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Abstract 
A linear stability analysis is performed for a horizontal layer of a binary liquid of which solely 
the solute evaporates into an inert gas, the latter being assumed to be insoluble in the liquid. In 
particular, a water-ethanol system in contact with air is considered, with the evaporation of water 
being neglected (which can be justified for a certain humidity of the air). External constraints on 
the system are introduced by imposing fixed “ambient” mass fraction and temperature values at a 
certain effective distance above the free liquid-gas interface. The temperature is the same as at 
the bottom of the liquid layer, where, besides, a fixed mass fraction of the solute is presumed to 
be maintained. Proceeding from a (quasi-)stationary reference solution, neutral (monotonic) 
stability curves are calculated in terms of solutal/thermal Marangoni/Rayleigh numbers as 
functions of the wavenumber for different values of the ratio of the gas and liquid layer 
thicknesses. The results are also presented in terms of the critical values of the liquid layer 
thickness as a function of the thickness of the gas layer. The solutal and thermal Rayleigh and 
Marangoni effects are compared to one another. For a water-ethanol mixture of 10 wt% ethanol, 
it appears that the solutal Marangoni effect is by far the most important instability mechanism. 
Furthermore, its global action can be described within a Pearson-like model, with an 
appropriately defined Biot number depending on the wavenumber. On the other hand, it is also 
shown that, if taken into account, water evaporation has only minor quantitative consequences 
upon the results for this predominant, solutal Marangoni mechanism. 
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1. Introduction  
In standard studies [1-8] of convective instabilities of horizontal fluid layers, the destabilizing 
gradient across the layer is directly controlled from the outside of the system, through boundary 
conditions below and above the layer. The instability due to gravity and density variations is 
usually called Rayleigh-Bénard instability, while Marangoni-Bénard instability refers to the case 
where the surface tension variations are the driving factor behind it. When both effects couple, 
the term “Rayleigh-Marangoni-Bénard instability” is used. If it is the concentration dependence 
of the density and surface tension that causes the onset of convection, the corresponding 
instabilities can be called “solutal” Rayleigh-Marangoni-Bénard instabilities. Likewise, 
“thermal” instabilities result from the similar role of the temperature. 



 
When evaporation takes place at the upper surface of the liquid layer, the situation becomes even 
more intricate. Indeed, evaporation is an endothermic process, resulting into the cooling of the 
liquid surface. In the case of binary mixtures, it is also accompanied by concentration gradients 
across the layer. Since the density and surface tension depend on both the temperature and the 
concentration, evaporation can thus indirectly destabilize the liquid layer. 
 
Convection due to evaporation is an important phenomenon that occurs in many applications, 
such as during the drying of paint films, coatings, heat exchangers and process engineering 
installations. It also occurs in nature when for instance a salty lake dries out due to the 
evaporation of water, leaving behind structures on the soil. Several theoretical works have 
already been published on evaporation-driven Bénard instability of a one-component liquid layer 
[9-15], with the liquid evaporating in either an inert gas [9-13] or in its own vapor [6, 14-15]. To 
our knowledge, the studies of two-component systems has been rather limited in this context. 
One can mention a scaling analysis [16] or experiments [17]. From the theoretical viewpoint, 
quite a comprehensive study has been carried out in the case of a spherical geometry, when the 
Marangoni (both thermal and solutal) instability has been considered for an evaporating binary-
liquid droplet [18]. Let us also mention experiments in a Hele-Shaw cell configuration with 
evaporating water-alochol solutions [19,20], where density-fingering (plume-like) patterns have 
been observed after a certain time had elapsed since the exposure of the solution to the air, which 
is clearly a manifestation of a buoyancy-driven mechanism. Cellular Marangoni patterns have 
also been observed  [19], which are then suppressed by adding a surfactant, and the theoretical 
part of [19] concerns just the buoyancy-driven instability.  
 
In the present paper, the Rayleigh-Marangoni-Bénard instability induced by evaporation is 
studied by means of a linear stability analysis in the case of a binary liquid layer, when both the 
solutal and the thermal factors are involved. The particular model used here assumes a dilute 
solution of which only the solute evaporates (even though the latter limitation is relaxed at a later 
stage). In this case, the gas layer consists of an inert gas and the vapor of the evaporating liquid. 
The aim of the paper is to study the different instability mechanisms and to assess the degree of 
their mutual importance using a configuration as simple as possible. A concrete example 
followed throughout the paper is a 10/90 wt% ethanol/water mixture at normal conditions.  
 
The paper is organized as follows. In section 2, the studied configuration is described, and a 
mathematical formulation of the problem is provided assuming that it is only the solute (ethanol) 
that evaporates from the binary mixture. The reference state is considered in section 3. Section 4 
is concerned with the formulation of the linear stability problem. The results of the linear 
stability analysis are presented in section 5, and the relative importance of various instability 
mechanisms is assessed. An approximate analytical treatment of the reference profile and of the 
marginal stability conditions (by means of a Pearson-like model) is carried out in section 6, 
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making use of various simplifications possible within the full model. In section 7, the model is 
generalized to account for solvent (water) volatility, although the analysis is limited to the 
approximate approach framework of section 6. Finally, the conclusions are summarized in 
section 8.  
 
2. Description of the problem 
The system the instability of which is studied in this paper is presented in Fig. 1. It consists of a 
binary liquid layer (thickness ݀௟, also denoted ݄ௗ, see the distinction between the two below) in 
contact with a gas layer (thickness ݀௚, also denoted ሺܪௗ െ ݄ௗሻ, so that ܪௗ is the total thickness 
of the two-layer system). The liquid layer rests on a horizontal solid surface with a fixed 
temperature. The liquid-gas interface is assumed to be undeformable. The liquid layer is made up 
of a solute in dilute concentration and a solvent. The gas layer consists of air (the absorption of 
which in the liquid is neglected) and the vapors of the solute and the solvent.  
 

 

Binary liquid

Air, solute vapour + 
solvent vapour

Evaporation

Bottom boundary; zd = 0

Interface; zd = hd

Top boundary; zd = hd + dg

z

y
x

Fig. 1. Sketch of the studied system  
 
The treatment of the gas layer adopted here follows Haut and Colinet [10]. The thickness ݀௚ in 
such an approach is just viewed as a semi-heuristic quantity describing the typical equivalent 
(effective) diffusion length in the gas phase as determined by external air currents which may be 
naturally present or deliberately created (ventilation) therein: ݀௚ is the distance at which the 
diffusion is formally of the same magnitude as the convective transport in a real setup. In this 
sense, the gas phase above this layer is considered as perfectly mixed while ensuring given 
“ambient” values of temperature (the same as at the bottom of the liquid layer in the case 
considered here) and concentration at the effective upper boundary of our gas layer. In this 
respect, the approach is actually rather similar to the so-called “stagnant film” approach, often 
used in chemical engineering [21]. The shear-induced influence of such currents on the liquid 
layer is neglected however, and thus no net horizontal flow in the gas phase is explicitly included 
into the model. Besides, the model is formulated assuming no externally imposed horizontal non-
uniformities upon the system, implying that the scale of any horizontal non-uniformity that may 
exist in a real setup (as opposed to the present idealized configuration) is much greater than the 
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scale of the phenomena to be studied here (evaporation-induced Bénard instability). As for the 
hydrodynamic conditions at the effective upper boundary of the gas layer, we shall use the “soft” 
(“stress-free”) ones: no tangential stress and a given uniform pressure/normal stress. We note 
that, overall, despite its heuristic character, the proposed approach is more detailed and general 
than the frequently used one based upon describing the transport processes in the gas by means 
of simply a transfer coefficient (Biot number): the former permits to assess an active role of the 
gas phase in the studied phenomena, whereas the latter (being essentially a one-sided model of 
the liquid layer) does not.  
 
The solvent is considered to be much less volatile than the solute.  Actually, in the main body of 
the paper (sections 2-6), the solvent is formally treated as non-volatile. For a dilute solution of 
ethanol (solute) in water (solvent), which is a concrete example followed throughout the paper, 
such a treatment is expected to be approximately valid at some ambient humidity of the air, when 
the water vapor is nearly saturated relative to the solution (otherwise, even though water is 
indeed much less volatile than ethanol, its greater amount in the solution may make the effects of 
its evaporation nonetheless noticeable). At the end of the paper, however, we shall come back to 
the question of how the results change if water evaporation is incorporated into the model for an 
arbitrary humidity of the air.  
 
Here we shall also assume that it is not only the temperature that is fixed at the bottom of the 
liquid layer, but also the concentration. While the latter assumption seems to be rather artificial, 
it will permit to study in a simple way (i.e. for a quasi-stationary reference state) the Bénard 
instability mechanisms pertinent to an evaporating binary-liquid layer and to assess their mutual 
importance, which is the main goal of th  p se t papere re n .  

Now a few words about the notations ݀௟, ݀௚, ݄ௗ and ܪௗ as used here. Due to evaporation, the 
liquid thickness changes with time ݐௗ, which we describe here by introducing the function 
݄ௗ ൌ ݄ௗሺ݀ݐሻ. We can then define a constant quantity ݀௟ as the thickness of the liquid layer at a 
certain reference, or initial, time ݐௗ ൌ ଴ௗ, i.e. ݀௟ݐ ؠ ݄ௗሺ0݀ݐሻ. This thickness ݀௟ will then be chosen 
as the unit length for non-dimensionalization. In dimensionless form, the bottom plate is located 
at ݖ ൌ 0, and the interface then corresponds to ݖ ൌ ݄ሺݐሻ, with ݄ሺ0ݐሻ ൌ 1. Note that the 
superscript “d” stands for the dimensional character a particular quantity, whenever it is used 
elsewhere in dimensionless form. Similarly, in view of the meaning attributed to the gas layer 
thickness here, ܪௗ (defined as the total thickness of the system) can in principle also be a 
function of time:  ܪௗ ൌ ሻ. Then we define ݀௚݀ݐௗሺܪ ؠ 0݀ሻݐௗሺܪ െ ݄ௗሺ0݀ݐሻ for the initial thickness 
of the gas layer. In dimensionless form, the top of the gas phase corresponds to ݖ ൌ   .ሻݐሺܪ

 

 
2.1 Bulk equations 
The Boussinesq approximation [6] will be adopted for both phases of the system, implying that 
the material properties of the fluids are treated as constant except for the density in the buoyancy 
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terms, whose dependence on the temperature and mass fraction is taken in the following 
linearized form:    
ൌ ߩ ௟ߩ (1)                  ௟,଴൛1 െ ௟൫ߙ ௟ܶ

ௗ െ ௟ܶ,଴
ௗ ൯ െ ௟൫ܿ௟ߝ െ ܿ௟,଴൯ൟ, 

௚ߩ ൌ ௚,଴൛1ߩ െ ௚൫ߙ ௚ܶ
ௗ െ ௚ܶ,଴

ௗ ൯ െ ௚൫ܿ௚ߝ െ ܿ ,଴൯ൟ,                 (2) ௚

whereas the corresponding dependence on pressure is presumed to be negligible for the pressure 
range involved in the problem. Here, ߩ is the density, ܶௗ is the (dimensional) temperature, ܿ is 
the solute mass fraction, ߙ and ߝ are the thermal and the solutal expansion coefficients. The 
subscripts “l” and “g” relate to the liquid and gas phases, respectively. The subscript “0” refers 
to a certain reference state (to be specified later on). Clearly, the validity of different hypotheses 
underlying the Boussinesq approximation is limited to situations for which the temperature and 
mass fraction in the system remain close enough to the reference values introduced in (1) and 
(2). 
 
As mentioned above, let ݀௟ be the length scale. The time scale is chosen as the liquid thermal 
time scale ݀௟ଶ/ߢ௟. The dimensionless evaporation mass flux ܬ is obtained by using the scale 
ߠ݈ߣ
௅ௗ೗

ൌ ೗
ா
఑ ఘ೗
ௗ೗

, where 

ܧ ൌ ௅
ఏ௖೛,೗

  

is the evaporation number, ߠ is the temperature scale, ܮ is the heat of solution of the solute in the 
solvent, ߢ refers to the thermal diffusivity, ܿ௣ the heat capacity and ߣ the thermal conductivity. 

a the temperature scale such that  We sh ll choose 
ߠ ൌ ௅

௖೛,೗
   ሺܧ ؠ 1ሻ.  

However, we find it advantageous, for the sake of physical clarity of certain formulae, to keep 
the quantity ߠ unsubstituted, even though it will eventually be evaluated according to the above 
expression. The dimensionless temperatures ௟ܶ and ௚ܶ in the liquid and gas are respectively 
defined by ൫ ௟ܶ

ௗ െ ௟ܶ,଴
ௗ ൯/ߠ and ൫ ௚ܶ

ௗ െ ௚ܶ,଴
ௗ ൯/ߠ. The mass fractions are already dimensionless. The 

pressure and velocity scales are respectively chosen as ఓ೗఑೗
ௗ೗
మ  and ఑೗

ௗ೗
, where ߤ refers to the dynamic 

s The following dimensionless balance equations are then obtained: visco ity. 
׏ (3)          · Ԧ௟ݒ ൌ 0 ,          

డ௩ሬറ೗
డ௧
ൌ െ൫ݒറ௟ · റ௟ݒሬሬറ൯׏ ൅ ௟݌ሬሬറ׏௟൛െݎܲ െ ௟1௭ܽܩ ൅ റ௟ݒଶ׏ ൅ ܴܽ௟ ௟ܶ1௭ ൅ ௟ሺܿ௟݁ܮ௟ݏܴ െ ܿ௟,଴ሻ 1௭ൟ ,          (4) 

ൌ െ൫ݒറ௟ · ሬሬറ൯׏ ௟ܶ ൅ ଶ׏ ௟ܶ ,   డ்
డ௧
೗               (5) 

· ሬሬറ൯ܿ௟׏ ൅ ଶܿ௟׏௟ሼ݁ܮ ൅ ߰௦׏ଶ ௟ܶሽ ,                     (6) డ௖೗
డ௧
ൌ െ൫ݒറ௟

׏ · Ԧ௚ݒ ൌ 0 ,                   (7) 
డ௩ሬറ೒
డ௧

ൌ െ൫ݒറ௚ · റ௚ݒሬሬറ൯׏ ൅ ௚݌ሬሬറ׏௟൛െρିଵݎܲ െ ௟1௭ܽܩ ൅ ν ׏ଶݒറ௚ ൅ ௟ܴܽ ߙ ୥ܶ1௭ ൅ ௟ሺܿ௚݁ܮ௟ݏܴ ߝ െ ܿ௚,଴ሻ 1௭ൟ ,        (8) 
డ ೒்

డ௧
ൌ െ൫ݒറ௚ · ሬሬറ൯׏ ௚ܶ ൅ κ ׏ଶ ௚ܶ , 

డ௖೒
డ௧

                          (9) 

ൌ െ൫ݒറ௚ · ሬሬറ൯ܿ௚׏ ൅  ଶܿ௚ ,                   (10)׏௟݁ܮ ܦ
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where ݒറ and ݌ are the (barycentric) velocity and pressure fields. For the liquid and gas phase 
respectively, (3) and (7) are the continuity equations for incompressible fluids, (4) and (8) are the 
momentum equations, (5) and (9) express the energy conservation, whereas (6) and (10) stand 
for the mass conservation of the solute species. The symbol ψS accounts for the Soret effect 

nd is defined by (considered only in the liquid phase) a
߰௦ ൌ ௟ܵ, with  ௟ܵ,଴  ߠ ൌ

஽೅,೗
஽೗
ܿ௟,଴ሺ1 െ ܿ௟,଴ሻ ,             (11) ଴

where ்ܦ is the thermal diffusion coefficient and ܦ refers to the diffusion coefficient. ௟ܵ,଴ is the 
Soret coefficient in the liquid (obtaining a value ߰௦ ൎ 0.154). In the gas phase, the Soret effect is 
neglected assuming small vapor concentration, in which limit this effect tends to disappear (and 
the same goes for the Dufour effect). Equations (3) through (10) contain the following 

s n s u bers: dimen io les  n m

௟ݎܲ ൌ
஝ౢ
சౢ

௟݁ܮ ,  ൌ
஽೗
఑೗

௟ܽܩ ,  ൌ
௚ௗ೗

య

఑೗஝ౢ
 , ܴܽ௟ ൌ

ఈ೗௚஘ௗ೗
య

఑೗஝ౢ
௟ݏܴ ,  ൌ

ఌ೗௚ௗ೗
య

஽೗ఔ೗
ߩ ,  ൌ ఘ೒

ఘ೗
ߥ ,  ൌ ఔ೒

ఔ೗
ߙ ,  ൌ ఈ೒

ఈ೗
ߝ ,  ൌ ఌ೒

ఌ೗
 , 

ߢ ൌ ఑೒
఑೗

ܦ  ൌ ஽೒
஽೗

,  ,                   

where ߥ refers to the kinematic viscosity and ܲݎ௟, ݁ܮ௟, ܽܩ௟, ܴܽ௟ and ܴݏ௟ are respectively the 
Prandtl, Lewis, Galileo, thermal Rayleigh and solutal Rayleigh numbers in the liquid. The 
symbols ߢ ,ߝ ,ߙ ,ߥ ,ߩ and ܦ, without subscripts, denote the ratios of the corresponding material 
properties in the gas to those in the liquid.  
 
For the subsequent discussions in the paper, it is also interesting to recall the following detailed 
imensionless expressions of the solute m ss and heat fluxes in the liquid and in the gas 

), (9) a
d a
compatible with (5), (6 nd (10): 
Ԧ௟ܬ ൌ െ݁ܮ௟ሼܿ׏௟ ൅ ߰௦׏ ௟ܶሽ,  ݍԦ௟ ൌ െ׏ ௟ܶ, ܬԦ௚ ൌ െ݁ܮ ܦߩ௟ܿ׏௚  ݍԦ௚ ൌ െ׏ ߣ ௚ܶ.       (12) 
Note that the scales used for the mass fluxes are the same as the one defined above for the 
evaporation flux (with ܧ ؠ 1). For the heat flux, the scale used is ߠ݈ߣ

ௗ೗
. 

 
2.2 Boundary conditions 
The fol boundar ns are a
Ԧ௟ݒ ൌ 0, ௟ ൌ ௕ܶ,           ܿ௟ ൌ ܿ௕,                      (13) 

lowing y conditio ssumed at the bottom of the liquid layer (ݖ ൌ 0): 
     ܶ    

where ௕ܶ and ܿ௕ are some fixed values. Note that the boundary condition ܿ௟ ൌ ܿ௕ on the mass 
fraction is probably not easy to realize in practice. In principle, this condition  could be realized 
by installing at the bottom a thin layer of a porous gel (of vanishing mass transfer resistance), 
under which a mixture of the solvent and the solute, with a fixed mass fraction ܿ௕, is circulated. 
In the present paper, as it has already been mentioned, we shall rather regard the third condition 
(13) as a model permitting to study in a simple way the basic instability mechanisms in a binary-
liquid layer. In particular, it will allow consideration of a (quasi-)steady reference state (which 
would not be the case should a zero flux condition ܬԦ௟ ൌ 0  be specified instead).  
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The boundary conditions to be specified at the top of the gas layer have in fact been already 
discussed when introducing the basic configuration. We have fixed constant values of the 
temperature and concentration,  ܶݐ and  ܿ௧ , respectively, and the “soft” hydrodynamic conditions 
with the normal stress being equal to a certain value  ݌௧ (an “external pressure”) and the 

 zero (“s f t s,  tangential stress being tress ree condi ion”). Thu

௚ܶ ܿ௚ ൌ ܿ௧,        డ௨೒
డ௭

ൌ ௧ܶ,  ൅ డ௪೒

డ௫
ൌ డ௩೒

డ௭
൅ డ௪೒

డ௬
ൌ 0,      െ݌௚ ൅ ߤ2 డ௪೒

డ௭
ൌ െ݌௧,          (14) 

at ݖ ൌ
ߤ ൌ ఓ೒

ఓ೗

  where ,ܪ
  

is the ratio of the dynamic viscosities. The symbols ݒ ,ݑ and ݓ stand for the ݕ ,ݔ and ݖ velocity 
field components, respectively. It will be seen that the form of the hydrodynamic conditions has 
little influence in practice (see subsection 5.7).  
 
Consider now the conditions at the liquid-gas interface. Since evaporation takes place at this 
interface, the liquid layer thickness changes with time, but we assume that the interface remains 
flat. Note that this assumption will be discussed briefly at the end of section 6.2. Due to mass 
conservation, the evaporation flux ܬ is linked to velocities in both the gas phase and the liquid 

moving with the interface ݖ ൌ ݄ሺݐሻ. In our notations, this reads [6] phase in the reference frame 
ܬ ൌ ቀ݈ݓ െ

ௗ௛
௧ௗ
ቁ ൌ ߩ ቀ݃ݓ െ

ௗ௛
ௗ௧
ቁ,                     (15)     

ݖ ൌ ሺ  t (15) can also be solved with respect to ܬ and ݄݀/݀ݐ to yield  at ݄ .ሻݐ Note tha
ௗ௛
ௗ௧
ൌ

ଵିఘ
ଵ ൫ݓ െ ߩ

ܬ ൌ

݈  ൯ ,                 (16)݃ݓ
ఘ

ଵିఘ
൫݃ݓ

at ݖ ൌ ݄ሺݐሻ. 

െ݈ݓ൯                                        (17) 

 
Other boundary conditions at the interface express the continuity of the temperature and of the 

locity com o s :  tan p nent
௚ܶ ௟ݑ  ൌ ௟ݒ    ,௚ݑ ൌ    ௚,            (18)ݒ

gential ve
ൌ ௟ܶ,  

at ݖ ൌ ݄ሺݐሻ. 
 
The energy conservation at the interface implies a balance between the heat fluxes in both phases 

h  vaporation, which reads [6] and t e heat of e
െడ்೗

డ௭
൅ ߣ డ ೒்

డ௭
ൌ       (19)               ܬ

at ݖ ൌ
ߣ ൌ ఒ೒

ఒ೗

݄ሺݐሻ, where 
.  

Note that the mechanical effects (kinetic energy flux and work of surface tension forces) are 
neglected in (19). 
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In expressing the tangential stress balance at the interface, it is assumed that the surface tension 
between the liquid and the gas depends on the temperature and on the solute mass fraction in the 

y an write  liquid. Similarl  to (1) and (2), one c
ߛ ൌ ଴ߛ െ ൫்ߛ ௟ܶ

ௗ െ ௟ܶ,଴
ௗ ൯ െ ஼൫ܿ௟ߛ െ ܿ௟,଴൯                  (20) 

with  
்ߛ ൌ െቀడఊ

డ்
ቁ   and   ߛ஼ ൌ െቀడఊ

డ௖
ቁ .          

Then, the conditions expressing the tangential stress b
೒

alance at ݖ ൌ ݄ሺݐሻ are [6] 
െߤ ቀడ௪

డ௫
൅ డ௨

డ௭
೒ቁ ൅ ቀడ௪

డ௫
൅ డ௨೗

డ௭
ቁ ൅ ܽܯ డ்

డ௫
൅ ݁ܮݏܯ డ௖

డ௫
೗ ೗ ೗ ൌ 0 , 

െߤ ቀడ௪೒

௬

         (21) 

൅ డ௩೒
డ௭
ቁ ൅ ቀడ௪೗

௬
൅ డ௩೗

డ௭
ቁ ൅ ܽܯ డ்೗

డ௬
൅ ݁ܮݏܯ డ௖೗

డ௬
ൌ 0 ,          (22) 

డ డ

where
ܽܯ ൌ ఊ೅ௗ೗ఏ

఑೗ఓ೗

 
ݏܯ ,  ൌ ఊCௗ೗

Dౢఓ೗
          

are the thermal and solutal Marangoni numbers.  
 
The assumption that it is only the solute that evaporates implies that the evaporation flux ܬ is 

a  evaporation flux of the solute only. The latter can be expressed as: equ l to the 
௟ܿ ܬ ൅ ௟ሬሬറܬ · 1௭ .                    

d using (12), one arrives at the following boundary condition at ݖ ൌ ݄ሺݐሻ: By equating this to ܬ an
ܬ ൌ െ ௅௘೗

ଵି௖೗
ቄడ௖೗
డ௭
൅ ߰ௌ

డ்೗
డ௭
ቅ .                     (23)  

 
The inert gas adsorption in the liquid is also neglected. Using an argument similar to the one 

), one obtains the following additional boundary condition at ݖ ൌ ݄ሺݐሻ: leading to (23
ܬ ൌ െ ఘ஽௅௘೗

ଵି௖೒

డ௖೒
డ௭

 .                                                        (24) 

 
A local equilibrium hypothesis at the surface is made to describe the evaporation process. 

te binary liquid, it amounts to the so-called Henry’s law [22]: Assum g a di
௚ௗ݌ ௚ݕ ൌ                   , ௘ܭ ௟ݕ

in lu
 

where ݕ௚ and ݕ௟ are the molar fractions of the solute in the gas and liquid phases, respectively, 
and ܭ௘ is the Henry coefficient (in pressure units), which generally depends on the interface 
temperature, even though this dependence is neglected in the present paper (this point will be 
justified a posteriori in Section 3, in the case of the reference solution). The quantity ݌௚ௗ is the 
total pressure of the gas at the interface. In terms of mass fractions, Henry’s law can be rewritten 
as 

௖೒ఋಾ
ᇲᇲ

ଵା௖೒൫ఋಾ
ᇲᇲିଵ൯

ൌ ௖೗ ఋಾ
ଵା௖೗ ሺఋಾିଵሻ

 ௄೐
೙

௣೒
 ,                         (25) 
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yielding another boundary condition at ݖ ൌ ݄ሺݐሻ. The symbol ܭ௘௡ stands for the dimensionless 
Henry coefficient (using ߤ௟ߢ௟/݀௟ଶ as the pressure scale). The symbol ߜ refers to the ratio of 
solvent and solute properties, the subscript of ߜ indicating the property in question. In (25) 



ெߜ ൌ ெభ
ெమ

  

is the so
ெᇱᇱߜ ൌ

ெೌ
ெమ

lvent to solute molecular mass ratio, while 
  

is the same for the air and the solute, where the subscript “a” refers to the air. Note also the 
 notation

ெᇱߜ ൌ
ெೌ
ெభ

ൌ   ெߜ/ெᇱᇱߜ

which will be used later on. 
 
2.3 Comments on the linear stability analysis 
The goal here is to examine the stability of the horizontally uniform solutions of the above 
equations, depending only on the vertical coordinate and characterized by zero horizontal 
velocity (the “reference” solutions). It should be realized, however, that due to the evaporation 
process at the liquid-gas interface, the thickness of the liquid layer will vary in the course of 
time. Consequently, the possible horizontally uniform solutions will be intrinsically time-
dependent. However, the analysis is carried out assuming this variation to be slow enough (the 
quasi-stationary hypothesis, to be defined shortly). As a first step of our work, we obtain the 
(quasi-stationary) reference solution. The second step will consist in analyzing the stability of the 
reference solution. Since the latter depends on time, it must of course be understood that the 
stability analysis must be carried out as a function of time. This is accomplished in the 
framework of the frozen-time approach (also used in [23]), which is in any way nearly rigorous 
here on account of the mentioned quasi-stationary hypothesis (with the exception of certain 
modes as discussed later on). 

9 

 
More precisely, the quasi-stationary assumption consists in assuming that the liquid thickness 
݄ሺݐሻ varies sufficiently slowly for the temperature, mass fraction and velocity profiles in both 
phases to reach a steady state corresponding to an instantaneous value of ݄ሺݐሻ. In other words, 
this hypothesis amounts to the assumption that the time scale of the variations of ݄ௗ ൌ ݄ௗሺ݀ݐሻ is 
much larger than the diffusive time scales of the problem. To determine the quasi-stationary 
reference solution, all time derivatives in the equations can be cancelled, except for the time 
derivative of ݄ in (16). It goes without saying that this ansatz is not valid for very short times, 
when the diffusional profiles have not yet invaded the whole layer. As a consequence of this 
quasi-stationary assumption and the corresponding separation of timescales, it is easy to 
understand that among all the unknowns of the problem, only ݄ will explicitly depend on time, 
following (16), while all other quantities of the reference solution will depend on ݐ only through 
݄ itself. Note that this provides the reason why the approach is called quasi-stationary. As a 
further interesting consequence of this hypothesis, one can understand that performing a frozen-
time stability analysis of the reference solution for all times ݐ is completely equivalent to 
performing the stability analysis for all possible values of ݄. Switching to this point of view 
amounts to asking for what ݄ an instability can occur, instead of asking for what time this 



instability appears, which is often more interesting from a physical point of view and which will 
actually be done in the following. 
 
In the framework of this approach, the time ݐ଴ௗ   introduced above can be chosen, without loss of 
generality, as the time corresponding to the thickness ݄ௗሺ0݀ݐሻ for which the stability analysis shall 

ormed. Following the procedure described before, to non-dimensionalize the equations, 
uces that the dimensionless liquid thickness can be set to unity 

be perf
one ded
݄ ൌ 1.  
Note that this result does not imply that the dimensionless thickness is fixed, but only means that 
its value, at the time for which a stability analysis will be carried out, is equal to unity. Let us 
also stress that replacing the dimensionless liquid thickness by unity is a bit delicate, since this 
amounts to hide that the reference solution indirectly depends on time through ݄ and to transfer 
this time dependence in the length scale used to non-dimensionalize the equations. Fortunately, 
this will not prevent a proper stability analysis, as we will explain later. 
 
In principle, in accordance with the approach used for the gas layer in our system, as set forth in 
the beginning of section 2, ܪ can also be a function of time. Furthermore, unlike ݄ whose time 
dependence is embedded into the formulation by means of (16), for ܪ, it is largely controlled by 
the external constraints on the system which remain outside the present formulation. For 
instance, for constant external constraints, it may be reasonable to assume that it is ሺܪ െ ݄ሻ݀௟ 
(the dimensional gas layer thickness) that remains constant, but then ܪ will evolve together with 
݄. In any event, the time dependence of  ܪ (if any) will be presumed as slow as that of ݄.  
 
2.4 Water-ethanol system and external constraints  
Before undertaking the stability analysis, it is important to stress that a very large number of 
parameters appear in the equations presented above and that it is not feasible to carry out a 
general parametric study. For this reason, we shall first restrict our analysis to a water-ethanol 
liquid layer, with only ethanol evaporating into air. Then, we shall assume that the temperatures 
imposed at the bottom and at the top of the system are equal. In this way, any thermal 
instabilities that may appear in the system would result exclusively from the evaporation process. 
The reference temperatures in both the liquid and the gas phases that are used in (1), (2) and (20) 
are then fixed at this value, i.e. ௟ܶ,଴

ௗ ൌ ௚ܶ,଴
ௗ ൌ ௧ܶ

ௗ ൌ ௕ܶ
ௗ. This means that we have just ௕ܶ ൌ ௧ܶ ൌ 0 in 

dimensionless form.  
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We shall also choose the mass fraction ܿ௕ imposed at the bottom of the system as the typical 
concentration ܿ௟,଴, introduced in (1), (11) and (20). Similarly, the concentration ܿ௧ imposed at the 
top of the system is used as the typical concentration ܿ௚,଴ introduced in (2). The value ܿ௕ must be 
small enough for Henry’s law, corresponding to dilute solutions, to be actually valid. In 
particular, the following values are chosen: ௕ܶ

ௗ ൌ ௧ܶ
ௗ ൌ ௧ܿ ,ܭ300 ൌ 0. For the mass fraction 

imposed at the bottom, two different values are considered in our results, namely ܿ௕ ൌ 0.1 and 



ܿ௕ ൌ 0.001. The different thermo-physical properties of the liquid used in the calculations are 
those corresponding to the reference values of the temperature and composition imposed at the 
bottom of the system. Similarly, in the gas, the thermo-physical properties correspond to the 
reference temperature and composition imposed at the top of the upper layer. When needed, the 
properties are also determined for a value of the pressure equal to the atmospheric pressure 
௧ௗ݌ ൌ 1 atm.  
 
The numerical values of the physical properties are given in tables 1 and 2, and for the interested 
reader, Appendix A presents some details on how these values have been obtained.  
  
Table 1. Physical properties of the gas layer 
Physical p erty rop Value 

௚ߩ   1.18 kg/m3

ܿ  ௣

௚ߣ
 

,௚

 
 1.005*103 J/kg K 
 2.62*10-2 W/m K 

௚ߢ
 

 2.22*10-5 m2/s 
ߥ

 
௚

ߤ
 

 1.58*10-5 m2/s 
௚

௚ߙ
 

 1.85*10-5 Pa*s 
 3.35*10-3 K-1 

௚ܦ
 ௚ߝ

 1.20*10-5 m2/s
-3.70*10-1 

 
Table 2. Physical properties of the liquid layer  
Physical p perty ro Value for ܿ௕ = 0.1 Value for ܿ௕ = 0.001 

௟ߩ         9.796*102 kg/m3        9.964*102 kg/m3

ܿ ௟  ௣

௟ߣ
 

,

 
         4.26*103 J/kg K          4.18*103 J/kg K 
         5.31*10-1 W/m K          6.07*10-1 W/m K 

௟ߢ
 

         1.27*10-7 m2/s          1.46*10-7 m2/s 
௟ߥ

 
         1.33*10-6 m2/s            8.5*10-7 m2/s 

ߤ
 
௟

௟ߙ
 

           1.3*10-3 Pa*s            8.5*10-4 Pa*s 
           3.4*10-4 K-1          2.75*10-4 K-1 

௟ܦ            1.0*10-9 m2/s            1.3*10-9 m2/s
 ௟ߝ

 
         1.53*10-1          1.92*10-1

ߛ
 

்

ߛ
ܭ  

         1.45*10-4 N/m K            1.6*10-4 N/m K 
஼            1.4*10-1 N/m            5.0*10-1 N/m 
௘

 ܮ
௟ܦ/௟,்ܦ  

         3.26*10-1 atm          3.26*10-1 atm 
         1.13*106 J/kg          1.13*106 J/kg 
         6.46*10-3 K-1          7.58*10-3 K-1 
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3. The reference state 
In the present section, we will determine the reference solution, the stability of which will be 
examined later on. We shall do it in the framework of the quasi-stationary assumption as 
discussed in subsection 2.3. 
  
In seeking the reference solution, the partial time derivatives are neglected in the balance 
equations (3)-(10). When the horizontal derivatives are also disregarded, one obtains a system of 
ordinary differential equations with respect to the vertical coordinate ݖ. Using the boundary 
conditions at ݖ ൌ 0, 1 and ܪ, these equations can be solved, as now explained.  
 
The first of the boundary conditions (13) together with the incompressibility assumption (3) 

lds the reference solution for the velocity in the liquid phase: directly yie
ݓ ௥௘௙ ൌ 0 .                       (26) ௟,

Simila ly, equa
௚,௥௘௙ݓ ൌ

ሺ1െߩሻ
ߩ

r tions (7) and (17) yield  
 (27)                    , ݂݁ݎܬ

w ereas n
ሶ݄ ൌ െ(28)                 ݂݁ݎܬ 
h ote that  

according to (16). Using (5), the second of Eqs (13) and Eq. (26) yields the following reference 
uid phase: solution for the temperature in the liq

ܶ ௥௘௙ ൌ ൫ ௜ܶ,௥௘௙ െ ௕ܶ൯ݖ ൅ ௕ܶ,                    (29) ௟,

where the subscript “i” refers to the interface, and where the reference interfacial temperature 
௥௘௙ w e d tion (9) and the first condition (14) yield  ௜ܶ, ill b etermined below. Similarly, equa

௚ܶ,௥௘௙ ൌ ௜ܶ,௥௘௙ ൅ ൫ ௧ܶ െ ௜ܶ,௥௘௙൯
ଵି௘ቄ݂݁ݎ,݃ݓሺ೥షభሻ/ഉቅ

ଵି௘ቄ݂݁ݎ,݃ݓሺಹషభሻ/ഉቅ
 .                   (30) 

Proceeding similarly for the mass fractions, by using (6), (10), the third of Eqs (13) and the 
( o tains second of Eqs 14), one b

௥௘௙ ൌ ൫ ௜,௥௘௙,௟ ܿ௕ ,           (31) ܿ௟, ܿ െ ܿ௕൯ݖ ൅    

ܿ௚,௥௘௙ ൌ ܿ௜,௥௘௙,௚ ൅ ൫ܿ௧ െ ܿ௜,௥௘௙,௚൯
ଵି௘ቄ݂݁ݎ,݃ݓሺ೥షభሻ/൫ವಽ೐೗൯ቅ

ଵି௘ቄ݂݁ݎ,݃ݓሺಹషభሻ/൫ವಽ೐೗൯ቅ
 .                         (32) 

In what follows, we will also need the pressure field in the gas in order to use it in Henry’s law. 
From (8) together with (30), (32) and the last equation (14), one obtains the gas pressure 
distribution in the reference state, ݌௚,௥௘௙. In particular, its value at the interface (ݖ ൌ 1) is found 
to be 
௜,௥௘௙,௚݌ ൌ

௧݌ ൅ ሺ1ߩ െ ሻܪ ቈെܽܩ௟ ൅ ௟ܴܽߙ ቆ ௜ܶ,௥௘௙ ൅
൫ ೟்ି்೔,ೝ೐೑൯

ଵି௘ቄ݂݁ݎ,݃ݓ
ሺಹషభሻ/ࣄቅ

ቇ ൅ ௟݁ܮ௟ݏܴߝ
൫௖೔,ೝ೐೑,೒ି௖೟൯

ଵି௘షቄ݂݁ݎ,݃ݓ
ሺಹషభሻ/ವಽ೐೗ቅ

቉ െ ߩ ൤ఈோ௔೗݂݁ݎ,݃ݓࣄ
൫ ௧ܶ െ ௜ܶ,௥௘௙൯ ൅

ఌோ௦೗஽௅௘೗
మ

݂݁ݎ,݃ݓ
൫ܿ௧ െ ܿ௜,௥௘௙,௚൯൨ .                       (33) 
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In (29), (30) and (33), ௕ܶ and ௧ܶ denote respectively the temperature at the bottom and top plates. 
These are equal to one another as stipulated earlier (cf. subsection 2.4) and moreover ௕ܶ ൌ ௧ܶ ൌ



0, but in order to trace back the place of each quantity in the formulae, the symbols are left as 
such. The mass fractions ܿ  and ܿ௧ n (31) and 32) are also considered as known constants. ௕  i  (

The four constants ௜ܶ,௥௘௙, ܿ௜,௥௘௙,௟, ܿ௜,௥௘௙,௚ and ܬ௥௘௙ introduced above still need to be calculated in 
order to completely determine the reference solution. The equations they obey are derived from 
conditions (19) and (23)-(25) upon the substitution of (26)-(33) therein. One obtains the 
f ing r equations:  

 

ollow  system of fou

൫ܶ െ ൯ ൅
െ ݂݁ݎ,݃ݓ ௜,௥௘௙ ௕ܶ ߣ
ࣄ

ൌ           (34) ൫் ି் ൯

ଵି௘

೔,ೝ೐೑ ೟
ቄ݂݁ݎ,݃ݓሺಹషభሻ/ࣄቅ

 ,௥௘௙ܬ
௅௘೗
ೝ೐೑,೗

൛൫ܿ ௥௘௙,௟ ൯ ൅ ߰ௌ൫ ௜ܶ,௥௘௙ െ ௕ܶ൯ൟ,           (35) ܬ௥௘௙ ൌ െ
ଵି௖೔, ௜, െ ܿ௕

1 ൌ െ ሺଵିఘሻ 

೐೑,೒

൫௖೔,ೝ೐೑,೒ି௖೟൯

௘ቄ݁ݎ,݃ݓ /ሺವಽ೐೗ሻଵି௖೔,ೝ ଵି ݂ሺಹషభሻ ቅ
,                     (36) 

௖೔,ೝ೐೑,೒ఋಾ
ᇲᇲ

ଵା௖೔,ೝ೐೑,೒൫ఋಾ
ᇲᇲିଵ൯

ൌ ௖೔,ೝ೐೑,೗ఋಾ
ଵା௖೔,ೝ೐೑,೗ሺఋಾିଵሻ

௄೐೙

௣೔,ೝ೐೑,೒
.                        (37) 

This non-linear system (34)-(37) must be solved numerically for the four unknown constants, 
which results in a complete determination of the quasi-stationary reference solution. As 
illustrations, some of the reference temperature and mass fraction profiles are presented in Figs. 
2 and 3 for the water-ethanol system with ܿ௕ = 0.1 for several values of ܪ. Typical numerical 
values of some parameters are also given in Table 3. Let us also mention that a detailed analysis 
of the solutions obtained (which is actually not presented here) shows that the pressure does not 
change significantly across the system. Indeed, for values of ܪ between 1.5 to 101, and for 
௧ௗ݌ ൌ 1 atm, it appears that ݌௜,௥௘௙,௚ௗ െ݌௧ௗ is always smaller than 1 Pa. Finally, note also that, as 
announced in section 2.3, equation (16) was not used to determine the solution given above. In 
case one is interested in the variation of ݄ with time, the above calculations must be repeated for 
݄ ് 1 and (16) can then be used as a (non-linear) ODE for ݄ሺݐሻ. Remark the weak deviations of 
the temperature with respect to 300 K, in Fig. 2, which justifies our hypothesis to neglect the 
variations of the Henry constant (and, in principle, of other physical properties) with the 
temperature. Note from Fig. 3 that the mass fraction in the gas is an order of magnitude smaller 
than that in the liquid, which justifies the hypothesis to neglect the Soret effect in the gas phase. 
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Fig. 2. Temperature distribution in the reference state (10 wt% ethanol in water) 
 

 
Fig. 3. Solute mass distribution in the reference state (10 wt% ethanol in water) 
 
In the previous text, the quasi-stationary assumption has been used. It is interesting to investigate 
to what extent this assumption is valid (excluding very short times as mentioned in section 2.3). 
This can be done by examining the relevant time scales. For the liquid phase, the time scales in 
question are the time scale for the variation of the liquid height (݄ௗ/ሺെ ሶ݄ ௗሻ), the diffusion time 
scale (݀௟ଶ/ܦ௟), the thermal time scale ൫݀௟ଶ/ߢ௟൯ and the viscous time scale ൫݀௟ଶ/ߥ௟൯. The first of them 
must be much larger than the other three for the quasi-stationary assumption to hold. The 
corresponding ratios give rise to the diffusion and thermal Péclet and Reynolds numbers that 
must be small. As typically ܦ௟ ا ௟ܦ ௟ andߢ ا   ௟, it is the diffusion Péclet number in the liquidߥ
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ܲ݁௟,ௗ௜௙௙ ൌ
݈݀ ቀെ ሶ݄ ݀ቁ

ൌ
݂݁ݎܬ ൌ ఘ

ଵିఘ
݂݁ݎ,݃ݓ
݈݁ܮ

          
݈ܦ ݈݁ܮ

(with various equivalent expressions provided) that must be followed as the criterion of quasi-
stationarity (ܲ݁௟,ௗ௜௙௙ ا 1). Its values are shown in dimensionless form in Table 3 for a number of 
cases and turn out to be small indeed: the more so, the bigger ܪ is. Note that the concentration 
gradient in the liquid turns out to be of the order ܱሺܲ݁௟,ௗ௜௙௙ሻ.  
 
From the gas side, the corresponding criterion of quasi-stationarity is ݀௚൫െ ሶ݄ ௗ൯/ܦ௚ ا 1 . As 
ߩ ا 1, which brings about | ሶ݄ ௗ| ا ௚,௥௘௙ (cf. (27) and (28)), the dimensionless number ݀௚൫െݓ ሶ݄ ௗ൯/

aller than what we shall call the Péclet number in the gas:  ܦ௚ is anyway much sm
ܲ݁௚,ௗ௜௙௙ ൌ ݀௚ ݓ௚,௥௘௙/ܦ௚          .   
Thus, should it be that ܲ݁௚,ௗ௜௙௙ ا 1, then the quasi-stationarity criterion in the gas is satisfied all 
the more.  On the other hand, ܲ݁௚,ௗ௜௙௙ is the criterion of non-linearity of the profiles (30) and (32) 
with respect to ݖ. ܲ݁௚,ௗ௜௙௙ indeed happens to be small in our example, as substantiated by its 
values represented in Table 3, which explains why the profiles in the gas phase shown in Figs. 2 
and 3 are almost linear, and at the same time justifies the quasi-stationary assumption Another 
interesting observation from Table 3 is that ܲ݁௚,ௗ௜௙௙ happens to be nearly equal to (ܿ௜,௥௘௙,௚ െ ܿ௧), 
the two being small. Note that in the work [18], devoted to the Marangoni instability in an 
evaporating binary-liquid droplet, the same type of criteria have been elaborated to validate the 
quasi-stationary assumption. Their calculations showed as well that the gas phase could be 
treated as asymptotically steady and that the regression of the surface was negligible.    
 
Table 3. Numerical values of some quantities in the reference solution for different values of H 
(  wt% l in w10
 ܪ

 ethano
ܲ݁௟,ௗ௜௙௙ 

ater) 
ܲ ௚݁,ௗ௜௙௙ ൫ ௜ܶ,௥௘௙

ௗ െ ௕ܶ
ௗ൯ ሾܭሿ ൫ܿ௜,௥௘௙,௟ െ ܿ௕൯ ൫ܿ௜,௥௘௙,௚ െ ܿ௧൯ 

1.5 8.66*10-2 2.99*10-3    -1.65*10-1    -8.54*10-2    2.98*10-3 
2 7.62*10-2 5.27*10-3    -1.52*10-1    -7.44*10-2    5.26*10-3 
4 5.14*10-2 1.07*10-2    -1.06*10-1    -4.88*10-2    1.06*10-2 
11 2.39*10-2 1.65*10-2    -4.98*10-2    -2.21*10-2    1.64*10-2 
101 3.02*10-3 2.09*10-2    -6.30*1 -3    -2.74*10-3    2.07*10-2 0
 
Table 3 also shows that for increasing ܪ, the mass fraction gradient in the liquid phase gets 
smaller and smaller (ܿ௕ െ ܿ௜,௥௘௙,௟ ا ܿ௕), which provides a justification for not considering in our 
model the variation of the material properties with the concentration in the liquid phase, even if 
some of them (for instance, the diffusion coefficient [24], the Soret coefficient (11) or ߛ஼) are 
rather sensitive to ܿ௟.  Note that one can also make use of the smallness of the Péclet numbers, 
and of some other effects, in order to build an approximate model of the stability problem, as we 
will show later in section 6. Also provided in Table 3 are the numerical values of the temperature 
gradient for possible comparison by other readers. 
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4. Stability of the reference solution  
In order to study the stability of the reference solution, the time evolution of small perturbations 
with respect to this solution must be studied. These perturbations are introduced by expressing 
the unknowns as ܶ ൌ ௥ܶ௘௙ ൅ ܶ Ԧݒ ,′ ൌ Ԧ௥௘௙ݒ ൅ Ԧݒ ′, ܿ ൌ ܿ௥௘௙ ൅ ܿ ݌ ,′ ൌ ௥௘௙݌ ൅ ݄ ,′݌ ൌ ݂݁ݎ݄ ൅ ݄′. 
Following a standard procedure, these decompositions can be introduced in the bulk equations 
and boundary conditions, which are then linearized with respect to the infinitesimal 
perturbations. As far as the liquid-gas interface is concerned, it is important to stress that the 
corresponding boundary conditions must be expressed at ݄ ൌ ݂݁ݎ݄ ൅ ݄′ and linearized with 
respect to h’. Note that in the following the primes, denoting the perturbations of the reference 
state, will be omitted for simplicity.  
 
The stability analysis is carried out in the framework of the so-called “frozen-time” approach, i.e. 
the evolution of perturbations is calculated in the form of normal modes superposed to each 
instantaneous snapshot of a time-evolving reference profile, as if the latter wasere stationary. On 
account of the quasi-stationarity assumption adopted in the present paper (see subsection 2.3), 
the frozen-time normal-mode approach tends to become exact: the smaller the Péclet numbers 
(see previous section), the more so. Of course, this tacitly implies that the perturbations evolve 
on the time scale of diffusion in the liquid at the slowest, which will actually be the case for all 
the modes but one considered hereafter. This exceptional mode will be a slow one, associated 
with the time evolution of the liquid layer thickness, for which the frozen-time approach bears all 
its “standard” shortcomings. Under the undeformable surface assumption used here throughout, 
it will be just an isolated mode corresponding to a zero wavenumber. For the sake of 
concreteness, we shall treat it here assuming that it is only the thickness of the liquid layer that is 
perturbed, and not the total thickness of the two layers (i.e. the perturbation of ܪ is equal to 
zero), even though other arrangements are in principle possible within the conceptual framework 
set forth in the beginning of section 2.  
 
The horizontal components of the velocity can be eliminated from the equations as usual (by 
applying ׏ ൈ ׏ ൈ to the m tum equation). The normal modes are introduced as follows: omen

ቌ

௟ݓ
௟ܶ
ܿ ቍ ൌ ݁൛ఙ௧ା௜ሺ௞ೣ௫ା௞೤௬ሻൟ ൮

௟ܹሺݖሻ
 ሻ൲,             (38)ݖ௟ሺߠ

௟
௟݌

ሻݖ௟ሺܥ
௟ܲሺݖሻ

൮

௚ݓ
௚ܶ
ܿ௚
݌
൲ ൌ ݁൛ఙ௧ା௜ሺ௞ೣ௫ା௞೤௬ሻൟ

ۉ

ۈ
ۇ

௚ܹሺݖሻ
ሻݖ௚ሺߠ
ሻݖ௚ሺܥ
௚ܲ ሻሺݖ ی

ۋ
ۊ

,             (39) 

௚

݄ ൌ ݁൛ݐߪ൅݅൫݇ݔݔ൅݇ݕݕ൯ൟ݄଴ , with ݄଴ ൌ 0 if ሬ݇Ԧ ് 0.                (40) 
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In (38)-(40), σ is the complex growth rate of the perturbations and ሬ݇Ԧ ൌ ሺ݇௫, ݇௬ሻ is the wavevector 

(with the wavenumber ݇ ؠ ට݇௫ଶ ൅ ݇௬ଶ), whereas W, θ, C and P are the complex amplitudes 

(functions of z). In (40), the vanishing of ݄଴ for non-zero wave vectors is a consequence of the 
assumption of an undeformable liquid-gas interface. Note that ݄଴ does not depend on ݖ, of 
course.  
 
The (linear) equations for the amplitude of the perturbations, as derived from (3)-(10) and valid 
for both zero and non-zero wavenumber, are found to be 

ି ଶ ൌ ܴܽ ݇ଶߠ ൅ ݁ܮ௟ݏܴ ݇ଶܥ  ,                    (41) െܲݎ ଵߪሺܦଶ െ ݇ଶሻܹ ൅ ሺܦଶ െ ݇ ሻଶܹ

௕              (42) 
௟ ௭ ௟ ௭ ௟ ௟ ௟ ௟ ௟

െߠߪ௟ ൅ ሺܦ௭ଶ െ ݇ଶሻߠ௟ ൌ ௟ܹ൫ ௜ܶ,௥௘௙ െ ܶ ൯,       
ܦ ௟ ௭       (43) െܥߪ௟ ൅ ௟ሺ݁ܮ ௭
ଶ െ ݇ଶሻܥ௟ ൌ ௟ܹ൫ܿ௜,௥௘௙, െ ܿ௕൯ െ ܦ௟߰௦ሺ݁ܮ

ଶ െ ݇ଶሻߠ௟ ,    
௟

ଶ ଶ
௚ ൌ ௚ߠ௟݇ଶܴܽ ߙ ൅ ݎ௚ ,        (44) െܲܥ௟݇ଶ݁ܮ௟ݏܴ ߝ ିଵ൫ߪ ൅ ݓ , ܦ ൯ሺܦଶ െ ݇ଶሻܹ ൅ ଶܦሺߥ െ ݇ ሻ ܹ

              (45) 
௚ ௥௘௙ ௭ ௭ ௚ ௭

െ൫ߪ ൅ ௚ߠ௭൯ܦ௚,௥௘௙ݓ ൅ ௭ଶܦ൫ߢ െ ݇ଶ൯ߠ௚ ൌ ௚ܹ ܦ௭ ௚ܶ,௥௘௙ ,    
െ൫ߪ ൅ ௚ܥ௭൯ܦ௚,௥௘௙ݓ ൅ ௭ଶܦ௟൫݁ܮܦ െ ݇ଶ൯ܥ௚ ൌ ௚ܹ ܦ௭ܿ௚,௥௘௙ .              (46)  
Later on, we will eventually need the following expression for the pressure amplitude in the gas 
phase, which is easily deduced starting from the perturbed form of (7) and the horizontal 
component of (8):  

௚ܲ ൌ െ ௉௥೗
షభఘ
௞మ

൫ߪ ൅ ௭ܦ௭൯ܦ௚,௥௘௙ݓ ௚ܹ ൅
ఓ
௞మ
൫ܦ௭ଶ െ ݇ଶ൯ܦ௭ ௚ܹ .                (47) 

 
The boundary conditions are derived from (13), (14), (15)-(19) and (21)-(25). At ݖ ൌ 0, one 
obtains 
௟ܹ ௭ܦ ௟ܹ ൌ ௟ߠ    ,0 ൌ ௟ܥ , 0 ൌ 0.                (48) ൌ 0,  

th ,ܪ ary con n e litudes of the perturbations write 
 
At ݖ ൌ e bound ditio s for th  amp
௚ߠ ൌ ௚ܥ         ,0 ൌ ௭ଶܦ         ,0 ௚ܹ ൅ ݇ଶ ௚ܹ ൌ ௭ܦ     , 0 ௚ܹ ൌ 0.           (49    െ ௚ܲ ൅ ߤ2 ) 

As said above, the condi ns  the moving interface ݖ ൌ 1 ൅ ݄ are linearized with respect to ݄ 
ns. One obtains the following relations at ݖ ൌ 1:  

 
tio at

and with respect to all perturbatio
௭ ௟ߠ (50)         ൅ ܦ 0݄݂݁ݎ,݈ܶ ൌ ௚ߠ ൅      , 0݄݂݁ݎ,௭ܶ݃ܦ

௟ ݄0 ൅ ௚ߠ௭ܦ ߣ ൅ ݄െܦ௭ߠ െ ݂݁ݎ,௭ଶ݈ܶܦ ݂݁ݎ,௭ଶܶ݃ܦ ߣ 0 ൌ
ఘ

ଵିఘ
ሺ ௚ܹ െ

൫               (52) 
௟ܹሻ ,         (51) 

௭ܦ ௟ܹ ൌ ௭ܦ ௚ܹ ,        ሺ ௟ܹ െ 0ሻ݄ߪ ൌ ߩ ௚ܹ െ  , 0൯݄ߪ
െߤ  ݖ

2 ൅ ଶ  ܹ ܽ ݇ ߠ  ,        (53)  ቀ2ݖܦ ൅ ݇ଶቁ ܹ݃ ൅ ቀܦ ݇ ቁ ݈ ൅ ܯ ଶ
௟ ൅ ௟ܥ௟ ݇ଶ݁ܮ ݏܯ ൌ 0   

ఘ
ଵିఘ

ሺ ௚ܹ െ ௟ܹሻ ൌ െ ௅௘೗
ଵି௖೗,ೝ೐೑

ൣ൫ܦ௭ܥ௟ ൅ ௭ଶܿ௟,௥௘௙݄଴൯ܦ ൅ ߰ௌ൫ܦ௭ߠ௟ ൅ ௭ଶܦ ௟ܶ,௥௘௙݄଴൯൧ ൅
௃ೝ೐೑

ଵି௖೗,ೝ೐೑
൫ܥ௟ ൅  ,௭ܿ௟,௥௘௙݄଴൯ܦ

         (54)              
ఘ

ଵିఘ
ሺ ௚ܹ െ ௟ܹሻ ൌ െ ఘ ஽ ௅௘೗

ଵି௖೒,ೝ೐೑
൫ܦ௭ܥ௚ ൅ ௭ଶܿ௚,௥௘௙݄଴൯ܦ ൅

௃ೝ೐೑
ଵି௖೒,ೝ೐೑

൫ܥ௚ ൅  ௭ܿ௚,௥௘௙݄଴൯ ,                (55)ܦ
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ఋಾ
ᇲᇲ௣೔,ೝ೐೑,೒

ൣଵା௖೒,ೝ೐೑൫ఋಾ
ᇲᇲିଵ൯൧మ

൫ܥ௚ ൅ ௭ܿ௚,௥௘௙݄଴൯ܦ ൅
ఋಾ
ᇲᇲ௖೔,ೝ೐೑,೒

ଵା௖ ೐೑൫ ᇲᇲିଵ൯೒,ೝ ఋಾ
൫ ௚ܲ ൅ ௚,௥௘௙݄଴൯݌௭ܦ ൌ

ఋಾ௄೐೙

ൣଵା௖೗,ೝ೐೑ሺఋಾିଵሻ൧
మ ൫ܥ௟ ൅

௭ܿ௟,௥ܦ ݄଴ሻ ,                  (56) ௘௙           
with ௚ܲ given by (47) and with ݄଴ ൌ 0 if ሬ݇Ԧ ് 0. Here we have also taken into account (26) and 
that ܦ௭ݓ௚,௥௘௙ ൌ 0 in accordance with (27).  
 
Thus, an eigenvalue problem for the growth rate of perturbations has been obtained, the results 
for which are analyzed below.  
 
5. Linear sta ility results b

In the case ሬ݇
5.1 Numerical results for the non-zero mode case 

Ԧ ് 0, the eigenvalue problem presented above is solved using a Tau-Chebyshev 
method, which is rather classical and thus not recalled here (see for instance [25,26]). Before 
proceeding to the results, let us stress that in the classical studies of the Rayleigh-Marangoni 
problems, the control parameter is just the imposed temperature gradient. In the present case of 
evaporation, we assume ௕ܶ

ௗ ൌ ௧ܶ
ௗ so that the resulting temperature gradients are a consequence of 

the evaporation process, which is controlled by ܿ௧ above the gas not being in equilibrium (in the 
sense of Henry’s law) with ܿ௕ at the bottom of the liquid. Here, we shall take ܿ௧ ൌ 0 and study 
two different values of ܿ௕. With these boundary conditions and with clearly defined components 
in the liquid and gas phases (water, ethanol and air), the main control parameters we are left with 
are just the thicknesses of the liquid and gas layers, ݀௟ and ݀௚. In principle, the background 
temperature ௕ܶ

ௗ ൌ ௧ܶ
ௗ also plays a role as the material properties (and perhaps most notably the 

Henry coefficient) depend on it. An imposed pressure could also be used to control the mass 
fraction in the gas phase (and influence the mass fraction in the liquid phase by Henry’s law). 
However, the two latter types of control are not considered in the present paper. The control 
parameters (݀௟ and ݀௚) enter into the dimensionless formulation by means of the dimensionless 
numbers ܽܩ௟, ܴܽ௟, ܴݏ௟, ܽܯ௟, ݏܯ௟ and ܪ. Varying ݀௟ and ݀௚ means varying these numbers, albeit 
not independently once the system and the constraints have been fixed physico-chemically.   

The marginal stability curves are obtained by calculating, as a function of the wavenumber ݇, the 
value of the liquid layer thickness ݀௟ for which the condition Reሺߪሻ ൌ 0 (vanishing of the largest 
real part of all growth rates) holds, keeping all the other parameters fixed. First let us mention 
that the instability is always monotonic, since our numerical results show that Imሺߪሻ is always 
equal to 0 for the marginal states. Fig. 4(a) presents the neutral curves corresponding to ܪ ൌ 2,
11  and 101. Fig. 4(b) is a plot of the critical wavenumber as a function of ܪ and shows that this 
critical wavenumber remains approximately constant and close to 2 over the whole range of 
values of ܪ. 
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(a) (b) 

   
Fig. 4. Neutral stability curve in terms of the liquid layer thickness for ܪ ൌ 2, 11  and 101 (10 
wt% ethanol in water) 
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To examine the influence of the gas layer thickness (dg) on the stability threshold, we have 
plotted in Fig. 5 the critical liquid thickness (i.e. the minimum of the neutral stability curve of 
Fig. 4) as a function of H , and also as a function of dg. Figs. 5(a) and 5(b) correspond to ܿ௕ = 0.1. 
In Fig. 5(c) and (d), the results for ܿ௕ = 0.001 are also shown for comparison. 
  
(a) (b) 

    

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0 20 40 60 80 100 120

d l
,c
[1
0‐
6
m
]

H

0.0

0.2

0.4

0.6

0 1 2 3 4 5

d l
,c
[1
0‐

6
m
]

H
0.0

0.2

0.4

0.6

0.8

1.0

1.2

0 20 40 60 80 100 120

d l
,c
[1
0‐
6
m
]

d [10 m]

(c) (d) 

     
Fig. 5. The critical liquid thickness as a function of H (a) and dg (b) for an ethanol/water system 
with ܿ௕ = 0.1 (10 wt% ethanol in water), and the same, albeit in different scales, together with the 
results for ܿ௕ = 0.001 (0.1 wt% ethanol in water) (c, d)  
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Fig. 5(a), corresponding to ܿ௕ = 0.1, shows that there is a linear relation between the critical 
thickness and H for sufficiently large values of H (practically, higher than 2). This corresponds 
to a scaling ݀௟,௖~݀௚଴.ହ for large ݀௚, which is indeed observed in Fig. 5(b). Note also that for very 
thin gas layers (Fig. 5(b)), the critical liquid height increases very sharply and diverges to 
infinity, leaving a certain minimum in between. A physical interpretation of this minimum will 
be presented in section 6, in relation with Fig. 12. It can also be noted that the critical liquid 
heights are rather small. This means that liquid layers of reasonable thicknesses will be very 
unstable. This somehow confirms the scaling analysis performed in [16]. Note that the critical 
wavenumber for these results always appeared to be around 2. For ܿ௕ = 0.001 (Figs. 5(c) and 
(d)), the same observations are made and the same trends are observed. The only difference is 
that the critical liquid thickness is roughly 25 times larger for ܿ௕ = 0.001 than for ܿ௕ = 0.1. The 
interest of using two different bottom mass fractions is to find out whether a very dilute liquid 
produces different results. It is clearly shown that the decrease of the solute concentration has a 
stabilizing effect. One should remember, however, that the results for ܿ௕ = 0.001 are obtained 
while neglecting the evaporation of water (which is a strong limitation for so small 
concentrations). 
 
5.2 Numerical results for the zero wavenumber case  
The solution of the eigenvalue problem for ሬ݇Ԧ ൌ 0 does not require the use of the Tau-Chebyshev 
method. First, a closed form solution can be obtained easily for the perturbations W, θ and C [27] 
leaving some unknown constants (including the growth rate and the amplitude ݄଴ of the liquid 
thickness perturbation). Then these unknown constants can be numerically determined by 
solving the non-linear algebraic equations provided by the boundary conditions (50), (51), the 
second condition (52), (54)-(56) and a normalization condition for the solution. In particular, an 
infinite numbers of growth rates can be numerically determined for any fixed value of H. In the 
zero-mode case, these growth rates do not depend on ܽܯ and ݏܯ and depend on the 
dimensionless numbers ܴܽ௟ and ܴݏ௟ only via the reference pressure in the gas phase. Here, 
though, this dependence is so weak (pi,ref,g – pt < 1 Pa) that it can be neglected. Therefore, the 
growth rates depend significantly on the control parameters (݀௟ and ݀௚) only via the value of ܪ. 
The results of these calculations can be summarized as follows. For any given H, all the 
calculated growth rates have negative real parts, except one which is real and positive. The latter 
is not unexpected and indicates that the evaporation rate increases with the decrease of the liquid 
layer thickness, which within the frozen-time approach boils down to this positive growth rate.  
 
Note also that this positive value appears to be much smaller than the absolute value of the real 

parts of all other values of the growth rate. Since ߪ ൌ ௛ሶ

௛
 (note the different meaning of this 

quantity as compared to the one used in section 3, since in this case it concerns the perturbations 
and not the reference state), the smallness of the positive growth rate expresses once again that 
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the characteristic time of the variation of the depth of the liquid is much longer than the other 
time scales in the problem.  
 
As a consequence of the above discussion, we can conclude that no mode with ሬ݇Ԧ ൌ 0  is able to 
destabilize the reference state unless on a very long time scale, comparable to the time it takes to 
fully evaporate the layer. In principle, all what concerns this mode would be best captured by 
relaxing the limitation of surface non-deformability used in the present paper and developing a 
lubrication-approximation (non-linear) theory of an evaporating liquid layer much along the lines 
of [28] (where a similar homogeneous mode has been identified). In the present paper, however, 
we shall rather be interested in an evaporation-induced Bénard convection appearing on a shorter 
time scale, whose existence is indicated by the linear stability analysis results of subsection 5.1.  
 
5.3 Comparison of the solutal, thermal and Soret contributions to the Rayleigh and Marangoni 
effects  
In the following subsections 5.3-5.6, we analyze in more detail the physical mechanisms 
responsible for the instability and we start here by comparing the thermal and solutal 
contributions, for both the Rayleigh and the Marangoni effects.  
 
Consider first the Rayleigh effect and let us combine equations (41)-(43) for marginal 
perturbations ߪ ൌ 0  to deduce the following single equation for ௟ܹ only:  
൫ܦ௭ଶ െ ݇ଶ൯

ଷ
௟ܹ ൌ െ݇ଶ൛ܴܽ௟൫ ௕ܶ െ ௜ܶ,௥௘௙൯ ൅ ௟ൣ൫ܿ௕ݏܴ െ ܿ௜,௥௘௙,௟൯െ݁ܮ௟߰ௌ൫ ௕ܶ െ ௜ܶ,௥௘௙൯൧ൟ ௟ܹ .      (57) 

Three additive terms depending on gravity can be distinguished in (57). Accordingly, three 
contributions to the Rayleigh effects can then be identified and quantified. Two of them describe 

l e lo ing dimensionless numbers: thermal and soluta ffects by the fol w

כ
௕ ௜,௥௘௙൯ ൌ

ఈ೗௚ௗ೗
యቀ்್೏ି ೔்,ೝ೐೑

೏ ቁ
ܴܽ ൌ ܴܽ௟൫ܶ െ ܶ

఑೗஝ౢ
 

כݏܴ ൌ ௟൫ܿ௕ݏܴ െ ܿ௜,௥௘௙,௟൯ ൌ
ఌ೗௚ௗ೗

య൫௖್ି௖೔,ೝ೐೑,೗൯
஽೗஝ౢ

,             (58) 

 ,             (59) 

Th  Soret e fect is then described by the llo

ൌ ௟߰ௌ൫݁ܮ௟ݏܴ ௕ܶ െ ௜ܶ,௥௘௙൯ ൌ
ఌ೗௚ௗ೗

యቀ்್೏ି ೔்,ೝ೐೑
೏ ቁ

఑೗஝ౢ

e f fo wing dimensionless number: 

ܴஏכ ௟ܵ,଴ .  

 can be defined as a “true” thermal Rayleigh number and accounts for the thermal Rayleigh כܴܽ
effect. ܴכݏ is the “true” solutal Rayleigh number and accounts for the solutal Rayleigh effect. 
The ܴஏכ  number is referred to as the “Soret Rayleigh number”. The latter number stands for the 
density effects that are solutal in nature (ߝ௟) but caused by thermodiffusion (Soret effect). In 
order to assess the relative importance of these effects with respect to one another, three ratios 
can be defined: the solutal and thermal effects can be compared by examining the number 
 while the solutal and the Soret-Rayleigh effects are compared by considering the ,כܴܽ/כݏܴ
number ܴכݏ/ܴஏכ  and the thermal effect and the Soret-Rayleigh effect can be compared using the 
number ܴܽכ/ܴஏכ . 
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The same evaluation can be done for the Marangoni effect, but unlike the Rayleigh case one can 
no longer derive a single relation where one could observe the relative importance of various 
contributions as clearly as in (57). However, a straightforward order-of-magnitude argument 
allows introducing “true” Marangoni numbers, whose definitions fully parallel those given for 

ers. For the therma lutal effects, this gives the Rayleigh numb l and so

כ
௜,௥௘௙

ߛ ݀ ቀ்್೏ି ೔்,ೝ೐೑
೏ ቁ

ܽܯ ൌ ൫ܽܯ ௕ܶ െ ܶ ൯ ൌ ܶ ݈

఑೗µౢ
 ,

כݏܯ ൌ ൫ܿ௕ݏܯ െ ܿ௜,௥௘௙,௟൯ ൌ
൫௖್ି௖೔,ೝ೐೑,೗൯݈݀ܥߛ

݈ߤ݈ܦ

             (60) 

 ,             (61) 

For the Soret effect, this gives 

ൌ ௟߰ௌ൫݁ܮݏܯ ௕ܶ െ ௜ܶ,௥௘௙൯ ൌ
ቀ்್݈݀ܥߛ

೏ି ೔்,ೝ೐೑
೏ ቁ

݈ߤ݈ߢ
ஏܯ
כ

௟ܵ,଴.  

 being the “true” solutal Marangoni כݏܯ is the “true” thermal Marangoni number, with כܽܯ
number, while ܯஏ

כ  being referred to as the “Soret Marangoni number”. This number stands for 
the surface tension effects that are solutal in nature (ߛ஼) but caused by thermodiffusion. In the 
same manner as in the Rayleigh case, the comparison between the solutal effect and the thermal 
and Soret-Marangoni effects can be performed by considering the ratios ܯ/כݏܯ ,כܽܯ/כݏܯஏ

כ  and 
 fte  all these ratios, one can first note that in fact two of them are equal, with ܯ/כܽܯஏ

כ .  A r defining
ோ௦כ

ோಇ
כ ൌ ெ௦כ

ெಇ
כ ൌ ൫௖್ି௖೔,ೝ೐೑,೗൯

ቀ்್೏ି ೔்,ೝ೐೑
೏ ቁ௅௘೗ௌ೗,బ

 .  

This number, calculated for a liquid thickness equal to its critical value (function of ݀௚), 
represents the relative importance of the solutal and Soret effects for both the Rayleigh and 
Marangoni cases. In Fig. 6, it is plotted as a function of the gas layer thickness ݀௚ (for the water-
ethanol system, with ܿ௕= 0.1).   
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Fig. 6. The ratios of the solutal and the Soret contributions as a function of dg (10 wt% ethanol in 
water)  
 
On th  o er hand
ோ௔כ

ோಇ
כ

 e th , the ratios of the thermal and the Soret contributions are given by:  
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ൌ ఈ೗
ఌ೗ௌ೗,బ

ൎ 3.82 ,      



ெ௔כ

Ψܯ
כ ൌ

ܶߛ
0,݈ܵܥߛ

ൎ 1.78 ,                (62) 

where the estimations are made for the water-ethanol system (ܿ௕= 0.1) and show that the two 
effects are of the same order of magnitude, although the thermal one is somewhat stronger 
(especially in the Rayleigh case).  
 
Fig. 6 together with (62) show that the solutal contribution is by far the biggest for both the 
Rayleigh and the Marangoni effects. This can be summed up by the following symbolic 
statement: Soret د thermal ا solutal. Note that for the case ܿ௕= 0.001, this statement turns out to 
remain valid.  
 
5.4 Marangoni versus Rayleigh effects  
The relative importance of the Rayleigh and the Marangoni effects can be evaluated as follows. 
First, the values of the thermal and solutal Rayleigh numbers are calculated at the critical 
condition, considering no Marangoni effect (setting artificially Ms ≡ 0 and Ma ≡ 0). Second, the 
values of the thermal and solutal Marangoni numbers are calculated at the critical condition, 
considering no Rayleigh effect (setting artificially Rs ≡ 0 and Ra ≡ 0). The results are shown in 
Table 4 for a number of H values. Table 4 also shows the values for the thermal/solutal 
Rayleigh/Marangoni numbers when all the effects are taken into account. 
  
Table 4. Values of the “true” Rayleigh and Marangoni numbers, equations (58)-(61), at the 
critical condition (10 wt% ethanol in water) 
 Only Rayleigh effect is considered Only Marangoni effect is considered 
H Ra* Rs* dl [m] Ma* Ms* dl [m] 
2 3.45*10-2 9.63*102 2.26*10-4 5.12*10-3 3.06*102 3.83*10-8 
11 3.81*10-2 9.66*102 3.39*10-4 5.70*10-3 3.09*102 1.30*10-7 
101 3.64*10-2 9.03*102 6.64*10-4 5.93*10-3 3.15*102 1.07*10-6 
 All effects are considered 
H Ra* Rs*  Ma* Ms* dl [m] 
2 1.68*10-13 4.71*10-9  5.12*10-3 3.06*102 3.83*10-8 
11 2.18*10-12 5.51*10-8  5.70*10-3 3.09*102 1.30*10-7 
101 1.51*10-10 3.75*10-6  5.91*10-3 3.14*102 1.07*10-6 
It is clearly seen that the Marangoni effect is much stronger than the Rayleigh effect at the 
instability threshold, i.e. the instability is primarily due to the former. This is not surprising given 
the very small critical thicknesses obtained here, for which the surface effects must definitely 
dominate over the bulk ones.  
 
5.5 Which effect is the most important ? 
From the results presented in subsections 5.3 and 5.4 it can be concluded that at the critical 
conditions, the solutal effect is much stronger than the thermal effect and that the Marangoni 
effect is much stronger than the Rayleigh effect. This suggests that it is only the solutal 

23 



Marangoni effect that is primarily responsible for the instability in question, even when all the 
effects are taken into consideration. The same conclusion is arrived at in [16] in the case of 
evaporation of a dilute polymer solution. It should be noted, though, that in [16] it is the solvent 
that evaporates. Still, in this case too, the evaporation effectively increases the surface tension, 
hence it is essentially the same mechanism as studied here. Unfortunately, in [18], such a 
comparison of the mutual importance of the thermal and the solutal Marangoni effects for the 
particular system under consideration there (20% heptane and 80% hexadecane) does not seem 
to be considered, the analysis being rather in the form of a parametric study formally involving 
both Ma and Ms.  
 
To illustrate the solutal Marangoni nature of the instability in this work, a calculation is 
performed neglecting the Soret, Ra, Rs and Ma effects and keeping only the Ms effect. The 
results are presented in Fig. 7 for H = 2 and 101, which confirms the above conclusion. The same 
holds for the case ܿ௕ = 0.001. Therefore, in what follows, it is in terms of the solutal Marangoni 
number only that it seems to be most appropriate to represent the marginal conditions.  
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Fig. 7. The marginal stability curve in terms of the “true” solutal Marangoni number comparing 
the full analysis with the consideration of the solutal Marangoni effect only for H = 2 (a) and H = 
101 (b) in the case of an ethanol/water mixture of 10/90 wt% 
 
5.6 Marginal stability curves in terms of the solutal Marangoni number  
The neutral stability curves, already considered in subsection 5.1, can also be represented in 
terms of the solutal Marangoni number. This is presented in Fig. 8, for different values of H. 
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Fig. 8. The “true” solutal Marangoni number as a function of the wavenumber at the marginal 
condition for different values of H in the case of an ethanol/water mixture of 10/90 wt% 
 
We see that the form of the curve in terms of the “true” solutal Marangoni number Ms*, equation 
(61), is not too much affected by the value of H for large wavenumbers. It is not quite so for 
smaller wavenumbers, especially for low H values. The physical reason is that for large k, the 
typical length scale of the perturbation pattern is small, so that the perturbations do not “feel” the 
top boundary, and hence the dependence on H tends to disappear. In the opposite limit (of small 
k), this is obviously not the case, and the dependence on H becomes well pronounced. This result 
will also be confirmed in section 6.2 on the basis of an approximate model. Fig. 9 shows the 
critical values of Ms* as a function of the gas layer thickness.  
 

 

250

300

350

400

450

500

0 20 40 60 80 100 120

M
s c
*

dg [10‐6 m]

250

350

450

550

0.0 0.1 0.2 0.3 0.4

M
s c
*

dg [10‐6 m]

H .5= 1

 =

 = 

 = 1

H  2 

H 11 

H 01 

Fig. 9. The critical solutal Marangoni number Ms* as a function of the gas layer thickness for an 
ethanol/water mixture of 10/90 wt%  
 
For small dg, as dg is decreased, the critical Ms* is seen to behave non-monotonically. It turns out 
that this small-dg behavior is heavily dependent upon the hydrodynamic boundary conditions 
imposed at the top of the gas layer (cf. subsection 5.7). On the contrary, for larger dg, such 
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dependence is minimal, because the hydrodynamic top boundary conditions loose their 
importance as the gas layer thickness is increased. 
 
5.7 Influence of the top boundary condition for the gas velocity  
The hydrodynamic top boundary conditions in the gas phase that have been used until now are to 
a certain extent heuristic. It is therefore of interest to investigate how the results change if a 
different kind of boundary conditions is imposed instead. Having already tried two “soft” 
conditions (constant normal stress and zero tangential stress), we now examine two more 

e i ” alternatives: the no-slip and a fixed vertical velocity at the top boundary. In terms of 
r tions, the latter are given respectively by 

“r str ctive
the pe turba
ܹ ௭ܦ ,0 ௚ ൌ

and 
௚ܹ ൌ 0  

at z = H. 
The no-slip and fixed normal velocity conditions are combined one by one with the conditions 
for the normal and tangential stresses, forming four different combinations for which the results 
are presented in Fig. 10. Otherwise, the stability analysis is performed as developed earlier in this 
paper.  
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Fig. 10. The critical solutal Marangoni number as a function of the gas layer thickness for 
different kinds of hydrodynamic boundary conditions at the top boundary (10 wt% ethanol in 
water) 
 
It turns out that the combination “constant normal stress / no-slip” shows no significant 
difference with respect to the originally used combination “constant normal stress / zero 
tangential stress”. This means that it is first of all the “constant normal stress” and the “constant 
normal velocity” conditions that make the difference for sufficiently small dg, the latter being 
even able to induce a peculiar instability, with a critical solutal Marangoni number that decreases 
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for smaller and smaller dg. To our knowledge, this peculiar instability is not discussed in the 
literature, and we believe that it is caused by the evaporation-induced convective transport in the 
gas, acting similarly to a “wind” exerting some viscous stress back on the liquid layer. At large 
dg, with no restriction on the normal velocity at the top boundary, this “wind” is less 
constrainted, and moves away without influencing significantly the instability in the liquid. 
However, at small dg and with a constant normal velocity at the top boundary, this “wind” gets 
more restrained, hence increasing the viscous feedback on the liquid layer. For gas layer 
thicknesses larger than 30 nm, much more relevant in practice, it appears that the hydrodynamic 
boundary conditions have no significant influence on the stability analysis, which a posteriori 
justifies the choice made in (14). 
 
6. Approximate model of the system 
In the present section, we will build an approximate model of our system by keeping only the 
most important (from the viewpoint of the instability threshold) physical phenomena and show 
that the corresponding results are in a very good agreement with the complete analysis presented 
above. Such a validated approximate form of the model has an advantage that it involves easy-to-
use analytical formulae. First, we will deduce an approximate reference solution. Then, we will 
show that the principal, solutal Marangoni mechanism of instability is well captured by the 
Pearson model with an appropriately defined Biot number, function of the wavenumber. 
 
6.1 Approximate form of the reference solution  
We have seen in section 3 that the Péclet numbers in the gas phase are quite small. It is easy to 
show that the temperature and concentration profiles for the reference solution are then linear in 
both the liquid and gas phases. In the liquid, these profiles are given by (29) and (31), whereas in 
the gas we now have ௚ܶ,௥௘௙ ൌ ௕ܶ ൅ ൫ ௜ܶ,௥௘௙ െ ௕ܶ൯

ுି௭
ுିଵ

 and ܿ௚,௥௘௙ ൌ ܿ௜,௥௘௙,௚
ுି௭
ுିଵ

 in lieu of (30) and 
(32), where it has been taken into account that ܿ௧= 0 and ௧ܶ ൌ ௕ܶ. For simplicity, we also neglect 
the Soret effect here. Besides, the difference between the pressures ݌௜,௚ and ݌௧ is neglected in 
Henry’s law. 
 
A simple estimation shows that the smallness of the Péclet numbers is intimately related to the 
smallness of the vapor concentration (interestingly enough, this can be observed already from 
Table 3, where the two are very close indeed). We have ܬௗ~ߩ௚ܦ௚

డ௖೒
డ௭೏

௚ܦ௚ߩ~
௖೔,೒
ௗ೒

, while on the 

other hand ܬௗ~ߩ௚ݓ௚ௗ. Consequently, ܲ݁௚,ௗ௜௙௙~ܿ௜,௚ indeed. Thus, consistent with using the linear 
profiles in the gas, we shall everywhere make simplifications corresponding to ܿ௚ ا 1. 
In particular, taking all this into account, the boundary conditions (19) and (23)-(25) become (for 
the reference profile)                      

௘௙ ൌ െ ௅௘
ଵି௖೗,

௥ܬ ೗

ೝ೐೑

డ௖೗,ೝ೐೑
డ௭

ൌ ఘ஽௅௘೗
ுିଵ

ܿ௚,௥௘௙ ൌ െ డ்೗,ೝ೐೑
డ௭

െ ఒ
ுିଵ

൫ ௜ܶ,௥௘௙ െ ௕ܶ൯ ,  

ܿ௚,௥௘௙ ൌ
௖೗,ೝ೐೑

ଵା௖೗,ೝ೐೑ሺఋಾିଵሻ
௄೐

ఋಾ
ᇲ ݀ݐ݌
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all z = 1. T i an b c
డ௖೗,ೝ೐೑
డ௭

 at h s c e redu ed to a closed-form boundary condition for ܿ௟,௥௘௙: 

ൌ െ ఘ஽
ுିଵ

௖೗,ೝ೐೑൫ଵି௖೗,ೝ೐೑൯
ଵା௖೗,ೝ೐೑ሺఋಾିଵሻ

௄೐
ఋಾ
ᇲ ݀ݐ݌

                 (63) 

a

ܿ௜,௥௘௙,௟ െ ܿ௕ ൌ െ ఘ஽
ுିଵ

t z = 1. For the linear profile (31), this yields the following equation for ܿ௜,௥௘௙,௟: 
௖೔,ೝ೐೑,೗൫ଵି௖೔,ೝ೐೑,೗൯
ଵା௖೔,ೝ೐೑,೗ሺఋಾିଵሻ

௄೐
ఋಾ
ᇲ ݀ݐ݌

 , 

which is in fact a quadratic equation, having the fo

ܿ௜,௥௘௙,௟ ൌ
௖್ሺଵିఋಾሻାଵା௄෩ିඥሺ௖್ሺଵିఋಾሻାଵା௄෩ሻమିସ௖್ሺଵିఋಾା௄෩ሻ

llowing (physical) solution  

ଶሺଵିఋಾା௄෩ሻ
 ,            (64) 

where  
෩ܭ ൌ ఘ஽

ுିଵ
௄೐

ఋಾ
ᇲ ݀ݐ݌

 . 

Having calculated ܿ ,

௜,௥௘௙
௖೔,ೝ೐೑,೗

ಾିଵሻ

௜,௥௘௙ ௟ explicitely, some other quantities of interest are expressed as follows: 
ܿ ,௚ ൌ ଵା௖೔,ೝ೐೑,೗ሺఋ

௄೐
ఋಾ
ᇲ ݀ݐ݌

  ,                             (65) 

௥ܬ
ఘ஽௅ ೗
ுିଵ௘௙ ൌ

௘ ܿ௜,௥௘௙ ,   

௜ܶ,௥௘௙ െ ௕ܶ ൌ െܬ௥௘௙ ቀ1 ൅
ఒ

ுିଵ

,௚                  (66) 

ቁ
ିଵ

.             (67) 
We have thus been able to deduce an approximate analytical expression of the reference solution 
under the assumption of small vapor concentration in the gas phase (and the Soret effect has also 
been neglected both in the liquid and in the gas).  
 
Table 5 provides some numerical values of important physical quantities for the approximate 
solution. The comparison of this table with Table 3 shows a very good agreement with the full 
approach. 
 
Table 5. Characteristics of the reference state (approximate analysis) for different values of ܪ 
(  wt% l in w10
 ܪ

 ethano
ܲ݁௟,ௗ௜௙௙ 

ater) 
ܲ ௚݁,ௗ௜௙௙ ൫ ௜ܶ,௥௘௙

ௗ െ ௕ܶ
ௗ൯ ሾܭሿ ൫ܿ௜,௥௘௙,௟ െ ܿ௕൯ ൫ܿ௜,௥௘௙,௚ െ ܿ௧൯ 

1.5 8.66*10-2 2.99*10-3    -1.65*10-1    -8.53*10-2    3.00*10-3 
2 7.63*10-2 5.27*10-3    -1.52*10-1    -7.43*10-2    5.28*10-3 
4 5.15*10-2 1.07*10-2    -1.06*10-1    -4.88*10-2    1.07*10-2 
11 2.39*10-2 1.65*10-2    -4.97*10-2    -2.21*10-2    1.66*10-2 
101 3.02*10-3 2.09*10-2    -6.31*10-3    -2.73*10-3    2.09*10-2 
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An important particular case corresponds to large gas-to-liquid thickness ratios (ܪ ب 1), which 
is quite of interest given that the critical liquid thicknesses (for the onset of instability) has turned 
out to be rather small (section 5). Besides, it is in this case that the limit of small variations ܿ௟ 
across the liquid layer (ܿ௕ െ ܿ௜,௥௘௙,௟ ا ܿ௕) is eventually attained and that the full formulation used 
in this paper proves to be most self-consistent. For instance, this is in the sense that the material 
properties of the liquid have all been fixed at ܿ௟ ൌ ܿ௕ (section 2), whereas at least some of them 
are rather sensitive to ܿ௟: these include the diffusion coefficient [24], the Soret coefficient (11) 



and even ߛ஼ – cf. Table 2.  Also, ܲ݁௟,ௗ௜௙௙ (neglected even in the full model by means of the quasi-
stationary assumption) tends to zero as ܪ ՜ ∞ together with ܿ௕ െ ܿ௜,௥௘௙,௟, whereas ܲ݁௚,ௗ௜௙௙ 
(included in the full model) tends to a constant together with ܿ௜,௥௘௙,௚. For ܪ ب 1, the formulae 
(64)-(67) simplify just to 
െ ܿ , ௙,௟ ൌ ሻ ఘ஽

ுିଵ
ܿ௕ ௜ ௥௘ ሺ1 െ ܿ௕ ܿ௜,௥௘௙,௚ ,                  (68) 

ܿ௜,௥௘ ,௚
௖

ା௖್ሺఋಾ௙ ൌ ್/ఋಾ
ᇲ

ଵ ିଵሻ
௄೐
௣೟೏

 , 

ൌ

              (69) 

௥௘௙ܬ
ఘ

ଵିఘ
ݓ ఘ ௅௘೗
௚,௥௘௙ ൌ

஽
ுିଵ

ܿ ௘௙,௚ ,                  (70) ௜,௥

௜ܶ,௥௘௙ െ ௕ܶ ൌ െఘ஽௅௘೗
ுିଵ

ܿ௜,௥௘௙,௚ ,                  (71) 
which compare well (less than 3% difference) with the full approach at H = 101. We find for 
൫ ௜ܶ,௥௘௙

ௗ െ ௕ܶ
ௗ൯, ൫ܿ௜,௥௘௙,௟ െ ܿ௕൯ and ൫ܿ௜,௥௘௙,௚ െ ܿ௧൯ the values  -6.50*10-3 K, -2.80*10-3 and 2.15*10-2 

from (63)-(71), as compared to -6.30*10-3 K, -2.74*10-3 and 2.07*10-2 for the full model. 
 
6.2 Stability analysis: Pearson-like model  
The stability analysis based on the full model has shown that the solutal Marangoni effect is by 
far the most important instability mechanism. In the present section, we will thus neglect all the 
other effects when analyzing the stability. We will also continue assuming that convection in the 
gas can be neglected (neglecting ݓ௚,௥௘௙ and ௚ܹ in equation (46)). The term with ߪ in (46) can be 
neglected on the basis of ܦ ب 1 (assuming that the complex growth rate of the perturbation is 

ith the diffusion time scale in the liquid). Thus, equation (46) becomes  associated w
ܥଶܦ െ ݇ଶܥ௚ ൌ 0 .                                                                 ௭ ௚

Keeping in mind that 

௚ܥ ൌ ௜,௚ܥ
ୱ୧୬୦ ሺ௞ሺ௭ିுሻሻ 
ୱ୧୬୦ ሺ௞ሺଵିுሻሻ

Cg = 0 at the top boundary, the solution is 

 .                                                               (72) 

 
The following boundary conditions can be deduced from (23)-(25) within the simplifications 
discussed in the previous subsection:  
ଵ

ଵି݈ܿ
డ௖೗
డ௭
ൌ ܦߩ డ௖೒

డ௭
,    ܿ௚ ൌ

݈ܿ
ଵା݈ܿሺܯߜെ1ሻ

௄೐
ఋಾ
ᇲ ௣೟೏

                 

at z = 1, which have already been used when looking for the approximate solution for the 
ref ren ofil  No rb ti s, they ecome e ce pr e. w for the pertu a on  b

ଵ
ଵିܿ

డ஼೗
డ௭
൅ ݈ܥ

൫ଵିܿ ൯మ
డ௖೗,ೝ೐೑
డ௭

ൌ ܦߩ డ஼೒
డ௭

௚ܥ    , ൌ
݈ܥ

ൣଵା݈ܿ,݂݁ݎሺܯߜെ1ሻ൧
మ

௄೐
ఋಾ
ᇲ ௣೟೏

       
݂݁ݎ,݈ ݂݁ݎ,݈

at z = 1. Using (63) 
ݖ߲/௟ܥ߲ ൅ ௟ܥ௦݅ܤ ൌ 0,              (73) 

 and (72), this can be reduced to the form 

with a solutal “Bio n y 

,௦ሺ݇݅ܤ ሻܪ ൌ ܦߩ ௄೐
ఋಾ
ᇲ ௣೟೏

t umber” given b

ቊ ଵି௖೔,ೝ೐೑,೗

ൣ1൅ܿ݅,݂݁ݎ,݈ሺܯߜെ1ሻ൧
2  ݇ coth൫݇ሺܪ െ 1ሻ൯ െ ௖೔,ೝ೐೑,೗

ሺுିଵሻൣ1൅ܿ݅,݂݁ݎ,݈ሺܯߜെ1ሻ൧
ቋ.         (74) 

With (73), our formulation for the perturbation of the concentration field in the liquid layer is 
represented in Pearson’s terms [3]. Invoking besides the  smallness of the evaporation Péclet 
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number in the liquid and neglecting the gas viscosity, we recover an equivalent form of 
Pearson’s formulation [3]. Thus, we can simply recur to his result for the marginal curve in order 
to describe our solutal Marangoni instability:  

,ሺ݇כݏܯ ሻܪ ൌ 8݇ ୱ୦ሺ௞ሻାݏ݅ܤሺ݇,ܪሻୱ୧୬୦ሺ௞ሻሿሾୱ୧୬୦ሺ௞ሻ ୡ୭ୱ୦ሺ௞ሻି௞ሿ
ୱ୧୬୦యሺ௞ሻି௞య ୡ୭ୱ୦ሺ௞ሻ

ሾ௞ ୡ୭  .           (75) 

Here note that כݏܯ is the “true” solutal Marangoni number as is defined in (61). Fig. 11 
represents (75) with (74) for a number of H values, where ܿ௜,௥௘௙,௟ is taken according to (64). 
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Fig. 11. The marginal curves in terms of the “true” solutal Marangoni number versus the wave 
number: comparison between the complete model of the present paper and the Pearson-like 
simplified model for H = 1.5 (a), H = 2 (b), H = 11 (c) H = 101 (d) (10 wt% ethanol in water) 
 
It shows an excellent agreement of the Pearson-like model with the full analysis. In particular, 
this suggests that convection in the gas phase is of minor importance indeed for different values 
of H. On the other hand, this underscores the importance of taking the Biot number as a function 
of the wavenumber of the perturbation as in (74) and not just the one defined by the uniform 
(reference) state, formally corresponding to ݇ ՜ 0 in (74), as it is sometimes the case in the 
literature [18]. Fig. 12(a) shows the critical liquid thickness as a function of the gas thickness for 
both models, while Fig. 12(b) presents the critical Marangoni number as a function of the gas 
thickness for both models as well, which also manifests an excellent agreement. 
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Fig. 12. The critical liquid thickness (a) and the critical “true” solutal Marangoni number (b) 
versus the gas layer thickness: comparison with the Pearson-like model (10 wt% ethanol in 
water)  
 
The Pearson-like model can also help understanding the tendencies observed for the critical 
liquid layer thickness as dg (and H) are increased, cf. Fig. 5(a,b) and Fig. 12(a). It can be 
observed from these figures, that at large dg (and H), a certain constant is attained for ݏܯ௖כ. This 
phenomenon can now be explained. In an important special case ܪ ب 1 (cf. the end of 

t iot number (74) adopts a particularly simple form: subsec ion 6.1), the B
௦ሺ݇ሻ݅ܤ ൌ ሺ1ܦߩ െ ܾܿሻ

1
ሾ1൅ܾܿሺܯߜെ1ሻሿ2

௄೐
ܯߜ
Ԣ ݀ݐ݌

 ݇.                           (76) 

Accordingly, the critical value ݏܯ௖כ (the minimum of the neutral curve (75) with (76)) ceases to 
depend on the thicknesses, which is what one can observe in Fig. 12(b). Actually, this is the case 
not only for the minimum, but also for the neutral curve as a whole, except for small k values, in 
line with what has already been pointed out when discussing Fig. 8. As כݏܯ ؠ ൫ܿ௕ݏܯ െ ܿ௜,௥௘௙,௟൯, 
whereas ൫ܿ௕ െ ܿ௜,௥௘௙,௟൯  is given by (68) with (69) in the limit ܪ ՜ ∞, one can now see that 
݀௟,௖~ܪ or, which is the same, ݀௟,௖~ඥ݀௚ as ܪ ՜ ∞  (݀௚ ՜ ∞) in accordance with the observed 
tendencies in Figs. 5(a), 5(b) and 12(a). More specifically, the Pearson-like model yields ݏܯ௖כ = 

௕307.5 as ܪ ՜ ∞, so one obtains (ܿ ൌ 0.1) 
ௗ೗,೎
మ

ௗ೒
ൌ 307.5 ஽೗

మఓ೗ఘ೗ఋಾ
ᇲ

ఊ಴஽೒ఘ೒

ଵା௖್ሺఋಾିଵሻ
௖್ሺଵି௖್ሻ

௣೟
೏

݁ܭ
ൎ 1.02 ൈ 10ି଼ m        as    ܪ ՜ ∞ ,         (77) 

which is shown in Fig. 12(a) by a dotted line.  

31 

Another phenomenon observed in Fig. 5, and also present in Fig. 12(a), is the minimum in ݀௟,௖ 
for small dg (and H). This can be explained as follows. For large dg, the evaporation flux 
decreases since the pathway of ethanol across the gas phase becomes longer. Therefore, the 
ethanol mass fraction difference between the bottom of the liquid and the interface decreases, 
with ܿ௜,௥௘௙,௟ ՜ ܿ௕ as ݀௚ ՜ ܪ) ∞ ՜ ∞). Accordingly, an instability can appear in the system only 
if the thickness of the liquid layer is increased. Note that this critical liquid thickness even tends 
to grow with ݀௚ boundlessly since the critical Marangoni number tends to a constant for large 
݀௚, as discussed above. On the other hand, as dg is decreased, the ethanol mass fraction 



difference between the bottom of the liquid and the interface increases but reaches a saturation. 
The mass fraction of ethanol at the interface becomes almost constant (zero if ܿ௧ ൌ 0) and the 
Marangoni effect tends to disappear, which also results in ݀௟,௖ ՜ ∞ as ݀௚ is decreased. The 
minimum in ݀௟,௖ in Fig. 5 or Fig. 12a is thus a consequence of an increasing ݀௟,௖ for both large 
and small dg. As an additional comment, it is noteworthy to mention that a minimum also 
appears in Fig. 12(b), the physical interpretation of which is more delicate. This minimum comes 
from the dependence of the Biot number (74) on H. More precisely, this Biot number has itself a 
minimum with respect to H due to evaporation and the resulting dependence of ܿ௜,௥௘௙,௟ with 
respect to H. 

 
To finish this section, let us briefly comment on the flat interface assumption considered in our 
model. Surface deformation can be neglected if the capillary number is small (ܽܥ ا 1) and if the 
Galileo number is large (ܽܩ ب 1) [6]. The first condition, irrespective of the second one (albeit 
the latter can also help if satisfied), ensures that the surface deformation is negligible for the 
finite-k modes we have studied here, whereas the second one guarantees the absence of low-k 
surface deformation modes of instability. Defining the “solutal” capillary and Galileo numbers in 
the liquid as ݏܥ ൌ ݏܩ ௟݀௟ andߪ/௟ܦ௟ߤ ൌ ݃݀௟ଷ/ߥ௟ܦ௟, it is easy to show that for our typical critical 
thicknesses the first condition is satisfied, but not the second. Hence, our analysis of the finite-k 
modes turns out to be consistent, even though the surface deformation modes, characterized by 
low wavenumbers, can actually become unstable first. The nonlinear competition between these 
surface modes and the finite wave-length instability has already been studied in the literature [6, 
29]. Let us only mention that since the growth rate of the finite wave-length mode is much larger 
than that of the surface mode, the patterned instability can occur even on the background of a 
large scale surface deformation, appearing on a larger time scale. It is from this viewpoint that 
the analysis of the present paper restricted to the finite wave-length modes is justified. Another 
viewpoint is that the assessments of various mechanisms of instability made here can be useful 
as estimations in situations when the surface modes of instability do not occur at all.  
 
7. Approximate model with water evaporation  
So far, water evaporation has been neglected in the present paper. Here, we incorporate it into 
the stability analysis, albeit just within the approximate approach as developed in the previous 
section. Before embarking on the stability analysis, we describe the modifications in the 
mathematical formulation of the full problem brought about by taking water evaporation into 
account. 

 
7.1 Changes to the full model on account of water volatility  
The equations for the liquid phase do not change. The modifications are rather related to the gas 
phase, which is now described by an additional dependent variable – the mass fraction of water 

e
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vapor. Thus, e.g., equation (2) becom s 
௚ߩ ൌ ௚,଴൛1ߩ െ ௚൫ߙ ௚ܶ

ௗ െ ௚ܶ,଴
ௗ ൯ െ ௚ଶ൫ܿ௚ଶߝ െ ܿ௚ଶ,଴൯ െ ௚ଵ൫ܿ௚ଵߝ െ ܿ௚ଵ,଴൯ൟ.                    (78) 



The subscripts “1” and “2” refer in this subsection to the solvent (water) and solute (ethanol), 
respectively. These new notations are needed only in the three-component gas phase and we will 

a  d w ten s keep the previous ones in the liquid. The counterp rts of (8) an  (10) are no writ  a
డ௩ሬറ೒
డ௧

ൌ െ൫ݒറ௚ · റ௚ݒ൯׏ ൅ ௚݌׏௟൛െρିଵݎܲ െ ௟1௭ܽܩ ൅ ν ׏ଶݒറ௚ ൅ ௟ܴܽ ߙ ୥ܶ1௭ ൅ ௟൫ܿ௚ଶ݁ܮ௟ݏܴ ߝ െ ܿ௚ଶ,଴൯1௭ ൅

ܴ  ߝఌߜ (79)             ௟൫ܿ௚ଵ݁ܮ௟ݏ െ ܿ௚ଵ,଴൯1௭ൟ ,    
೒భడ௖
డ௧

ൌ െ൫ݒറ௚ · ൯ܿ௚ଵ׏ ൅ ׏௟݁ܮ ܦ஽ߜ
డ௖೒మ
డ௧

ଶܿ௚ଵ ,                   (80) 

ൌ െ൫ݒറ௚ · ൯ܿ௚ଶ׏ ൅  ଶܿ௚ଶ ,                   (81)׏௟݁ܮ ܦ
with the new species balance equation (80) added for the water vapor. The following 

bers are to be (re)defined: dimensionless num
ߝ ൌ ఌ೒మ

ఌ೗
ܦ , ൌ ஽೒మ

஽೗
ఌߜ , ൌ

1݃ߝ
2݃ߝ

஽ߜ , ൌ
஽೒భ
஽೒మ

 . 

The gas-phase mass fluxes in (12) becom
Ԧ௚ଵܬ ൌ െ݁ܮܦߩ௟ߜ஽ܿ׏௚ଵ,  ܬԦ௚ଶ ൌ െ݁ܮܦߩ௟ܿ׏௚ଶ,               (82) 

e  

As for the boundary conditions, no changes occur at z = 0, while at the top boundary z = H we 
  now have

ܿ௚ଵ ൌ ܿ       ܿ ൌ ܿ௧ଶ ,              (83) ௧ଵ, ௚ଶ

e known “ambient” values. At z = h(t), the counterpart of (19) is   where ܿ௧ଵ and ܿ௧ଶ are th
െడ்೗

డ௭
൅ ߣ డ ೒்

డ௭
ൌ ଶܬ ൅       ଵ,              (84)ܬ ௅ߜ

where 
௅ߜ ൌ

௅మ
௅భ

 ,                                         

reas ܬ  and ܬଶ are the water and ethanol evaporation fluxes respectively, with the total 
flux now being 

whe ଵ
evaporation
ܬ ൌ 1ܬ ൅ 2ܬ                 (85) 

 
 .  

Of course, ܬ is still the one that appears in (15) and (17). Expressing the continuity of individual 
fluxes ܬ  and ܬ  of the solvent and of the solute on each side of the interface, as well as the 

elations are obtained at ݖ ൌ ݄ሺݐሻ: 
ଵ ଶ

vanishing of the inert gas flux (no absorption), the following r

݁ ܿ
ݖ

ଵܬ ൌ ሺ1 ܬ െ ܿ௟ሻ ൅ ܮ ௟  ቀ
߲ ݈

߲
൅ ߰ܵ

߲݈ܶ
ݖ߲
ቁ ܬ ܿ௚ଵ െ ൌܦ ߩ   ௟݁ܮ ஽ߜ 

߲ܿ݃1
ݖ߲
  ,  

ଶܬ ൌ ௟ܿ ܬ ௟݁ܮ
߲݈ܿ
ݖ߲

െ  ቀ ൅ ߰ܵ
߲݈ܶ
ݖ߲
ቁ ൌ ௚ଶܿ ܬ ߩ ܦ ݁െ   ܮ  ௟

߲ܿ݃2
ݖ߲

 , 

൫1 ܬ െ ܿ௚ଵ െ ܿ௚ଶ൯ ൌ െ݁ܮ ܦ ߩ௟  ቀߜ஽
߲ܿ݃1
ݖ߲

൅
߲ܿ݃2
ݖ߲
ቁ  

Of these six relations (Eq. (85), together with the above five), only four are independent. These 
can be rendered in the form  

௅௘೗
భ
ቄቂ ߰ௌ

డ்೗
డ௭
ቃ ൅ ܦ஽ߜߩ

డ௖೒భ
డ௭
ቅ ,               (86)  ܬ ൌ െ

ଵି௖೗ି௖೒
൅డ௖೗

డ௭

ቄడ௖೒
డ௭

ܬ ൌ െ ఘ ௅௘೗
ଵି௖೒ ି௖೒మ

൅ ߜ భ

డ௭஽
డ௖೒ ቅ ,             (87) ஽

భ

మ

ଵܬ ൌ ௚ଵܿ ܬ െ ஽ߜ ܦ ߩ ݁௟ ܮ ߲ܿ݃1
ݖ߲
 ,               (88) 
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ଶܬ ൌ ௚ଶܿ ܬ െ ௟݁ܮ ܦ ߩ
߲ܿ݃2
ݖ߲

 ,              (89) 



all at ݖ ൌ ݄ሺݐሻ, where (86) and (87) can be recognized as the counterparts of (23) and (24), 
respectively. With (86) and (87), the number of interface boundary conditions is thus far exactly 
equal to that in the case of no water evaporation (subsection 2.2). However, two supplementary 
conditions, (88) and (89), are attributed to the newly introduced quantities ܬଵ and ܬଶ.  
The cou art of (2 , Henry’s law, is  nterp 5)

ଵା ೒మ൫ఋಾ
ᇲᇲିଵ൯

ൌ ௖೗ఋಾ
ଵା௖೗ሺఋಾିଵሻ

௄೐೙

݃݌
.                                (90) ௖೒మఋಾ

ᇲᇲ

௖೒భ൫ఋಾ
ᇲ ିଵ൯ା௖

at ݖ ൌ ݄ሺݐሻ.  
As now it is not only the solute but also the solvent that evaporates, an additional interface 
condition is needed, which is given by Raoult’s law (dilute assumption, consistent with using 

ute) [22]: Henry’s law for the sol
݃݌௚ଵݕ

݀ ሺ െ ௦௔௧ଵ ,  ൌ݌ ௟ሻݕ 1

where ݌௦௔௧ଵ is the saturation pressure of a pure solvent, a function of the interface temperature 
(just as for the Henry coefficient, this temperature dependence is neglected in the present paper 
in view of the very small temperature variations). In terms of mass fractions, Raoult’s law can be 
rewritten as 

 
ଵା ೒మ൫ఋಾ

ᇲᇲିଵ൯
௖೒భఋಾ

ᇲ

௖೒భ൫ఋಾ
ᇲ ିଵ൯ା௖

ൌ
ଵା

ሺଵି௖೗ሻ
௖೗ሺఋಾିଵሻ

௣ೞೌ೟భ೙

݃݌
              (91) 

at ݖ ൌ ݄ሺݐሻ, where ݌௦௔௧ଵ௡  is the non-dimensional saturation pressure (again, using ߤ௟ߢ௟/݀௟ଶ as 
scale).  
To sum up, the formulation of section 2 is modified as follows: (2) is replaced by (78), (8) by 
(79), (10) by (80) and (81), the third expression (12) by (82), the second condition (14) by (83), 
(19) by (84), (23) by (86), (24) by (87), (25) by (90), and besides we have to consider (88), (89) 
and (91).  
 
7.2 When is solvent (water) evaporation negligible?  
The non-volatile solvent case is formally recovered when ݌௦௔௧ଵ ൌ ܿ௧ଵ ൌ 0 (then, ܿ௚ଵ ൌ ଵܬ ൌ 0). 
For the water-ethanol system at 300 K, ݌௦௔௧ଵ is one order of magnitude smaller than ܭ௘ (see 
Table 1 and Table 6), which plays in favor of the main approach (neglecting solvent evaporation) 
used here before the present section. Yet, as one can appreciate from (90) and (91), for ܿ௟~0.1 
(10 wt% ethanol in water), the gas concentrations of ethanol and water are comparable to one 
another. To what extent this alters the results obtained while neglecting water evaporation is one 
of the questions raised in the present section. Table 6 presents the physical quantities that are 
needed in addition to Tables 1 and 2 when considering water evaporation. The explanations and 
sources of these values can be found in Appendix A. 
 
Table 6. Supplementary physical properties needed in the case of water evaporation 
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Physical p erty rop Value 
 ௚ଵܦ  2.54*10-5 m2/s 
  ௦௔௧ଵ݌  3.567*103 Pa 



ߝ  ௚ଵ

 ଵܮ
 6.11*10-1 
 2.439*106 J/kg 

 
On the other hand, it has been suggested section 2 that the effects of water evaporation could be 
mitigated by choosing the “right” ambient humidity. To begin with, note that the evaporation 
ceases at all if the ambient vapor con entrations ൌ ܿ௧ଵכ nd ܿ௧ ch that c are  ܿ௧ଵ  a ܿ௧ଶ ൌ ଶכ su

௖೟మכఋಾ
ᇲᇲ

ଵା௖೟భכ൫ఋಾ
ᇲ ିଵ൯ା௖೟మכ൫ఋಾ

ᇲᇲିଵ൯
ൌ ௖್ ఋಾ

ଵା௖್ ሺఋಾିଵሻ
݁ܭ
݀ݐ݌

 ,    ௖೟భכఋಾ
ᇲ

ଵା௖೟భכ൫ఋಾ
ᇲ ିଵ൯ା௖೟మכ൫ఋಾ

ᇲᇲିଵ൯
ൌ ሺ

௖್ ሺఋ
ଵି௖್ሻ

ଵା ಾିଵሻ
௣ೞ
௣೟೏
ೌ೟భ         (92) 

as given by Henry’s and Raoult’s laws (90) and (91) at ܿ௟ ൌ ܿ௕ (ܿ௧ଵכ and ܿ௧ଶכ  are actually the 
saturation vapor concentrations for the solution with ܿ௟ ൌ ܿ௕). The case ܿ௧ଶ ൌ ܿ௧ଶכ is of no 
particular interest here, however, and the parameter ܿ௧ଶ will be regarded as varying in a wide 
range (for the most part, we shall keep considering that the ambient air is free of ethanol vapor, 
ܿ௧ଶ ൌ 0). But with ܿ௧ଶ ് ܿ௧ଶכ, water evaporation does not cease completely even for ܿ௧ଵ ൌ ܿ௧ଵכ. 
Yet, its effect is expected to be reduced to a minimum. So ܿ௧ଵ ൌ ܿ௧ଵכ  as given by equations (92) 
will be used as a test case for the mentioned “right” humidity, irrespective of the value of ܿ௧ଶ.  
 
7.3 Approximate approach  
The case with water evaporation is not considered in the present paper other than in the 
framework of the approximate approach introduced in section 6. The approximation is based 
upon neglecting the convective effects in the gas phase. It is justified, on the one hand, by the 
assumed smallness of vapor concentrations (here ܿ௚ଵ and ܿ௚ଶ) which also implies the smallness 
of the (evaporation) Peclet number in the gas (cf. subsection 6.1), and on the other hand, by the 
diffusivities in the gas being several orders of magnitude larger than those in the liquid (cf. 
subsection 6.2). The difference between the pressure ݌௜,௚ at the interface and the top pressure ݌௧ 
is also neglected in Henry’s and Raoult’s laws, for the overall consistency of the analysis.. 
Note, however, that the approximate approach used here disregards a possible instability 
mechanism associated with the gas layer. Indeed, as water vapor (unlike the ethanol vapor) is 
lighter than the air (note a positive value of ߝ௚ଵ in Table 6), a buoyancy-driven instability can be 
expected for sufficiently large gas-layer thicknesses. For instance, to have the gas solutal 
Rayleigh number ߝ௚ଵ݃݀௚ଷ/ߥ௚ܦ௚ of the order of 100, one must have ݀௚~0.7 cm. In reality, this 
destabilizing effect due to water evaporation is countered by the similar stabilizing effects due to 
ethanol evaporation (the ethanol vapor is heavier than the air) and the thermal gradient (here 
directed upwards, hence opposing to convection in the gas), therefore leading to an even larger 
critical value of ݀௚ . Thus, omitting consideration of this possible instability mechanism appears 
justified for the small gas thicknesses considered here: the critical liquid layer thicknesses are 
rather small and, unless we consider very large values of H (ܪ ب 101), the gas layer thicknesses 
also remain limited. Yet this point would have to be reconsidered, should the analysis be applied 
to larger thicknesses. 
Thus, we have the equations 
ଶ׏ ௚ܶ ൌ ଶܿ௚ଵ׏    , 0 ൌ ଶܿ௚ଶ׏    , 0 ൌ 0  
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in the bulk of the gas phase, whereas (86)-(91) get sim lified to  
ܬ ൌ െ ௅௘೗

ଵି௖೗
ቄቂడ௖೗

డ௭
൅ ߰ௌ

డ்೗
డ௭
ቃ ஽ߜ ܦ ߩ

డ௖೒భ
డ௭

p
൅ ቅ ൌ െ݁ܮ ܦ ߩ௟ ቄ

డ௖೒మ
డ௭

൅ ஽ߜ
డ௖೒భ
డ௭
ቅ ,          (93) 

ଶܬ   2ൌ െܦ ߩ ௟݁ܮ
߲ܿ݃
ݖ߲
ଵܬ      , ൌ െߩ  ஽ߜ

ܿ݃1
ݖ߲

 ܦ  ௟݁ܮ
߲

 ,           (94)  

ܿ௚ଶ ൌ ሻ
௄೐

ఋಾ
ᇲ  ௣೟೏

 ,     ܿ ൌ ଵି௖೗
ଵା௖೗ ሺఋಾିଵሻ

௣ೞೌ೟భ
ఋಾ
ᇲ  ௣೟೏

             (95) ௖೗
೗ ሺఋಾିଵ ௚ଵଵା௖

all at ݖ ሺݐሻ
ܿ௧ଵכ ൌ

ଵି௖್
ଵା௖್ ሺఋಾିଵሻ

ൌ ݄ .  Besides, ܿ௧ଵכ is now given by (cf. (92)) 
௣ೞೌ೟భ
ఋಾ
ᇲ  ௣೟

೏ .               (96) 

Note also that the second equality in (93) can
డ௖
డ௭

 be rewritten in the following useful form:  
ሺ1 ܦ ߩ െ ܿ௟ሻ

డ௖೒మ
డ௭

െ ஽ܿ௟ߜ ܦ ߩ  
డ௖೒భ
డ௭

             (97) ೗ ൅ ߰ௌ
డ்೗
డ௭

ൌ

at ݖ ൌ ݄ሺݐሻ.   
 
7.4 Reference profiles (approximate approach)  
We proceed similarly to subsection 6.1 using the formulae of subsection 7.3. Within the 
approximation in question, the reference profiles in the gas phase are just linear: ௚ܶ,௥௘௙ ൌ ௕ܶ ൅

൫ ௜ܶ,௥௘௙ െ ௕ܶ൯
ுି௭
ுିଵ

, ܿ௚ଶ,௥௘௙ ൌ ܿ௧ଶ ൅ ൫ܿ௜,௥௘௙,௚ଶ െ ܿ௧ଶ൯
ுି௭
ுିଵ

 and ܿ௚ଵ,௥௘௙ ൌ ܿ௧ଵ ൅ ൫ܿ௜,௥௘௙,௚ଵ െ ܿ௧ଵ൯
ுି௭
ுିଵ

, where 
it has been taken into account that ௧ܶ ൌ ௕ܶ. With these linear profiles, using (84), (94), (95) and 
(97), one can derive the following closed-form  interface boundary conditions for the liquid 
layer:  

ቀడ௖ ೐೑݁ܮ௟
೗,ೝ

డ௭
൅ డ்೗,߰ௌ

ೝ೐೑

డ௭
ቁ ൫1 ௟,௥௘௙൯  ଶ,௥௘ ൅ ܿ௟,

்೗,ೝ೐೑

ൌ െ െ ܿ ܬ ௙ ௥௘௙ ܬଵ,௥௘௙ ,           (98) 
డ
డ௭

൅
ଵ

ఒ
ுି

ሺ ௟,௥௘௙ െ ܶ ሻ ൅ ଶ ൅ ଵ,௥௘௙ܬ 

௥௘௙
ఘ ஽ ఋವ ௅௘

ܶ ௕ ܬ ,௥௘௙ ௅ߜ ൌ 0 ,            (99) 

,ଵܬ ൌ ೗
ுିଵ

 ൬ 1െ݈ܿ,݂݁ݎ
1൅  ሺܯߜെ1

൰ ,           (100) 1ݐܽݏ݌
ܯ
Ԣ݈ܿ,݂݁ݎ ሻ ߜ ݐ݌ 

݀ െ 1ݐܿ

,ଶܬ
௘೗
ଵ௥௘௙ ൌ

ఘ ஽ ௅
ுି

 ൬ ݂݁ݎ,݈ܿ
1൅݈ܿ,݂݁ݎ ሺܯߜെ1ሻ

݁ܭ
ܯߜ
Ԣ ݐ݌ 

݀ െ  2൰ .            (101)ݐܿ

at ݖ ൌ ݄ሺݐሻ
 ,               (102) 

. These, together with (cf. (15) and (85)) 
௥௘௙ܬ ൌ ଵ,௥௘௙ܬ ൅ ଶ,௥௘௙ܬ
ௗ௛
ௗ௧
ൌ െܬ௥௘௙ ൅  ௟,௥௘௙                (103)ݓ

represent a full set of interfacial boundary conditions for the resolution of the reference-profile 
problem in the liquid layer within effectively a one-layer formulation.  
For the particular configuration studied in the present paper and within the quasi-stationary 
approach (see section 3), the reference profiles in the liquid are of the form (26), (29) and (31), 
where one can formally and without loss of generality set  ݄ ൌ 1 whereas ሶ݄ ൌ െ݂݁ݎܬ. Using these 
profiles in (98)-(101), one obtains a system of four algebraic equations for the four unknown 
quantities ܿ௜,௥௘௙,௟, ௜ܶ,௥௘௙,௟, ܬଵ,௥௘௙ and ܬଶ,௥௘௙. Subsequently, ܬ௥௘௙ and ሶ݄  can be determined from 
(102) and from ሶ݄ ൌ െ݂݁ݎܬ, respectively. In principle, the saturation pressure and the Henry 
coefficient in (100) and (101) are (known) functions of the interface temperature ௜ܶ,௥௘௙,௟. 
However, as already said, this dependence is neglected in the present paper and we consider 
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them just as constants. Now, if similarly to section 6 we neglect also the Soret effect, the 
problem for the concentration field gets decoupled from that of the temperature, and ܿ௜,௥௘௙,௟ 

i h (31), (100), (101) and ؠ 0):  satisfies just a quadratic equation (obtained from (98) w t ߰ௌ

ܿ௜,௥௘௙,௟ െ ܿ௕ ൌ െ ఘ ஽
ுିଵ

  ௖೔,ೝ೐೑,೗ ൫ଵି௖೔,ೝ೐೑,೗൯
ଵା௖೔,ೝ೐೑,೗ሺఋಾିଵሻ

 ௄೐ିఋವ௣ೞೌ೟భ
ఋಾ
ᇲ ݀ݐ݌

൅ ఘ ஽
ுିଵ

൫1 െ ܿ௜,௥௘௙,௟൯ ܿ௧ଶ െ
ఘ ஽ ܦߜ
ுିଵ

 ܿ௜,௥௘௙,௟ ܿ௧ଵ ,     

The solution, i.e. the

ܿ௜,௥௘௙,௟ ൌ
஺భିට஺భమିସ஺బ஺మ

 counterpart of (64), is 

ଶ஺మ
              (104)  

with 
ଶ ෩ ൅ െ ெሻሺ1ߜ ൅ ܳଵ ൅ ܳଶሻ , 

൅ 1 െ ெሻߜ ൅ 1 ൅ ܳଶሺ2 െ ெሻߜ ൅ ܳଵ , 
ܣ ൌ ܭ ሺ1
ܣ ൌ ෩ܭ ܿ ሺ

, 
ଵ ௕
଴ܣ ൌ ܿ௕ ൅ ܳଶ 

ఘ  ଵܳܦ ൌ
஽ߜ
ுିଵ

ܿ ଵ , ௧

ଶܳ ൌ ఘ ஽
ுିଵ

ܿ௧ଶ ,

෩ܭ ൌ ఘ
ு

 
 ஽
ିଵ

௄೐ିఋವ ௣ೞೌ೟భ
ಾ
ᇲ ఋ݀ݐ݌ 

 .  

With ܿ௜,௥௘௙,௟ obtained, the other quantities of interest are calculated in a straightforward way. For 
stan nc (100) and (101), we have  in ce, in accorda e with 

௥௘௙
ఘ ஽ ఋವ ௅௘ܬଵ, ൌ ೗

ுିଵ
 ൬ 1െܿ݅,݂݁ݎ,݈
1൅ ݈ ሺܯߜെ1ܿ݅,݂݁ݎ, ሻ

1ݐܽݏ݌
ܯ
Ԣߜ ݐ݌ 

݀ െ ݐܿ

ଶ,௥௘௙ܬ ൌ
ఘ ஽ ௅௘೗
ுିଵ

1൰ ,           (105) 

 ൬ ݈,݂݁ݎ,݅ܿ
1൅ܿ݅,݂݁ݎ,݈ ሺܯߜെ1ሻ

݁ܭ
ܯߜ
Ԣ ݐ݌ 

݀ െ  2൰ ,            (106)ݐܿ

which can be subsequently used in (102) to obtain ܬ௥௘௙. The latter permits in turn calculating 
௚,௥௘௙ and ሶ݄ݓ , by means of (27) and of ሶ݄ ൌ െ݂݁ݎܬ. Accordingly, ܲ݁௟,ௗ௜௙௙ and ܲ ௚݁,ௗ௜௙௙ can be 

lcu  t ce temperature is computed by using (29) in (99):  ca lated as is done in section 3. The in erfa

௜ܶ,௥௘௙ െ ௕ܶ ൌ െ൫ܬଶ,௥௘௙ ൅ ଵ,௥௘௙൯ܬ ௅ߜ ቀ1 ൅
ఒ

ுିଵ
ቁ
ିଵ

.           (107) 
At last, th erfac en ations on the gas side are express
ܿ௜,௥௘௙,௚ଶ ൌ

௖೔,ೝ೐೑,೗
ଵା௖೔,ೝ೐೑,೗ ሺఋಾିଵሻ

 e int e conc tr ed with the help of (95):  
௄೐

ఋಾ
ᇲ  ௣೟೏

 ,     ܿ௜,௥௘௙,௚ଵ ൌ
ଵି௖೔,ೝ೐೑,೗

ଵା௖೔,ೝ೐೑,೗ ሺఋಾିଵሻ
௣ೞೌ೟భ
ఋಾ
ᇲ  ௣೟೏

 .        (108) 

 
The reference state characteristics calculated in this way are provided in Table 7 for a number of 
H values in the case ܿ௧ଵ ൌ 0 (dry ambient air) and ܿ௧ଶ ൌ 0. In order to show that there exists a 
case where water volatility plays only a minor role, the same characteristics are also shown for 
ܿ௧ଵ ൌ ܿ௧ଵכ (the “right” ambient humidity, equation (96)) and ܿ௧ଶ ൌ 0 in Table 8. Tables 7 and 8 
are the counterparts of Tables 3 and 5 (full approach and approximate analysis, respectively, 
without water evaporation).  
 
Table 7. Characteristics of the reference state (approximate analysis with water evaporation) for 
different values of H ൌ 0 ௧ଶ  (10 t  in
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 with ܿ௧ଵ
ܲ ௚݁,ௗ௜௙௙ 

 and ܿ ൌ 0
൫ ௜ܶ,௥௘௙

ௗ െ ௕ܶ
ௗ൯  

 wt% e hanol
൫ܿ௜,௥௘௙,௟ െ ܿ௕൯ 

 water) 

൫ܿ௜,௥௘௙,௚ଵ െ ܿ௧ଵ൯ ܪ ܲ݁௟,ௗ௜௙௙ ൫ܿ௜,௥௘௙,௚ଶ െ ܿ௧ଶ൯ 



ሾܭሿ
1.5 1.44*100 4.96*10-2    -5.65*100    -8.18*10-2 2.17*10-2    3.73*10-3 
2 7.53*10-1 5.20*10-2    -3.02*100    -6.90*10-2 2.16*10-2    6.39*10-3 
4 2.76*10-1 5.72*10-2    -1.08*100    -4.23*10-2 2.13*10-2    1.21*10-2 
11 8.99*10-2 6.21*10-2    -3.42*10-1    -1.79*10-2 2.11*10-2    1.75*10-2 
101 9.46*10-3 6.53*10-2    -3.53*10-2    -2.12*10-3 2.10*10-2    2.11*10-2 
 
Comparing Table 7 with Table 3, one can observe that allowing water to evaporate results in an 
appreciable increase of the Péclet numbers and of the temperature drop at the interface. This is 
not surprising, since now that it is not only ethanol but also water that evaporates the (total) 
evaporation flux is substantially increased. In particular, this suggests that the quasi-stationary 
assumption, the condition for which is ܲ݁௟,ௗ௜௙௙ ا 1, is less justified when water volatility is 
taken into consideration. It can even break down for moderate values of ܪ, as witnessed by 
Table 7, although it is still valid for larger ܪ. Yet note that the concentration drop across the 
liquid layer ൫ܿ௜,௥௘௙,௟ െ ܿ௕൯ does not change any drastically, whereas given the established 
predominance of the solutal Marangoni mechanism of instability it is ൫ܿ௜,௥௘௙,௟ െ ܿ௕൯ that is 
important from the viewpoint of the instability threshold (see also the next subsection). 
Examining (64) and (104) at ܿ௧ଵ ൌ ܿ௧ଶ ൌ 0, one can see that the difference in ൫ܿ௜,௥௘௙,௟ െ ܿ௕൯ 
between Tables 3 and 7 comes from ߜ஽݌௦௔௧ଵ effectively moderating the value of ܭ௘ (cf. the 
expressions for ܭ෩).  
 
Table 8. Characteristics of the reference state (approximate analysis with water evaporation) for 
different values of H ൌ ܿ 0 (10 wt% ethanol in water) with ܿ௧ଵ

ܲ ௚݁,ௗ௜௙௙ 
௧ଵכ and ܿ௧ଶ ൌ
൫ ௜ܶ,௥௘

ௗ
௕ܶ
ௗ൯  

 

൫ܿ௜,௥௘௙,௚ଵ െ ܿ௧ଵ൯ ܪ ܲ݁௟,ௗ௜௙௙ ௙ െ
ሾܭሿ 

൫ܿ௜,௥௘௙,௟ െ ܿ௕൯ ൫ܿ௜,௥௘௙,௚ଶ െ ܿ௧ଶ൯ 

1.5 1.35*10-1 4.67*10-3    -3.62*10-1    -8.52*10-2 7.83*10-4    3.02*10-3 
2 9.77*10-2 6.75*10-3    -2.43*10-1    -7.42*10-2 6.86*10-4    5.31*10-3 
4 5.63*10-2 1.17*10-2    -1.27*10-1    -4.87*10-2 4.58*10-4    1.07*10-2 
11 2.46*10-2 1.70*10-2    -5.27*10-2    -2.20*10-2 2.11*10-4    1.66*10-2 
101 3.03*10-3 2.10*10-2    -6.35*10-3    -2.73*10-3 2.64*10-5    2.09*10-2 
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Adding Table 8 into this discussion shows that choosing the ambient humidity at ܿ௧ଵ ൌ ܿ௧ଵכ can 
reduce the effective role of water volatility to a minimum indeed. The values of  
൫ܿ௜,௥௘௙,௟ െ ܿ௕൯ represented by Tables 3 and 8 prove to be nearly identical for all values of ܪ 
considered. As for the Péclet numbers and the temperature difference, they are close for larger 
values of ܪ, but for moderate ܪ values a certain divergence still persists (but to a much lesser 
extent than between Tables 3 and 7, without putting the quasi-stationary assumption into 
question). The reason is that for moderate ܪ values the value of ܿ௜,௥௘௙,௟ becomes appreciably 
smaller than ܿ௕, whereas the choice ܿ௧ଵ ൌ ܿ௧ଵכ performs the best towards the goal of reducing 



water evaporation when ܿ௜,௥௘௙,௟ is not too different from ܿ௕. Thus, even with ܿ௧ଵ ൌ ܿ௧ଵכ, it is not 
possible to completely get rid of the effects of water evaporation, although it is possible within 
certain aspects essential for the present paper.  
Note that in a practically important particular case ܪ ب 1, we have หܿ݅,݂݁ݎ,݈ െ ܾܿห ا ܿ௕, and the 

iresults (104)-(108) take a part cularly simple form:   

௜,௥௘௙,௟
ఘܿ െ ܿ௕ ൌ െ  ஽
ுିଵ

   ௖್ ሺଵି௖್ሻ
ଵା ಾିଵሻ௖್ሺఋ

  ವ ೞೌ೟భ

ಾ
ᇲ ݀ݐ݌ 

௄೐ିఋ  ௣
ఋ

൅ ఘ ஽
ுିଵ

ሺ1 െ ܿ௕ሻ ܿ௧ଶ െ
ఘ ஽ ܦߜ
ுିଵ

 ܿ௕ ܿ௧ଵ ,        

,ଵܬ ൌ ೗
ுିଵ௥௘௙

ఘ ஽ ఋವ ௅௘  ൬ 1െܾܿ
1൅ ܾ ሺܯߜെ1

൰ ,              
1ݐܽݏ݌
ܯ
Ԣܿ ሻ ߜ ݐ݌ 

݀ െ 1ݐܿ

,௥௘௙
஽ܬଶ ൌ ఘ   ௅௘೗
ுିଵ

 ൬ ܾ

1൅ܾܿ  െ1ሻܯߜ
 
ܯߜ
Ԣ ݐ݌ 

݀

݁ܭ െ ܿ                , 2൰ݐܿ
ሺ

௜ܶ,௥௘௙ െ ௕ܶ ൫ܬ ௥௘௙ ൅ ௅ߜ ଵ,௥௘௙൯ ,     

ܿ௜,௥௘௙,௚ଶ ൌ
௖್

ଵା௖್ ሺఋಾିଵሻ

ൌ െ ଶ, ܬ                          
  ௄೐
ఋಾ
ᇲ  ௣೟೏

 ,    ܿ௜,௥௘௙,௚ଵ ൌ
ଵି௖್

ଵା௖್ ሺఋಾିଵሻ
  ௣ೞೌ೟భ
ఋಾ
ᇲ  ௣೟೏

 ,           

which is the counterpart of (68)-(71).  
 
7.5 Stability analysis: Pearson-like model  
The stability analysis is carried out here under the premise that the solutal Marangoni effect 
remains by far the most important instability mechanism. It is clear however that if water is 
allowed to evaporate, the thermal effects get stronger (e.g. compare Table 3 and Table 7). Yet the 
margin between the solutal Marangoni and the other instability mechanisms was so huge here 
(section 5) that this new circumstance can hardly reverse the overall tendency.  
The analysis remains within the approximate approach of sections 6 and 7, when we assume that 
the convective effects in the gas phase are negligible. As throughout the whole paper, the quasi-
stationary assumption is assumed to hold and besides we neglect the temperature dependence of 
the Henry coefficient (and now also of the saturation pressure of the solvent). If now the Soret 
effect is also neglected, the problem for the concentration field decouples from that for the 
temperature field, and it is in this framework that we keep considering the solutal Marangoni 
instability.  
The counterpart of (72) 

ଵ ௚ଵ
ୱ୧୬୦ ሺ௞ሺ௭ିுሻሻ 

 is now  

௚ܥ ൌ ,௜ܥ ୱ୧୬୦ ሺ௞ሺଵିுሻሻ
 ,                                                            (109) 

௚ଶܥ ൌ ௜,௚ଶܥ
ୱ୧୬୦ ሺ௞ሺ௭ିுሻሻ 
ୱ୧୬୦ ሺ௞ሺଵିுሻሻ

 .                                                            (110) 

The conditions (95) and (97), when rewritten in terms of perturbations (linearization around the 
f ct negl ted in (9 ), become  reference state) and with the Soret e fe ec  7

ଵ
  ௚ܥ݈ ൌ െ ఋಾ ܥ

ൣଵା݈ܿ,݂݁ݎሺܯߜെ1ሻ൧
మ  ఋಾᇲ  ௣೏

௣ೞೌ೟భ
೟
௚ଶܥ      ,  ൌ ൣଵା݈ܿ,݂݁ݎሺܯߜെ1ሻ൧

݈ܥ
మ  

೟
೏

௄೐
ఋಾ
ᇲ  ௣

 ,         (111) 

ൌ ൫1 ܦ ߩ െ ܿ௟,௥௘௙൯
డ஼೒మ
డ௭

െ ௟,௥௘௙ܿ ܦߜ ܦ ߩ  
డ஼೒భ
డ௭

൅ ௃ೝ೐೑
௅௘೗

௟          (112) డ஼೗ܥ 
డ௭

at ݖ ൌ 1, where the second equality (93) for ܬ as applied to the reference state has also been 
taken into account. With (109)-(112) and (100)-(102), one can derive a single boundary 
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condition in terms of ܥ௟ only. It has the form (73), but the expression for the solutal Biot number 
is now different from (74):  

,௦ሺ݇݅ܤ ሻܪ ൌ  ܦ ߩ ൫ଵିܿ݅,݂݁ݎ,݈൯ ௄೐ାܿ݅,1ݐܽݏ݌ ܯߜ ܦߜ ݈,݂݁ݎ
ൣଵା௖೔,ೝ೐೑,೗ሺఋಾିଵሻ൧

మ ܯߜԢ ݀ݐ݌ 
 ݇ coth൫݇ሺܪ െ 1ሻ൯ െ ܦ ߩ

െ1ܪ
൬ ݈,݂݁ݎ,݅ܿ
1൅ܿ݅,݂݁ݎ,݈ ሺܯߜെ1ሻ

݁ܭ
ܯߜ
Ԣ ݐ݌ 

݀ െ 2൰ݐܿ െ

ܦ ߩ
െ1ܪ

஽ߜ   ൬
1െܿ݅,݂݁ݎ,݈

1൅ܿ݅,݂݁ݎ,݈ ሺܯߜെ1ሻ
1ݐܽݏ݌
ܯߜ
Ԣ ݐ݌ 

݀ െ 1൰ݐܿ  ,             (113)   

where (104) should be used for ܿ௜, ௘௙,௟. Note that for ܪ ب 1 the solutal Biot number attains the ௥

form  
௦ሺ݇ሻ݅ܤ ൌ  ܦ ߩ ሺ1െ௖್ሻ ݁ܭ൅௖್ ఋವ ఋಾ ௣ೞೌ೟భሾ1൅ܾܿ ሺܯߜെ1ሻሿ2 ఋಾᇲ  ௣೟೏

 ݇,                             (114) 

which is the counterpart of (76). Now, it just remains to use the Pearson result (75) for the 
description of the solutal Marangoni instability in our system.  
For the marginal curve in terms of כݏܯ, the difference between the considerations without and 
with water evaporation is thus entirely due to the difference in the expressions for the Biot 
number, namely between (74) and (113), or between (76) and (114) for ܪ ب 1. The critical 
Marangoni numbers (as corresponding to the minimum of the marginal curve כݏܯ ൌ  (ሺ݇ሻכݏܯ
are provided in Table 9 for a number of values of  ܪ and water evaporation regimes with ܿ௧ଶ ൌ
0. Note that ݌௦௔௧ଵ ؠ 0 with ܿ௧ଵ ؠ 0  formally stands for the limiting case of a non-volatile 
solvent, and the results of section 6 are recovered from those of the present section.  
 
Table 9. The critical solutal Marangoni number for various ܪ values and various regimes of 
w ter evap ion (10 wt% ethanol in w r, ܿ௧ଶ ൌ 0) a
 ܪ

orat ate

 

ܯ כ

݌) ଵ ) 
௖ݏ  

௦௔௧ ؠ 0
(ܿ௧ଵ ؠ 0) 

 כ௖ݏܯ
(ܿ௧ଵ ൌ ܿ௧ଵכ) 

 כ௖ݏܯ
(ܿ௧ଵ ൌ 0) 

1.5 364.9 363.6 317.8 
2 310.8 310.5 285.2 
4 303.3 304.2 295.6 
11 305.6 307.3 304.9 
101 307.3 309.5 309.3 
∞ 307.5 309.8 309.8 

 
For each given ܪ, there appears to be no big difference in terms of ݏܯ௖כ between the three water 
evaporation regimes. It is curious however that for smaller ܪ,  ܿ௧ଵ ൌ ܿ௧ଵכ is capable of bringing 
 appreciably closer (than for larger H) to the value obtained while neglecting solvent כ௖ݏܯ
volatility. On the other hand, in the limit of large ݏܯ  ,ܪ௖כ ceases to be controlled by the value of 
ܿ௧ଵ, cf. (114). But in this limit, ݏܯ௖כ does not practically depend on the water evaporation regime 
anyway. A small difference of about 1% is represented by ܿ௕ ߜ஽ ߜெ ݌௦௔௧ଵ versus ሺ1 െ ܿ௕ሻ ܭ௘, as 
one can observe by comparing equations (76) and (114). In view of ܿ௕ ൌ 0.1, this is much 
smaller than the difference between the corresponding reference solutions for ൫ܿ௜,௥௘௙,௟ െ ܿ௕൯,  
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which is represented (for ܿ௧ଵ ൌ 0 and ܿ௧ଶ ൌ 0) by ߜ஽݌௦௔௧ଵ versus ܭ௘ (cf. ܭ෩ below (64) and 
av the critical liquid layer thickness   (104)). This is why the result for the asymptotic beh ior of 

ௗ೗,೎
మ

ௗ೒
ൎ 1.33 ൈ 10ି଼ m        as    ܪ ՜ ∞     ሺܿ௧ଵ ൌ 0 ൌ 0ሻ        (115) ,  ܿ௧ଶ

differs more from (77) than the corresponding ݏܯ௖כ values in Table 9. On the other hand, the 
result  
ௗ೗,೎
మ

ௗ೒
ൎ 1.03 ൈ 10ି଼ m        as    ܪ ՜ ∞     ሺܿ௧ଵ ൌ ܿ௧ଵכ,  ܿ௧ଶ ൌ 0ሻ        (116) 

is closer to (77). By comparing (115) with (77) or (116), one can observe that water evaporation 
plays a stabilizing role by increasing the critical liquid thickness. 
 
All in all, we conclude that, given that the solutal Marangoni effect is by far the predominant 
mechanism of instability here, taking water volatility into account does not result in noteworthy 
changes in what the instability threshold is concerned. This would of course not be the case in 
general, should the thermal mechanisms of instability be more important, since the temperature 
gradient in the reference state is much more sensitive to the regime of water evaporation (likely 
due to the large latent heat of water). However, for the ambient humidity ܿ௧ଵ ൌ ܿ௧ଵכ, the changes 
generally turn out to be even less important, and even reduced to a minimum in what the values 
of the temperature gradients and the evaporation fluxes are concerned (cf. subsection 7.4). This 
justifies the non-volatile solvent approach used in the previous sections of the present paper in 
application to a water-ethanol system: it works relatively well in its entirety for ܿ௧ଵ ൌ ܿ௧ଵכ. 

 
8. Conclusions  
Rayleigh-Marangoni instability in a horizontal layer of a dilute binary liquid mixture evaporating 
into air from its flat free surface has been studied. An aqueous solution of ethanol (10 wt% at 
300 K) has been used as the principal example treated throughout the paper, even though the 
case of 0.1% wt has also been tested. The primary goal was to analyze the relative importance of 
various instability mechanisms. For this reason, a particularly simple configuration, with the 
concentration fixed at the bottom, yet admitting a (quasi-)stationary reference solution has been 
considered (the “quasi-stationarity” here referring to sufficiently slow evolution of the liquid 
layer thickness as compared to other time scales of the problem). The transfer in the gas has been 
modeled by specifying a transfer distance entering into the model as the gas layer thickness. 
Such an approach is more general than the typically used one based upon a one-layer model with 
a constant transfer coefficient (Biot number) at the free surface, for it potentially permits to 
account for a variety of possible convective effects in the gas phase as well as for the dependence 
of the effective transfer coefficient on the wavenumber of the perturbation. It is natural, 
identifying this transfer distance with an effective boundary-layer thickness, to impose given 
(“ambient”) temperature and composition at the artificial top boundary of the gas layer (here we 
assumed that the temperature was equal to that of the bottom of the liquid layer and that no 
ethanol vapor was present in the external air). The choice of the hydrodynamic conditions, 
however, is not so obvious, and this question has also been explored in this paper. By default, we 
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imposed a fixed normal stress and a zero tangential stress, which anyway has turned out to have 
only little influence on the results.  

At first, the analysis has been developed based on the premise that it is only the solute (ethanol) 
that evaporates whereas the solvent (water) does not (as detailed below, this situation can be 
approached by imposing the right ambient humidity of the air). At a later stage, the solvent 
(water) evaporation has also been incorporated into the model, permitting an instructive 
comparison with the former case. As for air absorption in the liquid, it has been neglected 
throughout the paper. After selecting the liquid (viz. 10 wt% ethanol in water), the main control 
parameters we are left with are the thicknesses of the liquid and gas layers. Thus, the critical 
condition for the onset of instability (which proves to be monotonic in this case) is expressed in 
terms of the critical liquid thickness as a function of the gas layer thickness. The former 
increases with the latter (asymptotically more or less as a square root). The system proves to be 
extremely unstable, and the resulting critical liquid thicknesses are very small (e.g. about 1 μm 
for a gas layer thickness of 0.1 mm). The dimensionless critical wavenumber always remains 
more or less the same (about 2 in the units of the inverse liquid layer thickness), as in the 
classical Bénard problem (cellular convection).  

An inquiry into the physical nature of the computed results reveals that it is the solutal 
Marangoni effect that is primarily responsible for the instability, and is by far the strongest. The 
solutal Rayleigh and the thermal Marangoni and Rayleigh effects all prove to be small at the 
instability threshold. The overall influence of the Soret effect in the liquid also remains minimal: 
for situations considered here, it is of the same order of magnitude as the thermal Marangoni and 
Rayleigh effects.  
After having established that the solutal Marangoni effect is the principal instability mechanism, 
further physical details of the phenomenon have been studied. In particular, the smallness of 
Péclet numbers indicates a small evaporation flux, which shows that the latter plays only a minor 
convective role, even though creating the basic concentration (and temperature) gradients 
responsible for the instability. On the basis of this observation, and neglecting further  the 
dynamic viscosity of the gas, a one-layer model has been derived, with the mass transport in the 
gas phase being accounted for by means of an effective solutal Biot number depending on the 
wavenumber of the perturbation and on the ratio of the gas and liquid layer thicknesses. With 
this expression of the Biot number, one can use the Pearson result for the neutral curve in terms 
of the Marangoni number (solutal in our case) versus the wavenumber. An excellent agreement 
of this Pearson-like model with the results of a “full analysis” has been demonstrated in the 
paper, which confirms the validity of the above mentioned physical conjectures. We note that 
under one of the conditions listed above (viz. small Peclet numbers), the problem for the basic 
(reference) profile can readily be resolved analytically (with or without water evaporation), 
which together with the Pearson-like model yields a fully analytical approximate result for the 
instability threshold in a wide range of parameter values.  
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The success of the Pearson-like model partly explains why only a slight dependence of the 
results of the full analysis on the hydrodynamic boundary conditions posed at the top boundary 
of the gas layer has been observed: the hydrodynamics in the gas phase plays just a minor role. 
Nonetheless, for very small gas layer thicknesses, of the order of one half of the corresponding 
critical liquid layer thickness, it has been numerically observed that the hydrodynamic conditions 
start to make a difference (e.g. replacing a zero normal stress condition by a zero normal velocity 
one within the problem for perturbations produces a noticeable deviation in the results and the 
Pearson-like model ceases to work).  
Additionally incorporating evaporation of the solvent (water) into the model (which here has 
been done just in the framework of the approximate solution for the reference profile, as 
described above, and the Pearson-like approach relying on the supremacy of the solutal 
Marangoni mechanism of instability) does not produce much of a change in what the 
concentration difference across the liquid layer and the instability threshold are concerned. This 
of course increases the corresponding temperature difference  and the total evaporation mass flux 
(about five times for the former and three times for the latter in the studied example if the 
ambient air is completely dry and for , where  and  are the gas and liquid layer 

thicknesses). Yet this is insufficient to inverse the tendency for the thermal Rayleigh and 
Marangoni effects to be much weaker than the solutal Marangoni effect, for the Soret effect to be 
insignificant and for the evaporation Péclet numbers to remain small, even though a three-fold 
increase in the evaporation flux (and thus the Péclet numbers) should somewhat deteriorate the 
quality of the Pearson-like model. For a practically less important (in view of very small critical 
values of ) case of moderate values of , however, the total evaporation flux and the 

temperature difference increase more drastically than mentioned above. While still far from 
challenging the supremacy of the solutal Marangoni effect, these alterations can put into question 
some assumptions used in the model here, such as e.g. the smallness of the Péclet number in the 
liquid, which ensures the validity of the quasi-stationary assumption used throughout the paper. 
Interestingly enough, for large values of , the result for the neutral curve in terms of the 

solutal Marangoni number versus the wavenumber (and the Biot number), as established here 
within the Pearson-like model, is not practically modified should the water be allowed to 
evaporate. Yet the critical liquid layer thickness undergoes a stronger change (about 15% for dry 
ambient air), and this is primarily due to the corresponding change in the concentration gradient 
across the liquid layer in the reference state. It has also been shown that for a certain “right” 
ambient humidity of the air (i.e. close to that corresponding to thermodynamic equilibrium at the 
given liquid composition and imposed total pressure and temperature), the considerations with 
and without water evaporation produce rather close results even in what concerns the 
temperature difference and the evaporation flux (even though, once again, we obtain a bigger 
discrepancy for moderate values of d ). In principle, this justifies the application of a non-

volatile solvent approach (upon which the main body of the present paper is based) to a water-
ethanol system, provided that the latter is subjected to this right ambient humidity.   

1/ >>lg dd

lg dd /

lg dd /
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Given that the system has proved to be highly unstable by means of the solutal Marangoni 
mechanism, resulting in extremely small critical liquid layer thicknesses, for a realistically thick 
(say, 1 mm) layer of an evaporating binary liquid the instability should occur shortly after its 
exposure to air, when the transient diffusional layer developing from the free surface due to 
evaporation has clearly not yet reached the bottom of the liquid. Thus, it is of high interest to 
study the instability for such a transient reference profile, and this is where future work should be 
concentrated. On the other hand, this transient character implies a separation of spatial scales 
which is not accounted for in the framework of the configuration considered in the present paper, 
and thus further motivates such a prospective study: first of all this concerns the thickness of the 
developing diffusional layer versus the thickness of the entire liquid layer. Furthermore, due to a 
small Lewis number, the transient thermal layer will penetrate much deeper than the diffusional 
one, thus increasing the chances for the thermal Marangoni and Rayleigh effects to get more 
noticeable versus the solutal ones as the instability mechanisms. The Soret effect could get more 
noticeable too. The Rayleigh effects may also perform differently given such a separation of 
scales. 
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Appendix A: Physical quantities  
The developed model is applied to a binary mixture of ethanol and water, where ethanol is the 
evaporating solute with a bottom mass fraction of 0.1 or 0.001, whilst the mass fraction of 
ethanol is equal to 0 at the top of the gas layer. In order to analyze the stability of this system it is 
necessary to know the values of the material properties.  
 
A.1 Gas layer  
Given the small concentrations of solvent and of solute, the gas properties are taken as those of 
pure air at 300 K [30]. Besides, the diffusion coefficient for the ethanol vapor is taken to be that 
of a “near-zero” mass fraction of ethanol vapor in air (1.20*10-5 m2/s [31]), whereas the value for 
the diffusion coefficient for water vapor is taken from [32] p. 6-213. Furthermore, the values for 
the heat of evaporation of water (ܮଵ) and the saturation pressure of water vapor are taken from 
[32] p. 6-4 and p. 6-11 respectively. The solutal expansion coefficient is calculated from the 
following considerations. 
Assuming an ideal gas, we have 
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where ݊௚,௔, ݊௚ଵ and ݊௚ଶ are the air, water and ethanol molar concentrations (moles per unit 
volume) in the gas phase, while ܿ௚ଵ and ܿ௚ଶ are the mass fractions of the water and ethanol 

ap ubstituting the last three expressions into the first one, one obtains v ors. S

௚ߩ ൌ ௔ܯ
௣೒೏/ோ்೏

ଵା൫ఋಾ
ᇲ ିଵ൯௖೒భାሺఋಾ

ᇲᇲିଵሻ௖೒మ
 ,          

and thus 
డఘ೒
డ௖೒భ

ൌ െ
ଵ  ௖೒భାሺ

ଵ
ఘ

ఋಾ
ᇲ ିଵ

ା൫ఋಾ
ᇲ ିଵ൯ ఋಾ

ᇲᇲିଵሻ ௖೒మ
 , 

೒

ଵ
ఘ೒

డఘ೒
డ௖೒మ

ൌ െ ఋಾ
ᇲᇲିଵ

ଵା൫ఋಾ
ᇲ ିଵ൯ ௖೒భାሺఋಾ

ᇲᇲିଵሻ ௖೒మ
 .        

hu v of equation (78), with ܿ௚ଵ,଴ ൌ ܿ௚ଶ,଴ ൌ 0, one can deduce  T s, in iew 

௚ଵߝ  , ൎ ܯߜ
Ԣ െ 1 

௚ଶߝ ൎ ܯߜ
ԢԢ െ 1 ,  

which yields the values shown in Tables 1 and 6. Here note that in the first part of the paper, 
where the solvent volatility is neglected, the quantities without subscripts 1 and 2 are associated 
with the solute, e.g. ߝ௚ ؠ   .௚ଶ (cf. also equations (2) and (78))ߝ
             
A.2 Liquid layer  
The physical properties in the liquid are taken at the concentration and temperature of the bottom 
of the liquid layer, here chosen to be either 0.1 or 0.001 for the mass fraction of ethanol in water 
and 300 K for the temperature. In the case of a mass fraction of 0.001, the physical properties are 
taken to be those of pure water, with the exception of inherently binary-mixture properties such 
as ்ܦ,௟/ܦ௟, ܦ௟, ߝ௟ and ߛ஼ .  
These are taken for a mass fraction of 0.001 of ethanol in water, found in respectively [33], [24] 
and [34] (p. 2-112). So these values need no further explanation. The values corresponding to a 
mass fraction of 0.1 are explained in this section. The values are presented in Table 2.  
The density ߩ௟, the thermal expansion coefficient ߙ௟ and the solutal expansion coefficient ߝ௟ are 
derived from the density tables found in the literature [34] (p. 2-112), where an elementary 
difference scheme is used to calculate the expansion coefficients. Interpolation is used wherever 
appropriate. The dynamic viscosity ߤ௟ is derived from [35]. Using Fig. 5 of [35] for an ethanol 
mass fraction of 0.1 (corresponding to a ratio of about 23 in the number of water to ethanol 
molecules), one obtains 1.5*10-3 Pa*s for the dynamic viscosity. However, the figure 
corresponds to 293 K, whereas the value we need here should be for 300 K. Following the work 
of McMoughlin et al. [36], it is roughly estimated that the dynamic viscosity of a mixture of 
ethanol and water at 300 K is about 15 % lower than at 293 K. The value is changed accordingly, 
as presented in Table 2. The kinematic viscosity ߥ௟ is then calculated by dividing the dynamic 
viscosity by the liquid density.  
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The specific heat capacity ܿ௣,௟ of the liquid can be found in [34] (p. 2-184). The thermal 
conductivity ߣ௟  of the liquid is extracted from [37] using interpolation/extrapolation, whereas the 
thermal diffusivity ߢ௟  is calculated by dividing the thermal conductivity by the liquid density and 
specific heat. The mutual diffusion coefficient ܦ௟ is taken from [24]. The properties ்ߛ and ߛ஼ are 
derived from [38] using interpolation/extrapolation. Henry’s coefficient is taken according to 
Warneck [39] as 

௘൫ܶௗ൯ܭ ൌ ܭ ሺ298.15ሻ ݁
൤ିಽ

ሺ೘೚೗೐ሻ 
ೃ

௘
൬ భ
೅೏ሺ಼ሻ

ି భ
మవఴ.భఱ൰൨, 

where L(mole) is the molar heat of solution of ethanol vapor in water, R the universal gas constant 
and ܭ௘ሺ298.15ሻ ൌ 0.286 atm. The value of the heat of solution is shown in Table 2 as given by 
ܮ ൌ   .ଶ is the molar mass of ethanolܯ ଶ, whereܯ/ሺ௠௢௟௘ሻܮ
The Soret effect is neglected in the gas layer, but not in the liquid layer. The Soret coefficient is 

ted by the following expression [33]: approxima
஽೅,೗
஽೗
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Taking ܿ௟ = 0.1 or 0.001 and ௗܶ ൌ  .here yields the values shown in Table 2 ܥ27°
 
Appendix B: Nomenclature 
Note that for some symbols, the units indicated pertain to the dimensional form of the 
corresponding quantity (distinguished by the superscript “d”), while the corresponding quantity 
without subscript “d” is dimensionless. 
 
Sy
௭     Unit vector in the z-direction 
mbols 

1
    Mass fraction [-] ܿ 

     Heat capacity at constant pressure [J/kg K] ܿ
    Layer thickness [m] 

௣

݀ 
    Diffusion coefficient [m2/s] ܦ 
    Thermal diffusion coefficient [m2/s K] ܦ
    Gravitational acceleration [m/s2] 

்  

݃ 
ܽ     Galileo number ܩ

    Mass flux [kg/m2s] (or dimensionless) ܬ 
    Wavenumber [m-1] (or dimensionless) ݇ 

௘     Henry’s coefficient of the solute [atm] ܭ
 Latent heat of phase change (heat of solution for the solute) ܮ

[J/kg] 
݁ܮ

    Molecular weight [kg/mole] 
     Lewis number 

 ܯ
     Thermal Marangoni number ܽܯ
 Solutal Marangoni number     ݏ
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ܯ
 Pressure [Pa] (or dimensionless)     ݌



ܲ
     Heat flux [W/m2] (or dimensionless) 
 Prandtl number     ݎ
ݍ

    Universal gas constant [J/mole K] ܴ 
     Thermal Rayleigh number ܴܽ

    Solutal Rayleigh number ܴݏ 
     Soret coefficient [K-1] ܵ

    Temperature [K] (or dimensionless) 
௟,଴

ܶ 
     Velocity in x, y and z directions [m/s] (or dimensionless) ݑ, ,ݒ ݓ

,ݔ ,ݕ  Cartesian coordinates [m] (or dimensionless)     ݖ
 
G

     Thermal expansion coefficient [K-1] 
reek letters 

ߙ
    Surface tension [N/m] ߛ 

  ஼     Sign-changed derivative of surface tension with respect toߛ
    mass fraction [N/m]  

  Sign-changed derivative of surface tension with respect to     ்ߛ
    temperature [N/m K]  

   ߜ Ratio of solvent and solute properties, the subscript of           ߜ
 indicating the property in question  

   Ԣߜ Ԣ           Ratio of air and solvent properties, the subscript ofߜ
 indicating the property in question  

   ԢԢߜ ԢԢ           Ratio of air and solute properties, the subscript ofߜ
 indicating the property in question  

    Solutal expansion coefficient [-] ߝ 
     Temperature scaling factor [K] ߠ
     Thermal diffusivity [m2/s] ߢ

    Thermal conductivity [W/m K] ߣ 
     Dynamic viscosity [Pa s] ߤ

    Kinematic viscosity [m2/s] ߥ 
    Density [kg/m3] ߩ
    Complex growth rate [s-1] (or dimensionless) 

 

 ߪ
߰ௌ      Soret number  
 
Su

     Reference point 
bscripts 

0
     Solvent 1
2     Solute   
 

     Air ܽ
ܾ     Bottom plate 
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݁ 
     Gas phase (air + vapor) 

    Ethanol 
݃
     Interface ݅

    Liquid phase (water + ethanol) ݈ 
     Reference state ݂݁ݎ

ݏ Saturation                                                       ݐܽ
 Top boundary     ݐ
 
No subscript    With the material property symbols, it designates the gas- 
     to-liquid ratio of the corresponding property, e.g.:             
ߩ      ൌ   .௟ߩ/௚ߩ
  
Su
݀     Superscript “d” stresses that a quantity is dimensional (for  
     instance, Td is the dimensional temperature, while T is the  
     corresponding dimensionless quantity). This superscript is  

    not applied to dimensional quantities that are never used in  
    dimensionless form anyway.  

perscript 

 
 

 It designates the non-dimensional form of certain 
dimensional quantities.  

݊

 Designating the “true” Marangoni and Rayleigh numbers כ
(classical definitions based upon the temperature or 
concentration differences across the liquid layer)  
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Figure captions 
Fig. 1. Sketch of the studied system  
Fig. 2. Temperature distribution in the reference state (10 wt% ethanol in water) 
Fig. 3. Solute mass distribution in the reference state (10 wt% ethanol in a w ter) 
Fig. 4. Neutral stability curve in terms of the liquid layer thickness for ܪ ൌ 2, 11  and 101 (10 
wt% ethanol in water) 
Fig. 5. The critical liquid thickness as a function of H (a) and dg (b) for an ethanol/water system 
with ܿ௕ = 0.1 (10 wt% ethanol in water), and the same, albeit in different scales, together with the 
results for ܿ௕ = 0.001 (0.1 wt% ethanol in water) (c, d)  
Fig. 6. The ratios of the solutal and the Soret contributions as a function of dg (10 wt% ethanol in 
water)  
Fig. 7. The marginal stability curve in terms of the “true” solutal Marangoni number comparing 
the full analysis with the consideration of the solutal Marangoni effect only for H = 2 (a) and H = 
101 (b) in the case of an ethanol/water mixture of 10/90 wt% 
Fig. 8. The “true” solutal Marangoni number as a function of the wavenumber at the marginal 
condition for different values of H in the case of an ethanol/water mixture of 10/90 wt% 
Fig. 9. The critical solutal Marangoni number Ms* as a function of the gas layer thickness for an 
ethanol/water mixture of 10/90 wt%  
Fig. 10. The critical solutal Marangoni number as a function of the gas layer thickness for 
different kinds of hydrodynamic boundary conditions at the top boundary (10 wt% ethanol in 
water) 
Fig. 11. The marginal curves in terms of the “true” solutal Marangoni number versus the wave 
number: comparison between the complete model of the present paper and the Pearson-like 
simplified model for H = 1.5 (a), H = 2 (b), H = 11 (c) H = 101 (d) (10 wt% ethanol in water) 
Fig. 12. The critical liquid thickness (a) and the critical “true” solutal Marangoni number (b) 
versus the gas layer thickness: comparison with the Pearson-like model (10 wt% ethanol in 
water)  
 
  
 
 


