée, il vient :

eW = pngz + C? (A13)

En procédant de la méme maniére pour I erreur sur les vitesses au 4™ ordre, mais en partant
du systéme:

Ptwg=0 qt=0=0 qt=0)=qg,b qt) = sm(Wt)
nous arrivons al’ erreur adimensionnelle suivante :

2 JE2 + P2 (AL4)
Uo P

(e o Ry ey ey
1

avec .
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Lows & 129§ W+(1+a)( i b)\/\FE o

T T

i i v

i T Wé al g, U il

N +abwe- & - p e, i

TR} i |

127, 12- 5 (@+a)w¢ gV\F-A-g ara)d b)\NzL\NzLH

i D i D il

T T

! i- (1+a)(—- bYW, i

I i & Wee@ra)C- DWH

i t D g i bp
.|.4_ 129 1+ \/\/2 U
_ 1; o T !
i+1ng SG\AD’2+(1+a)ﬁ[1 (1+a)(g- b)W- (1+a)2(—-b)ﬁuw'/

6
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Annexe 2 : Expression del’erreur pour un systeme multi
dearés deliberté.

L’ expression de I’ erreur (3.1) peut étre étendue pour un systéme a plusieurs degrés de libertés.
Placons-nous dans le cas linéaire non amorti.

Dans un premier temps, |'erreur est exprimée pour un systéme multi degrés de libertés
découplés. Si I'erreur est choisie inférieure a un seuil, les modes qui ne participent pas a la
réponse sont filtrés.

Supposons le systéme de m équations linéaires découpl ées :

y,+w'y, =0 i=1..,m, lesdéplacementsinitiaux sont yo;

Un vecteur comprenant les erreurs pour chaque degré de liberté est défini grace a (3.1).
L’ erreur moyenne est alors choisie comme la norme de ce vecteur :

e = %HWH (A2.1)

En appliquant la relation (4.8) au systéme linéaire a un degré de liberté ')'/i+ Wi2 y, = 0,il
vient :

Ela | = |y ewi .

€ et S éant défini danslarelation (4.8).

La stratégie de choix de h est la suivante : Oy est fixé a 0.6, quand h est fixé, nous sommes en
présence de deux types de ?;, ceux qui amene O;> Oy et ceux qui amene O,£ Ok Nous allons
voir, comment choisir h de maniere a ce que les modes qui ne participent pas a la
réponse soient filtrés. C'est-a-dire avoir :

(‘)'}/2

m

ave: ETOL
W 4]
Développons (A2.1) :
P o - o/ LN R O%_aé’é“Zz wm oo oo 0%
Ellef] = 6 EgDyH =gavge (W)B =gayge W)+ ayge (W)B

ce qui implique :
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clel] = 1 €5 g

U, aym -
DYngaine (W) =
u Wk (]
or la courbe g(O) étant strictement croissante, nous avons pour KEi£m: e, 3 e,. Il vient
aors:

Bé%‘z('j}QE ]_Bé,y“ O}/E h2
e ' 6 ek

o]

Il apparait donc que si h est choisi pour vérifier la condition

h2 .
b yH £TOL (A2.3)

k

alors les amplitudes des modes ayant O;> Ok ne participent pas alaréponse car nous avons la
relation :

3 . Yo
222 £ToL (A2.)
Wi (4]

Filtrer ces modes correspond en fait aintroduire une dissipation numérique.

Les systemes qui hous intéressent sont a plusieurs degrés de liberté couplés. 11 importe donc
d étudier ce cas. Il se raméne a un systeme a plusieurs degrés de liberté découplés. En effet,

supposons le systeme de m équations linéaires couplées: M d+ Kg=0, le vecteur des

déplacements initiaux est qo. Appelons ? la matrice des vecteurs propres (la colonne i
correspond au mode i). Les vecteurs propres sont normés de maniére a satisfaire ? "M? =I,
nous avons alors, en utilisant les coordonnées modales y, avec g=?y, au systeme matriciel

2 ™™M? y+ ? TK? y=0. Par définition de ?, nous avons ? "K? =diag(?2). Nous retrouvons

aors le systeme découplé étudié dans le point précédent : j/i+wfyi =0 i=1..m. En
utilisant larelation (A2.2), et en explicitant le dernier terme::

oR Oyz i FTMFD;/{

. h2
k
.
2 . .
=%(Dq MTEETMD) 72
k

Bey

h2

W:_

Bey

CAyé. £——|F'MDq

En remarquant que:
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F'MF=Ib F'(F'M) =1T=1b F'M'F =|
b F'M'FFT=F"b M'FF" =|

Nous arrivons a larelation :

2 v:? £ og MTFETMDG% = (DG MDG)* (A25)
W, ] 6e, 6e,

Il reste a adimensionnaliser cette derniére expression, par le méme raisonnement que
précédemment :

Iyo] = (a7 Ma,) 2 |

il vient alors:
éw‘ym 2 9% T
a Yo - . .
W Dg MD T
W, hz L4 q h2 .
} ”y ”g 6e M )% - (Dq DFiner)% = Erglative
0 K GoMdo 6ey (a3 Mdg) 2
Donc, s h permet d avoir :
h2 ..T }/
Crelative = . }/ (Dg DFjpe ) 2 <TOL (A2.6)
Bey (qo MqO) 2

les modes qui ne participent pas sont filtrés car :

07
a Yo

—ﬂ<TOL
b, 0}/2
éao. Yo T

(%)
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