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Summary

Agreement between raters on a categorical scale is not only a subject of scientific

research but also a problem frequently encountered in practice. Whenever a new

scale is developed to assess individuals or items in a certain context, inter-rater

agreement is a prerequisite for the scale to be actually implemented in routine use.

Cohen’s kappa coefficient is a landmark in the developments of rater agreement

theory. This coefficient, which operated a radical change in previously proposed

indexes, opened a new field of research in the domain.

In the first part of this work, after a brief review of agreement on a quantitative

scale, the kappa-like family of agreement indexes is described in various instances:

two raters, several raters, an isolated rater and a group of raters and two groups of

raters. To quantify the agreement between two individual raters, Cohen’s kappa

coefficient (Cohen, 1960) and the intraclass kappa coefficient (Kraemer, 1979)

are widely used for binary and nominal scales, while the weighted kappa coef-

ficient (Cohen, 1968) is recommended for ordinal scales. An interpretation of the

quadratic (Schuster, 2004) and the linear (Vanbelle and Albert, 2009c) weighting

schemes is given. Cohen’s kappa (Fleiss, 1971) and intraclass kappa (Landis and

Koch, 1977c) coefficients were extended to the case where agreement is searched

between several raters. Next, the kappa-like family of agreement coefficients is

extended to the case of an isolated rater and a group of raters (Vanbelle and Al-

bert, 2009a) and to the case of two groups of raters (Vanbelle and Albert, 2009b).

These agreement coefficients are derived on a population-based model and reduce

to the well-known Cohen’s kappa coefficient in the case of two single raters. The

proposed agreement indexes are also compared to existing methods, the consensus

method and Schouten’s agreement index (Schouten, 1982). The superiority of the
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iv Summary

new approach over the latter is shown.

In the second part of the work, methods for hypothesis testing and data modeling

are discussed. Firstly, the method proposed by Fleiss (1981) for comparing several

independent agreement indexes is presented. Then, a bootstrap method initially

developed by McKenzie et al. (1996) to compare two dependent agreement in-

dexes, is extended to several dependent agreement indexes (Vanbelle and Albert,

2008). All these methods equally apply to the kappa coefficients introduced in the

first part of the work. Next, regression methods for testing the effect of continu-

ous and categorical covariates on the agreement between two or several raters are

reviewed. This includes the weighted least-squares method allowing only for cate-

gorical covariates (Barnhart and Williamson, 2002) and a regression method based

on two sets of generalized estimating equations. The latter method was developed

for the intraclass kappa coefficient (Klar et al., 2000), Cohen’s kappa coefficient

(Williamson et al., 2000) and the weighted kappa coefficient (Gonin et al., 2000).

Finally, a heuristic method, restricted to the case of independent observations, is

presented (Lipsitz et al., 2001, 2003) which turns out to be equivalent to the gene-

ralized estimating equations approach. These regression methods are compared to

the bootstrap method extended by Vanbelle and Albert (2008) but they were not

generalized to agreement between a single rater and a group of raters nor between

two groups of raters.



Résumé

Sujet d’intenses recherches scientifiques, l’accord entre observateurs sur une échelle

catégorisée est aussi un problème fréquemment rencontré en pratique. Lorsqu’une

nouvelle échelle de mesure est développée pour évaluer des sujets ou des objets,

l’étude de l’accord inter-observateurs est un prérequis indispensable pour son uti-

lisation en routine. Le coefficient kappa de Cohen constitue un tournant dans les

développements de la théorie sur l’accord entre observateurs. Ce coefficient, ra-

dicalement différent de ceux proposés auparavant, a ouvert de nouvelles voies de

recherche dans le domaine.

Dans la première partie de ce travail, après une brève revue des mesures d’accord

sur une échelle quantitative, la famille des coefficients kappa est décrite dans

différentes situations: deux observateurs, plusieurs observateurs, un observateur

isolé et un groupe d’observateurs, et enfin deux groupes d’observateurs. Pour

quantifier l’accord entre deux observateurs, le coefficient kappa de Cohen (Cohen,

1960) et le coefficient kappa intraclasse (Kraemer, 1979) sont largement utilisés

pour les échelles binaires et nominales. Par contre, le coefficient kappa pondéré

(Cohen, 1968) est recommandé pour les échelles ordinales. Schuster (2004) a donné

une interprétation des poids quadratiques tandis que Vanbelle and Albert (2009c)

se sont interessés aux poids linéaires. Les coefficients d’accord correspondant au

coefficient kappa de Cohen (Fleiss, 1971) et au coefficient kappa intraclasse (Lan-

dis and Koch, 1977c) sont aussi donnés dans le cas de plusieurs observateurs. La

famille des coefficients kappa est ensuite étendue au cas d’un observateur isolé

et d’un groupe d’observateurs (Vanbelle and Albert, 2009a) et au cas de deux

groupes d’observateurs (Vanbelle and Albert, 2009b). Les coefficients d’accord

sont élaborés à partir d’un modèle de population et se réduisent au coefficient
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kappa de Cohen dans le cas de deux observateurs isolés. Les coefficients d’accord

proposés sont aussi comparés aux méthodes existantes, la méthode du consensus et

le coefficient d’accord de Schouten (Schouten, 1982). La supériorité de la nouvelle

approche sur ces dernières est démontrée.

Des méthodes qui permettent de tester des hypothèses et modéliser des coefficients

d’accord sont abordées dans la seconde partie du travail. Une méthode permet-

tant la comparaison de plusieurs coefficients d’accord indépendants (Fleiss, 1981)

est d’abord présentée. Puis, une méthode basée sur le bootstrap, initialement

développée par McKenzie et al. (1996) pour comparer deux coefficients d’accord

dépendants, est étendue au cas de plusieurs coefficients dépendants par Vanbelle

and Albert (2008). Pour finir, des méthodes de régression permettant de tester

l’effet de covariables continues et catégorisées sur l’accord entre deux observateurs

sont exposées. Ceci comprend la méthode des moindres carrés pondérés (Barnhart

and Williamson, 2002), admettant seulement des covariables catégorisées, et une

méthode de régression basée sur deux équations d’estimation généralisées. Cette

dernière méthode a été développée dans le cas du coefficient kappa intraclasse (Klar

et al., 2000), du coefficient kappa de Cohen (Williamson et al., 2000) et du coeffi-

cient kappa pondéré (Gonin et al., 2000). Enfin, une méthode heuristique, limitée

au cas d’observations indépendantes, est présentée (Lipsitz et al., 2001, 2003).

Elle est équivalente à l’approche par les équations d’estimation généralisées. Ces

méthodes de régression sont comparées à l’approche par le bootstrap (Vanbelle and

Albert, 2008) mais elles n’ont pas encore été généralisées au cas d’un observateur

isolé et d’un groupe d’observateurs ni au cas de deux groupes d’observateurs.



Samenvatting

Het bepalen van overeenstemming tussen beoordelaars voor categorische gegevens

is niet alleen een kwestie van wetenschappelijk onderzoek, maar ook een probleem

dat men veelvuldig in de praktijk tegenkomt. Telkens wanneer een nieuwe schaal

wordt ontwikkeld om individuele personen of zaken te evalueren in een bepaalde

context, is interbeoordelaarsovereenstemming een noodzakelijke voorwaarde voor-

aleer de schaal in de praktijk kan worden toegepast. Cohen’s kappa coëfficiënt is

een mijlpaal in de ontwikkeling van de theorie van interbeoordelaarsovereenstem-

ming. Deze coëfficiënt, die een radicale verandering met de voorgaande indices

inhield, opende een nieuw onderzoeksspoor in het domein.

In het eerste deel van dit werk wordt, na een kort overzicht van overeenstemming

voor kwantitatieve gegevens, de kappa-achtige familie van overeenstemmingsindi-

ces beschreven in verschillende gevallen: twee beoordelaars, verschillende beoorde-

laars, één gëısoleerde beoordelaar en een groep van beoordelaars, en twee groepen

van beoordelaars. Om de overeenstemming tussen twee individuele beoordelaars

te kwantificeren worden Cohen’s kappa coëfficiënt (Cohen, 1960) en de intraklasse

kappa coëfficiënt (Kraemer, 1979) veelvuldig gebruikt voor binaire en nominale

gegevens, terwijl de gewogen Kappa coëfficiënt (Cohen, 1968) aangewezen is voor

ordinale gegevens. Een interpretatie van de kwadratische (Schuster, 2004) en li-

neaire (Vanbelle and Albert, 2009c) weegschema’s wordt gegeven. Overeenstem-

mingsindices die overeenkomen met Cohen’s Kappa (Fleiss, 1971) en intraklasse-

kappa (Landis and Koch, 1977c) coëfficiënten kunnen worden gebruikt om de

overeenstemming tussen verschillende beoordelaars te beschrijven. Daarna wordt

de familie van kappa-achtige overeenstemmingscoëfficiënten uitgebreid tot het ge-

val van één gëısoleerde beoordelaar en een groep van beoordelaars (Vanbelle and
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Albert, 2009a) en tot het geval van twee groepen van beoordelaars (Vanbelle

and Albert, 2009b). Deze overeenstemmingscoëfficiënten zijn afgeleid van een

populatie-gebaseerd model en kunnen worden herleid tot de welbekende Cohen’s

coëfficiënt in het geval van twee individuele beoordelaars. De voorgestelde over-

eenstemmingsindices worden ook vergeleken met bestaande methodes, de consen-

susmethode en Schoutens overeenstemmingsindex (Schouten, 1982). De superior-

iteit van de nieuwe benadering over de laatstgenoemde wordt aangetoond.

In het tweede deel van het werk worden hypothesetesten en gegevensmodeller-

ing besproken. Vooreerst wordt de methode voorgesteld door Fleiss (1981) om

verschillende onafhankelijke overeenstemmingsindices te vergelijken, voorgesteld.

Daarna wordt een bootstrapmethode, oorspronkelijk ontwikkeld door McKenzie

et al. (1996) om twee onafhankelijke overeenstemmingsindices te vergelijken, uitge-

breid tot verschillende afhankelijke overeenstemmingsindices (Vanbelle and Albert,

2008). Al deze methoden kunnen ook worden toegepast op de overeenstemmings-

indices die in het eerste deel van het werk zijn beschreven. Ten slotte wordt een

overzicht gegeven van regressiemethodes om het effect van continue en categorische

covariabelen op de overeenstemming tussen twee of meer beoordelaars te testen.

Dit omvat de gewogen kleinste kwadraten methode, die alleen werkt met cate-

gorische covariabelen (Barnhart and Williamson, 2002) en een regressiemethode

gebaseerd op twee sets van gegeneraliseerde schattingsvergelijkingen. De laatste

methode was ontwikkeld voor de intraklasse kappa coëfficiënt (Klar et al., 2000),

Cohen’s kappa coëfficiënt (Williamson et al., 2000) en de gewogen kappa coëfficiënt

(Gonin et al., 2000). Ten slotte wordt een heuristische methode voorgesteld die

alleen van toepassing is op het geval van onafhankelijk waarnemingen (Lipsitz

et al., 2001, 2003). Ze blijkt equivalent te zijn met de benadering van de gegenera-

liseerde schattingsvergelijkingen. Deze regressiemethoden worden vergeleken met

de bootstrapmethode uitgebreid door Vanbelle and Albert (2008) maar werden

niet veralgemeend tot de overeenstemming tussen een enkele beoordelaar en een

groep van beoordelaars, en ook niet tussen twee groepen van beoordelaars.
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General introduction

Reliable and accurate measurements serve as the basis for evaluation in social, me-

dical, behavioral and biological sciences (Barnhart et al., 2007). As new concepts,

theories and technologies continue to develop, new scales, methods, tests, assays

and instruments become available for the evaluation. Since errors are inherent to

every measurement procedure, one must ensure that the measurement is accurate

before it is used in practice. In simple intuitive terms, a reliable and accurate mea-

surement may simply mean that the new measurement is the same as the truth or

agree with the truth. However, requiring the new measurement to be identical to

the truth is often impracticable because we are willing to accept a measurement

up to some tolerable error or because the truth is simply not available to us. To

deal with these issues, a number of theoretical and methodological approaches has

been proposed over the years in different disciplines. A vast literature is covering

aspects related to the concordance between quantitative scales, in particular in

methods comparisons. A classical example is laboratory medicine, where any new

analytical technique or instrument needs to be compared to the routine one before

it is actually implemented in practice. We shall briefly review this topic although

it is not the major focus of the present work.

This work rather focuses on agreement between raters on a categorical scale. The

most elementary situation concerns agreement assessment between two raters on

a binary scale. For example, we may be interested in the agreement between two

radiologists (say, a junior one and a senior one) in visualizing patient x-rays and

classifying them as normal or abnormal, or in the agreement between two scientific

experts judging separately a series of grant applications as accepted or rejected.

Clearly in both examples, we would hope that raters agree to a large extent. Un-

fortunately, agreement can occur by chance alone. Thus, in the examples above,

1



2 General introduction

if the two radiologists or the two experts toss a coin for each item to be classified

rather than doing their job, there will be a non negligible number of cases where

the coin toss will give the same outcome.

Cohen (1960) was the first to recognize this fact which led him to introduce the

celebrated kappa coefficient, also known as Cohen’s kappa coefficient. The latter

has been widely used ever since. The extension of Cohen’s kappa coefficient bet-

ween two raters for categorical scales was straightforward and followed the same

principle as for the dichotomous scale. Categorical scales are widely used in psy-

chometry, as for instance the well-known Likert scale. The agreement between

several raters appeared as a natural extension of the two raters problem but raised

a number of new issues that had to be tackled. Approaches similar to those avai-

lable for quantitative scales were developed, leading to the definition of so-called

intraclass coefficients (Fleiss, 1971; Davies and Fleiss, 1982). Landis and Koch

(1975a,b) made a comprehensive review of the various agreement indexes between

two or more raters used for categorical scales.

There are situations where agreement is searched between an isolated rater and a

group of raters, or between two groups of raters. For instance, in medical educa-

tion and even more generally, it is common to assess the knowledge level of the

students by challenging them against a group of experts. The Script Concordance

Test (SCT) proposed by Charlin et al. (2002) is one way to do this assessment.

Although our personal interest for agreement coefficients arose with our master

thesis (Vanbelle, 2002), the SCT application really motivated our research work

because existing solutions were not satisfactory.

The present work is divided in seven chapters. Chapter 1 gives a brief overview

of agreement measures for quantitative scales. After describing two graphical

methods (e.g., Bland and Altman plot), we present the concordance correlation

coefficient (CCC) introduced by Lin (1989) which quantifies the agreement bet-

ween two raters for quantitative data. Then we move to the intraclass correlation

coefficients (ICC), allowing to assess quantification of agreement between several

raters. The description of the various agreement coefficients is limited to the most

simplest cases and particular emphasis is placed on aspects that were used later

on for qualitative scales.

In Chapter 2, kappa-like agreement indexes are reviewed to quantify the agreement

between two raters on a categorical scale. This includes Cohen’s kappa coefficient

(Cohen, 1960), the intraclass kappa coefficient (Kraemer, 1979) and the weighted

kappa coefficient (Cohen, 1968). Interpretation of the weights is provided for the

two most used weighting schemes: the linear (Vanbelle and Albert, 2009c) and the
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quadratic (Schuster, 2004) weighting schemes. The asymptotic sampling variance

of the agreement indexes is also considered.

Chapter 3 generalizes the agreement indexes introduced in Chapter 2 to the case

of several raters. These agreement indexes are mostly based on linear ANOVA

models and mimic the intraclass correlation coefficients introduced for quantita-

tive scales (Landis and Koch, 1977c) or are based on pairwise agreement (Davies

and Fleiss, 1982). All agreement indexes are given for both binary and multino-

mial scales.

Novel extensions of agreement coefficients described in Chapter 2 are dealt with

in chapters 4 and 5. They constitute the salient core of this work. The agreement

problem between an isolated rater and a group of raters is discussed in depth in

Chapter 4, whereas the agreement between two groups of raters is the subject

topic of Chapter 5. New agreement indexes are proposed (Vanbelle and Albert,

2009a,b) and compared to the consensus method, known to be unsatisfactory, and

to the more general method developed by Schouten (1982).

Hypothesis testing methods on kappa coefficients are described in Chapter 6. A

distinction is made between tests on a single kappa coefficient and tests on several

kappa coefficients. When comparing several kappa coefficients, a further distinc-

tion is made between independent (unpaired case) coefficients (Fleiss, 1981) and

dependent (paired case) coefficients (McKenzie et al., 1996; Vanbelle and Albert,

2008).

Finally, Chapter 7 is devoted to recent advances on kappa coefficients in the con-

text of generalized linear mixed models (GLMM). Theses approaches permit the

modeling of agreement indexes according to covariates. This includes the weighted

least squares (Barnhart and Williamson, 2002) approach and the generalized esti-

mating equations (Klar et al., 2000). Their performance are compared to ours on

a couple of examples (Vanbelle and Albert, 2008).

In summary, the present work intends to provide a comprehensive overview of the

problem of rater agreement, which hopefully could serve as a reference text for

any scientist interested in the domain. We have incorporated our personal original

research findings in a more general framework in order to present a global and

coherent view of past developments and recent advances in the problem of rater

agreement.





CHAPTER 1

Agreement on a quantitative scale

1.1 Introduction

From a statistical standpoint, the problem of agreement on a quantitative scale

has been a subject of interest before that of agreement on a qualitative scale

and some of the methods developed for quantitative measurements were adapted

to the case of categorical observations. When measuring a quantity with a new

instrument, two questions typically arise: (1) is the new instrument calibrated

against the established method, and (2) are the measurements made with the new

instrument reproducible? The established method is often regarded as a ’gold

standard’ or reference method measuring the ”true” value of the quantity to be

determined. However, when comparing two methods, it is frequent that none of

them can be viewed as giving a true value. Then, an assessment of the degree

of agreement between the two methods is required to evaluate the comparability

of the measurements. In practice, the measurements obtained with the two me-

thods can be plotted on a 2-dimensional graph, perfect agreement occurring when

all measurements fall on the 45◦ line. Another approach (Bland and Altman,

1986) is to display the difference of the two measurements against their mean in

which case perfect agreement would correspond to all points laying on the ab-

scissa. These methods are basically visual. Lin (1989) therefore introduced the

concordance correlation coefficient (CCC) measuring the correlation between du-

plicate measurements falling around the 45◦ line through the origin. The CCC was

generalized to more than two measurement methods in various situations. The in-

terested reader can refer to Barnhart et al. (2007) for a complete overview. As an

5
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alternative approach, a methodology based on the analysis of variance (ANOVA)

was developed by Fisher (1958), leading to the intraclass correlation coefficient

(ICC) which is a reliability criterion giving the proportion of variance attributable

to differences between methods. The ICC was developed to deal with several mea-

surement methods and has emerged as a universal and widely accepted reliability

index (Shoukri, 2004). Several versions of the ICC were derived depending on the

study scheme (Bartko, 1966; Shrout and Fleiss, 1979). In this chapter, we shall

restrict our overview of agreement indexes on a quantitative scale to those which

have been extended to qualitative scales.

1.2 Agreement between two raters

1.2.1 Visual assessment of agreement

Let Y denote a quantity associated with each element (item) of an infinite popula-

tion I. For simplicity, let Y ≥ 0. Further, let Y1 and Y2 denote the corresponding

quantities as measured by two distinct raters. In theory, perfect agreement between

the raters occurs when Y1 = Y2. Thus, given a sample of items, the agreement bet-

ween the two raters is best seen by plotting the paired observations with respect to

the 45◦ line (Y2 = Y1). If the two raters are in perfect agreement, all observations

will fall on the 45◦ line. By contrast, disagreement between the two raters can take

different forms: (i) a constant bias (Y2 = a + Y1, a ∈ R), (ii) a proportional bias

(Y2 = bY1, b ∈ R), or (iii) both types of biases (Y2 = a + bY1, a, b ∈ R). This led

Bland and Altman (1986) to suggest plotting the difference of the measurements

(Y2 − Y1) against their mean (Y1 + Y2)/2, the so-called ”Bland and Altman plot”.

In case of constant bias, Y2 − Y1 = a (a 6= 0), the observations will tend to lie

around a horizontal line; in case of proportional bias, Y2 − Y1 = (b− 1)Y1 (b 6= 0),

the points will be scattered around an increasing (b > 1) or decreasing (b < 1)

line passing through the origin; when both biases are present, the increasing or

decreasing line will not pass through the origin. Bland and Altman plot can also

reveal whether agreement is item related. For instance, two raters may agree

closely in estimating the size of small items, but disagree about larger items. The

two methods described are essentially graphical, although by regression analysis

it is possible to estimate the constant and proportional bias factors.

Example. Shrout and Fleiss (1979) considered the following hypothetical exam-

ple, where 4 raters measured 6 items on a 10-point scale (see Table 1.1). Consider

only the measurements of raters 1 and 4.

As seen on the 45◦ line plot and on Bland and Altman plot (see Figure 1.1), perfect

agreement occurs only for one item (item 3). Moreover, it appears that rater 1
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Table 1.1. Example of Shrout and Fleiss (1979)
Rater

Item 1 2 3 4 Y1 − Y4 (Y1 + Y4)/2
1 9 2 5 8 1 8.5
2 6 1 3 2 4 4
3 8 4 6 8 0 8
4 7 1 2 6 1 6.5
5 10 5 6 9 1 9.5
6 6 2 4 7 -1 6.5

gives in general higher values than rater 4. The mean difference (±SD) is 1.0±1.67

(95% CI: [-2.28;4.28]).

Figure 1.1. 45◦ line plot (left) and Bland and Altman plot (right) for the measure-
ments of raters 1 and 4 of 6 items on a 10-point scale

1.2.2 Concordance correlation coefficient

There is the need to derive an index reflecting the agreement between the two

raters. The recourse to Pearson’s correlation coefficient, paired t-test, least-squares

analysis of slope and intercept or to the coefficient of variation is always failing in

some cases, as shown by Lin (1989). This led Lin (1989) to develop the concordance

correlation coefficient (CCC), a reproducibility index measuring the correlation

between two readings that fall on the 45◦ line through the origin.

Definition. Suppose that the joint distribution of Y1 and Y2 is bivariate Normal

with mean (µ1, µ2)
′ and variance-covariance matrix(

σ2
1 σ12

σ21 σ2
2

)
.
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The degree of concordance between Y1 and Y2 can be characterized by the expected

value of the squared difference

E(Y1 − Y2)
2 = (µ1 − µ2)

2 + (σ2
1 + σ2

2 − 2σ12)

= (µ1 − µ2)
2 + (σ1 − σ2)

2 + 2(1− ρ)σ1σ2 (1.1)

where ρ = corr(Y1, Y2) = σ12/σ1σ2. Lin (1989) proposed to apply a transforma-

tion to scale the agreement index between -1 and 1, leading to the concordance

correlation coefficient

CCC = 1− E(Y1 − Y2)
2

(µ1 − µ2)2 + σ2
1 + σ2

2

=
2ρσ1σ2

(µ1 − µ2)2 + σ2
1 + σ2

2

= ρCb (1.2)

where Cb = [(ν + 1/ν + u2)/2)]−1 with ν = σ1/σ2 representing the scale shift and

u = (µ1−µ2)/
√
σ1σ2 the location shift relative to the scale. Lin (1989) noted that

Cb (0 < Cb ≤ 1) is a bias correction factor measuring how far the best-fit deviates

from the 45◦ line (measure of accuracy). No deviation occurs when Cb = 1. The

Pearson’s correlation coefficient ρ measures how far observations deviate from the

best-fit line (measure of precision).

The concordance correlation coefficient possesses the following properties:

1. −1 ≤ −|ρ| ≤ CCC ≤ |ρ| ≤ 1;

2. CCC = 0 if and only if ρ = 0;

3. CCC = ρ if and only if σ1 = σ2 and µ1 = µ2;

4. CCC = ±1 if and only if each pair of measurements is in perfect agreement

or perfect reverse agreement.

Estimation of the parameters. For a sample ofN independent pairs (yi,1, yi,2),

if y.,r denotes the estimated mean and s2
r the sample variance of the measurements

made by rater r (r = 1, 2),

y.,r =
1

N

N∑
i=1

yi,r and s2
r =

1

N

N∑
i=1

(yi,r − y.,r)2, (1.3)

and if ρ̂ is the sample Pearson’s correlation coefficient

ρ̂ =

∑N
i=1(yi,1 − y.,1)(yi,2 − y.,2)/N

s1s2

, (1.4)

the CCC is estimated by

ĈCC =
2ρ̂s1s2

(y.,1 − y.,2)2 + s2
1 + s2

2

. (1.5)
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Sampling variability. When sampling from a bivariate normal distribution,

Lin (1989) showed that ĈCC has an asymptotic Normal distribution with mean

CCC and variance

var(ĈCC) =
1

N − 2
[(1− ρ2)CCC2(1− CCC2)/ρ2 + 4CCC3(1− CCC)u2/ρ

− 2CCC4u4/ρ2]. (1.6)

Example. Consider again the measurements of raters 1 and 4 in the hypothetical

example of Shrout and Fleiss (1979) (see Table 1.2).

Table 1.2. Measurements
of raters 1 and 4 in the ex-
ample of Shrout and Fleiss
(1979)

Rater
Item 1 4
1 9 8
2 6 2
3 8 8
4 7 6
5 10 9
6 6 7
y.,r 7.7 6.7
sr 1.63 2.50

We have ρ̂ = 0.75 and thus,

ĈCC =
2× 0.75× 1.63× 2.50

(7.7− 6.7)2 + 1.632 + 2.502
= 0.62

with Ĉb = 0.82, ν̂ = 0.65 and û = 0.49. We have

var(ĈCC) =
1

6− 2

{
(1− 0.752)0.622(1− 0.752)

0.752
+

4× 0.623(1− 0.62)0.492

0.75

− 2× 0.6240.494

0.752

}
= 0.067.

The lower bound of the one-sided 95% confidence interval for the CCC is equal to

0.62− 1.64
√

(0.067) = 0.20. Thus, with 95% confidence CCC ≥ 0.20.

1.3 Agreement between several raters

The intraclass correlation coefficient (ICC) introduced by Fisher (1958) is univer-

sally used as a reliability index. There are several versions of the ICC depending of
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the study design (Bartko, 1966), all based on the analysis of variance and the esti-

mation of several variance components. The use of ICC should be restricted by the

underlying model which most adequately describes the experiment situation and

the conceptual interest of the study. The guidelines for choosing an appropriate

form of the ICC are given in Shrout and Fleiss (1979). They suggested determining

three important issues to choose an appropriate model: (1) Is one-way or two-way

analysis of variance appropriate for the analysis of the reliability study? (2) Are

differences between the rater’s mean readings relevant to the reliability study? (3)

Is the unit of the analysis an individual rating or the mean of several ratings?

Typically, in inter-rater reliability studies, each of a random sample of N items

from a population of items I is rated independently by R raters belonging to a

population of raters R. Three different study designs are considered:

Model 1. Each item is rated by a different set of R raters, randomly selected

from a larger population of raters. This leads to a one-way random effects ANOVA

model.

Model 2. Each item is rated by the same random sample of R raters selected

from a larger population. This leads to a two-way random effects ANOVA model

with interaction.

Model 3. Each item is rated by each of the same R raters, who are the only raters

of interest. This leads to a two-way mixed effects ANOVA model with interaction.

Each kind of study thus requires a separately specified mathematical model to des-

cribe its results. The model specifies the decomposition of a measurement made

by rater r (r = 1, · · · , R) on item i (i = 1, · · · , N) in terms of various effects.

Among the possible effects are the overall effect and the effects for rater r, item

i, the interaction between raters and items and for a random error component.

Depending on the study design, different effects are estimable, different assump-

tions must be made about the estimable effects and thus different structures of the

ANOVA model are obtained. McGraw and Wong (1996) also distinguished bet-

ween intraclass correlation coefficients measuring consistency (denoted by ICCC)

and absolute agreement (denoted by ICCA). The first type of coefficients excludes

the variance term relative to the raters from the denominator while the second type

does not. To illustrate the distinction between the two kinds of ICC, consider two

measurements on a series of items with the second measurement always 2 units

higher than the first one. These paired measurements are in perfect agreement

using the consistency definition (ICCC) but not using the absolute agreement

definition (ICCA). The absolute agreement is sensitive to scale shifts while the
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consistency agreement is not.

1.3.1 One-way random effects ANOVA model

Suppose that each of a random sample of items (1, · · · , N) is rated by a different

set of raters (1, · · · , Ri, i = 1, · · · , N). The case of a constant number of ratings

(Ri = R, i = 1, · · · , N) for each item is first considered. When each item is rated

by a different set of R raters, randomly selected from a larger population of raters

(Model 1), the effect due to raters, to the interaction between raters and items

and to random error can not be estimated separately. Therefore, only the absolute

agreement is measurable. If Yi,r denotes the measurement of rater r (r = 1, · · · , R)

on item i (i = 1, · · · , N), the following linear model is assumed,

Yi,r = µ+Bi +Wi,r, (i = 1, · · · , N ; r = 1, · · · , R) (1.7)

where µ is the overall population mean of the measurements, Bi is the deviation

of item i from µ and Wi,r is a residual component equal to the sum of the non

separable effects of the raters, the interaction between the raters and the items

and the error term.

It is assumed that the component Bi ∼ N(0, σ2
B) (i = 1, · · · , N), the component

Wi,r ∼ N(0, σ2
W ) (i = 1, · · · , N ; r = 1, · · · , R) and that the Bi are independent of

Wi,r. The expected mean squares related to the one-way random effects ANOVA

model are given in Table 1.3.

Table 1.3. One-way random effects ANOVA model (Model 1)
Variability Sum of squares Degrees of freedom Mean squares E(MS)
Between items BSS N − 1 BMS Rσ2

B + σ2
W

Within items WSS N(R− 1) WMS σ2
W

Total TSS NR− 1

One can see in Table 1.3 that WMS is an unbiased estimate of σ2
W and (BMS −

WMS)/R is an unbiased estimate of σ2
B. The intraclass correlation coefficient

(ICCA1) is defined by

ICCA1 =
cov(Yi,r, Yi,s)√
var(Yi,r)var(Yi,s)

=
σ2
B

σ2
W + σ2

B

. (1.8)

Estimation of the parameters. The intraclass correlation coefficient ICCA1

is estimated by

ÎCCA1 =
BMS −WMS

BMS + (R− 1)WMS
. (1.9)
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This estimate is consistent but biased (Olkin and Pratt, 1958) since the expectation

of a ratio is not equal to the ratio of the expectations. Let yi,r denote the observed

value of the random variable Yi,r (i = 1, · · · , N ;r = 1, · · · , R), yi,. the mean value

over the raters and y.,. the overall mean, i.e.,

yi,. =
1

R

R∑
r=1

yi,r, and y.,. =
1

NR

N∑
i=1

R∑
r=1

yi,r.

We have

BSS = R
N∑
i=1

(yi,. − y.,.)2,

WSS =
N∑
i=1

R∑
r=1

(yi,r − yi,.)2,

TSS =
N∑
i=1

R∑
r=1

(yi,r − y.,.)2. (1.10)

Confidence interval. Note that

ÎCCA1 =
BMS −WMS

BMS + (R− 1)WMS
=

F0 − 1

F0 + (R− 1)
(1.11)

where F0 = BMS/WMS is the usual variance ratio distributed as a Snedecor

F with N − 1 and N(R − 1) degrees of freedom since Bi and Wi,r are normally

distributed. If QF (1−α; ν1, ν2) denotes the (1−α)-percentile of the F distribution

with ν1 and ν2 degrees of freedom, then

FL − 1

FL + (R− 1)
< ICCA1 <

FU − 1

FU + (R− 1)
(1.12)

is a (1−α)100% confidence interval for the intraclass correlation coefficient, ICCA1,

with

FL = F0/QF (1− α

2
;N − 1, N(R− 1))

and FU = F0QF (1− α

2
;N(R− 1), N − 1).

Note that in practice, only the lower bound of the confidence interval is usually of

interest.

Unequal number of ratings per item. Suppose now that each of a random

sample of items (1, · · · , N) is rated by a different set of raters (1, · · · , Ri), where
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Ri is not the same for all items. In that case, we have

BSS =
N∑
i=1

Ri∑
r=1

(yi,. − y.,.)2,

WSS =
N∑
i=1

Ri∑
r=1

(yi,r − yi,.)2,

TSS =
N∑
i=1

Ri∑
r=1

(yi,r − y.,.)2. (1.13)

with

E(BSS) = R0σ
2
B + σ2

W (1.14)

where

R0 =
(NR)2 −

∑N
i=1R

2
i

(N − 1)NR
. (1.15)

The estimation of the intraclass correlation coefficient ICCA1 is then

ÎCCA1 =
BMS −WMS

BMS + (R0 − 1)WMS
. (1.16)

The reader interested by the proofs in case of unequal number of ratings per item

may refer to Vanbelle (2002).

Example. Consider again the 4 raters measuring 6 items on the 10-point scale

(see Table 1.1) and suppose that the measurements on each item are made by a

different set of 4 raters. This leads to the following ANOVA table (Table 1.4). The

estimated intraclass correlation coefficient is ÎCCA1 = 0.17. We have F0 = 1.79

leading to FL = 1.79/2.77 = 0.65. The one-sided 95% lower bound is equal to

-0.10. Thus, there is no evidence for agreement between the 4 raters at the 95%

confidence level.

Table 1.4. One-way random effects ANOVA table relative to the example
of Shrout and Fleiss (1979)
Variability Sum of squares Degrees of freedom Mean squares
Between items 56.21 5 11.24
Within items 112.75 18 6.26
Total 168.96 23
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1.3.2 Two-way ANOVA models

Random raters (two-way random effects ANOVA model with interac-

tion). Suppose now that each item is rated by the same random sample of R

raters selected from a larger population (Model 2). The component Wi,r can be

further specified. A two-way model can be used to represent the data because

there is a systematic source of variation between items and between raters. The

component representing rater r effect may thus be estimated.

Yi,r = µ+Bi + Ar + (AB)i,r + Ei,r, (i = 1, · · · , N ; r = 1, · · · , R). (1.17)

The terms Yi,r, µ and Bi were defined in Section 1.3.1. The component Ar denotes

the deviation of rater r measurements from the overall mean, (AB)i,r is the degree

to which the rater r departs from his/her usual rating tendencies when confronted

to item i (interaction effect) and Ei,r is the random error in ratings of rater r

on item i. It is assumed that Ar ∼ N(0, σ2
A), Bi ∼ N(0, σ2

B), Ei,r ∼ N(0, σ2
E)

are independently distributed. Finally, all components (AB)i,r (i = 1, · · · , N ; r =

1, · · · , R) are assumed to be mutually independent and (AB)i,r ∼ N(0, σ2
I ). The

ANOVA table corresponding to Model 2 is given in Table 1.5.

Table 1.5. Two-way random effects ANOVA model with interaction (Model 2) (MS
for mean squares)
Variability Sum of squares Degrees of freedom MS E(MS)
Between items BSS N − 1 BMS Rσ2

B + σ2
I + σ2

E

Within items WSS N(R− 1) WMS σ2
A + σ2

I + σ2
E

Between raters JSS (R− 1) JMS Nσ2
A + σ2

I + σ2
E

Residuals ESS (N − 1)(R− 1) EMS σ2
I + σ2

E

Total TSS NR− 1

Under Model 2, the intraclass correlation coefficient measuring absolute agreement

(ICCA2) and the consistency (ICCC2) are defined by

ICCA2 =
σ2
B

σ2
B + σ2

A + σ2
I + σ2

E

and ICCC2 =
σ2
B

σ2
B + σ2

I + σ2
E

. (1.18)

Fixed raters (two-way mixed effects ANOVA model). Model 3 is similar

to Model 2 except that raters are considered as fixed.

Yi,r = µ+Bi + ar + (aB)i,r + Ei,r, (i = 1, · · · , N ; r = 1, · · · , R). (1.19)

The same assumptions are made as in Model 2 for the components Yi,r, µ and Bi

but here, ar is a fixed effect subject to the constraint
∑R

r=1 ar = 0. The parameter
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corresponding to σ2
A is

θ2
A =

R∑
r=1

a2
r/(R− 1). (1.20)

It is assumed that (aB)i,r ∼ N(0, σ2
I ) (i = 1, · · · , N ; r = 1, · · · , R) but inde-

pendence can only be assumed for interaction components that involve different

items. For the same item i, the components are assumed to satisfy the constraint∑R
r=1(aB)i,r = 0.

One implication of the raters being fixed is that no unbiased estimator of σ2
B is

available when σ2
B > 0. σ2

B is no longer the covariance between Yi,r and Yi,s (r 6= s).

The interaction term has variance σ2
I and

cov(Yi,r, Yi,s) = σ2
B −

σ2
I

R
. (1.21)

The ANOVA table relative to Model 3 is given in Table 1.6 where f = R/(R− 1).

It is crucial to note that the expectation of BMS under Models 2 and 3 is different

of that under Model 1 even if the computation is the same. Because the effect of

raters is the same for all items under Models 2 and 3, inter-rater variability does

not affect the expectation of BMS. An important practical implication is that for

a given population of items, the observed value of BMS in a Model 1 design tends

to be larger than in a Model 2 or 3 design.

Table 1.6. Two-way mixed effects ANOVA model (Model 3) (MS for mean squares)
Variability Sum of squares Degrees of freedom MS E(MS)
Between items BSS N − 1 BMS Rσ2

B + σ2
E

Within items WSS N(R− 1) WMS θ2
A + fσ2

I + σ2
E

Between raters JSS (R− 1) JMS Nθ2
A + fσ2

I + σ2
E

Residuals ESS (N − 1)(R− 1) EMS fσ2
I + σ2

E

Total TSS NR− 1

Under Model 3, the intraclass correlation coefficients ICCA3 and ICCC3 are defined

as

ICCA3 =
σ2
B − σ2

I/(R− 1)

σ2
B + θ2

A + σ2
I + σ2

E

and ICCC3 =
σ2
B − σ2

I/(R− 1)

σ2
B + σ2

I + σ2
E

. (1.22)

Estimation of the parameters. Although the definition of the agreement in-

dexes are different depending if raters are considered as random or fixed, the

estimated intraclass correlations are the same (ÎCCA2 = ÎCCA3 = ÎCCA and

ÎCCC2 = ÎCCC3 = ÎCCC). The intraclass correlation coefficients are estimated
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by

ÎCCA =
BMS − EMS

BMS + (R− 1)EMS +R(JMS − EMS)/N
(1.23)

and

ÎCCC =
BMS − EMS

BMS + (R− 1)EMS
. (1.24)

The agreement coefficient ÎCCA2 is also known as the criterion-referenced relia-

bility and the agreement coefficient ÎCCC2 as norm-referenced reliability and as

Winer’s adjustment for anchor points (McGraw and Wong, 1996).

The quantities yi,. and y.,. are defined as previously. Let y.,r denote the mean over

the items for rater r (r = 1, · · · , R).

y.,r =
1

N

N∑
i=1

yi,r.

We have

BSS = R
N∑
i=1

(yi,. − y.,.)2,

JSS = N
R∑
r=1

(y.,r − y.,.)2,

ESS =
N∑
i=1

R∑
r=1

(yi,r − yi,. − y.,r + y.,.)
2,

TSS =
N∑
i=1

R∑
r=1

(yi,r − y.,.)2. (1.25)

Confidence interval for ICCA. Let F0 = BMS/EMS be the usual variance

ratio distributed as a Snedecor F with N−1 and (N−1)(R−1) degrees of freedom.

The confidence interval is more complicated to derive since the index is a function

of three independent mean squares. Following Satterwhaite (1946), Fleiss and

Shrout (1978) derived an approximate confidence interval. Let FJ = JMS/EMS

and

ν =
(R− 1)(N − 1){R ÎCCAFJ +N(1 + (R− 1)ÎCCA)−R ÎCCA}2

(N − 1)R2ÎCC
2

AF
2
J + {N(1 + (R− 1)ÎCCA)−R ÎCCA}2

. (1.26)

The lower bound of the (1− α)100% confidence interval for ICCA is defined by

N(BMS − FU EMS)

FUR JMS + (RN −R−N)EMS +N BMS
(1.27)
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and the upper bound by

N(FLBMS − EMS)

R JMS + (RN −R−N)EMS +N FLBMS
. (1.28)

where

FL = QF (1− α

2
; ν,N − 1)

FU = QF (1− α

2
;N − 1, ν).

Confidence interval for ICCC. If F0 = BMS/EMS denotes the usual vari-

ance ratio distributed as a Snedecor F with N − 1 and (N − 1)(R− 1) degrees of

freedom,

FL − 1

FL + (R− 1)
< ICCC <

FU − 1

FU + (R− 1)
(1.29)

is a (1− α)100% confidence interval for ICCC with

FL = F0/QF (1− α

2
;N − 1, (N − 1)(R− 1))

FU = F0QF (1− α

2
; (N − 1)(R− 1), N − 1).

Example. Consider again the example of Table 1.1 but suppose now that the

same set of 4 raters have all measured the 6 items on a 10-point scale and that the

4 raters are taken at random from a larger population of raters. This leads to the

following ANOVA table (Table 1.7).

Table 1.7. Two-way random effects ANOVA model with interaction (Model
2) relative to the example of Shrout and Fleiss (1979)
Variability Sum of squares Degrees of freedom Mean squares
Between items 56.21 5 11.24
Within items 112.75 18 6.26

Between raters 97.46 3 32.49
Residuals 15.29 15 1.02

Total 168.96 23

The intraclass correlation coefficient with the absolute definition is then estimated

by

ÎCCA2 =
11.24− 1.02

11.24 + 3× 1.02 + 4(32.49− 1.02)/6
= 0.29.

We have ν = 33123.31/6922.11 = 4.79, F0 = 11.24/1.02 = 11.02 and FJ =

32.49/1.02 = 31.85. The one-sided lower bound at 95% confidence level is equal
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to 0.05, indicating that there is a slight agreement between the 4 raters. We also

have

ÎCCC2 =
11.24− 1.02

11.24 + 3× 1.02
= 0.71

with 95% one-sided lower bound of 0.41 where FL = 11.03/2.90 = 3.80, meaning

that the measurements of the 4 raters are consistent.

1.3.3 Mean of individual ratings

The ICCs discussed before express the expected reliability of the measurements

of single raters. Sometimes, it is not the individual ratings that are used but

rather the mean of m ratings (m ≤ R), i.e. m is not necessarily equal to the

number of raters in the study. The unit of analysis is then a mean of ratings

rather than individual ratings. In such case the reliability of the mean rating is

of interest; the reliability will always be greater in magnitude than the reliability

of the individual ratings, provided the latter is positive (Lord and Novick, 1968).

An example of a substantive choice is the investigation of the decisions (ratings)

of a team of physicians, as they are found in a hospital setting. More typically, an

investigator decides to use a mean as a unit of the analysis because the individual

ratings are too unreliable (Shrout and Fleiss, 1979). The number of raters (i.e.,

m) used to form the mean ratings needs to be determined. Given a lower bound,

ICCL, and the minimum acceptable value of the reliability coefficient ICC∗ (e.g.,

ICC∗ = 0.75) it is possible to determine m as the smallest integer greater than or

equal to (Shrout and Fleiss, 1979)

m =
ICC∗(1− ICCL)

ICCL(1− ICC∗)
. (1.30)

Once m is determined, either by a reliability study or by a choice made on sub-

stantive grounds, the reliability of the ratings averaged over the m raters can be

estimated using the appropriate intraclass correlation coefficient described earlier.

When data from m raters are actually collected, they can be used to estimate the

reliability of the mean ratings in one step, using the formulas below, depending of

the study design. In these applications, we suppose that m = R.

One-way random effects ANOVA model. The intraclass correlation coeffi-

cient corresponding to the one-way random effects ANOVA model when conside-

ring averaged measurements rather than single measurements is defined by

ICCA1,R =
σ2
B

σ2
B + σ2

W/R
(1.31)



1. Agreement on a quantitative scale 19

and is estimated by

ÎCCA1,R =
BMS −WMS

BMS
. (1.32)

Letting FU and FL defined as for ICCA1,

1− 1

FL
< ICCA1,R < 1− 1

FU
(1.33)

is a (1− α)100% confidence interval for ICCA1,R.

Two-way random effects ANOVA model with interaction. The degree of

absolute agreement is expressed as

ICCA2,R =
σ2
B

σ2
B + σ2

A + (σ2
I + σ2

E)/R
(1.34)

and estimated by

ÎCCA2,R =
BMS − EMS

BMS + (JMS − EMS)/N
. (1.35)

The confidence interval used the confidence bounds obtained for ICCA2. For

example, the lower bound for ICC2,R is

ICCL =
RICC∗∗L

1 + (R− 1)ICC∗∗L
(1.36)

where ICC∗∗L is the lower bound obtained for ICCA2.

On the other hand, the degree of consistency can be quantified using

ICCC2,R =
σ2
B

σ2
B + (σ2

I + σ2
E)/R

(1.37)

and estimated by

ÎCCC2,R =
BMS − EMS

BMS
. (1.38)

Let FU and FL be defined as for ICCC2,

1− 1

FL
< ICCC2,R < 1− 1

FU
(1.39)

is a (1−α)100% confidence interval for ICCC2,R. Note that ICCC2,R is equivalent

to Cronbach’s alpha (Cronbach, 1951). Cronbach’s alpha will generally increase

when the correlation between the items increases. For this reason the coefficient

is also called the internal consistency or the internal consistency reliability of the

test (Shrout and Fleiss, 1979). Internal consistency is a measure based on the
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correlations between different items on the same test (or the same subscale on

a larger test). It measures whether several items proposed to measure the same

general construct produce similar scores. For example, if a respondent expressed

agreement with the statements ”I like to ride bicycles” and ”I’ve enjoyed riding

bicycles in the past”, and disagreement with the statement ”I hate bicycles”, this

would be indicative of good internal consistency of the test. A commonly-accepted

rule of thumb is that a Cronbach’s alpha coefficient of 0.6-0.7 indicates acceptable

reliability, and 0.8 or higher indicates good reliability. Note that extremely high

reliabilities (0.95 or higher) are not necessarily desirable, indicating that the items

may be not just consistent, but redundant.

Alternatively, Cronbach’s alpha coefficient can also be defined as

ÎCCC2,R =
Nρ̂

1 + (N − 1)ρ̂
(1.40)

where ρ̂ is the average of all Pearson’s correlation coefficients between the items.

Two-way mixed effects ANOVA model. The generalization from single ra-

ting to mean rating reliability is not quite as straightforward as in the random

effects model. Although the covariance between two ratings is σ2
B − σ2

I/(R − 1),

the covariance between two means based on R raters is σ2
B. No estimator exists for

this term. If, however, the rater × item interaction can be assumed to be absent

(σ2
I = 0), the agreement indexes ICCA3,R and ICCC3,R are defined by

ICCA3,R =
σ2
B − σ2

I/(R− 1)

σ2
B + (θ2

A + σ2
I + σ2

E)/R
=

σ2
B

σ2
B + (θ2

A + σ2
E)/R

(1.41)

and

ICCC3,R =
σ2
B − σ2

I/(R− 1)

σ2
B + (σ2

I + σ2
E)/R

=
σ2
B

σ2
B + σ2

E/R
(1.42)

and estimated by ÎCCA2,R and ÎCCC2,R, respectively.

Example. Consider again the example described in Table 1.1 and suppose that

measurements are average measures rather than single measures and let deter-

mine Cronbach’s alpha coefficient of reliability. We have ÎCCC2,4 = (11.24 −
1.02)/11.24 = 0.91 (see Table 1.7). We obtained, in case of individual measure-

ments FL = 3.80, leading to a one-sided lower bound at 95% confidence level of

1− 1/3.80 = 0.74. There is thus a good consistency between the raters.

1.4 Serum gentamicin

Serum gentamicin (µmol/L) was measured by two assay methods, the enzyme-

mediated immunoassay technique (EMIT), used in routine at the time of the study,
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and the fluoro-immunoassay (FIA), a new method to be tested (Strike, 1991).

Data are given in Appendix A (see Table A.1). Serum specimens from 56 patients

receiving gentamicin have been assayed twice by each assay method in separate

assay batches. Agreement between the two methods is needed to validate the new

assay method. Firstly, the mean value of the two repeated measurements was

calculated for each method. The resulting 45◦ line plot and Bland and Altman

plot are given in Figure 1.2. The mean of the differences between the two methods

of measurements was equal to −0.084±1.18 with 95%CI: [-2.39,2.22]. Thus, there

was no systematic bias between the two methods.

Figure 1.2. Serum gentamicin concentrations (µmol/L) measured with the EMIT
and the FIA methods on a 45◦ line plot (left) and Bland and Altman plot (right)
with 95% confidence interval

The concordance correlation coefficient was equal to ĈCC = 0.96 with a lower

bound of two-sided 95% CI equal to 0.90. The two-way mixed effects ANOVA

table corresponding to the 4 separate measurements is given in Table 1.8.

Table 1.8. Two-way mixed effects ANOVA model (Model 3)
Variability Sum of squares Degrees of freedom Mean squares
Between patients 4105.72 55 74.65
Between methods 4.00 3 1.33
Residuals 129.71 165 0.79
Total 4239.43 223

Assuming no interaction between the methods and the patients, the intraclass

correlation coefficient using the definition of absolute agreement was equal to

ÎCCA3,2 = 0.99 with a one-sided 95% lower confidence bound of 0.97. The in-

traclass correlation coefficient between the two methods using the consistency de-

finition was equal to ÎCCC3,2 = 0.99 with a one-sided 95% lower bound of 0.99.
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This indicated quite good agreement between the two methods, suggesting that

the FIA method could be used confidently in daily routine.

1.5 Discussion

Some basic statistical approaches for assessing agreement between two or more

raters on a quantitative scale were reviewed in this chapter. This is common

practice when validating new measurement methods with respect to existing ones.

When comparing two methods, one method is usually the reference method and

the other method a new method to be tested. The problem is therefore one with

fixed raters rather than random raters (calibration problem).

The simplest practical way to assess the agreement between two raters on a quan-

titative scale is from the visual plots (deviation from the 45◦ line or Bland and

Altman plot). The difficulty in Bland and Altman plot is to determine what is

a reasonable 95% CI around the mean difference between the two measurements.

Therefore, the need for formal testing and quantification of the amount of agree-

ment between raters led Lin (1989) to define the concordance correlation coefficient

(CCC). In recent years, the CCC was extended to various situations (Barnhart and

Williamson, 2002; King and Chinchilli, 2001; Lin et al., 2002).

The intraclass correlation coefficients (ICC) are also widely used to quantify agree-

ment on quantitative scales and should be used with care depending on the study

design and the question of interest. As stated by Shrout and Fleiss (1979), an im-

portant issue is the choice of an appropriate ANOVA model. This was seen with

the example of Shrout and Fleiss (1979), where conclusions were different depend-

ing on the ANOVA model chosen. McGraw and Wong (1996) reviewed intraclass

correlation coefficients introduced by Shrout and Fleiss (1979) and made the dis-

tinction between accuracy and absolute agreement indexes. They also stressed the

difference between treating the raters as fixed or random. In practical terms, one

knows that the levels of a variable are random when a change in those levels of

the variable would have no effect on the question being asked. As an example of

fixed effect variables, McGraw and Wong (1996) considered the biological relation

between mother and child. By changing the levels in uncle and nephew would

imply a totally different research interest. Although the estimated intraclass cor-

relation coefficients are the same when raters are treated as fixed or as random,

the interpretation is different. When treated as random, the results can be genera-

lized at the population level which is not the case when treated as fixed. Carrasco

and Jover (2003) showed that the CCC is equivalent to the ICC under a two-way

mixed effects ANOVA model with fixed raters. A more detailed review of methods

to quantify agreement on a quantitative scale is given in Barnhart et al. (2007).



CHAPTER 2

Agreement between two

independent raters

2.1 Introduction

The problem of rater agreement on a categorical scale originally emerged in human

sciences, where measurements are made on a nominal or ordinal scale rather than

on a continuum. For example, in psychiatry, the mental illness of a subject may be

judged as ”light”, ”moderate” or ”severe”. Clearly two psychiatrists assessing the

mental state of a series of patients do not necessarily give the same grading for each

patient. Medicine is not an exact science but we would expect that physicians tend

to agree with each other. The validation process of any new scale also requires the

study of agreement among raters. The simplest case is to determine the agreement

between two raters (methods or observers) on a binary scale (e.g. diseased/ non

diseased). Several coefficients for quantifying the agreement between two raters

have been introduced over the years. The most salient one is the kappa coefficient

introduced by Cohen (1960). It is the most widely used coefficient of agreement in

scientific research (Blackman and Koval, 2000; Ludbrook, 2002). Cohen’s kappa

coefficient differs from the others in the sense that it accounts for agreement bet-

ween the two raters due to chance. Indeed, if two raters randomly assign a series of

items on a categorical scale, the observed agreement between them is then only due

to chance. Cohen (1968) also introduced the weighted kappa coefficient to allow

for the fact that some disagreements may be more important than others. Indeed,

disagreements between two raters occurring on the categories ”light” and ”severe”

23
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may be viewed as more important than on ”light” and ”moderate”. Finally, Krae-

mer (1979) defined a kappa coefficient by assuming that the two raters have the

same marginal distribution. Agreement indexes are reviewed in this chapter and

their asymptotic sampling variance derived.

2.2 Early agreement indexes

Consider two independent raters who have to classify a sample of N items (sub-

jects or objects) into K exhaustive and mutually exclusive categories of a nominal

or ordinal scale. The observations made by the 2 raters can be summarized in a

K ×K contingency table (Table 2.1), where njk is the number of items classified

in category j by rater 1 and category k by rater 2; let nj. be the number of items

classified in category j by rater 1 and n.k the number of items classified in category

k by rater 2. By dividing these numbers by N , the corresponding proportions pjk,

pj., p.k are obtained.

Table 2.1. K ×K contingency table summarizing the classification of N
items by 2 raters on a K-category scale in terms of frequency (proportion)

Rater 2
Rater 1 1 . . . j . . . K Total

1 n11 (p11) · · · n1j (p1j) . . . n1K (p1K) n1. (p1.)
...

...
...

...
j nj1 (pj1) · · · njj (pjj) . . . njK (pjK) nj. (pj.)
...

...
...

...
K nK1 (pK1) · · · nKj (pKj) . . . nKK (pKK) nK. (pK.)

Total n.1 (p.1) · · · n.j (p.j) . . . n.K (p.K) N (1)

When there are only two categories (binary case), Table 2.1 reduces to a 2 × 2

contingency table, where the categories are often labeled as 0 and 1 (see Table 2.2).

Intuitively, it seems obvious to use the sum of the diagonal proportions of Table

2.2 to quantify the agreement between the two raters. Indeed, it represents the

proportion of items classified in the same category by the 2 raters. It is called the

observed proportion of agreement

po = p11 + p22.

The index po is the simplest agreement index (Holley and Guilford, 1964; Maxwell,

1977).
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Table 2.2. 2 × 2 contingency table correspon-
ding to the classification of N items on a binary
scale by 2 raters in terms of frequency (propor-
tion)

Rater 2
Rater 1 1 0 Total
1 n11 (p11) n12 (p12) n1. (p1.)
0 n21 (p21) n22 (p22) n2. (p2.)
Total n.1 (p.1) n.2 (p.2) N (1)

Suppose that the trait under study is relatively rare. In that case, negative agree-

ments (p22) may be more frequent than positive agreements (p11). Then, it may

be reasonable to omit the proportion p22 in the construction of the agreement

index because that proportion will be large (since the trait under study is rare)

and inflate the value po. For that reason, a number of indexes based only on the

proportions p11, p12 and p21 were proposed. The index proposed by Dice (1945)

was

Sd =
p11

1
2
(p1. + p.1)

.

The index Sd can be interpreted as a conditional probability. Indeed, if we ran-

domly choose one of the two raters and consider the items classified positive by

this rater, Sd is the conditional probability that the second rater classifies the item

positive while the first rater classified the item positive. The same index exists if

we decide to ignore the proportion p11 instead of the proportion p22. This index

writes

S ′d =
p22

1
2
(p2. + p.2)

.

Rogot and Goldberg (1966) proposed to take the mean of Sd et S ′d as agreement

index between the two raters

A2 =
p11

(p1. + p.1)
+

p22

(p2. + p.2)
.

Note that A2 = 1 in case of perfect agreement. Goodman and Kruskal (1972)

suggested the following index

λr =
2p11 − (p12 + p21)

2p11 + (p12 + p21)
.

It is easily seen that λr = 2Sd− 1. The maximum value of λr is 1 when agreement

is perfect and the minimum value is −1 when p11 = 0.
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In all coefficients given above, the agreements due to chance alone have not been

taken in account. However, Scott (1955) introduced an index of inter-rater agree-

ment taking into account chance agreement. This is known as Scott’s π,

π̂ =
po − pe
1− pe

(2.1)

where po is defined as earlier and pe is the proportion of agreement to be expected

by chance, namely,

pe = p2
1 + p2

2. (2.2)

In this expression, pj = (p.j+pj.)/2 is the overall proportion of items in the sample

classified in category j (j = 1, 2). A more general way to correct for chance effect

is introduced in the next section.

2.3 Cohen’s kappa coefficient

2.3.1 Binary scale

Cohen (1960) introduced two proportions to define an agreement index between

two independent raters on a binary scale, the observed proportion of agreement

po =
n11 + n22

N
= p11 + p22 (2.3)

and the proportion of agreement expected by chance

pe =
n1.n.1 + n2.n.2

N2
= p1.p.1 + p2.p.2. (2.4)

To define the agreement index, Cohen (1960) considered the observed proportion

of agreement after that the proportion of agreement expected by chance is removed

from consideration. The result is then scaled to obtain a value 1 when agreement is

perfect, a value 0 when agreement is only due to chance and negative values when

observed agreement is lower than agreement expected by chance. Specifically,

Cohen’s kappa coefficient writes

κ̂ =
po − pe
1− pe

. (2.5)

2.3.2 Categorical scale

By extension, Cohen (1960) defined the observed proportion of agreement on a

categorical scale by

po =
K∑
j=1

njj
N

=
K∑
j=1

pjj (2.6)
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and the proportion of agreement expected by chance by

pe =
K∑
j=1

nj.n.j
N2

=
K∑
j=1

pj.p.j, (2.7)

leading to the Cohen’s kappa coefficient

κ̂ =
po − pe
1− pe

. (2.8)

Landis and Koch (1977b) proposed to qualify the strength of agreement according

to the values taken by Cohen’s kappa coefficient (see Table 2.3), although no longer

recommended today because the divisions are clearly arbitrary and vary depending

on the problem under study. The precision with which Cohen’s kappa coefficient

is estimated is also an important aspect (statistical significance).

Table 2.3. Qualification of the
strength of agreement according
to values of κ̂ following Landis
and Koch (1977b)
Agreement κ̂

Almost perfect > 0.81
Substantial 0.61− 0.80
Moderate 0.41− 0.60
Fair 0.21− 0.40
Slight 0− 0.20
Poor < 0

2.3.3 Properties

Hereafter, we look at the properties of Cohen’s kappa coefficient.

Property 1. κ̂ = 1 if and only if pij = 0 (i 6= j ∈ 1, · · · , K).

The upper limit of κ̂ is equal to 1, occurring if and only if there is perfect agreement

between the two raters. The condition : p.j = pj., j = 1, . . . , K is necessary but

not sufficient to have perfect agreement. Indeed, if ∃j ∈ 1, · · · , K : p.j 6= pj., there

is automatically disagreement.

Property 2. Given fixed margins, the maximum value of κ̂ is obtained for po =

poM =
∑K

j=1 inf(pj., p.j).



28 2.3. Cohen’s kappa coefficient

For given margins, Cohen (1960) proposed the following expression, in order to

determine the maximum value of κ̂:

κ̂M =
poM − pe

1− pe
(2.9)

where

poM =
K∑
j=1

inf(pj., p.j)

is the maximum proportion of observed agreement permitted by the marginals.

Property 3. The minimum value of κ̂ is obtained for po = 0.

The lower limit κ̂m of Cohen’s kappa coefficient is attained when the observed

proportion of agreement po between the two raters is nil. Thus,

κ̂m = − pe
1− pe

. (2.10)

The lower limit κ̂m only depends on the marginal distributions pj. and p.j, (j =

1, · · · , K) since it only involves the proportion pe and depends on the direction of

the two ratings. If the ratings go in the same direction, then κ̂m < −1/(K − 1).

Otherwise, κ̂m ≥ −1. When the scale is binary, κ̂m ≥ −1.

Property 4. Relationship between binary and K-category scales

Cohen’s kappa coefficient relative to a K-category scale can be derived from Co-

hen’s kappa coefficients derived on a binary scale obtained by isolating a category

j from the other categories (j = 1, · · · , K). This leads to the contingency table

displayed in Table 2.4.

Table 2.4. 2 × 2 contingency table obtained by isolating category
j from the other categories (j = 1, · · · ,K) in terms of frequency
(proportion)

Rater 2
Rater 1 Category j Other categories Total
Category j njj nj. − njj nj.
Other categories n.j − njj N − n.j − nj. + njj N − nj.
Total n.j N − n.j N

From this contingency table, the proportion of observed agreement is defined by

po[j] =
njj +N − n.j − nj. + njj

N
= pjj + 1− p.j − pj. + pjj (2.11)
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and the proportion of agreement expected by chance relative to category j by

pe[j] =
nj.n.j + (N − nj.)(N − n.j)

N2
= pj.p.j + (1− pj.)(1− p.j) (2.12)

leading to the Cohen’s kappa coefficient relative to category j,

κ̂[j] =
po[j] − pe[j]

1− pe[j]
. (2.13)

Remark that agreement (diagonal) and disagreement (off-diagonal) cells of the

K×K contingency table are mixed in the quantity N−n.j−nj.+njj. The overall

Cohen’s kappa coefficient can then be rewritten

κ̂ =

∑K
j=1(po[j] − pe[j])∑K
j=1(1− pe[j])

=
1∑K

j=1(1− pe[j])

K∑
j=1

(1− pe[j])κ̂[j]. (2.14)

Property 5. Relation between κ̂ and Pearson’s chi-square φ̂ coefficients for binary

scales

Cohen (1960) investigated the relation between Cohen’s kappa (κ̂) and Pearson’s

chi-square (φ̂) coefficients for binary scales. The coefficient φ̂ can be expressed as

followed :

φ̂ =
n11n22 − n12n21√

n.1n.2n1.n2.

. (2.15)

By simple algebraic transformations, Cohen’s kappa coefficient can be written as

followed:

κ̂ =
2(n11n22 − n12n21)

n.1n2. + n.2n1.

. (2.16)

If we suppose that n.1 = vN (n.2 = (1 − v)N) and n1. = wN (n2. = (1 − w)N),

with 0 ≤ v, w ≤ 1, then

φ̂2 = κ̂2

(
1 +

N4(v − w)2

4n.1n.2n1.n2.

)
. (2.17)

In general, φ̂2 ≥ κ̂2, φ̂2 = κ̂2 if and only if n.1 = n.2 = n1. = n2. = N/2.

Property 6. Population model and maximum likelihood estimator

Cohen (1960) defined Cohen’s kappa coefficient as a descriptive statistic on an ad

hoc basis and not in terms of population parameters. However, Bloch and Krae-

mer (1989) derived a population model in the case of a binary scale yielding the

Cohen’s kappa coefficient as maximum likelihood estimator.
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Consider a population of items I. Let Yi,r be the random variable such that

Yi,r = 1 if rater r (r = 1, 2) classifies a randomly selected item i of population I
in category 1 and Yi,r = 0 otherwise. Over the population of items, E(Yi,r) = πr
and var(Yi,r) = σ2

r = πr(1−πr). If ρ denotes the correlation between Yi,1 and Yi,2,

Table 2.5 corresponds to the population model.

Table 2.5. Theoretical model in the case of two independent raters
and a binary scale

Rater 2
Rater 1 0 1

0 E[(1− Yi,1)(1− Yi,2)] E[(1− Yi,1)Yi,2] 1− π1

(1− π1)(1− π2) + ρσ1σ2 (1− π1)π2 − ρσ1σ2

1 E[Yi,1(1− Yi,2)] E[Yi,1Yi,2] π1

π1(1− π2)− ρσ1σ2 π1π2 + ρσ1σ2

1− π2 π2 1

Cohen’s kappa coefficient is then defined as

κ =
Expected agreement− Random agreement

Maximum expected agreement− Random agreement

=
[π1π2 + (1− π1)(1− π2) + 2ρσ1σ2]− [π1π2 + (1− π1)(1− π2)]

1− π1π2 + (1− π1)(1− π2)

=
2ρσ1σ2

1− π1π2 + (1− π1)(1− π2)
. (2.18)

Suppose that the two raters classify a random sample of N items from population

I on a binary scale. This leads to the contingency table displayed in Table 2.2.

The log-likelihood function is then

lnL(π1, π2, κ|n11, n12, n21, n22)

+n11 ln[π1π2 +
1

2
κ(π1(1− π2) + (1− π1)π2)]

+n12 ln[(π1(1− π2)−
1

2
κ(π1(1− π2) + (1− π1)π2)]

+n21 ln[(1− π1)π2 −
1

2
κ(π1(1− π2) + (1− π1)π2)]

= n22 ln[(1− π1)(1− π2) +
1

2
κ(π1(1− π2) + (1− π1)π2)]. (2.19)
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The maximum likelihood estimators of π1, π2 and κ are respectively

π̂1 = p1. =
n11 + n12

N
= p11 + p12, (2.20)

π̂2 = p.1 =
n11 + n21

N
= p11 + p21, (2.21)

and

κ̂ =
2(n11n22 − n12n21)

π̂1(1− π̂2) + π̂2(1− π̂1)
=

2(n11n22 − n12n21)

n.1n2. + n.2n1.

, (2.22)

corresponding to Equation 2.16 and thus to the original definition given by Cohen

(1960).

2.3.4 Sampling variability

Delta method. The expression of the large sample variance of Cohen’s kappa

coefficient given by the Delta method (Bishop et al., 1975) is

var(κ̂) =
po(1− po)
N(1− pe)2

+
2(po − 1)(C1 − 2pope)

N(1− pe)3
+

(po − 1)2(C2 − 4p2
e)

N(1− pe)4
(2.23)

where

C1 =
K∑
j=1

pjj(pj. + p.j) and C2 =
K∑
j=1

K∑
k=1

pjk(p.j + pk.)
2.

The Delta method is exposed in Appendix B in the general case and in the par-

ticular case of multinomial data.

Garner’s method. Garner (1991) derived a simple expression for an appro-

ximate large sample variance of Cohen’s kappa for binary scales and a general

procedure for K-categorical scales. Only the binary case will be exposed here.

Garner (1991) took the following theoretical representation of the ratings made by

2 raters (Table 2.6). Note the similarity with Table 2.5 when considering δ = ρσ1σ2.

Table 2.6. Garner’s theoretical representation of ratings made by
two raters on a binary scale

Rater 2
0 1 Total

0 (1− π1)(1− π2) + δ (1− π1)π2 − δ 1− π1

Rater 1
1 π1(1− π2)− δ π1π2 + δ π1

Total 1− π2 π2 1
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Cohen’s kappa coefficient is directly related to δ through the formula

κ =
2δ

1− [π1π2 + (1− π1)(1− π2)]
. (2.24)

Conditioning on the observed marginal values, the theoretical proportion in the

(1,1) cell is π1π2+δ and the observed proportion is π̂1π̂2+δ̂. Therefore the difference

between the two is ±(δ− δ̂) in each cell. Garner (1991) used the fact that, in large

samples, the conditional log-likelihood may be approximated by (−1/2)χ2, where

χ2 may be taken as the following sum over the four cells:

(observed frequency−expected frequency)2/(an estimate of the cell frequency).

If (δ− δ̂) denotes the difference between an observed and expected cell proportion,

the large sample approximation to twice the negative log-likelihood may be written

as

χ2 = {N(δ − δ̂)}2
[

2∑
j=1

2∑
k=1

1

Np∗jk

]
where Np∗jk is the observed cell frequency or some ’smoothed’ estimate thereof.

Since χ2 has an asymptotically chi-square distribution with one degree of freedom

when the four cell frequencies are ’large’,

χ2 ≈

(
δ − δ̂
SE(δ̂)

)2

where SE(δ̂) ≈ 1

N
∑2

j=1

∑2
k=1

1
Np∗jk

.

This yields the following large sample variance estimate for κ̂,

var(κ̂) =
4

(1− pe)2N2
[∑2

j=1

∑2
k=1

1
Np∗jk

]2 . (2.25)

Garner (1991) proposed to replace Np∗jk by njk + 1 to avoid the problem of having

a zero cell frequency.

Jackknife Method. Fleiss and Davies (1982) derived the Jackknife estimator

of Cohen’s kappa coefficient, κ̂J , obtained by a weighted average of pseudo-values.

The pseudo-values are defined as κ̃jk = Nκ̂− (N − 1)κ̂−jk where κ̂−jk is Cohen’s

kappa coefficient obtained when one unit is deleted from the cell (j, k), j, k =

1, · · · , K . The Jackknife estimator of Cohen’s kappa coefficient is then

κ̂J =
1

N

K∑
j=1

K∑
k=1

njkκ̃jk (2.26)
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and the estimated variance is

var(κ̂J) =
1

N(N − 1)

K∑
j=1

K∑
k=1

njk(κ̃jk − κ̂J)2. (2.27)

The Jackknife procedure is described in general in Appendix B.

Bootstrap Method. The large sample variance of the Cohen’s kappa coefficient

can be determined by the bootstrap method as explained in Appendix B, by taking

the variance of the bootstrapped coefficients.

2.3.5 Example

Cervical ectopy, defined as the presence of endocervical-type columnar epithelium

on the portio surface of the cervix, has been identified as a possible risk factor

for heterosexual transmission of human immunodeficiency virus (HIV). To assess

the importance of cervical ectopy, methods for measuring ectopy with precision

are needed. A computerized planimetry method was developed for measuring cer-

vical ectopy and the reliability of that method was compared with direct visual

assessment in a study conducted by Gilmour et al. (1997). Photographs of the

cervix of 85 women without cervical disease were assessed for cervical ectopy by

three medical raters who used both assessment methods. The response of interest,

cervical ectopy size, was an ordinal variable with four categories: (1) minimal, (2)

moderate, (3) large and (4) excessive. The classification of the 85 women by 2 of

the 3 raters is summarized in Table 2.7 for the direct visual assessment in terms

of frequency.

Table 2.7. 4 × 4 contingency table resulting from the direct visual
assessment of cervical ectopy size by 2 medical raters on 85 women in
terms of frequency

Medical rater 2
Medical rater 1 Minimal Moderate Large Excessive Total
Minimal 13 2 0 0 15
Moderate 10 16 3 0 29
Large 3 7 3 0 13
Excessive 1 4 12 11 28
Total 27 29 18 11 85

Overall, the observed proportion of agreement is equal to

po = (13 + 16 + 3 + 11)/85 = 0.506.
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The proportion of agreement expected by chance is equal to

pe = (27× 15 + 29× 29 + 18× 13 + 11× 28)/852 = 0.247.

The two medical raters agree on 50.6% of the patients and agreement due to chance

amounts 24.7%. This leads to a Cohen’s kappa coefficient of

κ̂ = (0.506− 0.247)/(1− 0.247) = 0.343.

The maximum observed proportion of agreement permitted by the marginals is

equal to poM = (15 + 29 + 13 + 11)/85 = 0.800, leading a maximum value of

Cohen’s kappa coefficient of κ̂M = 0.734.

To determine the agreement on each category, 2 × 2 tables were constructed by

isolating one category and collapsing all the other categories together. They are

represented in Table 2.8. The corresponding observed proportions of agreement

(po), proportions of agreement expected by chance (pe), Cohen’s kappa coefficients

(κ̂), maximum observed proportion of agreement permitted by the marginal (poM)

and the resulting kappa coefficient κ̂M are also provided.

Table 2.8. 2 × 2 contingency tables obtained from the classification of the ectopy
size of 85 women by two medical raters with direct visual assessment when isolating
each category of the 4-categorical scale

Category Minimal
Rater 2

Rater 1 Minimal Other Total
Minimal 13 2 15
Other 14 56 70
Total 27 58 85

Category Moderate
Rater 2

Rater 1 Moderate Other Total
Moderate 16 13 29
Other 13 43 56
Total 29 56 85

Category Large
Rater 2

Rater 1 Large Other Total
Large 3 10 13
Other 15 57 72
Total 18 67 85

Category Excessive
Rater 2

Rater 1 Excessive Other Total
Excessive 11 17 28
Other 0 57 57
Total 11 74 85

As seen in Table 2.9, the agreement on extreme categories (Minimal and Excessive)

is better than agreement on middle categories (Moderate and Large). This is a

well-know phenomenon. It is easier to distinguish between extreme categories than

middle ones. The agreement on category Large is almost nil while the agreement

on category Excessive is the maximal agreement permitted by the marginals.
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Table 2.9. Observed proportions of agreement (po),
proportions of agreement expected by chance (pe),
Cohen’s kappa coefficients (κ̂), maximum observed
proportions of agreement permitted by the marginal
(poM ) and the resulting kappa coefficients κ̂M rela-
tive to the tables given in Table 2.8
Category po pe κ̂ poM κ̂M
Minimal 0.812 0.618 0.507 0.859 0.631
Moderate 0.694 0.550 0.320 1.0 1.0
Large 0.706 0.700 0.019 0.941 0.803
Excessive 0.800 0.626 0.465 0.800 0.465
Overall 0.506 0.247 0.343 0.800 0.734

2.4 Intraclass kappa coefficient

2.4.1 Definition

Kraemer (1979) proposed to define kappa in terms of population parameters, by

analogy to the intraclass correlation coefficient for continuous data, but adapted

to the categorical case. The intraclass kappa coefficient can be viewed as a special

case of Cohen’s kappa coefficient where it is assumed that the ratings are inter-

changeable. In other words, the two raters are assumed to have the same marginal

probability distribution. The resulting index is algebraically equivalent to Scott’s

index of agreement in the 2× 2 case (Scott, 1955).

Consider again a population of items I. Let Yij,r be a random variable such that

Yij,r = 1 if a randomly selected item i of population I is classified in category j

(j = 1, · · · , K) by rater r (r = 1, 2). Let E(Yij,r) = πj, (π′j = 1−πj), expectations

being taken over the population of items. The intraclass kappa coefficient relative

to category j is defined by

κI[j] =
cov(Yij,1, Yij,2)

πj(1− πj)
(2.28)

and the global intraclass kappa coefficient (κI) over the K categories is given by

κI =

∑K
j=1 cov(Yij,1, Yij,2)∑K
j=1 πj(1− πj)

. (2.29)

The intraclass kappa coefficient has the same form as Cohen’s kappa coefficient,

κI =
ΠoI − ΠeI

1− ΠeI

(2.30)
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where ΠoI =
K∑
j=1

E(Yij,1Yij,2) =
K∑
j=1

(cov(Yij,1, Yij,2) + π2
j )

and ΠeI =
K∑
j=1

[E(Yij,1)E(Yij,2)] =
K∑
j=1

π2
j .

2.4.2 Estimation of the parameters

Using the notations introduced in Table 2.1, the estimation of the intraclass kappa

coefficient is obtained by replacing in the expression of κI ΠoI by Π̂oI = poI with

poI =
K∑
j=1

pjj (2.31)

and ΠeI by Π̂eI = peI with

peI =
K∑
j=1

(
pj. + p.j

2

)2

. (2.32)

2.4.3 Properties for binary scales

Property 7. Population model and maximum likelihood estimator

As before (see Section 2.3.3, Property 6), consider the binary random variable Yi,r.

For item i, let P (Yi,r = 1) = E(Yi,r|i) = Pi since the raters are assumed to be

interchangeable. Over the population of items, let E(Pi) = π and var(Pi) = σ2.

Then, the intraclass kappa coefficient can be rewritten as

κI =
cov(Yi,1, Yi,2)√
var(Yi,1)var(Yi,2)

=
E(Yi,1Yi,2)− π2

π(1− π)
, (2.33)

if the data are summarized in a 2× 2 contingency table (Table 2.10).

Table 2.10. Theoretical model for binary ratings made by 2
raters with equal marginal distributions

Rater 2
Rater 1 0 1 Total

0 E[(1− Yi,1)(1− Yi,2)] E[(1− Yi,1)Yi,2] 1− π
1 E[Yi,1(1− Yi,2)] E[Yi,1Yi,2] π

Total 1− π π 1

Using the expression of κI given by Equation 2.33, Table 2.10 can be rewritten

(see Table 2.11). When the two discordant cells are grouped together, this table
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expresses the probabilities of a model, known as the common correlation model

(Bloch and Kraemer, 1989).

Table 2.11. Expected probability of joint responses for the
classification of two raters on a binary scale (common corre-
lation model)

Rater 2
Rater 1 0 1 Total

0 (1− π)2 + κIπ(1− π) π(1− π)(1− κI) 1− π
1 π(1− π)(1− κI) π2 + κIπ(1− π) π

Total 1− π π 1

Suppose the two raters classify a random sample of N items, leading to the con-

tingency Table 2.2. The log-likelihood function is then

lnL(π, κI |n11, n12, n21, n22) = n11 ln[π2 + κIπ(1− π)]

+ (n12 + n21) ln[π(1− π)(1− κI)]
+ n22 ln[(1− π)2 + κIπ(1− π)]. (2.34)

The maximum likelihood estimators of π and κI are

π̂ =
2n11 + n12 + n22

2N
, (2.35)

κ̂I =
4(n11n22 − n12n21)− (n12 − n21)

2

(2n11 + n12 + n21)(2n22 + n12 + n21)
(2.36)

which can be rewritten under the same form as Cohen’s kappa coefficient, i.e.,

κ̂I = (poI − peI)/(1− peI) with poI = (n11 + n22)/N and peI = π̂2 + (1− π̂)2.

Property 8. Effect of prevalence, sensitivity and specificity

Kraemer (1979) showed the influence of the prevalence on the intraclass kappa coef-

ficient in the binary case. Let M be a disease with prevalence noted P = P (M) or

equivalently the population of diseased subjects. Denote by M the population of

non diseased subjects. Suppose that a test T is available such that a given subject

will be declared ”diseased” if the test is positive (T+) and ”non-diseased” if the

test is negative (T−). Let Yi be random a variable such that Yi = 1 if the test is

positive and Yi = 0 otherwise.

The sensitivity of the test is defined as the probability for a given subject to be

declared positive if he/she is diseased. We have Se = P (T+|M) = E|MYi.
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In the same way, the specificity is defined as the probability for a given subject to

be declared negative if he/she is disease free, Sp = P (T−|M) = E|M(1− Yi).

Since

π = P (T+) = P (T+|M)P (M) + P (T+|M)P (M) = PSe + (1− P )(1− Sp),

the probability π is the expectation of Yi. Indeed,

E(Yi) = E|MYiP (M) + E|MYiP (M) = PSe + (1− P )(1− Sp) = π.

The variance of Yi is

var(Yi) = P (1− P )(Se + Sp − 1)2.

From Equation 2.28, we have

κI =
P (1− P )(Se + Sp − 1)2

π(1− π)
. (2.37)

It results that κI = 1 if and only if Se = 1 and Sp = 1, i.e., T is a perfect test

(pathognomonic test). If P = 0 or P = 1, κI = 0. Except for these extreme

values, κI presents a maximum (κIM) if P =
σSp

σSe + σSp

where σ2
Sp

= Sp(1 − Sp)

and σ2
Se

= Se(1− Se). By replacing the corresponding values in the expression of

κI , we find

κIM = [(SeSp)
1/2 − [(1− Se)(1− Sp)]1/2]2. (2.38)

Property 9. Relation between Cohen’s kappa and intraclass kappa coefficients

When K = 2, both Cohen’s kappa (κ̂) and intraclass kappa (κ̂I) coefficients can

be written under the same form:

κ̂ =
po − pe
1− pe

(2.39)

with po = (n11 + n22)/N and pe = (n1.n.1 + n2.n.2)/N
2 and

κ̂I =
poI − peI
1− peI

(2.40)

with

poI = (n11 + n22)/N,

peI = ((2n11 + n12 + n21)/2N)2 + ((2n22 + n12 + n21)/2N)2 .

It results that Cohen’s kappa and the intraclass kappa are asymptotically equiva-

lent. Indeed, since

peI − pe =
1

2N2
(n12 − n21)

2 N→∞→ 0 (2.41)
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we have

|κ̂− κ̂I | =
∣∣∣∣po − pe1− pe

− po − peI
1− peI

∣∣∣∣ =

∣∣∣∣(pe − peI)(po − 1)

(1− pc)(1− peI)

∣∣∣∣ N→∞→ 0. (2.42)

Moreover, it can be noted that Cohen’s kappa and the intraclass kappa coefficient

are equivalent when n12 = n21, i.e., there is no rater bias.

2.4.4 Sampling variability

Delta method. Using the Delta method, the large sample variance of Cohen’s

kappa coefficient, with the additional assumption of homogeneous margins, sim-

plifies to

var(κ̂I) =
1

N(1− C3)2

{
2∑
j=1

pjj[1− 4pj(1− κ̂I)]

+ (1− κ̂I)2

2∑
j=1

2∑
k=1

pjk(pj + pk)
2 − [κ̂I − C3(1− κ̂I)]2

}
(2.43)

where pjk = njk/N, j, k = 1, 21, pi. = ni./N , p.j = n.j/N , pj = (pj. + p.j)/2 and

C3 = p1 + p2.

Bloch and Kraemer method. The expression of the standard error of the

intraclass kappa obtained by the Delta method being quite unpleasant, Bloch and

Kraemer (1989) instead proposed to use the formula derived by Fisher (1958).

This method is based on the Taylor series expansion and led to

var(κ̂I) =
(1− κ̂I)

N

[
(1− κ̂I)(1− 2κ̂I) +

κ̂I(2− κ̂I)
2π̂(1− π̂)

]
. (2.44)

Jackknife and bootstrap methods. The standard error of the intraclass kappa

coefficient can also be derived by the Jackknife and the bootstrap method, in the

same way as for Cohen’s kappa coefficient (see Section 2.3.4).

2.4.5 Example

Pursuing with the cervical ectopy data obtained on 85 women by two raters, we

calculated the intraclass kappa coefficient for each category of the 4-category scale

(see Table 2.12).

For example, when considering the category ”Minimal” against all other categories,

the proportion of observed agreement is equal to

poI = po =
13 + 56

85
= 0.812
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Table 2.12. Observed proportions
of agreement (po), proportions of
agreement expected by chance (peI)
and, intraclass kappa coefficients
(κ̂I) relative to the tables in Table
2.8
Category poI peI κ̂I
Minimal 0.812 0.628 0.494
Moderate 0.694 0.550 0.320
Large 0.706 0.702 0.014
Excessive 0.800 0.646 0.434
Overall 0.506 0.263 0.330

but the proportion of agreement expected by chance differs, namely

peI = ((2× 13 + 2 + 14)/(2× 85))2 + ((2× 56 + 2 + 14)/(2× 85))2 = 0.628.

This leads to an intraclass kappa coefficient of

κ̂I =
poI − peI
1− peI

= 0.494.

Remark that, when the marginal distribution of the two raters are the same (see

Category Moderate in Table 2.12), we effectively have κ̂ = κ̂I . The overall intra-

class coefficient is equal to κ̂I = (0.506− 0.263)/(1− 0.263) = 0.330.

2.5 Weighted kappa coefficient

2.5.1 Definition

Often some disagreements between the two raters can be considered as more im-

portant than others. For example, disagreement on two distant categories should

be considered more important than on neighbouring categories on an ordinal scale.

For this reason, Cohen (1968) introduced the weighted kappa coefficient. Agree-

ment (wjk) or disagreement (vjk) weights are a priori distributed in the K2 cells

of the K ×K contingency table (see Table 2.1). The weighted kappa coefficient is

defined in terms of agreement weights

κ̂w =
pow − pew
1− pew

(2.45)

with pow =
K∑
j=1

K∑
k=1

wjkpjk and pew =
K∑
j=1

K∑
k=1

wjkpj.p.k (0 ≤ wjk ≤ 1 and wjj = 1).
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It can also be defined with disagreement weights,

κ̂w = 1− qow
qew

(2.46)

with qow =
K∑
j=1

K∑
k=1

vjkpjk and qew =
K∑
j=1

K∑
k=1

vjkpj.p.k (0 ≤ vjk ≤ 1 and vjj = 0).

Although weights can be arbitrarily defined, two weighting schemes are most com-

monly used. These are the ”linear” weights introduced by Cicchetti and Allison

(1971)

wjk = 1− |j − k|
K − 1

(2.47)

and the quadratic weights introduced by Fleiss and Cohen (1973)

wjk = 1−
(
|j − k|
K − 1

)2

. (2.48)

Note that the disagreement weights vjk = (j − k)2 are also commonly used (Lud-

brook, 2002; Agresti, 1992) and that Cohen’s kappa coefficient is a particular case

of the weighted kappa coefficient where wjk = 1 when j = k and wjk = 0 otherwise.

2.5.2 Properties

Quadratic weighting scheme. Cohen (1968) showed that if the marginal dis-

tribution of the two raters are the same and if the weights of disagreement are

defined as vjk = (j − k)2, the weighted kappa coefficient is equivalent to the Pear-

son’s correlation coefficient. This is a generalization of what was found for binary

scales (κ̂ = φ̂). Furthermore, Fleiss and Cohen (1973) showed that using these

weights vjk, the weighted kappa coefficient has the same interpretation as the in-

traclass correlation coefficient of reliability when systematic variability between

raters is included as a component of total variation. Finally, Schuster (2004) ex-

plicitly decomposed the weighted kappa coefficient defined with the weights vjk
in terms of rater means, rater variances and rater covariance in the context of a

two-way ANOVA setting.

Consider the following two-way analysis of variance model. Let rater r (r = 1, 2)

assign item i (i = 1, · · · , N) in category k (k = 1, · · · , K) and Yi,r denote the

category score of item i.

Yi,r = µ+Bi + Ar + Ei,r (2.49)
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where Bi represents the random item effect, Ar the rater effect, either considered

as fixed or random and Ei,r the error term. Using the disagreement weights vjk =

(j − k)2, Fleiss and Cohen (1973) shown that the weighted kappa coefficient can

be rewritten as

κ̂w =
BMS − EMS

BMS + EMS + 2
N−1

JMS
(2.50)

where BMS, JMS and EMS refer to item, rater and error mean squares, respectively

based onN−1, R−1 and (R−1)(N−1) degrees of freedom. Schuster (2004) showed

that under the assumption of equal rater means, the weighted kappa coefficient is

equivalent to ICCC2 or ICCC3 depending if raters are considered as random or

fixed, respectively.

κ̂w =
BMS − EMS

BMS + (R− 1)EMS
=
BMS − EMS

BMS + EMS
. (2.51)

By additionally assuming equality of rater variances, Cohen (1968) showed that

the weighted kappa coefficient is equivalent to Pearson’s correlation coefficient.

Schuster (2004) remarked that the Pearson’s correlation coefficient thus represents

an upper limit of the weighted kappa coefficient.

Linear weighting scheme. Vanbelle and Albert (2009c) revisited the weighted

kappa coefficient with linear weights for ordinal scales to provide an intuitive in-

terpretation of it. For any ”cut-off” value k (k = 1, · · · , K − 1), they reduced

the K × K contingency table (see Table 2.1) into a 2 × 2 classification table by

summing up all observations below and above the first k rows and first k columns

(see Table 2.13) where

N11(k) =
∑K

i=1

∑K
j=1 nij N12(k) =

∑K
i=1

∑K
j=k+1 nij

N21(k) =
∑K

i=k+1

∑K
j=1 nij N22(k) =

∑K
i=k+1

∑K
j=k+1 nij

Let Flm(k) =
1

N
Nlm(k), Fl. =

1

N
Nl.(k) and F.m =

1

N
N.m(k) be the corresponding

joint and marginal frequencies (l,m = 1, 2; k = 1, · · · , K − 1). Finally, denote by

po(k) = F11(k) + F22(k) (2.52)

and

pe(k) = F1.(k)F.1(k) + F2.(k)F.2(k) (2.53)

the observed and expected proportions of agreement corresponding to Table 2.13.
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Table 2.13. Reduction of the K × K
contingency table into a 2 × 2 classifi-
cation table by selecting a cut-off level
k (k = 1, · · · ,K) on the ordinal scale

Rater 2
Rater 1 ≤ k > k Total
≤ k N11(k) N12(k) N1.(k)
> k N21(k) N22(k) N2.(k)
Total N.1(k) N.2(k) N

Now, consider the quantities

p∗o =
1

K − 1

K−1∑
k=1

po(k) (2.54)

and

p∗e =
1

K − 1

K−1∑
k=1

pe(k). (2.55)

Vanbelle and Albert (2009c) showed that p∗o = pow and p∗e = pew where pow and

pew are respectively the ”linearly” weighted observed and expected agreement, as

defined by Cicchetti and Allison (1971) (see proof in Section 2.8). Specifically, they

showed that the observed and expected agreements are merely the mean values of

the corresponding proportions of all 2 × 2 tables obtained by collapsing the first

k categories and last K − k categories (k = 1, · · · , K − 1) of the original K ×K
classification table, giving an intuitive interpretation of the linearly weighted kappa

coefficient.

2.5.3 Sampling variability

The Delta method gives

var(κ̂w) =
1

N (1− pew)4{
K∑
j=1

K∑
k=1

pjk [wjk (1− pew)− (wj. + w.k) (1− pow)]2

− (powpew − 2pew + pow)2} (2.56)

where w.j =
∑K

m=1wmjpm. and wk. =
∑K

s=1wksp.s. The large sample variance can

also be derived by the Jackknife and the bootstrap method.

2.5.4 Example

In the cervical ectopy example (Gilmour et al., 1997), women were classified on a

4-category Likert scale. Disagreements between category 1 (Minimal) and 4 (Ex-



44 2.5. Weighted kappa coefficient

cessive) may be considered more important than disagreements between category

1 (Minimal) and 2 (Moderate). The linear and quadratic weights corresponding

to a 4-category scale are given in Table 2.14.

Table 2.14. Linear (left) and quadratic (right) weighting schemes for a 4-
category scale

Rater 2
Rater 1 1 2 3 4

1 1.00 0.67 0.33 0.00
2 0.67 1.00 0.67 0.33
3 0.33 0.67 1.00 0.67
4 0.00 0.33 0.67 1.00

Rater 2
Rater 1 1 2 3 4

1 1.00 0.89 0.56 0.00
2 0.89 1.00 0.89 0.56
3 0.56 0.89 1.00 0.89
4 0.00 0.56 0.89 1.00

To determine the linearly weighted kappa coefficient, consider Table 2.15. The

weighted observed agreement is the sum of the elements obtained by multiplying

the columns wij and pij. The weighed expected agreement is the sum of the ele-

ments obtained by multiplying the columns wij and pi.p.j.

The linearly weighted kappa coefficient was found to be 0.520 with pow = 0.800

and pew = 0.583 while the quadratic weighted kappa coefficient was equal to 0.666

(pow = 0.907 and pew = 0.722).

Table 2.15. Elements to determine the linearly weighted kappa coefficient for the
cervical ectopy size example
Rater 1 Rater 2 wij pij pi.p.j Rater 1 Rater 2 wij pij pi.p.j

1 1 1.00 0.15 0.05 3 1 0.33 0.04 0.04
1 2 0.67 0.02 0.05 3 2 0.67 0.08 0.04
1 3 0.33 0.00 0.03 3 3 1.00 0.04 0.03
1 4 0.00 0.00 0.02 3 4 0.67 0.00 0.02
2 1 0.67 0.12 0.09 4 1 0.00 0.01 0.09
2 2 1.00 0.19 0.10 4 2 0.33 0.05 0.10
2 3 0.67 0.04 0.06 4 3 0.67 0.14 0.06
2 4 0.33 0.00 0.04 4 4 1.00 0.13 0.04
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2.6 Examples

2.6.1 Agreement and association

A frequent mistake is to use a chi-square test to quantify agreement between raters.

The example of Fermanian (1984) illustrates this confusion. Let two raters classify

independently N = 100 patients in three diagnostic categories A,B and C, leading

to the contingency table displayed in Table 2.16 (first line). Under the hypothesis

of independence of the two ratings, the expected cell counts are determined (second

line of Table 2.16).

Tjk =
nj.n.k
N

j, k = 1, 2, 3. (2.57)

Table 2.16. Fermanian’s example
(1984): observed and expected
cell counts

Rater 2
Rater 1 A B C Total
A 16a 0 24 40

16b 8 16
B 20 6 4 30

12 6 12
C 4 14 12 30

12 6 12
Total 40 20 40 100

a Observed cell count
b Expected cell count

Under the hypothesis of independence between the two raters, the statistic

χ2 =
3∑
j=1

3∑
k=1

(Ojk − Ejk)2

Ejk
(2.58)

where Ojk is the observed cell count in the cell (j, k) and Ejk is the corresponding

expected cell count, follows a chi-square distribution with (K − 1)(K − 1) degrees

of freedom.

For the example, χ2
obs = 38.7 with 4 degrees of freedom. Hence, there is a highly

significant association between the two ratings. However, the observed proportion

of agreement is equal to po = 0.34 and the proportion of agreement expected by

chance to pe = 0.34. Thus, Cohen’s kappa coefficient is equal to

κ̂ =
0.34− 0.34

1− 0.34
= 0.
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Despite the existence of a strong association between the two ratings, agreement

between the raters is only to be expected by chance. This example shows that

agreement and association are different things.

2.6.2 Blood clots detection

A study was conducted on 50 patients to measure the efficacy of two new methods

with respect to a standard method in the detection of blood clots in the legs (un-

published data). Each patient was classified as having (1) or not having (0) blood

clot(s) in the legs with respect to a reference method called ”Standard” and 2 new

methods ”Method 1” and ”Method 2”. Age and gender were also recorded for

each patient. The study aimed at comparing the agreement between the standard

method and each of the new methods in order to make a choice between them.

There were 23 (46.0%) women and 27 (54.0%) men involved in the study. Their

mean age was 69.0 ± 16.1 years (range: 32-97 years). The classification of the

patients according to the presence of blood clots is given in Table 2.17 for the

entire population and in Table 2.18 according to gender.

Table 2.17. Blood clots detection (0=No, 1=Yes) in the legs
of 50 patients with a standard method and two new methods

Method 1 Method 2
0 1 Total 0 1 Total

Standard 0 18 11 29 26 3 29
1 4 17 21 4 17 21
Total 22 28 50 30 20 50

Table 2.18. Blood clots detection (0=No, 1=Yes) in the legs of 23 women
and 27 men with a standard method and two new methods

Method 1 Method 2
Gender Method 0 1 Total 0 1 Total
Women Standard 0 5 6 11 10 1 11

1 0 12 12 1 11 12
Total 5 18 23 11 12 23

Men Standard 0 13 5 18 16 2 18
1 4 5 9 3 6 9

Total 17 10 27 19 8 27

Cohen’s kappas corresponding to Tables 2.17 and 2.18 are given in Table 2.19 with

their standard error (SE) determined by the Delta and the Jackknife methods.
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Table 2.19. Blood clots detection example: Cohen’s kappa coefficients (κ̂ ±
SE) for all patients and according to patients’ gender

All (N = 50) Men (N = 27) Women (N = 23)
Delta SE
Method 1 - Standard 0.41±0.12 0.27±0.19 0.47±0.16
Method 2 - Standard 0.71±0.10 0.57±0.17 0.83±0.12
Jackknife SE
Method 1 - Standard 0.41±0.13 0.27±0.20 0.47±0.17
Method 2 - Standard 0.71±0.10 0.57±0.18 0.83±0.12

Method 2 clearly gives better agreement with the Standard method than Method

1 and should thus, at this stage of the study, be preferred to Method 1.

2.6.3 Cervical ectopy size

Partial data of the study of Gilmour et al. (1997) were presented in Section 2.3.5.

The classification of the cervical ectopy size of 85 women by the 2 medical raters

using direct visual assessment and the computerized planimetry method is given

in Table 2.20.

Table 2.20. Assessment of the cervical ectopy size (1=Minimal, 2=Moderate,
3=Large and 4=Excessive) of 85 women by 2 raters with the visual assessment
and the computerized planimetry methods

Visual assessment Computerized planimetry
Rater 2 Rater 2

Rater 1 1 2 3 4 Total Rater 1 1 2 3 4 Total
1 13 2 0 0 15 1 30 1 1 0 32
2 10 16 3 0 29 2 7 25 3 0 35
3 3 7 3 0 13 3 1 4 1 1 7
4 1 4 12 11 28 4 0 1 2 8 11
Total 27 29 18 11 85 Total 38 31 7 9 85

The weighted kappa coefficients with quadratic weights corresponding to these

classifications are given in Table 2.21. The agreement between the two medical

raters was slightly higher with the planimetry method than with the direct visual

assessment.
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Table 2.21. Cervical ectopy example: weighted kappa
coefficients with quadratic weights (κ̂w ± SE)

Visual assessment Planimetry method
Delta SE 0.67±0.061 0.82±0.051
Jackknife SE 0.67±0.062 0.82±0.053

2.7 Discussion

In this chapter, measures of agreement between two raters on a K-categorical scale

were introduced: Cohen’s kappa, intraclass kappa and weighted kappa coefficients.

Cohen’s kappa coefficient is mainly used to quantify agreement on nominal scales,

the intraclass kappa coefficient on binary scales when no rater bias is assumed and

the weighted kappa coefficient on ordinal scales. These coefficients all possess the

same property of being equal to 1 when agreement is perfect and equal to 0 when

agreement is due to chance and will therefore be said to belong to the kappa-like

family. However, as mentioned in the review of Banerjee et al. (1993), this fa-

mily does not represent the only issue in the measurement of agreement between

two raters on a categorical scale. Indeed, when the binary scale can be viewed

as a dichotomization of an underlying continuous variable that is unidimensional

with normal distribution, the tetrachoric correlation coefficient (TCC) (Pearson,

1900) is preferred. This may be the case, for example, for radiological assessment

of pneumoconisis (normal/abnormal), which is assessed from chest radiographies

displaying a profusion of small irregular opacities (Banerjee et al., 1993). Note

that the TCC quantifies agreement in a different context and estimate, albeit re-

lated, different quantities (Kramer, 1997). Bennett et al. (1954) also derived the

S agreement coefficient, assuming a uniform marginal distribution for both raters.

Several criticisms on kappa coefficients were formulated in the literature. Firstly,

Thompson and Walter (1988), Feinstein and Cicchetti (1990), Cicchetti and Fein-

stein (1990) and Byrt et al. (1993) pointed out that Cohen’s kappa coefficient is

dependent on the prevalence of the trait under study which indicates a serious

limitation when comparing values of Cohen’s kappa coefficient among studies with

varying prevalence. The dependence studied by Thompson and Walter (1988) was

relative to the prevalence of the true latent binary variable under study, keeping

sensitivity and specificity fixed, while Feinstein and Cicchetti (1990) studied the

dependence of Cohen’s kappa coefficient on observed marginal prevalences, kee-

ping the proportion of observed agreement fixed. Indeed, it may appear surprising

to find a low agreement when diagonal cells in the 2 × 2 contingency table show

substantially greater frequency than the off-diagonal cells. However, Bloch and

Kraemer (1989) and Vach (2005) criticized the results of Thompson and Walter
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(1988) by noting that the dependence occurred only if one can change the preva-

lence without changing sensitivity and specificity, which is generally not the case.

Moreover, Vach (2005) pointed out that the dependence studied by Feinstein and

Cicchetti (1990) is simply a consequence of the purpose of Cohen’s kappa coef-

ficient. This was also noted by Hoehler (2000), who remarked that rater bias,

by definition, indicates disagreement. The latter author added that kappa should

never be adjusted for bias and prevalence, as made by Banerjee et al. (1993) and

Lantz and Nebenzahl (1996). An alternative should be the use of the intraclass

kappa coefficient, which ignores the bias existing between the raters. However,

Zwick (1988) proposed to study the bias that may arise between the raters and to

only assume no rater bias when it is plausible.

The use of weighted kappa coefficients was also criticized. The weights are gene-

rally given a priori and defined arbitrarily. In practice, the linear (Cicchetti and

Allison, 1971) and quadratic (Fleiss and Cohen, 1973) weighting schemes are the

most widely used. Quadratic weights have received much attention in the lite-

rature because of their practical interpretation. For instance, Fleiss and Cohen

(1973) and Schuster (2004) showed that using the weights vjk = (j − k)2, the

weighted kappa coefficient can be interpreted as an intraclass correlation coeffi-

cient in a two-way analysis of variance setting. In addition, Schuster (2004) noted

that the weighted kappa coefficient is sensitive to change in location and scale of

the scores, the intraclass correlation coefficient only to changes in scale while the

Pearson’s correlation coefficient is not sensitive to any change in location or scale

and thus stressed the searcher to use the right coefficient according to the question

of interest. On an other hand, Vanbelle and Albert (2009c) focused on the line-

arly weighted kappa coefficient defined by Cicchetti and Allison (1971) and strove

to give an intuitive interpretation of it. Graham and Jackson (1993) observed

that the value of the weighted kappa coefficient can vary considerably according

to the weighting scheme used and henceforth may lead to different conclusions

but guidelines for the selection of weights are inexistent unlike in Brenner and

Kliebsch (1996), who demonstrated, using simulations, that with linear weights,

the weighted kappa coefficient is less sensitive to the number of categories and

should therefore be preferred when the number of categories of the ordinal scale is

large. Finally, Roberts and McNamee (1998, 2005) developed a symmetric matrix

of kappa-type coefficients to assess the agreement on an ordinal scale, arguing that

collapsing all aspects of agreement into a single measure (i.e., the weighted kappa

coefficient) may be not sufficient when categories are defined qualitatively. The

matrix elements measure how well different parts of the scale may be distinguished

from each other and a weighted kappa coefficient can be derived from the diagonal

elements of the matrix.
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Another criticism about the kappa-like family agreement indexes is that, like cor-

relation coefficients, the interpretation of kappa statistics is not clear except for 0

and 1 values. Landis and Koch (1977b) therefore constructed a classification to

appreciate the strength of agreement. This classification is widely used but should

be avoided since its construction is totally arbitrary. It is preferable to consider a

confidence interval to appreciate the value of a kappa estimate, the lower bound

being often the only of interest. Several methods were derived to estimate the

sampling variability of agreement coefficients belonging in the kappa-like family.

Fleiss and Cuzick (1979) wrote ’Many human endeavors have been cursed with

repeated failures before final success is achieved. The scaling of Mount Everest is

one example. The discovery of the Northwest Passage is a second. The derivation

of a correct standard error for kappa is a third ’. This is still the case. Only the

Delta, Kraemer, Jackknife and Garner’s methods were presented in this chapter

because Blackman and Koval (2000) conducted a simulation study to compare the

confidence intervals obtained for the intraclass kappa coefficient in the binary case

based on these methods. As conclusion, they provided a guidance in selecting a

method in small samples, showed in Table 2.22.

Table 2.22. Guidance table for constructing confidence interval in small samples for
the intraclass kappa coefficient in the binary case
κ̂ Interpretation Prevalence Sample size Method
0.0 ≤ κ̂ < 0.2 Slight 0.1 < P̂ < 0.9 N ≥ 20 Kraemer, Delta
0.2 ≤ κ̂ < 0.4 Fair 0.1 ≤ P̂ ≤ 0.9 N ≥ 20 Kraemer, Delta,

Jackknife
0.4 ≤ κ̂ < 0.6 Moderate 0.2 ≤ P̂ ≤ 0.8 20 ≤ N < 40 Garner

P̂ ≤ 0.2; P̂ ≥ 0.8 N ≥ 40 Jackknife
0.6 ≤ κ̂ < 1.0 Substantial 0.1 < P̂ < 0.9 N ≥ 20 Garner

However, in the literature, rules relative to the minimal sample size and marginal

totals to justify the asymptotic approximation of the Delta method or Kraemer’s

method are not clear. Bloch and Kraemer (1989) and Donner and Eliasziw (1992),

however, noted that the confidence interval obtained with Kraemer method is only

reasonable with ’large’ sample size that were not found to be attained in most

of the agreement studies. Bloch and Kraemer (1989) therefore proposed a vari-

ance stabilizing transformation of the intraclass kappa coefficient or the use of the

Jackknife estimator of the variance while Donner and Eliasziw (1992) proposed a

procedure based on the χ2 goodness of fit statistic for binary scales and extended

the procedure to multinomial scales later (Donner and Eliasziw, 1997). Donner

and Eliasziw (1992) found satisfactory results for N = 25 as Bloch and Kraemer

(1989). However, both methods perform poorly when agreement or prevalence is
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extreme (near 0 or near 1). Note that the Jackknife estimation of the variance was

also proposed by Fleiss and Davies (1982). Cantor (1996) provided sample-size

determination for Cohen’s kappa coefficient in the binary case when variance is

estimated by the Delta method. Nam (2000) proposed an alternative procedure,

the score method, to derive confidence interval for the intraclass kappa coefficient

and shown that the method performed better than the method of Donner and

Eliasziw (1992) for small sample sizes.

Despite the disadvantages and limitations of Cohen’s kappa coefficient, this index

is popular due to its simplicity and wide applicability. It should just be known,

that kappa mixes two sources of disagreement among raters, disagreement due to

bias among raters and disagreement that occur because raters evaluate the items

differently (Mielke and Berry, 2008).

2.8 Proofs

Equivalence 1. If

p∗o =
1

K − 1

K−1∑
k=1

po(k)

and

p∗e =
1

K − 1

K−1∑
k=1

pe(k)

where po(k) and pe(k) are defined in Equation 2.52 and 2.53, then p∗o = pow and

p∗e = pew, where pow and pew are respectively the ”linearly” weighted observed and

expected agreement, as defined by Cicchetti and Allison (1971).

Proof. Indeed, since

p∗o =
1

K − 1

K−1∑
k=1

(
k∑
i=1

k∑
j=1

pij +
K∑

i=k+1

K∑
j=k+1

pij

)

=
1

K − 1

K−1∑
k=1

(
K∑
i=1

K∑
j=1

pij −
k∑
i=1

K∑
j=k+1

pij −
K∑

i=k+1

k∑
j=1

pij

)

=
K∑
i=1

K∑
j=1

pij −
1

K − 1

K−1∑
k=1

(
k∑
i=1

K∑
j=k+1

pij +
K∑

i=k+1

k∑
j=1

pij

)
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and

po =
K∑
i=1

K∑
j=1

(
1− |i− j|

K − 1

)
pij

=
K∑
i=1

K∑
j=1

pij −
1

K − 1

K∑
i=1

K∑
j=1

|i− j|pij

=
K∑
i=1

K∑
j=1

pij −
1

K − 1

K∑
i=1

i∑
j=1

(i− j)pij −
1

K − 1

K−1∑
i=1

K∑
j=i+1

(j − i)pij,

it suffices to prove that

K−1∑
k=1

(
k∑
i=1

K∑
j=k+1

pij +
K∑

i=k+1

k∑
j=1

pij

)
=

K−1∑
i=1

K∑
j=i+1

(j− i)pij +
K∑
i=1

i∑
j=1

(i− j)pij. (2.59)

We have successively,

K−1∑
k=1

 k∑
i=1

K∑
j=k+1

pij +
K∑

i=k+1

k∑
j=1

pij

 =
K−1∑
k=1

k∑
i=1

K∑
j=k+1

pij +
K−1∑
k=1

K∑
i=k+1

k∑
j=1

pij

=
1∑
i=1

K∑
j=2

pij +
2∑
i=1

K∑
j=3

pij + · · ·+
K−1∑
i=1

K∑
j=K

pij

+
K∑
i=2

1∑
j=1

pij +
K∑
i=3

2∑
j=1

pij + · · ·+
K∑
i=K

K−1∑
j=1

pij

=
1∑
i=1

K∑
j=2

pij +
1∑
i=1

K∑
j=3

pij +
2∑
i=2

K∑
j=3

pij + · · ·+
1∑
i=1

K∑
j=K

pij +
K−1∑
i=2

K∑
j=K

pij

+
K∑
i=K

1∑
j=1

pij +
K−1∑
i=2

1∑
j=1

pij +
K∑
i=K

2∑
j=1

pij +
K−1∑
i=3

2∑
j=1

pij + · · ·+
K∑
i=K

K−1∑
j=1

pij

=
K∑
j=2

(j − 1)p1j +
2∑
i=2

K∑
j=3

pij + · · ·+
K−1∑
i=2

K∑
j=K

pij

+
K−1∑
j=1

(K − j)pKj +
K−1∑
i=2

1∑
j=1

pij + · · ·+
K−1∑
i=3

2∑
j=1

pij
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=
K∑
j=2

(j − 1)p1j +
K∑
j=3

(j − 2)p2j + · · ·+
K∑
j=K

(j − (K − 1))pK−1,j

+
K−1∑
j=1

(K − j)pKj +
K−2∑
j=1

(K − 1− j)pK−1,j + · · ·

+
K−(K−1)∑

j=1

(K − (K − 1)− j)pK−(K−1),j

=
K−1∑
i=1

K∑
j=i+1

(j − i)pij +
K∑
i=1

i∑
j=1

(i− j)pij . (2.60)

Thus, p∗o = pow. The proof for p∗e = pew proceeds similarly by replacing pij by

pi.p.j (i, j = 1, · · · , K).





CHAPTER 3

Agreement between several raters

3.1 Introduction

While it is easy to define the agreement between two raters on a categorical scale

for a given item (they agree or they don’t agree), this is not the case when agree-

ment is searched between several raters (R > 2). Indeed, agreement on a given

item between R raters may be defined by an arbitrary choice along a continuum

ranging from agreement between a pair of raters to agreement among all raters,

i.e. a concordant classification between g raters (g = 2, · · · , R). The most restric-

tive definition is to ask that all R raters agree on the categorization of the item

(De Moivre’s definition of agreement) and the less restrictive one is the pairwise

definition of agreement, assuming that an agreement occurs if and only if two

raters categorize the item consistently (Hubert, 1977). The pairwise definition of

agreement was used by Fleiss (1971) and Davies and Fleiss (1982). In between,

Conger (1980) developed a general framework, permitting to choose the definition

of agreement on the continuum going from 2 to R, the g-wise agreement indexes

(g = 2, · · · , R), including the De Moivre’s (R-wise) and pairwise (2-wise) defini-

tions of agreement. Recently, Mielke and Berry (2008) proposed a weighted kappa

coefficient between R raters using the De Moivre’s definition of agreement.

However, Light (1971) used another definition of agreement. Specifically, he iden-

tified a rater among the R raters as the gold standard or the reference and defined

agreement as a consistent classification between the standard (or reference) and

another rater. Conger (1980) showed that this coefficient of agreement is equiva-

55
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lent to taking the average of the Cohen’s kappa coefficients determined between

all the R(R− 1) possible pairs of raters among the R raters.

Finally, a third approach consists in developing an agreement coefficient based on

models analogous to the ANOVA models for quantitative variables (Landis and

Koch, 1977c). More recently, Schuster and Smith (2005) proposed a dispersion-

weighted kappa framework for multiple raters (not shown here) to determine the

degree of agreement between many raters. The resulting framework includes the

2-wise agreement index (Conger, 1980) and the agreement index developed by

Landis and Koch (1977c) as special cases.

3.2 Intraclass correlation coefficients

3.2.1 One-way random effects ANOVA model

3.2.1.1 Binary scale

Definition. Landis and Koch (1977c) considered the case of R raters classify-

ing independently N items on a binary scale (K = 2) when the items are not

always classified by all the raters. This corresponds to the one-way random effects

ANOVA model (see Chapter 1, Section 1.3.1). In this section, the number of raters

classifying each item will first be considered to be constant and equal to R. This

does not mean that the same R raters all classify each item. Based on the one-way

random effects ANOVA model (see Chapter 1, Equation 1.7) and similarly to the

quantitative case, Landis and Koch (1977c) proposed to define the agreement as

the ratio of the between items variability and the total variability (see Chapter 1,

Equation 1.8)

κICC1 =
σ2
B

σ2
W + σ2

B

. (3.1)

Estimation of the parameters. Suppose that item i is classified on a bi-

nary scale by R raters. For each item, the R raters are not necessarily the

same (i = 1, · · · , N). Consider the random variable Yi,r equal to 1 if rater r

(r = 1, · · · , R) classifies item i (i = 1, · · · , N) in category 1 and equal to 0

otherwise. Denote by yi,r the observed value of the random variable Yi,r. Let

ni =
∑R

r=1 yi,r be the number of raters among the R raters classifying item i in

category 1 and pi = ni/R be the corresponding proportion (i = 1, · · · , N). Finally,

let p =
∑N

i=1 ni/NR denote the overall proportion of items classified in category

1.
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The between sum of squares is estimated by

BSS =
N∑
i=1

R∑
r=1

(pi − p)2 =
N∑
i=1

R∑
r=1

(
ni
R
− p)2 =

N∑
i=1

(ni −Rp)2

R
(3.2)

with N − 1 degrees of freedom and the within sum of squares by

WSS =
N∑
i=1

R∑
r=1

(yi,r − p)2 =
N∑
i=1

ni(R− ni)
R

(3.3)

with N(R − 1) degrees of freedom. The mean squares BMS and WMS are then

respectively defined by

BMS =
1

N

N∑
i=1

(ni −Rp)2

R
(3.4)

and

WMS =
1

N(R− 1)

N∑
i=1

ni(R− ni)
R

. (3.5)

Note that BMS = BSS/N and not BSS/(N − 1) as it should be the case. This

approximation was made by Fleiss (1981) provided that N ≥ 20. The agreement

coefficient, by analogy to the quantitative case, is defined by

κ̂ICC1 =
BMS −WMS

BMS + (R− 1)WMS
. (3.6)

After some elementary algebraic manipulation, Equation 3.6 can be expressed as

κ̂ICC1 = 1−
∑N

i=1 ni(R− ni)
NR(R− 1)p(1− p)

= 1−
∑N

i=1 pi(1− pi)
N(R− 1)p(1− p)

. (3.7)

This agreement coefficient possesses the following properties:

1. If pi = p (i = 1, · · · , N), with p 6= 0 and p 6= 1, there is no more discordance

within items than between items. In that case, κ̂ICC1 takes its minimum

value, i.e. −1/(R− 1).

2. If each proportion pi is equal to 0 or is equal to 1, the agreement on the

items is perfect and κ̂ICC1 = 1.

When there are only two raters (R = 2), the proposed agreement coefficient κ̂ICC1

reduces to the intraclass kappa coefficient κ̂I defined in Chapter 2, Section 2.4.1.



58 3.2. Intraclass correlation coefficients

Sampling variability. Fleiss et al. (1979) showed that under the null hypothesis

H0 : κICC1 = 0,

var(κ̂ICC1) =
2

NR(R− 1)
. (3.8)

Remark that var(κ̂ICC1) is independent of the overall proportion of items clas-

sified in category 1 (i.e., p). Since this is only asymptotic and valid to test for

null agreement, it is recommended to use the Jackknife estimator of the sampling

variability instead.

Unequal number of raters per item. When the number of raters classifying

each item is not constant and is equal to Ri (i = 1, · · · , N), the between mean

squares and the within mean squares are respectively defined by

BMS =
1

N

N∑
i=1

(ni −Rip)
2

Ri

(3.9)

and

WMS =
1

N(R− 1)

N∑
i=1

ni(Ri − ni)
Ri

(3.10)

where R =
N∑
i=1

Ri/N . The agreement coefficient, by analogy to the quantitative

case, is estimated by

κ̂ICC1 =
BMS −WMS

BMS + (R0 − 1)WMS
(3.11)

where

R0 = R−
∑N

i=1(Ri −R)2

N(N − 1)R
.

Fleiss (1981) remarked that when N is ”large”, R0 and R are similar. By replacing

R0 by R in Equation 3.11, the agreement coefficient is estimated by

κ̂ICC1 =
BMS −WMS

BMS + (R− 1)WMS
. (3.12)

Fleiss and Cuzick (1979) showed that under the null hypothesis H0 : κICC1 = 0,

var(κ̂ICC1) =
1

N(R− 1)2RH

(
2(RH − 1) +

(R−RH)(1− 4p(1− p))
Rp(1− p)

)
(3.13)

where

RH =
N∑N
i=1

1
Ri
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is the harmonic mean of the number of observations per item. However, since this

is only asymptotic and valid to test for null agreement, it is recommended to use

the Jackknife estimator of the sample variance instead.

3.2.1.2 Nominal scale

Definition. Suppose that the number of categories on which the items are clas-

sified is equal to K ≥ 2. Denote by pj the overall proportion of ratings in category

j and by κ̂ICC[j]
the value of the intraclass correlation coefficient obtained when

category j is isolated from the other K − 1 categories (j = 1, · · · , K). Landis and

Koch (1977c) proposed to take the weighted average

κ̂ =

∑K
j=1 pj(1− pj)κ̂[j]∑K
j=1 pj(1− pj)

(3.14)

as an overall measure of inter-rater agreement. This expression simplifies to

κ̂ICC1 = 1−
NR2 −

∑N
i=1

∑K
j=1 n

2
ij

NR(R− 1)
∑K

j=1 pj(1− pj)
(3.15)

where nij is the number of raters classifying item i (i = 1, · · · , N) in category j

(j = 1, · · · , K) (
∑K

j=1 nij = R). An algebraically equivalent version of Equation

3.15 was first presented by Fleiss (1971), who showed explicitly how the intraclass

correlation coefficient represents a chance-corrected measure of agreement (see

Section 3.6 for proof).

Sampling variability. Fleiss et al. (1979) showed that

var(κ̂) =

2

[(∑K
j=1 pj(1− pj)

)2

−
∑K

j=1 pj(1− pj)(1− 2pj)

]
[
∑K

j=1 pj(1− pj)]2NR(R− 1)
. (3.16)

3.2.1.3 Example

Conger (1980) considered the following hypothetical example. Suppose that 4

raters (R = 4) have to assign 10 subjects (N = 10) in 3 categories (K = 3). The

data are presented in Table 3.1 and summarized in Table 3.2. Suppose that the 4

raters are not necessarily the same for all subjects.

When interest is on category 1, the between sum of squares is equal to

BSS =
1

4

{
(4− 4× 0.375)2 + (2− 4× 0.375)2 + · · ·+ (0− 4× 0.375)2

}
= 4.125
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Table 3.1. Category assignment of 10 subjects by 4 raters
in 3 categories and number of subjects assigned in each ca-
tegory by each rater

Subject Category
Rater 1 2 3 4 5 6 7 8 9 10 1 2 3

1 1 1 1 1 1 2 2 2 3 3 5 3 2
2 1 1 1 1 2 1 2 3 3 3 5 2 3
3 1 2 2 3 1 1 2 2 2 3 3 5 2
4 3 3 3 3 1 1 2 2 2 3 2 3 5

Table 3.2. Number of raters classifying each of 10 subjects
into one of 3 categories

Subject
Category 1 2 3 4 5 6 7 8 9 10 pj

1 3 2 2 2 3 3 0 0 0 0 0.375
2 0 1 1 0 1 1 4 3 2 0 0.325
3 1 1 1 2 0 0 0 1 2 4 0.300

and the within sum of squares is equal to

WSS =
1

4
{3(4− 3) + 2(4− 2) + · · ·+ 0(4− 0)} = 5.25.

This leads to BMS = 4.125/10 = 0.413 and WMS = 5.25/10(4 − 1) = 0.175,

whence

κ̂ICC1 =
0.413− 0.175

0.413 + (4− 1)0.175
= 0.253.

In the same way, we obtained κ̂ICC1 = 0.278 and κ̂ICC1 = 0.206 for categories 2

and 3, respectively. Since

3∑
j=1

pj(1− pj) = 0.375(1− 0.375) + 0.325(1− 0.325) + 0.300(1− 0.300) = 0.664,

the overall agreement coefficient is equal to

κ̂ICC1 =
0.375(1− 0.375)0.253 + 0.325(1− 0.325)0.278 + 0.300(1− 0.300)0.206

0.664
= 0.247.
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3.2.2 Two-way ANOVA models

3.2.2.1 Binary scale

Definition. Similarly to the approach of Landis and Koch (1977c), it is possible

to determine an agreement index when each item is rated on a binary scale by

the same group of R raters, considered as fixed or randomly selected from a larger

population (see Chapter 1, Section 1.3.2). The agreement index takes into account

the systematic source of variation between items and between raters and is defined

by analogy to the quantitative case by

κICC2 =
σ2
B

σ2
B + σ2

A + σ2
I + σ2

E

and κICC2 =
σ2
B − σ2

I/(R− 1)

σ2
B + θ2

A + σ2
I + σ2

E

. (3.17)

in case of random raters and fixed raters, respectively.

Estimation of the parameters. The coefficient κICC2, in case of random and

fixed raters, is estimated by

κ̂ICC2 =
BMS − EMS

BMS + (R− 1)EMS +R(JMS − EMS)/N
. (3.18)

We have, by analogy to the quantitative case,

BMS =
R

N − 1

N∑
i=1

(pi − p)2 =
R

N − 1

N∑
i=1

(p2
i − p2), (3.19)

JMS =
N

R− 1

R∑
r=1

(y.,r − p)2 =
N

R− 1

R∑
r=1

(y2
.,r − p2), (3.20)

EMS =
1

(N − 1)(R− 1)
[
N∑
i=1

R∑
r=1

(yi,r − y.,r)2 −R
N∑
i=1

(pi − p)2]. (3.21)

where pi and p were defined previously and y.,r =
∑N

i=1 yi,r/N . After some ele-
mentary algebraic manipulation, Equation 3.18 can be expressed as

κ̂ICC2 = 1

−
(N − 1)

∑N
i=1 ni(R− ni)

R2
∑N

i=1(pi − p)2 −N
∑N

i=1

∑R
r=1(yi,r − y.,r)2 +NR2(N − 1)p(1− p)

.(3.22)

Sampling variability. It is suggested to use the Jackknife estimator to deter-

mine the sampling variability.
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3.2.2.2 Nominal scale

Definition. The approach of Landis and Koch (1977c) defined in the one-way

ANOVA setting can be applied to the two-way ANOVA setting (see Equation

3.14), leading

κ̂ICC2 =

∑K
j=1 pj(1− pj)κ̂ICC2[j]∑K

j=1 pj(1− pj)
. (3.23)

Sampling variability. It is suggested to determine the sampling variability us-

ing the Jackknife technique.

3.2.2.3 Example

Suppose now that in the hypothetical example of Conger (1980), each subject is

classified by the same set of 4 raters in the 3 categories. To calculate the overall

agreement index over the 3 categories, the agreement indexes are needed for each

category. The ANOVA table relative to category 1 is given in Table 3.3.

Table 3.3. Two-way ANOVA table when interest is on category 1 for the
example of Conger (1980)
Variability Sum of squares Degrees of freedom Mean squares
Between items 4.125 9 0.458
Within items 131.083 30 4.369

Between raters 129.708 3 0.169
Residuals 9.275 27 0.140

Total 135.208 39

The intraclass correlation coefficient relative to category 1 is thus equal to

κ̂ICC2 =
0.458− 0.169

0.458 + (4− 1)0.169 + 4(0.492− 0.169)/10
= 0.292.

In the same way, the intraclass coefficient relative to categories 2 and 3 are equal

to 0.302 and 0.280, respectively, leading an overall agreement index of

κ̂ICC2 =
0.375(1− 0.375)0.313 + 0.325(1− 0.325)0.302 + 0.300(1− 0.300)0.280

0.664
= 0.334.
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3.3 g-wise agreement indexes

3.3.1 General framework

Definition. Suppose that R raters have to classify N items on a K-categorical

scale and that agreement is defined as a consistent classification of g raters (g ≤
R). Let nij denote the number of raters classifying item i in category j (i =

1, · · · , N ; j = 1, · · · , K), pj,r the proportion of items assigned in category j by

rater r and pj =
∑R

r=1 pj,r/R the overall proportion of items classified in category

j (j = 1, · · · , K). The g-wise observed proportion of agreement is defined as

po(g) =

∑N
i=1

∑K
j=1

∏g−1
r=0(nij − r)

N
∏g−1

r=0(R− r)
(3.24)

and the proportion of g-wise agreement expected by chance is equal to

pe(g) =
1

Cg
R

∑
r(1)<···<r(g)

K∑
j=1

g∏
s=1

yj,r(s) (3.25)

where
∑

r(1)<···<r(g) is the summation over all g-tuples of raters such that 1 ≤ r(1) <

· · · < r(g) ≤ R. This leads to the g-wise agreement index

κ̂(g) =
po(g)− pe(g)

1− pe(g)
. (3.26)

The intraclass version is obtained by considering

pe(g) =
K∑
j=1

pgj . (3.27)

Sampling variability. It is suggested to use the Jackknife estimator of the

standard error for the g-wise agreement indexes.

3.3.2 Pairwise agreement index

Definition. Davies and Fleiss (1982) proposed a chance-corrected measure of

agreement based on pairwise agreement which can be expressed in terms of mean

squares under a two-way ANOVA setting when the scale is binary and is equivalent

to the 2-wise agreement index introduced by Conger (1980). Suppose that each of

several raters (r = 1, · · · , R) classify each of a sample of items (i = 1, · · · , N) on a

K-categorical scale. Let the random variable Yij,r equal to 1 when rater r classifies

item i in category j (
∑K

j=1 Yij,r = 1) and yij,r denote the achievement of the random

variable Yij,r. Finally, let nij =
∑R

r=1 yij,r be the number of raters classifying item

i in category j (i = 1, · · · , N ; j = 1, · · · , R). Davies and Fleiss (1982) defined the
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observed proportion of agreement as the mean observed proportion of agreement

between all R(R− 1) possible pairs of raters among the R raters.

po =
1

R(R− 1)

R∑
r=1

∑
r′ 6=r

or,r′

=
1

NR(R− 1)

N∑
i=1

K∑
j=1

R∑
r=1

∑
r′ 6=r

yij,ryij,r′

=
1

NR(R− 1)

N∑
i=1

K∑
j=1

nij(nij − 1)

=
1

NR(R− 1)

{
N∑
i=1

K∑
j=1

n2
ij −NR

}
. (3.28)

In the same way,

pe =
1

R(R− 1)

R∑
r=1

∑
r′ 6=r

er,r′

=
1

R(R− 1)

K∑
j=1

R∑
r=1

∑
r′ 6=r

yj,ryj,r′

=
K∑
j=1

p2
j −

1

R(R− 1)

K∑
j=1

R∑
r=1

(yj,r − pj)2 (3.29)

where pj =
∑R

r=1 yj,r/R is the overall proportion of items classified in category j

(j = 1, · · · , K). Davies and Fleiss (1982) then defined the agreement coefficient

κ̂D =
po − pe
1− pe

= 1−
NR2 −

∑N
i=1

∑K
j=1 n

2
ij

N{R(R− 1)
∑K

j=1 pj(1− pj) +
∑K

j=1

∑R
r=1(yj,r − pj)2}

. (3.30)

When there are only two raters (R = 2), the agreement coefficient defined by

Equation 3.30 reduces to Cohen’s kappa coefficient (see Chapter 2, Section 2.3).

The pairwise agreement index proposed by Davies and Fleiss (1982) is equivalent

to the 2-wise agreement index of Conger (1980).

When interest lies in only one category j, all the other categories than the category

of interest may be combined into a single category and the problem reduces to the

binary case. The resulting agreement coefficient proposed by Davies and Fleiss

(1982) then simplifies to

κ̂D[j] =
po − pe
1− pe

= 1−
∑N

i=1 nij(R− nij)
N{R(R− 1)pj(1− pj) +

∑R
r=1(yj,r − pj)2}

(3.31)
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and can be expressed in terms of mean squares

κ̂D[j] =
BMS − EMS

BMS + (R− 1)EMS +R JMS/(N − 1)
(3.32)

where BMS, EMS and JMS were defined previously.

However, the agreement coefficient relative to the two-way analysis of variance is

given by Equation 3.18. Davies and Fleiss (1982) observed the equivalence of κ̂D[j]

and κ̂ICC2 provided that N is large (N > 15).

Sampling variability. Davies and Fleiss (1982) only gave the formula of the

standard error for the binary case and proposed a FORTRAN program for the

nominal case since the form is to complicated. The Jackknife estimator to com-

pute the sampling variance of this agreement index may therefore be an interesting

alternative.

3.3.3 Weighted R-wise agreement index

Definition. Recently, Mielke and Berry (2008) introduced a weighted agreement

index between R raters using the De Moivre’s definition of agreement. Although

their method is valid for any number R of raters, the method is presented for three

raters (R = 3) for notation convenience. Let njkl be the number of items classified

in category j by rater 1, category k by rater 2 and category l by rater 3 and pj,r the

proportion of items assigned in category j by rater r (j = 1, · · · , K; r = 1, 2, 3).

The weighted observed agreement is defined by

pow(3) =
1

N

K∑
j=1

K∑
k=1

K∑
l=1

wjklnjkl (3.33)

and the weighted agreement expected by chance is defined by

pew(3) =
K∑
j=1

K∑
k=1

K∑
l=1

wjklpj,1pk,2pl,3 (3.34)

leading to the weighted agreement index

κw(3) =
pow(3)− pew(3)

1− pew(3)
. (3.35)

Mielke and Berry (2008) proposed weighting schemes corresponding to the linear

and the quadratic weighting schemes introduced in the case of two single raters.

In case of three raters, the linear weighting scheme writes

wjkl = |j − k|+ |j − l|+ |k − l| (j, k, l = 1, · · · , K) (3.36)
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and the quadratic weighting scheme is

wjkl = (j − k)2 + (j − l)2 + (k − l)2 (j, k, l = 1, · · · , K). (3.37)

When the weights are defined to be{
wjkl = 1 if j = k = l (j, k, l = 1, 2, 3)

wjkl = 0 otherwise,

the weighted agreement index of Mielke and Berry (2008) is equivalent to the

3-wise agreement index of Conger (1980). This is also the case for R > 3.

Sampling variability. Mielke and Berry (2008) proposed to use an exact per-

mutation test to test hypotheses. The procedure consists in generating all possible

arrangements of the N items in the KR cells of the contingency table resulting from

the classification of the R raters, while preserving the marginal totals. For each

arrangement of the cell frequencies, the weighted agreement index is determined.

The number of times that the resulting weighted agreement indexes exceed or are

equal to the value of the weighted agreement obtained from the original sample is

then recorded. If this number, divided by the total number of permutations, is less

than or equal to the α confidence level, then the null hypothesis is rejected. Since

the number of permutations is usually very large for multi-way contingency tables,

Mielke and Berry (2008) proposed to calculate the weighted agreement index for

a large number (e.g., 1 000 000) of random tables.

3.3.4 Example.

Consider again the example of Conger (1980). To calculate the 2-wise (pairwise)

agreement index, we need

po =
1

10× 4(4− 1)
(100− 10× 4) = 0.500

and

pe = 0.3752 + 0.3252 + 0.3002

− {(0.500− 0.375)2 + · · ·+ (0.500− 0.300)2}
4(4− 1)

= 0.322.

This leads to

κ̂D =
0.500− 0.322

1− 0.322
= 0.263.
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Then, to determine the 3-wise agreement index, we need

po(3) =
1

10(4− 0)(4− 1)(4− 2)

× [(3− 0)(3− 1)(3− 2) + (0− 0)(0− 1)(0− 2) + (1− 0)(1− 1)(1− 2)

+ · · ·+ (0− 0)(0− 1)(0− 2) + (0− 0)(0− 1)(0− 2)

+ (4− 0)(4− 1)(4− 2)]

= 0.300

and

pe(3) =
1

4
[(0.5× 0.5× 0.3 + 0.3× 0.2× 0.5 + 0.2× 0.3× 0.2) + · · ·

+ (0.5× 0.3× 0.2 + 0.2× 0.5× 0.3 + 0.3× 0.2× 0.5)] = 0.100.

This leads to

κ̂(3) =
0.300− 0.100

1− 0.100
= 0.222.

In the same way, the 4-wise agreement index is equal to

κ̂(4) =
0.200− 0.039

1− 0.039
= 0.175.

3.4 Syphilis serology

A proficiency testing program for syphilis serology was conducted by the College of

American Pathologists (CAP). For the fluorescent treponemal antibody absorption

test (FTA-ABS), 3 reference laboratories were identified and considered as experts

in the use of that test. During 1974, 40 syphilis serology specimens were tested

independently by the 3 reference laboratories. Williams (1976) presented results

obtained by the 3 reference laboratories and an additional participant (noted L)

for 28 specimens (see Appendix A.2, Table A.2). Each specimen was classified

as non-reactive (NR), borderline (BL) or reactive (RE). The different agreement

coefficients between the 3 reference laboratories are given in Table 3.4 with their

standard error derived by the Jackknife technique.

All the agreement indexes gave similar results. There is agreement between the

3 reference laboratories. As expected, the 2-wise agreement index is equal to the

agreement index derived by Davies and Fleiss (1982). Although, Light’s and the

2-wise agreement indexes seemed to be equal, Light’s agreement index is equal

to 0.67932 while the 2-wise agreement index is equal to 0.67908. It should be

noted that it is not correct to compute the agreement index κ̂ICC1 since the same

3 reference laboratories classified all specimens.
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Table 3.4. Agreement coeffi-
cients obtained for the classifi-
cation of 28 specimen by 3 re-
ference laboratories
Coefficient Estimate SE
κ̂ICC1 0.676 0.099
κ̂ICC2 0.684 0.096
κ̂(2) 0.679 0.097
κ̂(3) 0.697 0.095
κ̂D 0.679 0.097
κ̂Light 0.679 0.097

3.5 Discussion

Several approaches were presented in this chapter. Firstly, agreement was defined

as the ratio of the between items variability and the total variability by Landis

and Koch (1977c). These agreement indexes are all based on the absolute defini-

tion and not on the consistency definition of agreement. The model on which the

agreement coefficient is constructed should be chosen with care because the results

have to be interpreted differently, depending on the model, as it was the case on

quantitative scales. To our knowledge, only the coefficients derived by Landis and

Koch (1977c) and Davies and Fleiss (1982) are usually used in practice although

agreement indexes might be constructed on other ANOVA models.

As an alternative, agreement was defined as a concordant classification of g raters

among the R raters (g ≤ R). Conger (1980) defined a general framework, the

g-wise agreement indexes, including the less restrictive (2-wise) and the most re-

strictive (R-wise) definition of agreement. No guideline was provided to determine

the optimal number of raters g, which depends on the total number of raters R.

The larger the number of raters, the more difficult it will be to have a concordant

classification between all the raters. In practice, g is often determined to corre-

spond to the majority of the raters (g > R/2). Note that Mielke and Berry (2008)

preferred the R-wise rather than the 2-wise definition of agreement because all in-

teractions between the R raters are not taken into account in the 2-wise definition.

Although the agreement coefficients were developed in different frameworks, the

agreement coefficient proposed by Landis and Koch (1977c) in a one-way ANOVA

framework is equivalent to the pairwise agreement coefficient derived by Fleiss

(1971) and the agreement coefficient developed by Davies and Fleiss (1982) can be

expressed in terms of mean squares in a two-way ANOVA setting. Note that this

latter coefficient is also equivalent to the 2-wise agreement coefficient developed by
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Conger (1980). In the present example, all approaches led to similar results. To our

knowledge, guidelines for choosing between the different definitions of agreement

do not exist and might therefore be the incentive for further research.

3.6 Proofs

Equivalence 2.

κ̂ICC1 = 1−
NR2 −

∑N
i=1

∑K
j=1 n

2
ij

NR(R− 1)
∑K

j=1 pj(1− pj)
(3.38)

can be expressed as a chance-corrected measure of agreement,

κ̂ICC1 =
po − pe
1− pe

. (3.39)

Proof. Indeed, the number of pairs in agreement out of all R(R− 1) possible pairs

is

poi =
1

R(R− 1)

K∑
j=1

nij(nij − 1) =
1

R(R− 1)
(
K∑
j=1

n2
ij −R). (3.40)

Fleiss (1971) then defined the overall proportion of agreement as

po =
1

N

N∑
i=1

poi =
1

NR(R− 1)
(
N∑
i=1

K∑
j=1

n2
ij −NR) (3.41)

and the proportion of agreement expected by chance by

pe =
K∑
j=1

p2
j . (3.42)

Simple algebraic manipulations show that

κ̂ICC1 = 1−
NR2 −

∑N
i=1

∑K
j=1 n

2
ij

NR(R− 1)
∑K

j=1 pj(1− pj)
=
po − pe
1− pe

. (3.43)





CHAPTER 4

Agreement between an isolated

rater and a group or raters

4.1 Introduction

Cohen (1960) introduced the kappa coefficient κ̂ = (po − pe)/(1 − pe) to quan-

tify the agreement between two raters classifying items on a categorical scale. He

corrected the proportion of items with concordant classification (po) for the pro-

portion of concordant pairs expected by chance (pe) and standardized the quantity

to obtain 1 in case of perfect agreement between the two raters and 0 when the

raters agree by chance. There are situations where agreement is searched between

an isolated rater and a group of raters, regarded as a whole, a reference, expert or

gold standard group, in which all raters may not perfectly agree with each other.

For example, each of a series of candidates may be assessed against a group of

experts with the purpose of evaluating their knowledge and classifying the candi-

dates. This is a frequent exercise in education or in competence examinations. In

the context of accreditation, a routine laboratory may have to reach a pre-defined

level of agreement when challenged against a set of reference laboratories for a

number of test specimens. Acknowledgment has to be make for the fact that the

reference laboratories exhibit themselves analytical variability and do not neces-

sarily agree with each other. The traditional approach to solve this problem is to

determine a consensus in the group of raters and to measure the agreement bet-

ween the isolated rater and the consensus in the group (Landis and Koch, 1977a;

Soeken and Prescott, 1986; Salerno et al., 2003). Thus, the so-called ”consensus

71
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method” reduces the problem to computing the classical Cohen’s kappa coeffi-

cient. The consensus may be defined as the category chosen by a given proportion

of raters in the group (for example, Ruperto et al. (2006) defined the consensus as

the category chosen by at least 80% of the raters in the group) or the category the

most frequently chosen by the raters in the group (Kalant et al., 2000; Smith et al.,

2003). In both cases, however, the problem of handling items without consensus

in the group arises. Ruperto et al. (2006) discarded all items without consensus

from the analysis, while Kalant et al. (2000) and Smith et al. (2003) did not en-

counter the problem. The method consisting in reducing the judgements made by

a group of raters into a consensus decision was criticized by Eckstein et al. (1998),

Salerno et al. (2003) and Miller et al. (2004). Eckstein et al. (1998) studied the

bias that may result from removing items without consensus, while Salerno et al.

(2003) argued that the dispersion likely to occur in the classifications made by the

raters in the group may not be reflected in the consensus. Finally, Miller et al.

(2004) showed that different conclusions may be obtained by using different rules

of consensus.

Williams (1976) developed a measure for comparing the joint agreement of se-

veral raters with another rater without determining a consensus in the group of

raters. Specifically, he compared the mean proportion of concordant items bet-

ween the isolated rater and each rater in the group to the mean proportion of

concordant items between all possible pairs of raters among the group. The ratio

derived, known as Williams’ index, is compared to the value of 1. Unfortunately,

Williams’ index does neither account for agreement due to chance nor measure the

agreement between the isolated rater and the group of raters. In a different con-

text, Schouten (1982) described a hierarchical clustering method based on pairwise

weighted agreement measures (referred hereafter as Schouten’s agreement index)

to identify homogeneous subgroups among a group of raters classifying items on a

nominal or ordinal scale. Lastly, Light (1971) investigated the reverse problem of

comparing the joint agreement of several raters with a gold standard. He derived a

statistic based on the proportion of concordant pairs obtained between each rater

in the group and the gold standard (the isolated rater). As for Williams’ index,

Light’s method does not actually quantify the agreement between the gold stan-

dard and the group of raters.

Vanbelle and Albert (2009a) proposed a novel coefficient for quantifying the agree-

ment between an isolated rater and a group of raters, considered as a well-defined

entity with its own heterogeneity. This coefficient overcomes the problems of con-

sensus by capturing the variability within the group of raters. It generalizes the

approach of Schouten (1982) and possesses the same properties as Cohen’s kappa

coefficient.
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4.2 A novel agreement index

4.2.1 Binary scale

Consider a population I of items and a population R of raters. Suppose that the

items have to be classified in two categories (K = 2) by the raters of the population

and by an isolated rater, not belonging to R. Consider a randomly selected rater

r from population R and a randomly selected item i from population I. Let Xi,r

be the random variable such that Xi,r = 1 if rater r classifies item i in category

1 and Xi,r = 0 otherwise. For each item i, E(Xi,r|i) = P (Xi,r = 1) = Pi over the

population of raters and var(Xi,r|i) = Pi(1 − Pi). Then, over the population of

items, E(Pi) = E[E(Xi,r|i)] = π and var(Pi) = σ2. Suppose that the agreement in

the population of raters is quantified by the intraclass correlation coefficient (see

Chapter 2, Section 2.4.1), labeled ICC in this chapter for convenience reasons,

ICC =
σ2

π(1− π)
.

In the same way, let Yi denote the random variable equal to 1 if the isolated rater

classifies item i in category 1 and Yi = 0 otherwise. Over the population of items,

E(Yi) = π∗ and var(Yi) = σ∗2 = π∗(1 − π∗). The correlation between Pi and Yi
over I writes

ρ =
E(PiYi)− ππ∗

σσ∗
.

Now, consider the joint probability distribution of the classification of item i made

by the population of raters and the isolated rater. On a binary scale, this consists

of 4 probabilities (1−Pi)(1− Yi), (1−Pi)Yi, Pi(1− Yi) and PiYi, respectively. For

example, PiYi denotes the probability that the population of raters and the isolated

rater both classify item i in category 1. The expectations, over the population of

items, of these joint probabilities can be represented in a 2× 2 classification table,

as displayed in Table 4.1.

The probability that the population of raters and the isolated rater agree on item

i is given by

Πi = PiYi + (1− Pi)(1− Yi) (4.1)

so that, over the population of items I, the mean probability of agreement is given

by the expression

ΠT = E(Πi) = ππ∗ + (1− π)(1− π∗) + 2ρσσ∗ (4.2)

which corresponds to the sum of the diagonal elements in Table 4.1. Surprisingly,

for a given level of agreement (ICC) within the population of raters, the maximum

attainable value ΠT is not necessarily equal to 1 as shown below.
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Table 4.1. Expected joint and marginal probability distri-
butions resulting from the binary classification of a ran-
domly selected item i from the population I by the popu-
lation of raters R and the isolated rater

Isolated rater
R 0 1
0 E[(1− Pi)(1− Yi)] E[(1− Pi)Yi] 1− π

(1− π)(1− π∗) + ρσσ∗ (1− π)π∗ − ρσσ∗

1 E[Pi(1− Yi)] E[PiYi] π

π(1− π∗)− ρσσ∗ ππ∗ + ρσσ∗

1− π∗ π∗ 1

By definition, the population of raters and the isolated rater ”perfectly agree”

when π = π∗ and ρ = 1 (Vanbelle and Albert, 2009a). In terms of the random

variables Pi and Yi, this is equivalent to writing (see proof in Section 4.10.1)

Pi = π∗∗(1−
√
ICC) +

√
ICC Yi.

where, for convenience, π∗∗ denotes the common value of π = π∗.

Replacing Pi in Equation 4.1 and taking the expectation over population I, the

maximum attainable value of ΠT is found to be

ΠM = 1− 2π∗∗(1− π∗∗)(1−
√
ICC). (4.3)

This quantity turns out to be equal to 1 if and only if ICC = 1, i.e., there is

perfect agreement in the population of raters R, or trivially, if π∗∗ = 0 or 1. It

should be remarked at this stage that Schouten (1982), in his paper, implicitly

assumed ΠM = 1.

Following the results above, the coefficient of agreement between the population of

raters and the isolated rater can be advantageously defined in a kappa-like manner,

namely,

κ =
ΠT − ΠE

ΠM − ΠE

(4.4)

with ΠT the theoretical agreement, ΠM the maximum attainable agreement and

ΠE the agreement expected by chance. ΠE is the probability that the population of

raters and the isolated rater agree under the independence assumption, E(PiYi) =

E(Pi)E(Yi). ΠE is defined by

ΠE = ππ∗ + (1− π)(1− π∗). (4.5)
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Note that ΠT = ΠE (see Equations 4.2 and 4.5) in the absence of correlation bet-

ween the ratings of the population of raters and of the isolated rater (ρ = 0) or

when there is no variability in the classifications made by the population of raters

(σ2 = 0) or by the isolated rater (σ∗2 = 0). The agreement coefficient (Equation

4.4) has been standardized in such a way that κ = 1 if the agreement between

the isolated rater and the group of raters reaches the maximum attainable value

ΠM (perfect agreement) and κ = 0 when agreement can only be explained by

pure chance. Lastly, observe that Equation 4.3 reduces to Schouten’s index when

ΠM = 1.

An intraclass version of κ can be derived using the additional assumption π =

π∗ = π∗∗ (equality of marginal probabilities). In that case, we have

κI =
E(PiYi)− π∗∗2

σ∗∗2
(4.6)

which is equivalent to the correlation coefficient between Pi and Yi under the

assumption of equal marginal probabilities.

4.2.2 Nominal scale

When K > 2, the coefficient of agreement between the population of raters and

the isolated rater is defined by

κ =

∑K
j=1(Π[j]T − Π[j],E)∑K
j=1(Π[j]M − Π[j]E)

=
ΠT − ΠE

ΠM − ΠE

where Π[j]T , Π[j]E and Π[j]M correspond to the quantities described in the binary

case (K = 2) when the nominal scale is dichotomized by grouping all categories

other than category j together. ΠT , ΠE and ΠM are defined respectively by

ΠT =
K∑
j=1

E[PijYij];

ΠE =
K∑
j=1

πjπ
∗
j ;

ΠM =
K∑
j=1

E[(π∗∗j + (1− π∗∗j )
√
ICCj)Yij] =

K∑
j=1

(π∗∗j + π∗∗j (1− π∗∗j )
√
ICCj)

where Pij denotes the probability for a randomly selected item i to be classified

in category j (j = 1, · · · , K) by the population of raters, with E(Pij) = πj. Yij
denotes the random variable equal to 1 if the isolated rater classifies item i in

category j (Yij = 0 otherwise). Finally, ICCj denotes the intraclass kappa coeffi-

cient relative to category j (j = 1, · · · , K) in the population of raters (see proof
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in Section 4.10.2).

The coefficient κ possesses the same properties as Cohen’s kappa coefficient, κ = 1

when agreement is perfect (ΠT = ΠM), κ = 0 if observed agreement is equal to

agreement expected by chance (ΠT = ΠE) and κ < 0 if observed agreement is

lower than expected by chance (ΠT < ΠE).

4.2.3 Ordinal scale

A weighted version of the agreement index can be defined in a way similar to the

weighted kappa coefficient (see Chapter 2, Section 2.5),

κW =
ΠT,W − ΠE,W

ΠM,W − ΠE,W

with

ΠT,W =
K∑
j=1

K∑
k=1

wjkE(PijYik);

ΠE,W =
K∑
j=1

K∑
k=1

wjkπjπ
∗
k;

ΠM,W =
K∑
j=1

K∑
k=1

wjkE[(π∗∗j + (1− π∗∗j )
√
ICCjYij)Yik].

4.3 Estimation of the parameters

Consider a random sample of N items drawn from population I. Let each item

be classified independently on a K-categorical scale by a random sample (group)

of R raters from population R and by the isolated rater.

4.3.1 Binary scale

Let xi,r designate the observed value of the random variable Xi,r, denoting the cate-

gory assignment made for item i by rater r from population R (i = 1, · · · , N ; r =

1, · · · , R). Then, let ni =
∑R

r=1 xi,r denote the number of times that item i is

classified in category 1 by the group of raters and pi = ni/R the corresponding

proportion (i = 1, · · · , N). If yi denotes the observed value of the random vari-

able Yi, representing the category assignment of item i by the isolated rater, the

probability that the population of raters and the isolated rater agree is estimated

by the observed proportion of agreement,

po = Π̂T =
1

N

N∑
i=1

[piyi + (1− pi)(1− yi)] . (4.7)
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The probability of agreement expected by chance is estimated by the proportion

of agreement expected by chance,

pe = Π̂E = py + (1− p)(1− y)

where y is the proportion of items classified in category 1 by the isolated rater,

y =
1

N

N∑
i=1

yi

and p is the overall proportion of items classified in category 1 by the group of

raters,

p =
1

N

N∑
i=1

pi.

The degree of agreement κ between the group of raters and the isolated rater is

then estimated by

κ̂ =
po − pe
pm − pe

where pm corresponds to the maximum possible proportion of agreement derived

from the sample. Since each response yi given by the isolated rater can only be 0 or

1, it is easily seen that for each item i, piyi + (1−pi)(1− yi) ≤ max(pi, 1−pi) (i =

1, · · · , N). It follows from Equation 4.7 that the maximum attainable proportion

of agreement is given by the expression

pm = Π̂M =
1

N

N∑
i=1

max(pi, 1− pi).

This quantity can only be equal to 1 if pi = 0 or 1 for all items (i = 1, · · · , N) as

assumed by Schouten.

4.3.2 Nominal scale

The estimation of the parameters easily extends to the case K > 2. Let xij,r denote

the observed value of the random variable Xij,r equal to 1 if rater r (r = 1, · · · , R)

of the group classifies item i (i = 1, · · · , N) in category j (j = 1, · · · , K) and equal

to 0 otherwise. Then, let nij =
∑R

r=1 xij,r denote the number of times the item i is

classified in category j by the raters of the group and pij the corresponding propor-

tion. We have
∑K

j=1 pij = 1, (i = 1, · · · , N). Finally, let yij denote the observed

value of the random variable Yij corresponding to the category assignment of item

i made by the isolated rater. Then, the data can be conveniently summarized in

a two-way classification table (see Table 4.2) by defining the quantities

cjk =
1

N

N∑
i=1

pijyik, j, k = 1, · · · , K.
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Table 4.2. Two-way classification table of the N items by
the group of raters and the isolated rater

Isolated rater
Group of raters 1 . . . j . . . K Total

1 c11 . . . c1j . . . c1K c1.
...

...
...

...
...

...
...

j cj1 . . . cjj . . . cjK cj.
...

...
...

...
...

...
...

K cK1 . . . cKj . . . cKK cK.
Total c.1 . . . c.j . . . c.K 1

The observed proportion of agreement between the group of raters and the isolated

rater is defined by

po =
1

N

N∑
i=1

K∑
j=1

pijyij =
K∑
j=1

cjj.

The marginal classification distribution of the isolated rater, namely,

yj =
1

N

N∑
i=1

yij, j = 1, · · · , K (4.8)

with
∑K

j=1 yj = 1 and the marginal classification distribution of the group of raters,

pj =
1

N

N∑
i=1

pij, j = 1 · · · , K (4.9)

with
∑K

j=1 pj = 1 are needed to estimate the agreement expected by chance. The

proportion of agreement expected by chance is given by

pe =
K∑
j=1

pjyj =
K∑
j=1

cj.c.j.

The degree of agreement κ between the population of raters and the isolated rater

is then estimated by

κ̂ =
po − pe
pm − pe

where pm corresponds to the maximum possible proportion of agreement derived

from the data set. By extending the argument used for the binary case, it is easily

seen that

pm =
1

N

N∑
i=1

maxjpij. (4.10)
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Observe that in the calculation of pm, no explicit use is made of category j in which

the maximum occurs. Thus, in case where the maximum is not unique, only the

value of the maximum is actually important.

4.3.3 Ordinal scale

The estimation of the weighted agreement index is simply done by introducing

weights in the estimations previously defined. Hence,

κ̂W =
po,w − pe,w
pm,w − pe,w

with

po,w =
1

N

N∑
i=1

K∑
j=1

K∑
k=1

wjkpijyik

pe,w =
K∑
j=1

K∑
k=1

wjkpjyk

pm,w =
1

N

N∑
i=1

maxj(
K∑
k=1

wjkpik).

The unweighted agreement index κ̂ can be obtained using the weights wjj = 1 and

wjk = 0, j 6= k.

4.3.4 Sampling variability

The Jackknife method (Efron and Tibshirani, 1993) can be used to determine the

sampling variance of the agreement index. Suppose that the agreement between

the isolated rater and the population of raters was estimated on a random sample of

N items. Let κ̂N denote that agreement index and κ̂
(i)
N−1 the estimated agreement

index when observation i is deleted. These quantities are used to determine the

pseudo-values

κ̂N,i = Nκ̂N − (N − 1)κ̂
(i)
N−1.

The Jackknife estimator of the agreement index is then defined by

κ̃N =
1

N

N∑
i=1

κ̂N,i

with variance

var(κ̃N) =
1

N

{
1

N − 1

N∑
i=1

(κ̂N,i − κ̂N)2

}
.

The bias of the Jackknife estimator is estimated by

Bias(κ̃N) = (N − 1) {κ̃N − κ̂N} .
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4.3.5 Example

Consider the following hypothetic example (Vanbelle et al., 2007) to illustrate how

to calculate the proposed agreement index. Suppose that an isolated rater and a

group of 12 raters have to classify 3 items on a 5-point Likert scale with values

−2, −1, 0, 1 and 2. The data are given in Table 4.3.

Table 4.3. Classification of 3 items on a 5-point Likert scale given by a group
of 12 raters and an isolated rater (hypothetic example)

Raters in the group Isolated rater
Item 1 2 3 4 5 6 7 8 9 10 11 12 1

1 0 1 2 2 2 1 2 1 1 1 1 1 1
2 0 -1 1 0 0 -1 -1 0 0 -1 -1 -1 0
3 1 1 -2 -1 -1 1 -2 -2 -1 -1 1 1 -2

The responses given by the group of raters can then be summarized (see Table

4.4). For example, 7 raters of the group have classified item 1 in category (1).

Table 4.4. Distribution of the responses given by the group of 12
raters and the isolated rater (hypothetic example)

Group of raters Isolated rater
Category Category

Item (-2) (-1) (0) (1) (2) (-2) (-1) (0) (1) (2)
1 0 0 1 7 4 0 0 0 1 0
2 0 6 5 1 0 0 0 1 0 0
3 3 4 0 5 0 0 1 0 0 0

The responses of the group of raters and the isolated rater are then expressed in

terms of proportions (pij = nij/12) and the marginal classification distribution

of the group of raters (pj) determined using Equation 4.9. In the same way, the

marginal distribution of the isolated rater (yj) can be determined by Equation 4.8.

The values of these parameters are given in Table 4.5.

The observed proportion of agreement is equal to

po =
1

N

N∑
i=1

K∑
j=1

pijyij =
0.58 + 0.42 + 0.25

3
= 0.42,
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Table 4.5. Distribution of the responses given by the group of 12 raters and
the isolated rater expressed in terms of proportion (hypothetic example)

Group of raters Isolated rater
Category Category

Item (-2) (-1) (0) (1) (2) (-2) (-1) (0) (1) (2)
1 0 0 0.08 0.58 0.33 0 0 0 1 0
2 0 0.50 0.42 0.08 0 0 0 1 0 0
3 0.25 0.33 0 0.42 0 1 0 0 0 0
pj 0.08 0.28 0.17 0.36 0.11 0.33 0 0.33 0.33 0

the proportion of agreement expected by chance to

pe =
K∑
j=1

pjyj = 0.08× 0.33 + 0.28× 0 + 0.17× 0.33 + 0.36× 0.33 + 0.11× 0 = 0.20

and the maximum possible proportion of agreement to

pm =
1

N

N∑
i=1

maxjpij =
0.58 + 0.50 + 0.42

3
= 0.50.

This leads to an agreement index of

κ̂ =
po − pe
pm − pe

=
0.42− 0.20

0.50− 0.20
= 0.73.

4.4 The consensus approach

4.4.1 Binary scale

Consider a population I of items and a population R of raters. Suppose that the

items have to be classified in two categories (K = 2) by the raters of the population

and by an isolated rater, not belonging to R. As already mentioned, the consensus

approach consists in summarizing the responses given by the raters of the group in

a unique quantity for each item. Very often the consensus category is taken as the

modal category (majority rule) or the category chosen by a prespecified proportion

of raters (e.g., ≥ 80%). Evidently, a consensus may not always be defined. For

example, on a nominal scale, one could have two modal categories or no category

chosen by the prespecified proportion of raters. Therefore, suppose that on the

N items drawn from population I, a consensus can only be defined on NC ≤ N

items. Let IC denote the sub-population of items on which a consensus is always

possible and Zi be a random variable equal to 1 if category 1 corresponds to the

consensus category given by the population R of raters for item i and equal to 0
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otherwise. Then, over IC , E(Zi) = φ and var(Zi) = σ2
C = φ(1 − φ). In the same

way, let Yi denote the random variable equal to 1 if the isolated rater classifies item

i in category 1 and Yi = 0 otherwise. Over the population of items, E(Yi) = π∗

and var(Yi) = σ∗2 = π∗(1 − π∗). If ρ′ denotes the correlation coefficient between

Yi and Zi, we have the following representation of the cross-classifications of the

items by the isolated rater and the population of raters (Table 4.6).

Table 4.6. Expected probabilities of the classification of the iso-
lated rater and the population of raters over the sub-population
IC of items where a consensus is possible

Isolated rater
0 1

0 E((1− Zi)(1− Yi)) E((1− Zi)Yi) 1− φ
(1− φ)(1− π∗) + ρ′σCσ

∗ (1− φ)π∗ − ρ′σCσ∗

R
1 E(Zi(1− Yi)) E(ZiYi) φ

φ(1− π∗)− ρ′σCσ∗ φπ∗ + ρ′σCσ
∗

1− π∗ π∗ 1

The agreement between the consensus in the population of raters and the isolated

rater is defined by

ΠiC = ZiYi + (1− Zi)(1− Yi). (4.11)

Thus,

ΠTC = E(ΠiC) = φπ∗ + (1− φ)(1− π∗) + 2ρ′σCσ
∗. (4.12)

The agreement expected by chance is defined by

ΠEC = φπ∗ + (1− φ)(1− π∗) (4.13)

and perfect agreement is achieved when Zi = Yi, for all items in IC , leading to

ΠMC = E(Πi) = 1. (4.14)

Therefore, the agreement coefficient between the population of raters and the

isolated rater is defined by

κC =
ΠTC − ΠEC

1− ΠEC

(4.15)

and corresponds to Equation 2.18 derived in Chapter 2, Section 2.3.3.

4.4.2 Nominal scale

Equation 4.15 can be extended to the case of a scale with K > 2 categories in the

following way:

κC =

∑K
j=1(Π[j]TC − Π[j]EC)∑K

j=1(1− Π[j]EC)
=

ΠTC − ΠEC

1− ΠEC

(4.16)
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where Π[j]TC and Π[j]EC correspond to the quantities described in the binary case

when the nominal scale is dichotomized by grouping all categories other than

category j together and ΠT , ΠE and ΠM are defined respectively by

ΠTC =
K∑
j=1

E(ZijYij) and ΠEC =
K∑
j=1

φjπ
∗
j (4.17)

where Zij = 1 if category j corresponds to the consensus in the population of

raters for item i (Zij = 0 otherwise) with E(Zij) = φj and Yij = 1 if item i is

classified by the isolated rater in category j (Yij = 0 otherwise) with E(Yij) = π∗j .

4.4.3 Ordinal scale

The weighted version of the agreement index (κWC) can the be derived by intro-

ducing weights in the expression of ΠTC and ΠEC in the following way,

ΠT,WC =
K∑
j=1

K∑
k=1

wjkE(ZijYik) and ΠE,WC =
K∑
j=1

K∑
k=1

wjkφjπ
∗
k (4.18)

leading to the agreement index

κWC =
ΠT,WC − ΠE,WC

1− ΠE,WC

. (4.19)

4.4.4 Estimation of the parameters

Suppose that zij (resp. yij) denote the observed values of the random variables

Zij (resp. Yij) (i = 1, · · · , NC) defined in Section 4.4.2. The assessment of the NC

items on which it is possible to determine a consensus by the two groups of raters

can be conveniently summarized by the quantities

djk =
1

NC

NC∑
i=1

zijyik (j, k = 1, · · · , K). (4.20)

Similarly to what was done in Section 4.3, the observed weighted agreement bet-

ween the two groups of raters is obtained by

Π̂T,WC = po,WC =
K∑
j=1

K∑
k=1

wjkdjk =
1

NC

NC∑
i=1

K∑
j=1

K∑
k=1

wjkzijyik (4.21)

and the weighted agreement expected by chance by the expression

Π̂E,WC = pe,WC =
K∑
j=1

K∑
k=1

wjkdj.d.k =
K∑
j=1

K∑
k=1

wjkzjyk (4.22)
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where zj =
1

NC

NC∑
i=1

zij. This leads to the agreement index

κ̂WC =
po,WC − pe,WC

1− pe,WC

. (4.23)

4.4.5 Example

Let illustrate the consensus method on the example developed in Section 4.3.5.

Using the majority rule (consensus category = category chosen by the majority of

the raters) to determine a consensus in the group of raters, the consensus category

corresponds to category (1), (-1) and (1) for items 1, 2 and 3, respectively. This

results were cross-classified with the responses given by the isolated rater to be

summarized in a 5× 5 contingency Table (see Table 4.7).

Table 4.7. Cross-classification of the responses given by the group
of raters (consensus) and the isolated rater on 3 items in terms of
proportion

Isolated rater
Category (-2) (-1) (0) (1) (2) Total

(-2) 0 0 0 0 0 0
(-1) 0 0 0.33 0 0 0.33

Group of raters (0) 0 0 0 0 0 0
(1) 0 0 0 0.33 0.33 0.66
(2) 0 0 0 0 0 0

Total 0 0 0.33 0.33 0.33 1

The observed proportion of agreement is equal to

poC =
K∑
j=1

djj = 0.33,

and the proportion of agreement expected by chance to

peC =
K∑
j=1

dj.d.j = 0× 0 + 0× 0.33 + 0.33× 0 + 0.33× 0.66 + 0.33× 0 = 0.22.

Cohen’s kappa coefficient is then equal to

κ̂C =
poC − peC
1− peC

=
0.33− 0.22

1− 0.22
= 0.14.
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4.5 Schouten’s agreement index

Schouten (1982) derived an index to select one or more homogeneous subgroups

of raters when each item of a sample of items is classified on a K-category scale

by each of a fixed group of R + 1 raters. In this perspective, Schouten (1982) in-

troduced weighted agreement indexes to measure the degree of agreement between

two particular raters, between a particular rater and the other raters of the group

and within subgroups of raters.

4.5.1 Definition

Suppose that N items were classified in K categories by a group of R + 1 raters.

Let pr,s(j, k) denote the proportion of items assigned in category j by rater r and

category k by rater s (j, k ∈ {1, · · · , K};r, s ∈ {1, · · · , R + 1}). The proportion

pr(j, k) =
1

R

∑
s6=r

pr,s(j, k) (4.24)

was introduced by Schouten (1982) to estimate the probability that a randomly

selected item is assigned to category j by rater r and to category k by an randomly

taken rater from the remaining R raters. Then, Schouten (1982) defined the

proportion

p(j, k) =
1

R(R + 1)

R+1∑
r=1

∑
s 6=r

pr,s(j, k) (4.25)

to estimate the probability for a randomly selected item to be assigned to category

j and k by two raters randomly taken for the population of raters.

Finally, Schouten (1982) denoted by

pr(j) =
K∑
k=1

pr,s(j, k) (4.26)

the proportion of items assigned to category j by rater r. The proportion

qr,s(j, k) = pr(j)ps(k) (4.27)

then estimated to probability that for a randomly selected item to be assigned

in category j by rater r and category k by rater s if the two assignments were

independently distributed. Then,

qr(j, k) =
1

R

∑
s6=r

qr,s(j, k) (4.28)
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estimates the probability that a randomly selected item is assigned to category

j by the rater r and to category k by another rater taken randomly from the

remaining R raters. Finally,

q(j, k) =
1

R(R + 1)

R+1∑
r=1

∑
s 6=r

qr,s(j, k) (4.29)

is an estimate of the probability that a randomly selected item is assigned to ca-

tegory j by the first and to category k by the second of 2 raters who are taken at

random and without replacement from the whole group of raters.

For two raters r and s, Schouten (1982) defined the observed weighted agreement

by

or,s(w) =
K∑
j=1

K∑
k=1

wjkpr,s(j, k) (4.30)

and the weighted agreement expected by chance by

er,s(w) =
K∑
j=1

K∑
k=1

wjkqr,s(j, k) (4.31)

leading to a weighted kappa coefficient between raters r and s of

κ̂r,s(w) =
or,s(w)− er,s(w)

1− er,s(w)
. (4.32)

This corresponds to the usual definition of the weighted kappa coefficient (Cohen,

1968) between two single raters (see Chapter 2, Section 2.5).

The measure of agreement between rater r and the other R raters of the group

was defined by Schouten (1982) to be

κ̂r(w) =
or(w)− er(w)

1− er(w)
(4.33)

where

or(w) =
1

R

∑
s 6=r

or,s(w) (4.34)

and

er(w) =
1

R

∑
s 6=r

er,s(w). (4.35)

Finally, Schouten (1982) defined the weighted kappa coefficient κ(w) as a group

measure of agreement among the R + 1 raters:

κ̂(w) =
o(w)− e(w)

1− e(w)
(4.36)
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where

o(w) =
1

R(R + 1)

R+1∑
r=1

∑
s 6=r

or,s(w) (4.37)

and

e(w) =
1

R(R + 1)

R+1∑
r=1

∑
s 6=r

er,s(w). (4.38)

Using the agreement weights wjj = 1 and wjk = 0 (j, k = 1, · · · , K), the weighted

kappa coefficient is equivalent to the pairwise agreement index derived by Davies

and Fleiss (1982) (see Chapter 3, Section 3.3.2).

4.5.2 Example

Consider the data in Table 4.3. For simplicity, consider the weights wjj = 1

and wjk = 0 (j, k = 1, · · · , K). The observed proportion of agreement and the

proportion of agreement expected by chance between each rater of the group and

the isolated rater are given in Table 4.8. This leads to a Schouten’s agreement

index of

κ̂r(w) =
or(w)− er(w)

1− er(w)

=
0.42− 0.20

1− 0.20
= 0.27.

Table 4.8. Proportion of observed agreement or,s(w), of agreement expected by chance
er,s(w) and Cohen’s kappa coefficient κ̂r(w) between the isolated rater and each rater of
the group

Rater 1 2 3 4 5 6 7 8 9 10 11 12
or,s(w) 0.33 0.33 0.33 0.33 0.33 0.33 0.33 1 0.67 0.33 0.33 0.33
er,s(w) 0.33 0.22 0.22 0.11 0.11 0.22 0.11 0.33 0.22 0.11 0.22 0.22
κ̂r(w) 0 0.14 0.14 0.25 0.25 0.14 0.25 1 0.57 0.25 0.14 0.14

The mean of the kappa coefficients is equal to 0.273, while Schouten’s index

amounts 0.267. Remark that these values are close but not equal.

4.6 William’s agreement index

4.6.1 Definition

The idea of Williams (1976) was to derive an agreement index giving an answer to

the following question: given a group of raters (namely, raters 1, · · · , R) and one

other rater (rater R+ 1), does the isolated rater agree with the group of raters as
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often as a member of that group agrees with another member in the group? Using

the notation introduced in Section 4.5, William’s agreement index is

ÎR =
oR+1(w)

o(w)
(4.39)

with

o(w) =
1

R(R− 1)

R∑
r=1

∑
s 6=r

or,s(w). (4.40)

Then, Williams (1976) used Normal approximation to test if the ratio ÎR is different

from the value 1, in which case the rate of agreement obtained between the isolated

rater and the group of raters is different from the rate of agreement in the group

of raters.

4.6.2 Example

Consider again the data in Table 4.3 with weights wjj = 1 and wjk = 0 (j, k =

1, · · · , K). The observed proportion of agreement between the isolated rater and

the raters in the group is calculated in the same way as for Schouten’s agreement

index and is equal to or(w) = 0.42. Since the observed agreement in the group

of raters is equal to o(w) = 0.36, William’s agreement index is equal to ÎR =

0.42/0.36 = 1.17.

4.7 Comparison of the agreement indexes

4.7.1 Comparison with the consensus method

There are two major differences between the consensus method and the agreement

index proposed by Vanbelle and Albert (2009a). Firstly, a consensus method can

not always be defined while the new agreement index can always be determined.

For example, using the majority rule, there is no consensus in the group of raters if

the distribution of the responses are uniformly distributed. Secondly, the strength

of the consensus is not taken into account by the random variable Zij while the

proposed agreement does, being based on the probability distribution of the res-

ponses in the group of raters. For example on a binary scale, using the majority

rule, we will have Zij = 1 if Pij = 0.6 but also if Pij = 0.9.

It can easily be shown that the new methodology defined by Vanbelle and Albert

(2009a) and the consensus approach are equivalent only in two particular cases,

firstly when there is only one rater in the group of raters (R = 1) and secondly

when IC = I and there is perfect agreement in the population of raters (ICC = 1).
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4.7.2 Comparison with Schouten’s index

We can easily show that po,w and oR+1(w) are equivalent. Indeed,

po,w =
1

N

N∑
i=1

K∑
j=1

K∑
k=1

wjkpijyik

=
1

N

N∑
i=1

K∑
j=1

K∑
k=1

wjk
1

R

R∑
r=1

xij,ryik

=
1

R

R∑
r=1

K∑
j=1

K∑
k=1

wjk
1

N

N∑
i=1

xij,ryik

=
1

R

R∑
r=1

K∑
j=1

K∑
k=1

wjkpr,R+1(j, k)

=
1

R

R∑
r=1

or,R+1(j, k)

= oR+1(j, k). (4.41)

In the same way, pe,w and eR+1(w) are equivalent. The difference between the

agreement index of Schouten (1982) and the agreement index proposed by Vanbelle

and Albert (2009a) lies in the definition of perfect agreement. The definition taken

by Schouten is more restrictive, requiring ICC = 1 in the population of raters

(perfect agreement within the population of raters) to have perfect agreement

between the isolated rater and the group of raters.

4.8 Examples

4.8.1 Syphilis serology

In Chapter 3, the syphilis serology example was introduced. 28 syphilis specimens

were categorized in 3 categories by 3 reference laboratories and a participant. The

agreement between the 3 references laboratories was determined. Discordances

occurred between the 3 reference laboratories for seven specimens. Now, let deter-

mine the agreement between the participant and the 3 reference laboratories. Data

are therefore summarized in a two-way classification table (Table 4.9) as explained

in Section 4.3. In this example R = 3, K = 3 and N = 28. Results are summa-

rized in Table 4.10. The standard error was determined with the Jackknife method.

Using the quadratic weighting scheme, the weighted coefficient of agreement κ̂W (±
SE) between the participant and the 3 reference laboratories, as defined in Section

4.2, was equal to 0.79 (±0.06). When applying the consensus approach based on
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Table 4.9. Two-way classification table of the 28 syphilis
serology specimens as NR (non-reactive), BL (borderline)
and RE (reactive) by 3 reference laboratories and parti-
cipant L

Participant L
Reference laboratories NR BL RE Total

NR 0.143 0.250 0.024 0.417
BL 0 0.036 0.071 0.107
RE 0 0 0.476 0.476

Total 0.143 0.286 0.571 1

Table 4.10. Weighted (κ̂W ) and unweighted (κ̂) agreement
indexes corresponding the the syphilis serology example
Method N κ̂W ± SE κ̂± SE
Vanbelle and Albert (2009a) 28 0.79±0.06 0.55±0.10
Consensus (majority) 26 0.76±0.06 0.42±0.11
Schouten (1982) 28 0.73±0.07 0.46±0.09

the majority rule, we found a weighted kappa coefficient of 0.76 (±0.06), but two

specimens were eliminated because no consensus could be reached between the

3 reference laboratories. The weighted agreement index developed by Schouten

(1982) amounted 0.73 (±0.07), while the intraclass kappa coefficient ( ˆICC) in

the reference laboratory group was 0.68 (±0.06). Because of the lack of perfect

agreement among the reference laboratories ( ˆICC < 1), Schouten’s agreement

index can never be equal to 1 so that perfect agreement can never be attained.

According to Equation 4.10, the non-weighted maximum attainable proportion

was pm = 0.893, while the corresponding value for the quadratic weighting scheme

was pm,w = 0.973. To derive the highest possible value of the proposed agreement

index, consider the hypothetical laboratory H whose responses are given in Table

A.2. For this particular laboratory, since each specimen’s result corresponds to

the most frequent response given by the reference laboratories, our agreement

index yield the perfect value of 1 (±0), while Schouten’s index is only equal to

0.94 (±0.025). For the consensus approach, the kappa coefficient derived was also

equal to 1, although 2 specimens (16 and 17) have to be excluded. Finally, it

should be remarked that if the hypothetical laboratory H had supplied results

different from BL for specimens 16 and 17, the non weighted agreement coefficient

obtained would still be 1 but the weighted version would yield a value less than 1

because of the weighting scheme (κ̂W = 0.958).



4. Agreement between an isolated rater and a group or raters 91

4.8.2 Script Concordance Test

The Script Concordance Test (SCT) is used in medicine to evaluate the ability

of physicians or medical students (isolated raters) to solve clinical situations not

clearly defined (Charlin et al., 2002). The complete test consists of a number of

items (1, · · · , N) to be evaluated on a 5-point Likert scale (K = 5). Each item

represents a clinical situation likely to be seen in real life practice and a potential

assumption is proposed with it. The situation has to be unclear, even for an expert.

The task of the student or the physician being evaluated is to consider the effect

of additional evidence on the suggested assumption. In this respect, the candidate

has to choose between the following proposals: (-2) The assumption is practically

eliminated; (-1) The assumption becomes less likely; (0) The information has no

effect on the assumption; (+1) The assumption becomes more likely; (+2) The

assumption is basically the only possible one. The questionnaire is also given to

a panel of experts (raters 1, · · · , R). The problem is to evaluate the agreement

between each individual medical student and the panel of experts.

Between 2003 and 2005, an SCT was proposed to students training in general

practice (Vanbelle et al., 2007). The SCT consisted of 34 items relating possible

situations encountered in general practice. There were 39 students passing the

test and completing the entire questionnaire. Their responses were confronted to

the responses of a panel of 11 experts. The intraclass correlation coefficient in

the group of experts was 0.22 (±0.04). The individual κ̂W coefficients for the

39 students were computed using the quadratic weighting scheme. Values ranged

between 0.37 and 0.84 and the mean agreement index ± standard deviation (SD)

was 0.61 ± 0.12. Schouten’s weighted index scores averaged 0.44 ± 0.08 (range:

0.26-0.58).

Using the consensus method, where consensus was defined as either the majority

of the raters or a proportion of at least 50% of the raters, respectively 2 (6%) and

12 (35%) items had to be omitted from the analysis because no consensus was

reached among the experts. The mean weighted kappa values for the 39 students

was equal to 0.49 ± 0.13 (range: 0.19-0.72) with the majority rule and 0.66 ± 0.14

(range: 0.23-0.82) with the 50% rule. Figure 4.1 displays the individual agreement

coefficients relative to each student for the various methods. Marked differences

can be seen on the graph depending on the approach used. A ranking of the

students was needed for selection purposes. The ranking changed notably for some

students according to the agreement index calculated. For example, student No.

39 ranked at the 16th place with the new approach, the 9th place with Schouten

index, the 10th place using the majority rule and at 20th place using the 50% rule.
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Figure 4.1. Values of κ̂W (•), weighted kappa coeffi-
cients using the majority (4) and the 50% (+) rules
and weigthed agreement index of Schouten (◦) for the
39 students passing the SCT

4.9 Discussion

Vanbelle and Albert (2009a) developed a method to quantify the agreement bet-

ween an isolated rater and a group of raters judging items on a categorical scale.

The group of raters is seen as a well-defined entity, a reference or gold standard

group with its own heterogeneity, whereas the isolated rater comes from a distinct

population. Therefore, the marginal classification probabilities of the isolated rater

and of the population of raters were basically assumed to be different (π 6= π∗). In

the SCT example, it is realistic to admit that each student differs from the group

of experts by the knowledge he/she acquired so far in clinical decision-making.

Although the group of raters was seen as the ”reference” group in the present

chapter, the theory is equally applicable to the case where the isolated rater repre-

sents the expert, at least as long as a single agreement index is looked for between

them. When neither the isolated rater nor the group of raters is considered as

the gold standard, an intraclass version of the proposed agreement index can be

derived. The latter reduces to the intraclass kappa coefficient (Kraemer, 1979) in

case of two isolated raters, by assuming that the isolated rater and the group of

raters come from the same population (π = π∗).

The new agreement index was conveniently developed on a population-based model,

allowing an easy extension from dichotomous to nominal scales and the use of

weighted agreement coefficients. It also leads to a less restrictive definition of per-

fect agreement. Indeed, the isolated rater and the group of raters were defined to
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be in ”perfect agreement” when their respective classifications of items were line-

arly related and equal on average, without perfect agreement among all raters in

the group (ICC < 1). It was shown that under this assumption and the additional

assumption of perfect agreement within the population of raters (ICC = 1), the

agreement index κ proposed by Vanbelle and Albert (2009a) is algebraically equi-

valent to the agreement coefficient derived by Schouten (1982). In other terms, the

approach of Vanbelle and Albert (2009a) is based on less stringent assumptions

than those made by Schouten. This was illustrated on the syphilis example where

it was not possible for Schouten’s agreement index to achieve the maximum value

of 1 to the contrary of the new agreement index. The latter further overcomes the

shortcomings of the widely used consensus method, in particular the fact that a

decision is not required for items lacking a consensus in the group. It should be

remarked, however, that for items lacking consensus among the members of the

group, the responses given by the isolated rater can lead to different kappa values

depending on the scheme uses (weighted or non weighted) as demonstrated by

the hypothetical laboratory in Williams’ example. The agreement index proposed

by Vanbelle and Albert (2009a) also takes into account the existing variability

in the group of raters while the strength of consensus, as already indicated, is

completely ignored in the consensus method. Lastly, as illustrated in the SCT

example and pointed out by Salerno et al. (2003) and Miller et al. (2004), the re-

sults may vary markedly according to the definition of the consensus method used.

The notion of perfect agreement appears to play a major role in the definition of

the new agreement coefficient and particularly of its maximum value of 1. Here,

the population of raters is seen as a whole, a single entity composed of equally

valued members but displaying heterogeneity in their judgments of items. Hence,

perfect agreement is defined between the isolated rater and the population of itself,

not between the isolated rater and the individual members of the population. As

a consequence, agreement may be perfect without forcing all raters, including the

isolated one, to classify all items in the same way. The present definition also does

not preclude that the agreement between the isolated rater and the population

may be better than the agreement between the population and some of its indi-

vidual members. In other terms, the isolated rater can perform better than some

of the experts. This may sound somewhat contradictory in the context of a gold

standard. In Schouten’s view, an agreement value of 1 can only be achieved when

all raters of the population and the isolated rater perfectly and thoroughly agree

in allocating items. A gold standard generally represents some definite, practi-

cally not attainable but only approachable level, determined by a single reference

method. There are situations, however, where a gold standard may result from the

application of several reference methods or the opinions of several experts, without

necessarily achieving a perfect consensus on all items. In a medical context, the
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various responses of an expert group may not only reflect the absence of a clear

consensus among experienced physicians but also the fuzzy character of the clinical

situation at hand. As seen with Williams’ syphilis serology data, major discrepan-

cies were observed in the responses given by the 3 reference laboratories for some

of the assayed specimens. Therefore, Vanbelle and Albert (2009a) proposed that

proficiency testing programs should allow for the fact that a particular non refe-

rence laboratory is in perfect agreement with the references laboratories without

being in perfect agreement with each of them separately, unlike Schouten’s index.

While in theory we may assume that there is always a category of the K-categorical

scale with a maximum proportion of raters for each item, it is not necessarily the

case in practice. There may indeed be a maximum shared by 2 or more categories,

which have to be compared with the category chosen by the isolated rater for this

item (see hypothetical laboratory example in Table A.2). However, as mentioned

previously, this has virtually no impact on the agreement coefficient obtained. In

other terms, two distinct isolated raters will yield the same agreement coefficient

(ignoring the weighting scheme) although their response profile is not exactly iden-

tical.

In sum, the agreement index proposed by Vanbelle and Albert (2009a) provides

a useful alternative to the consensus method and to Light’s approach. It also

generalizes the agreement index proposed by Schouten (1982) as well as Cohen’s

kappa coefficient while keeping its attractive properties.

4.10 Proofs

4.10.1 Perfect agreement when K = 2

Equivalence 3. The definition of perfect agreement, E(Pi) = E(Yi) = π∗∗ and

corr(Pi, Yi) = 1, is equivalent to writing Pi = π∗∗(1−
√
ICC) +

√
ICC Yi.

Proof. Indeed, ρ = 1 leads to the linear relation Pi = a+ bYi. This implies

E(Pi) = π∗∗ = E(a+ bYi) = a+ bπ∗∗

var(Pi) = σ2 = var(a+ bYi) = b2var(Yi) = b2π∗∗(1− π∗∗).

Thus, a = (1− b)π∗∗ and Pi = (1− b)π∗∗ + bYi.

Since ICC =
σ2

π(1− π)
= b2

π∗∗(1− π∗∗)
π∗∗(1− π∗∗)

= b2,

we have Pi = π∗∗(1−
√
ICC) +

√
ICC Yi.
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4.10.2 Perfect agreement when K > 2

Equivalence 4. If ΠM is defined by

ΠM =
K∑
j=1

E[(π∗∗j + (1− π∗∗j )
√
ICCj)Yij]

where E(Pij) = E(Yij) = π∗∗j and ICCj denotes the intraclass kappa coefficient

relative to category j (j = 1, · · · , K) in the population of raters, we have

K∑
j=1

Π[j]M = 2ΠM +K − 2

where Π[j]M corresponds to the quantity described in the binary case (K = 2) when

the nominal scale is dichotomized by grouping all categories other than category j

together.

Proof. When the population of raters and the isolated rater are in perfect agree-

ment, we have from Equivalence 1

Pij = π∗∗j (1−
√
ICCj) +

√
ICCjYij.

Therefore,

ΠM = E[
K∑
j=1

PijYij] = E[
K∑
j=1

(π∗∗j + (1− π∗∗j )
√
ICCjYij)Yij]

=
K∑
j=1

(π∗∗j + (1− π∗∗j )
√
ICCj)π

∗∗
j

=
K∑
j=1

(π∗∗2j + σ∗∗2j

σj
σ∗∗j

) =
K∑
j=1

(π∗∗2j + σjσ
∗∗
j ).

From Equation 4.3,

K∑
j=1

Π[j]M =
K∑
j=1

(1− 2π∗∗j (1− π∗∗j )(1−
√
ICCj))

=
K∑
j=1

(1− 2σ∗∗2j

σ∗∗j − σj
σ∗∗j

)

=
K∑
j=1

1− 2
K∑
j=1

σ∗∗2j + 2
K∑
j=1

σ∗∗j σj

= K − 2 + 2
K∑
j=1

(π∗∗2j + σjσ
∗∗
j )

= 2ΠM +K − 2.





CHAPTER 5

Agreement between two

independent groups of raters

5.1 Introduction

Kappa-like agreement indexes to quantify agreement between two raters on a cate-

gorical scale were introduced in Chapter 2. They include Cohen’s kappa coefficient

(Cohen, 1960), the weighted kappa coefficient (Cohen, 1968) and the intraclass

kappa coefficient (Kraemer, 1979). All these coefficients are based on the same

principle: the proportion of concordant classifications between the two raters (po)

is corrected for the proportion of concordant classifications expected by chance

(pe) and standardized κ̂ = (po − pe)/(1− pe) to obtain a value 1 when agreement

between the two raters is perfect and 0 in case of agreement due to chance alone.

Although agreement is often searched between two individual raters, there are si-

tuations where agreement is needed between two groups of raters. For example, a

group of students may be evaluated against another group of students or against

a group of experts, each group classifying the same set of items on a categorical

scale. Likewise, agreement may be searched between two groups of physicians with

different specialties or professional experience in diagnosing patients by means of

the same (positive/negative) clinical test. In such instances, each group is seen as

a whole, a global entity with its own heterogeneity. Interest resides in the overall

degree of agreement between the groups, not in the agreement between individuals

themselves. In fact, the groups may perfectly agree while some of their members

may not.

97
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Methods testing for evidence of agreement between two groups of raters when

ordering items were proposed by Schucany and Frawley (1973), Hollander and

Sethuraman (1978), Kraemer (1981) and Feigin and Alvo (1986). These methods

are generally based on the Spearman rank correlation coefficient or Kendall’s tau

coefficient. However, methods designed to quantify the degree of agreement bet-

ween two groups of raters on a nominal or ordinal scale barely exist and it appears

that the only reference found in the literature is a paper written by Schouten

(1982). He developed a measure of pairwise interobserver agreement between two

groups of raters to find clusters of homogeneous subgroups of raters when all raters

classify the items on a categorical scale. His method consists in substituting in the

kappa coefficient the observed proportion of agreement (po) and the proportion of

agreement expected by chance (pe) by, respectively, the mean of the observed (po)

and of the expected (pe) proportions of agreement obtained between all possible

pairs of raters formed with one rater in each group, namely κ̂ = (po− pe)/(1− pe).
Unfortunately, in Schouten’s approach, perfect agreement between the two groups

can only be achieved if there is perfect agreement within each group.

Although there is a clear lack of theoretical work on agreement measures between

two groups of raters, it is common practice in the applied literature to determine

empirically a consensus category in each group of raters in order to reduce the

problem to the case of two raters. To our knowledge, the consensus method is

used as an intuitive method and there is no theoretical proof to justify its use.

The consensus category may be defined as the modal category (e.g., van Hoeij

et al. (2004)), the median category (e.g., Raine et al. (2004)) or the mean cate-

gory (e.g., Bland et al. (2005)) if the scale is ordinal. When a consensus category

is found in each group for each item, the agreement between these categories is

studied in the usual way (case of two raters). In all instances, however, the ques-

tion of how to proceed when a consensus can not be reached remains. Moreover,

different rules to define the consensus category may lead to different conclusions

(Kraemer et al., 2004). Indeed, consider a group of 10 raters allocating an item

on a 5-point Likert scale and suppose that 3 raters classify the item in category

1, 2 in category 2, none in categories 3 and 4, and 5 in category 5. The consensus

category defined by the modal rule is category 5, by the median rule category 2, 3,

4 or 5 and by the mean rule category 3 (category chosen by none of the raters in

the group). The three rules may almost inevitably lead to three different conclu-

sions. It should also be remarked that consensus does not take into account the

variability in the groups in the sense that different patterns of responses may lead

to the determination of the same consensus category and thus lead to the same

conclusions. Indeed, in the example above, if 6 instead of 5 raters classified the

item in category 5, the modal category would still be category 5, leading to the
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same conclusion although the variability in the group is different.

The present chapter aimed at defining an overall agreement index between two

groups of raters, taking into account the heterogeneity of each group. Furthermore,

the agreement index overcomes the problem of consensus and can be viewed as a

natural extension of Cohen’s kappa coefficient to two groups of raters. The novel

agreement index was defined on a population-based model (Vanbelle and Albert,

2009b) and its sampling variability determined by the Jackknife method (Efron

and Tibshirani, 1993).

5.2 The two group agreement index

5.2.1 Binary scale

Consider a population of items I and two distinct populations of raters R1 and

R2. Suppose that items have to be classified in two categories (K = 2). Now,

consider a randomly selected rater r from population Rg and a randomly selected

item i from population I. Let Xir,g be the random variable such that Xir,g = 1 if

rater r of population Rg classifies item i in category 1 and Xir,g = 0 otherwise. For

each item i, E(Xir,g|i) = P (Xir,g = 1) = Pi,g over the population of raters. Then,

over the population of items, E(Pi,g) = E[E(Xir,g|i)] = πg and var(Pi,g) = σ2
g .

Finally, let

ICCg =
σ2
g

πg(1− πg)
be the intraclass correlation coefficient in group g (g = 1, 2) denoted by ICCg for

convenience (see Chapter 2, Section 2.4.1). The joint distribution of the classifica-

tions of item i made by the two populations of raters consists of four probabilities

summing up to 1, (1− Pi,1)(1− Pi,2), (1− Pi,1)Pi,2, Pi,1(1− Pi,2) and Pi,1Pi,2. For

example, Pi,1Pi,2 denotes the probability that both populations of raters classify

item i into category 1. The expectations of these joint probabilities over the pop-

ulation of items I can be represented in a 2 × 2 classification table, as displayed

in Table 5.1 with ρ = corr(Pi,1, Pi,2) = [E(Pi,1Pi,2) − π1π2)]/σ1σ2, the correlation

over I between the random variables Pi,1 and Pi,2.

The probability that the two populations of raters agree on the classification of

item i is naturally defined by

Πi = Pi,1Pi,2 + (1− Pi,1)(1− Pi,2). (5.1)

Thus, at the population level, the mean probability of agreement over I is (see

Table 5.1)

ΠT = E(Πi) = π1π2 + (1− π1)(1− π2) + 2ρσ1σ2. (5.2)
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Table 5.1. Expected joint classification probabilities of the two po-
pulations of raters over the population of items

R2

0 1
0 E[(1− Pi,1)(1− Pi,2)] E[(1− Pi,1)Pi,2] 1− π1

(1− π1)(1− π2) + ρσ1σ2 (1− π1)π2 − ρσ1σ2

R1

1 E[Pi,1(1− Pi,2)] E[Pi,1Pi,2] π1

π1(1− π2)− ρσ1σ2 π1π2 + ρσ1σ2

1− π2 π2 1

This quantity does not only involve the marginal probabilities that populations

R1 and R2 classify items in category 1 (π1 and π2) but also the variability within

each population of raters (σ1 and σ2) and the correlation ρ.

Under the assumption of random assignment of item i by the two populations of

raters (E[Pi,1Pi,2] = E[Pi,1]E[Pi,2]), the mean probability of agreement expected by

chance is simply the product of the marginal probabilities, namely

ΠE = π1π2 + (1− π1)(1− π2). (5.3)

It is seen that this quantity can be obtained by setting the correlation coefficient ρ

equal to 0 in Equation 5.2, or equivalently by setting either σ2
1 and/or σ2

2 equal to 0.

Vanbelle and Albert (2009b) defined the agreement index between the two popu-

lations of raters in a kappa-like way, namely

κ =
ΠT − ΠE

ΠM − ΠE

(5.4)

where ΠM = max(ΠT ) corresponds to the maximum attainable value of the mean

probability of agreement (Equation 5.2) given the existing heterogeneity in each

population of raters. Thus, κ = 1 when agreement is perfect, κ = 0 when agree-

ment is only due to chance and κ < 0 when agreement is less than one would

expect by chance.

There is a need at this stage of the development to explicit the notion of ”perfect

agreement” (κ = 1). By definition, the two populations of raters are said to be in

perfect agreement if and only if Pi,1 = Pi,2 = Pi, for all items i in I (Vanbelle and

Albert, 2009b). In other words, the two populations of raters ”perfectly” agree if

and only if the probability of classifying an item in a given category is the same for

the two populations. Intuitively, it is obvious that if the probability of classifying
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item i in category 1 is different in the two populations of raters, the latter can not

agree perfectly. Note that the present definition extends that of perfect agreement

between two raters, namely that Xi,1 = Xi,2 = Xi for each item i. Under the

definition of perfect agreement, if we write E(Pi) = π and var(Pi) = σ2, we have

ICCg = ICC = σ2/π(1− π), (g = 1, 2) and ΠM is then given by the expression

ΠM = E(Πi) = 2σ2 + 2π2 − 2π + 1 = 1− 2π(1− π)(1− ICC). (5.5)

It is seen that ΠM = 1 if the intraclass kappa coefficient is equal to 1 in both

populations of raters (ICC = 1, i.e. perfect agreement within each population),

and/or trivially if π = 0 or π = 1 (no variability in the allocation process). Note

that Schouten’s agreement index is given by Equation 5.4 where ΠM = 1.

An intraclass version of κ can be derived using the additional assumption π1 =

π2 = π (equality of marginal probabilities). In that case, we have

κI =
E(Pi,1Pi,2)− π2

σ2
(5.6)

which is equivalent to the correlation coefficient between Pi,1 and Pi,2 under the

assumption of equal marginal probabilities.

5.2.2 Nominal scale

When K > 2, Vanbelle and Albert (2009b) defined the coefficient of agreement

between two independent populations of raters by

κ =

∑K
j=1(Π[j]T − Π[j]E)∑K
j=1(Π[j]M − Π[j]E)

=
ΠT − ΠE

ΠM − ΠE

(5.7)

where the quantities Π[j]T , Π[j]E and Π[j]M correspond to the quantities described

in the dichotomous case when the nominal scale is dichotomized by grouping all

categories other than category j together and ΠT , ΠE and ΠM are defined by

ΠT =
K∑
j=1

E(Pij,1Pij,2); ΠE =
K∑
j=1

πj,1πj,2; and ΠM =
K∑
j=1

E(P 2
ij)

and extend naturally the quantities defined in the dichotomous case. Indeed, Pij,g
denotes the probability for item i to be classified in category j (j = 1, · · · , K)

by the population of raters Rg (g = 1, 2) and is a random variable over the

population of items I. We have Pij,g = P (Xijr,g = 1|i) where the binary random

variable Xijr,g is equal to 1 if rater r of population Rg classifies item i in category

j and
∑K

j=1 Pij,g = 1. Over the population of items I, E(Pij,g) = πj,g (g = 1, 2).

The equivalence of the two expressions in Equation 5.7 is proven in Section 5.9.

The two populations of raters are defined to be in perfect agreement if and only

if Pij,1 = Pij,2 = Pij for all items i in I (j = 1, · · · , K), extending the definition of

the dichotomous case.
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5.2.3 Ordinal scale

A weighted version of the agreement index between two populations of raters,

accounting for the fact that some disagreements may be more important than

others, is defined in the same way as the weighted kappa coefficient (Cohen, 1968).

We have

κW =
ΠT,W − ΠE,W

ΠM,W − ΠE,W

(5.8)

where

ΠT,W =
K∑
j=1

K∑
k=1

wjkE(Pij,1Pik,2), (5.9)

ΠE,W =
K∑
j=1

K∑
k=1

wjkπj,1πk,2, (5.10)

ΠM,W =
K∑
j=1

K∑
k=1

wjkE(PijPik). (5.11)

The unweighted agreement index κ (see Equation 5.7) is obtained by using the

weighting scheme wjk = 1 if j = k and wjk = 0 otherwise (j 6= k ∈ 1, · · · , K).

5.3 Estimation of the parameters

Consider a random sample of N items from I, a random sample of R1 raters from

R1 (group G1) and a random sample of R2 raters from R2 (group G2).

5.3.1 Binary scale

Suppose that xir,g denote the observed values of the random variables Xir,g defined

in Section 5.2.1 (i = 1, · · · , N ; r = 1, · · · , Rg, ; g = 1, 2). Let

ni,g =

Rg∑
r=1

xir,g

denote the number of raters of group Gg classifying item i in category 1 (g = 1, 2).

Then, let

pi,g =
ni,g
Rg

be the corresponding proportions (i = 1, · · · , N ; j = 1, · · · , K; g = 1, 2).
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At the population level, the mean agreement over the population of items I between

the two populations of raters, ΠT , is estimated by the observed proportion of

agreement

Π̂T = po =
1

N

N∑
i=1

[pi,1pi,2 + (1− pi,1)(1− pi,2)]. (5.12)

Likewise, the mean probability of agreement expected by chance, ΠE, is estimated

by the proportion of agreement expected by chance

Π̂E = pe = p1p2 + (1− p1)(1− p2) (5.13)

where pg =
1

N

N∑
i=1

pi,g (g = 1, 2).

The agreement index between the two populations of raters is then estimated by

κ̂ =
po − pe
pm − pe

(5.14)

where pm corresponds to the maximum possible proportion of agreement derived

from the samples. Indeed, recall that ΠM is obtained when Pi,1 = Pi,2 = Pi and

corresponds to the maximum expected agreement over the population of items.

Thus, given the observed data, the maximum observed proportion of agreement

can be obtained when pi = pi,g (g = 1, 2), leading to po = p2
i,g + (1− pi,g)2. Since

pi,1pi,2 + (1− pi,1)(1− pi,2) ≤ maxg[p
2
i,g + (1− pi,g)2] for each item i, it follows that

Π̂M = pm =
1

N

N∑
i=1

maxg[p
2
i,g + (1− pi,g)2]. (5.15)

It is seen that if pi,1 = pi,2 (i = 1, · · · , N), po = pm and κ̂ = 1.

5.3.2 Nominal scale

Let xijr,g denote the observed values of the random variables Xijr,g equal to 1 if

rater r (r = 1, · · · , Rg) of population Rg (g = 1, 2) classifies item i (i = 1, · · · , N)

in category j (j = 1, · · · , K). The assessment of the N items by the two groups

of raters can be conveniently summarized in a two-way classification table as seen

in Table 5.2. Let

nij,g =

Rg∑
r=1

xijr,g

denote the number of raters of group Gg classifying item i in category j (g = 1, 2).

Then, let

pij,g =
nij,g
Rg
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be the corresponding proportions (i = 1, · · · , N ; j = 1, · · · , K; g = 1, 2). We have∑K
j=1 pij,g = 1, (i = 1, · · · , N ; g = 1, 2). Finally, let

cjk =
1

N

N∑
i=1

pij,1pik,2 (j, k = 1, · · · , K).

The quantities cjk estimate the joint probability that populations R1 and R2 clas-

sify a randomly selected item i in category j and k, respectively (cjk = ̂E(Pij,1Pik,2);

j, k = 1, · · · , K). A K×K matrix can then be derived from the original data (see

Table 5.2).

Table 5.2. Two-way classification table of the N items
by the two groups of raters on a K-categorical scale

G2

Category 1 . . . j . . . K Total
1 c11 . . . c1j . . . c1K c1.
...

...
...

...
...

...
...

G1 j cj1 . . . cjj . . . cjK cj.
...

...
...

...
...

...
...

K cK1 . . . cKj . . . cKK cK.
Total c.1 . . . c.j . . . c.K 1

The mean probability of agreement between the two populations of raters, ΠT , is

estimated by

Π̂T = po =
1

N

N∑
i=1

K∑
j=1

pij,1pij,2 =
K∑
j=1

cjj (5.16)

and the mean probability of agreement expected by chance, ΠE, is estimated by

Π̂E = pe =
K∑
j=1

pj,1pj,2 =
K∑
j=1

cj.c.j (5.17)

where pj,g =
1

N

N∑
i=1

pij,g.

The agreement index between the two populations of raters is then estimated as

before by

κ̂ =
po − pe
pm − pe

(5.18)

where

pm =
1

N

N∑
i=1

max(
K∑
j=1

p2
ij,1,

K∑
j=1

p2
ij,2) (5.19)
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is the maximum possible proportion of agreement derived from the data, obtained

by extending the argument developed for the dichotomous case. Note that when

there is only one rater in each group of raters (R1 = R2 = 1), the agreement

coefficient κ̂ merely reduces to Cohen’s κ coefficient (Cohen, 1960).

5.3.3 Ordinal scale

The weighted version of the agreement index is estimated in exactly the same way,

namely

κ̂W =
po,W − pe,W
pm,W − pe,W

(5.20)

with

Π̂T,W = po,w =
1

N

N∑
i=1

K∑
j=1

K∑
k=1

wjkpij,1pik,2 =
K∑
j=1

K∑
k=1

wjkcjk, (5.21)

Π̂E,W = pe,w =
K∑
j=1

K∑
k=1

wjkpj,1pk,2 =
K∑
j=1

K∑
k=1

wjkcj.c.k (5.22)

and

Π̂M,W = pm,W =
1

N

N∑
i=1

max(
K∑
j=1

K∑
k=1

wjkpij,1pik,1,
K∑
j=1

K∑
k=1

wjkpij,2pik,2). (5.23)

5.3.4 Sampling variability

The Jackknife method (Efron and Tibshirani, 1993) can be used to determine the

sampling variance of the agreement indexes, as explained in Section 4.3.4.

5.3.5 Example

Consider the following hypothetic example to illustrate how to compute the pro-

posed agreement index. Suppose that a group G1 of 12 raters and a group G2 of

3 raters have to classify 3 items on a 5-point Likert scale ranging from (-2) to (2)

(Table 5.3).

The responses given by the 2 groups of raters are then summarized in Table 5.4

and expressed in terms of proportions (pij,g = nij,g/Rg) (g = 1, 2) in Table 5.5.

The marginal classification distributions of the groups of raters (pj,g) are also de-

termined.
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Table 5.3. Responses given by the groups G1 (R1 = 12) and G2 (R2 = 3)
for 3 items on a 5-point Likert scale (hypothetic example)

Group G1 Group G2

Item 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3
1 0 1 2 2 2 1 2 1 1 1 1 1 1 2 1
2 0 -1 1 0 0 -1 -1 0 0 -1 -1 -1 0 2 2
3 1 1 -2 -1 -1 1 -2 -2 -1 -1 1 1 -2 -1 -2

Table 5.4. Summary of the responses given by the groups of raters
G1 and G2 (hypothetic example)

Group G1 Group G2

Category Category
Item (-2) (-1) (0) (1) (2) (-2) (-1) (0) (1) (2)

1 0 0 1 7 4 0 0 0 2 1
2 0 6 5 1 0 0 0 1 0 2
3 3 4 0 5 0 2 1 0 0 0

Table 5.5. Distribution of the responses given by the two groups of raters G1

and G2 (hypothetic example)
Group G1 Group G2

Category Category
Item (-2) (-1) (0) (1) (2) (-2) (-1) (0) (1) (2)

1 0 0 0.08 0.58 0.33 0 0 0 0.66 0.33
2 0 0.50 0.42 0.08 0 0 0 0.33 0 0.66
3 0.25 0.33 0 0.42 0 0.66 0.33 0 0 0
pj 0.08 0.28 0.17 0.36 0.11 0.22 0.11 0.11 0.22 0.33
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The observed proportion of agreement is equal to

po =
1

N

N∑
i=1

K∑
j=1

pij,1pij,2

= (0.58× 0.66 + 0.33× 0.33 + 0.42× 0.33 + 0.25× 0.66 + 0.33× 0.33)/3

= 0.31.

The proportion of agreement expected by chance is equal to

pe =
K∑
j=1

pj,1pj,2

= 0.08× 0.22 + 0.28× 0.11 + 0.17× 0.11 + 0.36× 0.22 + 0.11× 0.33 = 0.19.

To determine the maximum possible observed proportion of agreement, each group

is duplicated to artificially have perfect agreement and the observed proportion of

agreement is calculated (see Table 5.6).

Table 5.6. Squared proportion of raters classifying each item in the 5 categories as
explained in Equation 5.15 (hypothetic example)

Group G1 Group G2

Category Sum Category Sum
Item (-2) (-1) (0) (1) (2) (-2) (-1) (0) (1) (2)

1 0 0 0.01 0.34 0.11 0.46 0 0 0 0.44 0.11 0.56
2 0 0.25 0.17 0.01 0 0.43 0 0 0.11 0 0.44 0.56
3 0.06 0.11 0 0.17 0 0.35 0.44 0.11 0 0 0 0.56

For each item, the highest observed proportion of agreement is chosen. It leads to

the maximum proportion of observed agreement

pm =
0.56 + 0.56 + 0.56

3
= 0.56.

The agreement index between the two groups is then equal to

κ̂ =
po − pe
pm − pe

=
0.31− 0.19

0.56− 0.19
= 0.33.

5.4 Consensus approach

5.4.1 Binary scale

Consider a population of items I and two distinct populations of raters R1 and

R2. Suppose that items have to be classified in two categories (K = 2). Let IC
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denote the sub-population of items on which a consensus (C) is always possible

in both populations of raters. In IC , consider the random variable Zi,g such that

Zi,g = 1 if there is a consensus on category 1 for item i in the population Rg and

Zi,g = 0 otherwise. The agreement index based on the consensus method then re-

duces to the case of two raters, the consensus defining a single rater in each group.

Then, over IC , let E(Zi,g) = φg and var(Zi,g) = σ′2g = φg(1−φg). If ρ′ denotes the

correlation coefficient between Zi,1 and Zi,2, we have the following representation

of the expected probabilities between the two consensus values (Table 5.7).

Table 5.7. Expected probabilities of the classification of the two
populations of raters over the sub-population IC of items where a
consensus exists

R2

0 1
0 E[(1− Zi,1)(1− Zi,2)] E[(1− Zi,1)Zi,2] 1− φ1

(1− φ1)(1− φ2) + ρ′σ′1σ
′
2 (1− φ1)φ2 − ρ′σ′1σ′2

R1

1 E[Zi,1(1− Zi,2)] E(Zi,1Zi,2) φ1

φ1(1− φ2)− ρ′σ′1σ′2 φ1φ2 + ρ′σ′1σ
′
2

1− φ2 φ2 1

The agreement between the two populations of raters on item i based on the

consensus, denoted ΠiC , is defined by

ΠiC = Zi,1Zi,2 + (1− Zi,1)(1− Zi,2). (5.24)

Thus,

E(ΠiC) = ΠTC = φ1φ2 + (1− φ1)(1− φ2) + 2ρ′σ′1σ
′
2. (5.25)

The agreement expected by chance is defined by

ΠEC = φ1φ2 + (1− φ1)(1− φ2) (5.26)

and perfect agreement is achieved when Zi,1 = Zi,2, for all items in IC , leading to

E(ΠiC) = ΠMC = 1.

Therefore, the agreement coefficient between the two populations of raters is de-

fined by

κC =
ΠTC − ΠEC

1− ΠEC

. (5.27)
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5.4.2 Nominal scale

Consider the random variable Zij,g such that Zij,g = 1 if there is a consensus on

category j for item i in population Rg and Zij,g = 0 otherwise. Then, over IC , let

E(Zij,g) = φj,g. In the same way as before,

κC =

∑K
j=1(Π[j]TC − Π[j]EC)∑K
j=1(Π[j]MC − Π[j]EC)

=
ΠTC − ΠEC

ΠMC − ΠEC

(5.28)

where Π[j]TC , Π[j]EC and Π[j]MC correspond to the quantities described in the

dichotomous case when the nominal scale is dichotomized by grouping all categories

other than category j together. The quantities ΠTC , ΠEC and ΠMC are defined

respectively by

ΠTC =
K∑
j=1

E(Zij,1Zij,2); ΠEC =
K∑
j=1

φj,1φj,2; ΠMC = 1.

5.4.3 Ordinal scale

The weighted version of the consensus approach can also be derived in the same

way as before by introducing weights in the expression of ΠTC , ΠEC and ΠMC .

ΠT,WC =
K∑
j=1

K∑
k=1

wjkE(Zij,1Zik,2); (5.29)

ΠE,WC =
K∑
j=1

K∑
k=1

wjkφj,1φk,2; (5.30)

ΠM,WC =
K∑
j=1

K∑
k=1

wjkE(ZijZik) = 1 (5.31)

leading to

κC,W =
ΠT,WC − ΠE,WC

1− ΠE,WC

. (5.32)

5.4.4 Estimation of the parameters

Consider again a random sample of R1 raters from R1, a random sample of R2

raters from R2 and a random sample of N items from I. Let NC (≤ N) denote the

number of items where a consensus exist in each group. Suppose that zij,g denotes

the observed values of the random variables Zij,g (i = 1, · · · , NC ; j = 1, · · · , K; g =

1, 2) defined in the previous section. The assessment of the NC items on which the
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two groups of raters can determine a consensus can be conveniently summarized

by

djk =
1

NC

NC∑
i=1

zij,1zik,2 (j, k = 1, · · · , K).

Similarly to what was done in Section 5.3, the observed weighted agreement bet-

ween the two groups of raters is obtained by

Π̂T,WC = po,WC =
1

NC

NC∑
i=1

K∑
j=1

K∑
k=1

wjkzij,1zik,2 =
K∑
j=1

K∑
k=1

wjkdjk (5.33)

and the agreement expected by chance by the expression

Π̂E,WC = pe,WC =
K∑
j=1

K∑
k=1

wjkzj,1zk,2 =
K∑
j=1

K∑
k=1

wjkdj.d.k (5.34)

where zj,g =
1

NC

NC∑
i=1

zij,g, (g = 1, 2) leading to the weighted agreement coefficient

κ̂C,W =
po,WC − pe,WC

1− pe,WC

. (5.35)

5.4.5 Example

Consider the example developed in Section 5.3.5 to illustrate the consensus method.

A consensus is determined in each group using the majority rule i.e., the consen-

sus category is determined for each item as the category the most chosen by the

raters in the group. The data are then summarized in a 5 × 5 contingency table

by cross-classifying the consensuses found in the two groups of raters (see Table

5.8).

Table 5.8. Cross-classification of the responses given by the two
group of raters (consensus)

Group G2

Category (-2) (-1) (0) (1) (2) Total
(-2) 0 0 0 0 0 0
(-1) 0 0 0 0 0.33 0.33

Group G1 (0) 0 0 0 0 0 0
(1) 0.33 0 0 0.33 0 0.66
(2) 0 0 0 0 0 0

Total 0.33 0 0 0.33 0.33 1
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The observed proportion of agreement is equal to

poC =
K∑
j=1

djj = 0.33,

and the proportion of agreement expected by chance to

peC =
K∑
j=1

dj.d.j = 0× 0 + 0× 0.33 + 0.33× 0 + 0.33× 0.66 + 0.33× 0 = 0.22.

This leads a Cohen’s kappa coefficient of

κ̂C =
poC − peC
1− peC

=
0.33− 0.22

1− 0.22
= 0.14.

5.5 Schouten’s agreement index

Schouten (1982) also developed a hierarchical clustering method, consisting in

grouping the raters with the highest inter-cluster agreement coefficient.

5.5.1 Definition

For two clusters G1 and G2 consisting of R1 and R2 raters, where no rater belongs

to G1 and G2 simultaneously, Schouten (1982) defined the inter-cluster kappa

coefficient by

κ̂G1,G2(w) =
oG1,G2(w)− eG1,G2(w)

1− eG1,G2(w)
(5.36)

where

oG1,G2(w) =
1

R1R2

∑
r∈G1

∑
s∈G2

or,s(w) (5.37)

and

eG1,G2(w) =
1

R1R2

∑
r∈G1

∑
s∈G2

er,s(w). (5.38)

The quantities or,s(w) and er,s(w) were defined in Chapter 4 (Section 4.5).

5.5.2 Hierarchical clustering

When the number of raters is large, Schouten (1982) proposed to divide the group

of raters into several homogeneous subgroups, with higher degree of pairwise inter-

rater agreement within subgroups than between subgroups, and to find out why

and in which way different subgroups differ in opinion. Schouten (1982) used the

weighted kappa coefficient defined in Equation 5.36 to identify such homogeneous

subgroups, called ”clusters”.
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The hierarchical cluster analysis starts with R1+R2 clusters formed by the R1+R2

raters of the group. Next, the raters within the two clusters with the highest inter-

cluster kappa coefficient are grouped together and form a new cluster, and this may

go on until finally all raters are considered to be in one cluster.

5.5.3 Example

Consider the hypothetical example described in Table 5.3. The observed propor-

tion of agreement and the proportion of agreement expected by chance correspon-

ding to each pair formed by one rater in the group G1 and one in the group G2

are given in Table 5.9.

Table 5.9. Observed proportion of agreement (po), expected proportion of agree-
ment (pe) and Cohen’s kappa coefficients (κ̂) between each rater of the group G1

and each rater of the group G2

po pe κ̂

Group G2 Group G2 Group G2

Rater 1 2 3 1 2 3 1 2 3
1 0.33 0 0 0.33 0 0.11 0 0 -0.13
2 0.33 0 0.33 0.22 0.11 0.22 0.14 -0.13 0.14
3 0.33 0.33 0.33 0.22 0.22 0.33 0.14 0.14 0
4 0.33 0.67 0 0.11 0.33 0.11 0.25 0.50 -0.13
5 0.33 0.67 0 0.11 0.33 0.11 0.25 0.50 -0.13
6 0.33 0 0.33 0.22 0.11 0.22 0.14 -0.13 0.14

Group G1 7 0.33 0.33 0.33 0.11 0.33 0.22 0.25 0 0.14
8 1 0 0.67 0.33 0 0.22 1 0 0.57
9 0.67 0.33 0.33 0.22 0.11 0.11 0.57 0.25 0.25
10 0.33 0.33 0.33 0.11 0.22 0.11 0.25 0.14 0.25
11 0.33 0 0.33 0.22 0.11 0.22 0.14 -0.13 0.14
12 0.33 0 0.33 0.22 0.11 0.22 0.14 -0.13 0.14

Mean 0.42 0.22 0.28 0.20 0.17 0.19 0.27 0.09 0.12

This leads to a Schouten’s agreement index of

κ̂G1,G2 =
oG1,G2 − eG1,G2

1− eG1,G2

=
(0.42 + 0.22 + 0.28)/3− (0.20 + 0.17 + 0.19)/3

1− (0.20 + 0.17 + 0.19)/3

=
0.31− 0.19

1− 0.19
= 0.15. (5.39)

Remark that the mean of the kappa coefficients (=0.16) is near Schouten’s index

(=0.15) but not equal.
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5.6 Comparison of the agreement indexes

5.6.1 With the consensus method

The consensus approach is equivalent to the new agreement index if and only if

R1 = R2 = 1 or if and only if a consensus is always possible for each item in both

populations of raters (IC = I) and there is perfect agreement in both populations

of raters (Pij,1 = Pij,2 = Pij, ∀i).

5.6.2 With Schouten’s index

As in the previous chapter, we can easily show that po,w and oG1,G2(w) are equi-

valent as well as pe,w and eG1,G2(w). With the additional assumption ICC1 =

ICC2 = 1, i.e., there is perfect agreement in each population of raters, the pro-

posed agreement index κ is algebraically equivalent to the inter-cluster agreement

index introduced by Schouten (1982).

5.7 Script Concordance Test

Let look again to the example of the SCT developed in Chapter 4, Section 4.8.2

and consider now the 39 students training in ”general practice” as a whole group.

We thus have in the present example R1 = 11, R2 = 39, N = 34 and K = 5.

The cross-classification matrix (cjk, j, k = 1, · · · , 5) between the group of medical

students and the group of experts is given in Table 5.10.

Table 5.10. Two-way classification table of the 34 items of the Script Con-
cordance Test (SCT) by the group of 11 medical experts and by the group
of 39 medical students using a 5-point Likert scale ((-2) The assumption is
practically eliminated; (-1) The assumption becomes less likely; (0) The in-
formation has no effect on the assumption; (+1) The assumption becomes
more likely (+2) The assumption is practically the only possible)

Medical experts
(-2) (-1) (0) (1) (2) Total

(-2) 0.077 0.054 0.028 0.009 0.002 0.170
(-1) 0.036 0.067 0.066 0.033 0.012 0.214

Medical students (0) 0.022 0.053 0.187 0.062 0.013 0.337
(1) 0.013 0.026 0.069 0.090 0.025 0.223
(2) 0.005 0.009 0.013 0.020 0.010 0.057
Total 0.153 0.209 0.363 0.214 0.057 1

Since the scale is ordinal, weighted agreement indexes were calculated using the
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quadratic weighting scheme (wjk = 1− (|k − j|/4)2, k, j = −2, · · · , 2) (Fleiss and

Cohen, 1973). On the basis of the study material, we found that the observed

proportion of agreement, the proportion of agreement expected by chance and the

maximum proportion of agreement were respectively po,w = 0.80, pe,w = 0.69 and

pm,w = 0.84, yielding a weighted agreement index κ̂W = (0.80 − 0.69)/(0.84 −
0.69) = 0.72.

Table 5.11. Weighted agreement indexes between the group of 11 experts
and the group of 39 students for the Script Concordance Test (SCT) with 34
items obtained by four different methods with quadratic weighting scheme.
Method Coefficient N po pe pm κ̂ SE(κ̂)
Proposed κ̂W 34 0.80 0.69 0.84 0.72 0.049
Consensus (majority) κ̂C,W1 32 0.88 0.71 1 0.60 0.11
Consensus (50%) κ̂C,W2 18 0.93 0.60 1 0.82 0.11
Schouten κ̂S,W 34 0.80 0.69 1 0.35 0.049

In Table 5.11, κ̂C,W1 corresponds to the consensus method using the majority rule

and κ̂C,W2 to the 50% rule (Equation 5.35), while κ̂S,W is the agreement coefficient

derived by Schouten (1982). It should be noted that there were 2 items without

consensus for the majority rule and 16 for the 50% rule. When calculating the mean

(± SD) of weighted kappa coefficients for all possible pairs of raters (429 pairs)

between the two groups, we obtained 0.35 ± 0.06, a value similar to Schouten’s

index. The intraclass correlation coefficient was 0.22±0.04 in the group of experts

and 0.29± 0.03 in the group of students, reflecting a substantial heterogeneity in

both groups.

5.8 Discussion

Cohen’s kappa coefficient (Cohen, 1960) is widely used to measure agreement bet-

ween two raters judging items on a categorical scale. Weighted (Cohen, 1968) and

intraclass (Kraemer, 1979) versions of the coefficient were also proposed. Further,

the method was extended to several raters (Fleiss, 1981) and to an isolated rater

and a group of raters (Vanbelle and Albert, 2009a). The problem of assessing the

agreement between two groups of raters is not new. Applications are numerous

(e.g., van Hoeij et al. (2004); Raine et al. (2004)) and a variety of methods has

been proposed over the years to deal with this problem. Several recent articles

from the applied field (e.g. Kraemer et al. (2004)), however, while emphasing the

importance and relevance of the problem, claim that existing solutions are not

quite appropriate and that there is a need for novel and improved methods.
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The usual way to solve the problem of agreement between two groups of raters is

to define a consensus in each group and to quantify the agreement between them.

The problem is then reduced to the case of computing Cohen’s kappa agreement

coefficient between two raters on a categorical scale. The rule of consensus may be

defined as choosing for each item the modal (or majority) category or the category

whose frequency exceeds a given percentage (e.g. 50% or 80%) in each group of

raters. The consensus method, however, has serious limitations that weaken its use

in practice. Indeed, a consensus is not always possible for all items (as illustrated

by the SCT data) resulting in a loss of items and hence of statistical precision.

The variability of the responses within each group of raters is completely ignored

and the strength of the consensus is not really reflected. Further, the conclusions

can be highly dependent on which definition is used for the consensus Kraemer

et al. (2004). Moreover, since items without consensus (i.e., with high variability

among the raters) are generally discarded from the analysis, the results obtained

are prone to bias and over-optimistic estimation (see SCT example). Another na-

tural method for assessing the concordance between two sets of raters consists in

calculating the mean kappa coefficient between all possible pairs of raters com-

posed by one rater of each group. As seen in the SCT example, this approach

gives a value similar to the index developed by Schouten (1982) in the context of

hierarchical clustering of raters within a single population of raters.

The agreement between two groups of raters raises the basic question of what it

meant by ”perfect agreement” between two groups. While this issue is meaningless

in the case of two raters (they agree or they don’t agree), it becomes critical at

the group level agreement. The consensus method is one way to circumvent the

difficulty and the mean of all pairwise kappa coefficients in another way. Schouten

(1982) eluded the problem by defining perfect agreement between two groups as

the situation where all raters of each group perfectly agree on all items, quite an

extreme assumption. The novelty of the method derived by Vanbelle and Albert

(2009b) is that it rests on a less stringent definition of perfect agreement in a

population-based context. Specifically, two populations of raters are defined to be

in perfect agreement (kappa coefficient equal to 1) if they have the same probability

of classifying each item on the K-categorical scale. With this definition in mind,

it does not really matter which raters agree or don’t agree for a given item within

each population, as long as the proportions in the two populations are equal. Each

population is viewed as a global entity with its own heterogeneity and there is no

direct interest in the agreement of individual raters within or between populations.

Actually, it is quite possible that the two populations perfectly agree while a sub-

stantial part of raters disagree with each other in their own population and with

some raters in the other population. As a consequence of the definition of per-

fect agreement, the maximum attainable proportion of agreement between the two
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populations (at least in the dichotomous case) can be expressed as an analytical

function of two factors, the intraclass correlation coefficient within each population

and the overall marginal probabilities of classifying the items. By setting the intra-

class correlation coefficient equal to 1, it turns out that the approach of Vanbelle

and Albert (2009b) rejoins Schouten’s assumption of perfect agreement, which can

therefore be regarded as a special (extreme) case of their general definition. As

illustrated on the SCT data, the difference between Schouten’s and Vanbelle and

Albert (2009b) approach can be marked (κ̂ = 0.72 and 0.35, respectively). This is

due to the fact that both groups of raters show a high variability in their responses

(the ICC was 0.22 ± 0.04 in the group of experts and 0.29 ± 0.03 in the group of

students, respectively). The method of Vanbelle and Albert (2009b) allows for

prefect agreement in presence of group heterogeneity while Schouten’s approach

does not. Schouten’s index, however, can be derived directly from the K × K

contingency table of joint probabilities estimates, whereas this is not possible with

the proposed approach because the definition of perfect agreement requires the

raw original data to be available to compute the maximum attainable value. As

for the sampling variability aspects, Vanbelle and Albert (2009b) suggested to use

the Jackknife method rather than by asymptotic formulas.
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The agreement index proposed by Vanbelle and Albert (2009b) is also superior to

the consensus approach (a method that we tried to formalize more theoretically) in

the sense that it takes into account the variability among raters in each population

and it incorporates always all items to be allocated. An intraclass and weighted

versions were also proposed. If there is only one rater in each group, all coefficients

envisaged here reduce to Cohen’s kappa coefficient. Recently, Vanbelle and Albert

(2009a) envisaged the agreement between a single rater and a group of raters, a

situation which may be regarded as a special case of the present one but which

raises specific problems in practice.

In conclusion, the index proposed by Vanbelle and Albert (2009b) measures the

overall agreement between two independent groups of raters, taking into account

the within group heterogeneity. The method is a natural extension of Cohen’s

kappa coefficient and demonstrates similar properties.

5.9 Proofs

Equivalence 5. We have

κ =

∑K
j=1(Π[j]T − Π[j]E)∑K
j=1(Π[j]M − Π[j]E)

=
ΠT − ΠE

ΠM − ΠE

where the quantities Π[j]T , Π[j]E and Π[j]M correspond to the quantities described

in the dichotomous case when the nominal scale is dichotomized by grouping all

categories other than category j together and ΠT , ΠE and ΠM are defined by

ΠT =
K∑
j=1

E(Pij,1Pij,2); ΠE =
K∑
j=1

πj,1πj,2; ΠM =
K∑
j=1

E(P 2
ij).

Proof. Indeed, when grouping all categories other than [j] together, a 2× 2 table

cross-classifying populations of raters R1 and R2 with respect to category j of the

nominal scale can be constructed (j = 1, · · · , K) (Table 5.12).

Thus,

K∑
j=1

Π[j]T =
K∑
j=1

E[Pij,1Pij,2 + (1− Pij,1)(1− Pij,2)])

= E(2
K∑
j=1

Pij,1Pij,2 +
K∑
j=1

1−
K∑
j=1

Pij,1 −
K∑
j=1

Pij,2)

= 2E(
K∑
j=1

Pij,1Pij,2) +K − 2

= 2ΠT +K − 2.
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Table 5.12. 2 × 2 table cross-classifying the two populations of raters
with respect to a nominal scale, obtained when grouping all categories
other than category [j] together

R2

[j] Other
[j] E[Pij,1Pij,2] E[Pij,1(1− Pij,2)] πj,1

R1

Other E[(1− Pij,1)Pij,2] E[(1− Pij,1)(1− Pij,2)] 1− πj,1
πj,2 1− πj,2 1

Likewise, it is easily seen that

K∑
j=1

Π[j]E = ΠE +K − 2 and
K∑
j=1

Π[j]M = ΠM +K − 2.

It follows immediately that

κ =
ΠT − ΠE

ΠM − ΠE

.



CHAPTER 6

Tests on agreement indexes

6.1 Introduction

Agreement indexes between two raters, several raters, an isolated rater and a

group of raters and two groups of raters were introduced in previous chapters.

The large sample variance of these agreement indexes was also derived and allows

the determination of confidence intervals and testing if agreement is greater than

obtained by chance. This chapter investigates in more detail statistical tests for a

single kappa coefficient and for comparing several kappa coefficients. For the latter,

we shall distinguish agreement indexes obtained on independent samples and those

derived from the same sample of items. Fleiss (1981) developed a method based

on the chi-square decomposition theory for comparing two or more independent

agreement indexes. No method for comparing two dependent agreement indexes

was available before the work of McKenzie et al. (1996), who described a resampling

method based on the bootstrap. This method was generalized to several agreement

indexes by Vanbelle and Albert (2008). A third type of comparison may also arise,

as discussed by Williams (1976) and Schouten (1982), when testing the effect of a

single rater on the agreement within a group of raters. Schouten (1982) compared

the agreement obtained between an isolated rater (I) and a group of raters (G) to

the agreement within the group of raters formed by the group of raters and the

isolated rater (I+G) to detect raters who significantly lower the agreement. The

methods exposed in this chapter will be illustrated on the comparison of agreement

indexes between two raters, between an isolated rater and a group of raters and

between two groups of raters.

119
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6.2 Test on a single kappa coefficient

6.2.1 Asymptotic method

In order to test the following hypothesis for some fixed κ0,

H0 : κ = κ0 vs H1 : κ 6= κ0,

consider the statistic

Z =
κ̂− κ0

SE(κ̂)
(6.1)

following asymptotically a Normal distribution Z ∼ N(0, 1). H0 is rejected if the

observed Z statistic (Zobs) is such that

| Zobs |≥ QZ(1− α

2
) (6.2)

where QZ(1 − α
2
) is the (1 − α

2
)-quantile of the Normal distribution. H0 is not

rejected otherwise.

The (1− α)100% confidence interval for a kappa statistic is thus defined by

κ̂−QZ(1− α

2
)SE(κ̂) < κ < κ̂+QZ(1− α

2
)SE(κ̂).

6.2.2 Bootstrap method

Klar et al. (2002) proposed the use of the bootstrap method to form a (1 − α)

percentile confidence interval for Cohen’s kappa coefficient when the scale is bi-

nary. This should be interesting for small sample size (N < 200) because it has be

shown that the kappa statistic is not symmetrically distributed in that case (Bloch

and Kraemer, 1989). This is partially due to the fact that the statistic is bounded

by the value 1.

Suppose that two raters classify N independent items on a binary scale and let Yi,r
denote the binary random variable associated with the classification of the raters

(see Section 2.3.3). Let Pjk = P (Yi,1 = j, Yi,2 = k) denote the joint probabilities

of Yi,1 and Yi,2. The joint probability function of Yi,1 and Yi,2 can be written as

P (Yi,1 = yi,1, Yi,2 = yi,2) = P
yi,1yi,2

11 P
yi,1(1−yi,2)
12 P

(1−yi,1)yi,2

21 P
(1−yi,1)(1−yi,2)
22 . (6.3)

Considering all N independent items, the joint distribution of the data is multi-

nomial

f(n11, n12, n21, n22|P ) =
N !

n11!n12!n21!n22!
P n11

11 P n12
12 P n21

21 P n22
22 (6.4)

where P = (P11, P12, P21, P22)
′, n11 =

∑N
i=1 yi,1yi,2, n12 =

∑N
i=1 yi,1(1 − yi,2),

n21 =
∑N

i=1(1−yi,1)yi,2, n22 =
∑N

i=1(1−yi,1)(1−yi,2) and n11 +n12 +n21 +n22 = N
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(see Table 2.2). The maximum likelihood estimate (MLE) of Cohen’s kappa coef-

ficient for binary scales is given by Equation 2.22.

The bootstrap method first consists in creating a finite population, obtained by

giving each observation in the data set a probability of 1/N . From this finite

population, there are NN possible samples of size N obtained with replacement.

For each of these samples, the corresponding MLE of Cohen’s kappa coefficient

can be calculated, giving NN estimates. The empirical distribution of these NN

estimates of Cohen’s kappa coefficient is the exact bootstrap distribution.

Consider a random draw, say (Y ∗i,1, Y
∗
i,2) from the finite population. Since (Y ∗i,1, Y

∗
i,2)

can take only four possible values, using discrete probability theory, we have

P (Y ∗i,1 = y1, Y
∗
i,2 = y2) = py1y211 p

y1(1−y2)
12 p

(1−y1)y2
21 p

(1−y1)(1−y2)
22 (6.5)

where pjk = njk/N , j, k = 1, 2. Next, consider all NN possible samples of size N .

Since there are only four possible values of (y1, y2), many of these samples will be

identical. In particular, the probability of obtaining a sample of size N in which

m11 of the (Y ∗i,1, Y
∗
i,2)s equal (1, 1), m12 of the (Y ∗i,1, Y

∗
i,2)s equal (1, 0), m21 of the

(Y ∗i,1, Y
∗
i,2)s equal (0, 1) and m22 of the (Y ∗i,1, Y

∗
i,2)s equal (0, 0), is

f(m11,m12,m21,m22|p) =
N !

m11!m12!m21!m22!
pm11

11 pm12
12 pm21

21 pm22
22 (6.6)

where m22 + m21 + m12 + m11 = N and p = (p11, p12, p21, p22)
′. Thus, instead of

needing to calculate explicitly all NN samples, the sample (i.e. all possible values)

of (m11,m12,m21,m22) is sufficient to determine the exact bootstrap distribution

of Cohen’s kappa coefficient. To calculate the number of points in the sample

space Klar et al. (2002) supposed that m11 vary from 0 to N ; then m12 can vary

from 0 to N −m11 and m21 can vary from 0 to N −m12−m11. The total number

of points in the sample space is thus

N∑
m11=0

N−m11∑
m12=0

N−m12−m11∑
m21=0

1 =
(N + 3)(N + 2)(N + 1)

6
. (6.7)

For each sample point (m11,m12,m21,m22), the value of Cohen’s kappa coefficient

and its associated probability, given by Equation 6.6, are determined.

To obtain a two-sided (1− α)100% confidence interval, Klar et al. (2002) ordered

the (N + 3)(N + 2)(N + 1)/6 values of Cohen’s kappa coefficient to calculate the

bootstrap distribution function and determine the percentiles α/2 and (1− α/2).

Since the bootstrap distribution is discrete, it is very unlikely that the standard

percentiles will occur at points of the discrete distribution. As such, Klar et al.
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(2002) suggested linear interpolation to calculate the percentiles. For the Qth

percentile, if QU is the closest percentile greater than Q (with the corresponding

Cohen’s kappa coefficient equal to κ̂U) and QL is the closest percentile less than

Q (with the corresponding Cohen’s kappa coefficient equals to κ̂L), then the Qth

percentile obtained using linear interpolation is

κ̂Q =
κ̂L(QU −Q) + κ̂U(Q−QL)

QU −QL

. (6.8)

Instead of using linear interpolation, Klar et al. (2002) proposed to choose the clo-

sest observed percentile that is less than (α/2) and the closest observed percentile

that is greater than (1−α/2). This is called the conservative method. After using

linear interpolation or the conservative method, confidence interval can further be

refined by using the bias-corrected method (Efron and Tibshirani, 1993).

Finally, the exact bootstrap estimate of Cohen’s kappa can be calculated as

κ =
N∑

m11=0

N−m11∑
m12=0

N−m12−m11∑
m21=0

f(m11,m12,m21,m22|p)κ̂(m11,m12,m21,m22).

Then, κ can be used to calculate the exact bootstrap estimate of the variance,

var(κ̂) =
N∑

m11=0

N−m11∑
m12=0

N−m12−m11∑
m21=0

f(m11,m12,m21,m22|p)(κ̂(m11,m12,m21,m22)− κ)2

and the exact bootstrap estimate of bias,

BIAS = κ̂ML − κ.

6.3 Tests on independent kappas

Independent agreement indexes refer to agreement indexes obtained on different

populations of items. This is the case when determining the agreement in the G

modalities of a categorical covariate. The raters may be the same or different in

the G modalities. For example, agreement between the two same raters may be

quantified for men and women (G = 2).

6.3.1 Two kappa coefficients

Suppose that we have to compare the agreement between raters obtained for two

independent samples of items. Let κ̂1 and κ̂2 be the two kappa coefficients, respe-

ctively. To test the hypotheses H0 : κ1 = κ2 vs H1 : κ1 6= κ2, the statistic

|Z| = κ̂1 − κ̂2√
var(κ̂1) + var(κ̂2)

=
κ̂1 − κ̂2

SE(κ̂1) + SE(κ̂2)
(6.9)
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follows asymptotically a Normal distribution Z ∼ N(0, 1). H0 is rejected if the

observed Z statistic (Zobs) is such that

| Zobs |≥ QZ(1− α

2
) (6.10)

where QZ(1 − α
2
) is the (1 − α

2
)-quantile of the Normal distribution. H0 is not

rejected otherwise.

6.3.2 Several kappa coefficients

Fleiss (1981) developed a method directly inspired by the classical one-way analysis

of variance and the chi-square decomposition theory for comparing several asso-

ciation measures. This methodology is applied to the kappa coefficients in this

section. Consider G independent estimates of a kappa coefficient (κ̂1, · · · , κ̂G).

The coefficient κ̂g denotes the kappa coefficient relative to modality g of the cate-

gorical covariate (g = 1, · · · , G). Let SE(κ̂g) be the standard error of the kappa

coefficient κ̂g and wg = 1/[SE(κ̂g)]
2. Under the hypothesis of agreement only due

to chance in the modality g of the covariate, the statistic

χg =
κ̂g

SE(κ̂g)
= κ̂g

√
wg (6.11)

follows approximately a Normal distribution (central-limit theorem) and the statis-

tic

χ2
g = wgκ̂

2
g (6.12)

follows approximately a chi-square distribution with one degree of freedom if the

sample sizes ng (g = 1, · · · , G) are sufficiently ’large’. Fleiss (1981) considered the

statistic

χ2
tot =

G∑
g=1

χ2
g (6.13)

to compare the G kappa coefficients. Under the hypothesis of no agreement in

each of the G modalities, χ2
tot follows a chi-square distribution with G degrees of

freedom.

Fleiss (1981) divided χ2
tot in two terms χ2

tot = χ2
hom + χ2

ass where χ2
hom represents

the homogeneity degree between the G kappa coefficients and χ2
ass represents a

mean degree of agreement. The term χ2
ass is computed as followed,

κ̂ass =

∑G
g=1wgκ̂g∑G
g=1wg

. (6.14)
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Under the hypothesis of a global kappa coefficient equal to 0, κ̂ass has a value of 0

and

SE(κ̂ass) =
1√∑G
g=1wg

.

Zass =
κ̂ass

SE(κ̂ass)
=

∑G
g=1wgκ̂g√∑G

g=1wg

is thus normally distributed. Fleiss (1981) considered that the statistic defined by

χ2
ass = Z2

ass = κ̂2
ass

G∑
g=1

wg =

(∑G
g=1wgκ̂g

)2

∑G
g=1wg

follows approximately a chi-square distribution with one degree of freedom. The

term χ2
hom is obtained by subtraction.

χ2
hom = χ2

tot − χ2
ass =

G∑
g=1

wgκ̂
2
g − κ̂2

ass

G∑
g=1

wg =
G∑
g=1

(κ̂g − κ̂ass)2

[SE(κ̂g)]2
. (6.15)

In order to test the hypothesis H0 : κ1 = · · · = κG vs H1 : ∃ i 6= j : κi 6=
κj (i, j ∈ {1, · · · , G}), we have to compare χ2

hom to the chi-square distribution with

G − 1 degrees of freedom, the null hypothesis being rejected at the α confidence

level if χ2
hom is greater than Qχ2(1−α;G−1), the (1−α)-quantile of the chi-square

distribution on G− 1 degrees of freedom. The expression [SE(κ̂g)]
2 was originally

derived from the Delta method (see Chapter 2).

6.4 Test on dependent kappas

Dependent agreement indexes are obtained by determining an agreement index

several times on the same population of items. The raters may be the same or

different. For example, the agreement between two raters on a sample of items

using a first method may be compared with the agreement index obtained on the

same sample of items with a second method.

6.4.1 Selection of homogeneous subgroups of raters

Schouten (1982) developed a method to test whether removing one rater from a

group of raters significantly increased the agreement in the group of raters. Con-

sider a group of R + 1 raters. Let κ̂r(w) designate Schouten’s measure of agree-

ment between rater r and the R remaining raters in the group and κ̂(w) designate

Schouten’s group measure of agreement between the R+1 raters, Schouten (1982)
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showed that κ̂(w) significantly increases by removing the rater r from the group if

χ2
(1) =

(κ̂(w)− κ̂r(w))2

var(κ̂(w)) + var(κ̂r(w))− 2cov(κ̂(w), κ̂r(w))
(6.16)

is greater than the (1 − α)-quantile of the chi-square statistic on one degree of

freedom. This permits to study whether a rater is an ”outlier” by significantly

decreasing the agreement existing in the group of raters. It is suggested to deter-

mine the large sample variance and the large sample covariance using the Jackknife

technique.

6.4.2 Two kappa coefficients

Suppose that raters classifyN items on a categorical scale at two different occasions

or in two different experimental settings. Let κ̂1 and κ̂2 be the agreement indexes

obtained. Since the two agreements are assessed on the same items, κ̂1 and κ̂2 are

correlated. Are they statistically different? Let H0 : κ1 = κ2, the null hypothesis to

be tested. The bootstrap method consists in drawing q samples (1000 is generally

sufficient following McKenzie et al. (1996)) of size N with replacement. For each

generated sample, the agreement coefficient is estimated in the two settings and

their difference κ̂d = κ̂2 − κ̂1 calculated. McKenzie et al. (1996) suggested to

determine the bootstrap two-sided (1 − α)100% confidence interval for the κ̂d
differences, whence rejecting the null hypothesis if the confidence interval does not

include 0. This approach is equivalent to using a Student’s t-test (Vanbelle and

Albert, 2008) and to reject H0 at the α significance level if

|tobs| =
∣∣∣∣ κd
SE(κ̂d)

∣∣∣∣ ≥ Qt(1−
α

2
; q − 1) (6.17)

where κd and SE(κ̂d) are respectively the mean and standard deviation of the q

bootstrapped kappa differences and Qt(1 − α
2
; q − 1) is the upper (α/2)-quantile

of the Student’s t distribution on q − 1 degrees of freedom. Otherwise, H0 is not

rejected.

McKenzie et al. (1996) proposed alternatively to use a Monte Carlo permutation

test, consisting in shuffling the sample 999 times. The number of times that

the difference between the original values of the agreement indexes is equaled or

exceeded by the difference between the randomly permuted values is then obtained

(κ̂c). This value, incremented by one is divided by 1000.

κ̂p =
κ̂c + 1

1000
.

If the resulting value κ̂p is less than or equal to the α significance level, then the

null hypothesis is able to be rejected.
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6.4.3 Several kappa coefficients

Vanbelle and Albert (2008) generalized the method of McKenzie et al. (1996) to

the comparison of more than two agreement indexes. Suppose we want to compare

G ≥ 2 correlated agreement indexes (κ1, · · · , κG), i.e., to test the null hypothesis

H0 : κ1 = · · · = κG against the alternative hypothesis H1 : ∃k 6= l ∈ {1, · · · , G} :

κk 6= κl. As before, the bootstrap method will consist in drawing q samples of

size N with replacement from the original data. Then, for each bootstrapped

sample (j = 1, · · · , q), let κ̂j = (κ̂1(j), · · · , κ̂G(j))
′ be the vector of the G agreement

coefficients obtained. The null and alternative hypotheses can be rewritten in

matrix form as follows: H0 : Cκ = 0 versus H1 : Cκ 6= 0, where κ = (κ1, · · · , κG)′

and C the (G− 1)×G patterned matrix
1 −1 0 · · · 0

1 0 −1 · · · 0

· · · · · · · · · · · · · · ·
1 0 0 · · · −1

 .

Then, the test statistic is

T 2 = (Cκ)′(CSC ′)−1Cκ, (6.18)

distributed as Hotelling’s T 2, where κ and S are respectively the sample mean

vector and covariance matrix of the q bootstrapped vectors κ̂. The null hypothesis

will be rejected at the α confidence level if

T 2 ≥ (q − 1)(G− 1)

(q −G+ 1)
QF (1− α;G− 1, q −G+ 1) (6.19)

where QF (1−α;G−1, q−G+1) is the upper α-percentile of the F distribution on

G− 1 and q−G+ 1 degrees of freedom. Otherwise, H0 will not be rejected. Note

that, since ”q−G+ 1” will be large in general, the left-hand side of Equation 6.19

can be approximated by Qχ2(1−α;G− 1), the (1−α) percentile of the chi-square

distribution on G− 1 degrees of freedom. If cg denotes the g-th row of matrix C,

simultaneous confidence intervals for individual contrasts c′gκ (g = 1, · · · , G − 1)

given by

c′gκ±

√
(q − 1)(G− 1)

(q −G+ 1)
QF (1− α;G− 1, q −G+ 1)

√
c′gScg (6.20)

can be used for multiple comparison purposes. When G = 3, Vanbelle and Albert

(2008) proposed to represent graphically the data with a 95% confidence ellipse

for the differences in agreement.
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6.5 Examples

6.5.1 Blood clots detection

The presence of blood clots was assessed on 50 patients (23 women and 27 men)

with a reference method (Standard) and two new methods (Method 1 and Method

2) by two medical raters (see Chapter 2, Section 2.6.2). For each new method, Co-

hen’s kappa coefficients were determined for men and women and compared with

the method developed by Fleiss (1981) (see Table 6.1). The Cohen’s kappa coeffi-

cient was 0.27± 0.19 (p = 0.16) for men and 0.47± 0.16 (p = 0.0034) for women

with Method 1 and 0.57± 0.17 (p = 0.0008) for men and 0.83± 0.12 (p < 0.0001)

for women with Method 2. The agreement obtained for men with Method 1 was

not better than chance while all other agreement indexes were greater than chance.

For both methods, Cohen’s kappa coefficients for men and women were homoge-

neous.

Table 6.1. Results of the chi-square test comparing Cohen’s kappa
coefficients obtained for men and women when detecting blood clots
with a new method (Method 1 and Method 2) and a reference method

Men (N=27) Women (N=23) κ̂ass χ2 p-value
Method 1 0.27± 0.19 0.47± 0.16 0.39 0.62 0.43
Method 2 0.57± 0.17 0.83± 0.12 0.74 1.52 0.22

Then, Cohen’s kappa coefficient obtained using Method 1 (κ̂ = 0.41 ± 0.12) was

compared to the kappa coefficient obtained using Method 2 (κ̂ = 0.71±0.10) using

the bootstrap method with 2000 iterations and the permutation test. Figure 6.1

shows the different kappa values drawn with the bootstrap and the permutation

methods.

Figure 6.1. Kappa values drawn by the bootstrap (left) and densities of Co-
hen’s kappa differences obtained with the permutation test (right) for the
comparison of kappa coefficients for Method 1 and Method 2 when detecting
blood clots
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The estimated correlation between the two Cohen’s kappa coefficients was 0.41

(p < 0.0001). The bootstrap method (Vanbelle and Albert, 2008) yielded a si-

gnificant result (p = 0.018) and the permutation test (McKenzie et al., 1996) a

95% confidence interval of [−0.54,−0.058]. Method 2 should thus be preferred to

Method 1 because there is a better agreement with the reference method.

6.5.2 Cervical ectopy size

Cervical ectopy size of 85 women was determined on a 4-category scale by two

medical raters by direct visual assessment and with the computerized planimetry

method. To test if agreement between the two raters is the same with the planime-

try and the visual method, the methods developed by McKenzie et al. (1996) and

Vanbelle and Albert (2008) were used. Remember that the weighted kappa coef-

ficient (with quadratic weights) was 0.67 ± 0.062 for direct visual assessment and

0.82 ± 0.053 for the planimetry method. Both agreement indexes were better than

chance (p < 0.0001). The bootstrap method with 2000 iterations led to [-0.29,-

0.0023] as 95 % confidence interval for the weighted kappa differences and to a

p-value of p = 0.030 for the Student t-test. The estimated correlation between

the two kappas was 0.19 (p<0.0001). Using the permutation test, the p-value was

p = 0.031 for weighted kappa coefficient differences. Therefore, the planimetry

method should be preferred to visual assessment since the agreement between the

two raters was better. The results of the bootstrap steps and the density of the

kappa differences obtained by the permutation test are given in Figure 6.2.

Figure 6.2. Kappa values drawn by the bootstrap (left) and densities of the
kappa differences obtained from the permutation test (right) for the quadratic
weighted kappa coefficient obtained between two medical raters with direct
visual assessment and the planimetry method in the assessment of the cervical
ectopy size of 85 women
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6.5.3 Deep venous thrombosis

A study was conducted on 107 patients in the medical imaging department of

the university hospital to compare deep venous thrombosis (DVT) detection using

a multidetector-row computed tomography (MDCT) and ultrasound (US) (Van-

belle and Albert, 2008). The study also looked at the benefit of using spiral (more

images and possibility of multiplanar reconstructions) with respect to sequential

technique (less slices, less irradiation). Images were acquired in the spiral model

(ankle to inferior vena cava) and reconstructed in 5 mm thickness slices every 5

mm, 20 mm and 50 mm. Two radiologists (one junior and one senior) assessed for

each patient and each experimental setting (5/5, 5/20 and 5/50 slices) the presence

of DVT. The aim of the study was to compare agreement of the different MDCT

slices with the US method. Only data of the senior radiologist will be presented

here (see Table 6.2).

Table 6.2. Cross-classification of DVT detection (0=absence,
1=presence) using different MDCT slices (5/5, 5/20 and 5/50 mm)
and US in 107 patients by a senior radiologist

MDCT slices
5/5 mm 5/20 mm 5/50 mm

US 0 1 0 1 0 1 Total
0 96 1 95 2 96 1 97
1 0 10 1 9 2 8 10
Total 96 11 96 11 98 9 107

κ̂5/5 = 0.95 κ̂5/20 = 0.84 κ̂5/50 = 0.83

The observed Cohen’s kappa coefficients (±SE) were 0.95 ± 0.053, 0.84 ± 0.089

and 0.83 ± 0.098 for 5/5, 5/20 and 5/50 mm slices, respectively. The bootstrap

approach with 2000 iterations led to a Hotelling’s T 2 value of 1.46 (p = 0.48) indi-

cating no evidence of a difference between the κ coefficients at the 5% significance

level. The bootstrap estimates of bias were 0.003, 0.008 and 0.009 for the 5/5, 5/20

and 5/50 mm slices, respectively. According to the rule described in Efron and

Tibshirani (1993), the bias can be ignored. The differences between the Cohen’s

kappa coefficients generated by the 2000 iterations of the bootstrap are represented

in Figure 6.3 with the 95% confidence ellipse for the difference vector (κ̂5/5− κ̂5/20,

κ̂5/5 − κ̂5/50). It is seen that the origin (0, 0) is well inside the confidence region,

as expected.
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Figure 6.3. Kappa differences (κ̂5/5 −
κ̂5/50 vs κ̂5/5 − κ̂5/20) generated by the
bootstrap (q = 2000) with 95% CI

6.5.4 Script Concordance Test

During 2006, a SCT in endocrinology was proposed to students in medicine in their

3, 4, 5 or 6th year at the University of Liège, Belgium (Collard et al., 2009). The

SCT consisted of 48 items relating possible situations encountered in endocrino-

logy. There were 35, 20, 26 and 27 students passing the SCT in the 3, 4, 5 and 6th

study year, respectively. Their responses were confronted to the responses given

by a panel of 10 experts. The 48 items were divided in two categories: situations

encountered by the students during their study (”inside context”) and situations

never seen during lessons (”outside context”). Firstly, the agreement obtained

between each expert and the remaining 9 experts in the panel was compared with

the agreement in the panel of experts using the method of Schouten (1982) to

see if some experts significantly decrease the agreement among the panel. Using

linear weights, the weighted agreement index derived by Schouten (see Chapter

4, Section 4.5) within the panel of experts was equal to 0.49 ± 0.034. Expert 6

appeared to lower significantly the agreement in the panel of expert but was left

in the study (see Table 6.3).

Table 6.3. Results of Schouten’s method of homogeneous subgroups selection when
considering the group of 10 experts in the SCT example
Expert 1 2 3 4 5 6 7 8 9 10
κ̂r(w) 0.50 0.52 0.54 0.53 0.48 0.34 0.52 0.49 0.50 0.42
SE 0.055 0.046 0.041 0.045 0.051 0.079 0.042 0.052 0.044 0.046
χ2 0.14 1.78 4.28 2.36 0.024 5.49 1.12 0.040 0.21 2.98
p-value 0.71 0.18 0.039 0.12 0.88 0.019 0.29 0.84 0.64 0.084



6. Tests on agreement indexes 131

Then, to study if the agreement between the students and the panel of experts was

related to the level of education (i.e., years of studies), the agreement between the

group of students and experts was determined in each study year (Vanbelle and

Albert, 2009b) and these agreement indexes were compared using the bootstrap

method (Vanbelle and Albert, 2008). The level of agreement between each group

of students and the panel of experts was determined using a linearly weighted

agreement index and are given in Table 6.4 and displayed in Figure 6.4.

Table 6.4. Linearly weighted
agreement indexes between the
108 students and the panel of ex-
perts according to the study year
for the SCT in endocrinology
Year R1 R2 κ̂w SE

3 10 35 0.65 0.038
4 10 20 0.64 0.049
5 10 26 0.75 0.032
6 10 27 0.72 0.033

ALL 10 108 0.71 0.033

Figure 6.4. Linearly weighted agree-
ment indexes (±SE) between the 108
students and the panel of experts ac-
cording to the study year for the SCT
in endocrinology

There was a significant difference according to the study year (T 2 = 15.6, p =

0.0010). Students from year 5 presented better agreement with the panel of experts

than students from year 3 and 4. The estimated correlation matrix between the
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agreement indexes was

R =


1 0.60 0.66 0.52

0.60 1 0.69 0.58

0.66 0.69 1 0.67

0.52 0.58 0.67 1


Finally, the agreement obtained on items ”inside context” was compared to the

agreement obtained on items ”outside context” with the test exposed in Section

6.3.1. The hypothesis was that agreement should be better for items ”inside con-

text” than ”outside context” because the situations were encountered by the stu-

dents during their studies. However, there was no difference between the two types

of items (see Table 6.5).

Table 6.5. Linearly weighted agreement indexes between the 108
students and the panel of experts according to the study year for
the SCT in endocrinology for items ”inside context” and ”outside
context”

Inside context Outside context
Year R1 R2 κ̂w ± SE κ̂w ± SE p-value

3 10 35 0.64± 0.055 0.68± 0.053 0.65
4 10 20 0.61± 0.076 0.68± 0.068 0.52
5 10 26 0.77± 0.041 0.76± 0.049 0.85
6 10 27 0.73± 0.052 0.73± 0.045 0.99

ALL 10 108 0.70± 0.047 0.73± 0.048 0.67

6.6 Discussion

This chapter was concerned with statistical hypothesis testing on kappa coeffi-

cients. We distinguished between single kappa tests and multiple kappa compari-

son tests. Confidence intervals were constructed for a single agreement coefficient

using an asymptotic method and the bootstrap method. One advantage of the

exact bootstrap procedure is that it does not force the confidence interval to be

symmetric around the estimate of the kappa coefficient as it is the case with the

asymptotic method. However, investigators may reach, by chance, different con-

clusions with the bootstrap method if the bootstrap distribution is not completely

specified.

Then, the methods discussed in this chapter to compare several agreement indexes

allow the comparison of several kappa coefficients, agreement being searched bet-

ween two raters, several raters, a group of raters and an isolated rater or two



6. Tests on agreement indexes 133

group of raters. A further distinction has to be made between the unpaired and

the paired cases. The asymptotic method of Fleiss (1981) is, to our knowledge, the

only method exposed in the literature to compare several independent agreement

indexes, which permits the comparison of all kinds of agreement indexes. This

method is based on the chi-square decomposition theory and has the disadvantage

of being asymptotic but is simple to apply. No guidelines relative to the required

sample size was provided with the method. To compare two or more correlated

agreement coefficients, the bootstrap method of Vanbelle and Albert (2008), ex-

tending the bootstrap method of McKenzie et al. (1996) provides an estimate of

the mean and the variance-covariance matrix of correlated agreement indexes and

hence a way to test their homogeneity by means of the Hotelling’s T 2. These me-

thods are computer intensive and possess the drawbacks of the resampling methods

but are simple to implement. It should be noted that methods restricted to partic-

ular forms of agreement indexes were not discussed in this chapter. This includes

methods developed by Donner and Eliasziw (1992), Donner and Klar (1996), Don-

ner et al. (1996) and Donner (1998) for the comparison of independent intraclass

kappa coefficients between two raters. These methods are based on the common

correlation model given in Section 2.4.3 and on the chi-square statistic (”good-

ness of fit approach”). These methods were extended to the comparison of two

dependent intraclass kappa coefficients by Donner et al. (2000) and Nam (2003).

None of the techniques described in this chapter allows to study the influence of

continuous covariates on agreement indexes. This orientated the researchers to the

modeling methods, which are developed in the next chapter.





CHAPTER 7

Regression and kappa coefficients

7.1 Introduction

Methods for comparing several agreement indexes were introduced in Chapter 6.

However, with the development of generalized linear models (GLM), researchers

have focused on modeling techniques to account for categorical and continuous

covariates in the determination of agreement between raters. Developments were

first made on the basis of hierarchical log-linear models including two components:

a first component representing the effect of chance and a second the effect of rater

agreement (Tanner and Young, 1985a). They first introduced methods based on

the independence model in case of Cohen’s kappa coefficient between two or more

raters and symmetry and quasi-independence model in case of intraclass kappa

coefficients. Then, for ordinal ratings, they used a linear-by-linear baseline asso-

ciation model since ordinal rating scales almost always exhibit a positive associa-

tion between ratings (Tanner and Young, 1985b). Log-linear models were then

improved by Agresti (1988, 1992) and Becker and Agresti (1992). Graham (1995)

further extended the log-linear model proposed by Tanner and Young (1985a) to

the analysis of categorical covariate effects on chance corrected agreement and

Basu et al. (1999) used log-linear models to estimate hierarchical weighted agree-

ment coefficients between two raters. Finally, Perkins and Becker (2002) proposed

to model the bivariate marginal responses of the raters instead of modeling the

joint distribution of the raters responses using log-linear models. Agresti (1992)

used log-linear models but also latent class models and Rasch models to study

patterns of agreements and disagreements. Latent class models were first used by

135
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Uebersax (1988) and more recently by Schuster and Smith (2002, 2006). Latent

classes emerge form the factorial combination of the true category in which the

item belongs and the ease with which raters are able to classify items into the true

category. Note that Schuster (2002) also used mixture model approach to index

rater agreement.

Alternatively, developments were made on the basis of logistic regression analy-

sis. First, Coughlin et al. (1992) used logistic regression analysis by defining a

dependent variable equal to 1 if the raters agree and 0 otherwise and adjusted the

model for independent covariates. This approach is thus not corrected for chance.

Shoukri et al. (1995) and Shoukri and Mian (1996) derived the maximum likeli-

hood estimator of the intraclass kappa coefficient when the binary classification

of the raters depends on covariates relative to items and/or raters while Barlow

(1996) proposed, as alternative, the use of a conditional logistic regression model

to account for one or more covariates. Later, Lipsitz et al. (2001, 2003) constructed

models to account for categorical and continuous covariates permitting the com-

parison of independent agreement indexes between two raters.

Researchers also used generalized estimating equations (GEE) to model dependent

agreement indexes with respect to continuous and categorical covariates. Thom-

son (2001) used one set of estimating equations to estimate agreement coefficients

in various situations without giving the possibility to compare the agreement co-

efficients obtained. On another hand, Williamson and Manatunga (1997) first

used two sets of estimating equations to test for the equality of two or more de-

pendent inter-rater agreement coefficients when ordinal ratings are made on the

same sample. Then, Williamson et al. (2000) extended the methodology to the

general case of agreement between two or more raters and Gonin et al. (2000) to

weighted agreement indexes between two raters. Finally, Barnhart and Williamson

(2002) adapted the weighted least-squares approach for comparing several depen-

dent agreement indexes between two raters. Although various modeling techniques

were developed, most of them are only applicable to one particular form of the

kappa coefficient or does not link directly the agreement index to covariates. There-

fore, this chapter will be limited to the empirical methods of Lipsitz et al. (2001,

2003), the weighted least-squares approach and the generalized estimating equa-

tions. These methods will be reviewed, illustrated and compared to the bootstrap

method of Vanbelle and Albert (2008).

7.2 Independent agreement indexes

Lipsitz et al. (2001) developed a method for modeling Cohen’s kappa coefficient as

a function of covariates relative to the raters and/or the items. They proposed to
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use two logistic regressions and a linear regression for binary variables to estimate

Cohen’s kappa coefficient. A modified version of their method was developed by

Lipsitz et al. (2003).

7.2.1 Initial method

Binary scale. Let two raters assess each of N independent items on a binary

scale. As before, let Yi,r denote the random variable such that Yi,r = 1 if item i is

rated positive by rater r and Yi,r = 0 otherwise (r = 1, 2). Suppose each item has

an item specific covariate vector xi and two vectors of covariates specific to the

raters xi,r, r = 1, 2 as it was supposed by Shoukri and Mian (1996) and denote

z′i = (x′i,x
′
i,1,x

′
i,2). Then define the indicator random variable Yi such that Yi = 1

if both raters agree on item i and Yi = 0 otherwise. In terms of Yi,1 and Yi,2, we

have

Yi = Yi,1Yi,2 + (1− Yi,1)(1− Yi,2). (7.1)

Lipsitz et al. (2001) defined Cohen’s kappa coefficient between Yi,1 and Yi,2 as usual

κi =
Poi − Pei
1− Pei

(7.2)

with

Poi = P [Yi = 1|zi] = P [Yi,1 = 1, Yi,2 = 1|zi] + P [Yi,1 = 0, Yi,2 = 0|zi] (7.3)

and

Pei = πi,1πi,2 + (1− πi,1)(1− πi,2) (7.4)

where πi,r = P [Yi,r = 1|xi,xi,r], r = 1, 2.

Adjustment for covariates associated with Cohen’s kappa coefficient can be accom-

plished using the model

g(κi) = z′iγ

where g(.) is a link function to ensure that −1 ≤ κi ≤ 1 and γ is a vector of

unknown parameters. Fisher’s Z transformation might be used as link function.

However, Lipsitz et al. (2001) found that this link function and the associated

parameters γ are not easily interpretable and thus preferred use the identity link

function without constraint on the kappa values in the estimation procedure,

κi = z′iγ, i = 1, · · · , N. (7.5)

Lipsitz et al. (2001) remarked that

Poi = Pei + κi(1− Pei) = Pei + z′iγ(1− Pei) = Pei + z∗
′

i γ (7.6)
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where z∗i = (1 − Pei)zi. Therefore, if Pei is known, the model of Poi is a linear

model with an identity link function, a known offset Pei, a known covariate vector

z∗i and an unknown parameter vector γ. Thus, to estimate γ, if Pei is known, the

maximum likelihood based on the Bernoulli distribution of the random variables

Yi can be used. Unfortunately, Pei is rarely known. Instead of using the maximum

likelihood estimation based on the joint distribution of (Yi,1, Yi,2) to estimate jointly

(πi,1, πi,2) and γ, as made by Shoukri and Mian (1996), Lipsitz et al. (2001) replaced

Pei in Equation 7.6 by an estimate P̂ei and estimated γ using a linear model. In

particular, Lipsitz et al. (2001) estimated πi,1 and πi,2 using the logistic regression

model

logit(πi,r) = x′i,rβ1r + x′iβ2r r = 1, 2 (7.7)

and then estimated Pei by

P̂ei = pi,1pi,2 + (1− pi,1)(1− pi,2) (7.8)

where pi,r = π̂i,r, r = 1, 2. Finally, they used the following linear model for Poi,

Poi ≈ P̂ei + (1− P̂ei)z′iγ. (7.9)

In practice, the estimation of the parameter vector γ involves

1. the use of logistic regressions of Yi,r versus (xi,r,xi) to obtain pi,r (r = 1, 2),

2. the estimation of the ’offset’ P̂ei = pi,1pi,2 + (1− pi,1)(1− pi,2),

3. the use of a linear regression of the binary outcome Yi versus z∗i with a known

offset P̂ei.

Note that P̂oi should be in the range [0, 1] but it might not be the case since the

identity link function is used in the regression model of Cohen’s kappa coefficient.

However, Lipsitz et al. (2001) never found this to be true in the data they analyzed.

Lipsitz et al. (2001) remarked that, since the model for πi,r (see Equation 7.7) is

not a function of γ, the estimate of β1,r and β2,r (r = 1, 2) will be the same, despite

the model for κi. However, the estimate of κi depends on the model used to esti-

mate the parameters πi,r and can be biased if the model is underfitted. Analyzing

several samples, Lipsitz et al. (2001) found that it was preferable to introduce too

much covariates to model πi,r than too less, even if covariates are not significant

at the α significance level, a priori given. This method leads, however, to a small

increase of the estimated standard error of γ̂ (Lipsitz et al., 2001).

Let β′ = (β′11,β
′
21,β

′
12,β

′
22). Using Taylor series expansions similarly to Prentice

(1988) and assuming that the models for πi,1, πi,2 and κi are correctly specified, it

can be shown that (β̂
′
, γ̂ ′) is consistent for (β′,γ ′) and that N1/2((β̂−β)′, (γ̂−γ)′)
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has an asymptotic distribution which is multivariate Normal with mean vector 0

and variance-covariance matrix which can be consistently estimated by a robust

variance estimator such as Jackknife estimator. One form of the Jackknife variance

estimate is

V (β̂
′
, γ̂ ′)′ =

N∑
i=1

((β̂
′
, γ̂ ′)−i − (β̂

′
, γ̂ ′))′((β̂

′
, γ̂ ′)−i − (β̂

′
, γ̂ ′)) (7.10)

where (β̂
′
, γ̂ ′)−i is the estimate of (β̂

′
, γ̂ ′) obtained by deleting the two observations

relative to item i and by recalculating both β and γ.

Categorical scale. Suppose now that the response is categorical with K cate-

gories and let Yi,r denote the random variable such that Yi,r = k if rater r classifies

item i in category k (r = 1, 2; i = 1, · · · , N, k = 1, · · · , K). Extending the method

described in the binary case, Lipsitz et al. (2001) proposed to

1. use an ordinal or polynomial logistic regression of Yi,r versus (xi,xi,r) to

obtain P̂ [Yi,r = k|xi,xi,r] (r = 1, 2),

2. form P̂ei =
∑K

k=1 P̂ [Yi,1 = k|xi,xi,1]P̂ [Yi,2 = k|xi,xi,2],

3. use a linear regression of the binary outcome Yi versus z∗i with a known offset

P̂ei (i = 1, · · · , N) to obtain γ̂.

7.2.2 Two-stage logistic regression

Lipsitz et al. (2003) proposed to modify their method (Lipsitz et al., 2001) by using

a two-stage logistic regression to estimate the agreement probability as a function

of covariates. The introduction of the two-stage logistic regression was motivated

by the following fact. Suppose that two binary observations are made completely

independently on the same item. Moreover, suppose that the prevalence for clas-

sifying an item as positive (which is a covariate) is large in some sub-group and

small in some others. Thus, by chance alone (since the reports are made indepen-

dently), agreement appears to be related to the covariates although agreement is

only due to chance. To overcome the problem, Lipsitz et al. (2003) proposed a

two-stage logistic regression, for which the parameters of the model are equal to

0 when agreement is only due to chance using an ’offset’, i.e., a known regression

coefficient.

Consider the vector zi of covariates and the indicator vector Yi described by Equa-

tion 7.1 (see Section 7.2.1). Suppose that the probability of agreement is modeled

with the following logistic regression model

logit(Poi) = x′iγ1 + x′i,1γ2 + x′i,2γ3 = z′iγ. (7.11)
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Lipsitz et al. (2003) developed a logistic regression model for which γ = 0 when

agreement is due to chance by introducing an offset.

logit(Poi) = logit(Pei) + x′iγ1 + x′i,1γ2 + x′i,2γ3 = logit(Pei) + z′iγ. (7.12)

In practice, the procedure of Lipsitz et al. (2003) thus consists in

1. using a logistic regression of Yi,r versus (xi,r,xi) to obtain pi,r (r = 1, 2),

2. estimating the ’offset’ logit(P̂ei) = logit[pi,1pi,2 + (1− pi,1)(1− pi,2)],

3. using logistic regression of Yi versus (xi,xi,1,xi,2) and a known offset logit(P̂ei)

to obtain γ̂.

Since the procedure does not involve a linear regression, as opposed to method des-

cribed in Section 7.2.1, Lipsitz et al. (2003) solved the problem of constraints on P̂oi
(P̂oi ∈ [0, 1]). They also proposed, when raters are indistinguishable (πi,1 = πi,2),

to estimate jointly the marginal probabilities rather than separately. This consists

in using one set of generalized estimating equations (GEE1) in step (1) rather than

2 separate logistic regressions.

For each item Lipsitz et al. (2003) proposed the following expression to determine

how agreement differs from chance for any covariate pattern

ξ̂ = logit(P̂oi)− logit(P̂ei) = z′iγ̂. (7.13)

In particular, the hypothesis H0: agreement is due to chance, i.e., logit(Poi) −
logit(Pei) = 0 versus H1: logit(Poi)− logit(Pei) 6= 0 can be tested.

For any bounded monotone function g(.), Lipsitz et al. (2003) proposed to use the

estimate of

ξ∗i =
g[logit(Poi)]− g[logit(Pei)]

{max g[logit(Poi)]} − g[logit(Pei)]
(7.14)

to test the hypothesis H0. The summary measure ξ∗i is equal to 0 if agreement is

due to chance and 1 if agreement is prefect. In particular, for a given value of a,

the choice of

g[a] =
ea

1 + ea

yields an estimate of Cohen’s kappa coefficient for each covariate pattern when

evaluated at (P̂oi, π̂i,1, π̂i,2), that is,

κ̂i =
P̂oi − P̂ei
1− P̂ei

. (7.15)

Lipsitz et al. (2003) noted that the estimated variance of γ reported by standard

statistical software for logistic regression will not be correct since the offset is
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treated as known rather than estimated. Using Taylor series expansions similar to

Prentice (1988) and assuming that the models for πi,1, πi,2 and Poi are correctly

specified, it can be shown that (β̂, γ̂) is consistent for (β,γ) and N1/2[(β̂−β)′, (γ̂−
γ)′] has an asymptotic distribution which is multivariate Normal with mean vector

0 and a variance-covariance matrix which can be consistently estimated by a robust

variance estimator such as the sandwich estimator of White (1982) or the Jackknife

estimator (Quenouille, 1956). The Jackknife estimate can be obtained as follows

V (β̂
′
, γ̂ ′)′ =

N − 1

N

N∑
i=1

((β̂
′
, γ̂ ′)−i − (β′,γ ′))′((β̂

′
, γ̂ ′)−i − (β′,γ ′)) (7.16)

where (β̂
′
, γ̂ ′)−i is the estimate of (β′,γ ′) obtained by deleting the pair of ratings

on item i.

Lipsitz et al. (2003) shown that the estimates obtained by their two-stage logistic

regression are also the estimates of the generalized estimating equations

u(β̂,γ̂)(β,γ) =
N∑
i=1

D′iV
−1
i

(
U i − ηi(β̂, γ̂)

)
= 0 (7.17)

where D′i is the block-diagonal matrix D′i = ∂ηi(β,γ)/∂(β,γ), V i is the working

variance-covariance matrix, U i = (Y i,1,Y i,2,Y i)
′ and ηi = E(U i|β,γ).

7.3 Dependent agreement indexes

7.3.1 Weighted least-squares approach

The weighted least-squares approach (WLS) is an extension of the GSK (Grizzle,

Starmer and Koch) methodology, developed by Grizzle et al. (1969) for comparing

correlated categorical data. The method was initially developed by Koch et al.

(1977) and was adapted to the special case of kappa coefficients by Barnhart and

Williamson (2002).

7.3.1.1 Comparison of two kappa coefficients

The weighted least-squares approach allows the comparison of several correlated

agreement coefficients between two raters. Suppose that two raters classify each of

N items on a K-categorical scale with two methods and let Y11 and Y12 represent

the classification of the two raters with the first method and Y21 and Y22 with

the second one. Suppose that interest is to determine whether the reproducibility

between the two classifications differs from method to method. Because the four

classifications are assessed on the same set of items, the two agreement indexes
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are generally correlated and this correlation must be taken into account for valid

inference.

Cross-classifying Y11, Y12, Y21 and Y22, a K×K×K×K contingency table with cell

counts yijlm (i, j, l,m = 1, · · · , K) is obtained. Interest is in two agreement indexes

κ̂1 and κ̂2 obtained from the two bivariate marginal tables, i.e., the contingency

tables Y11 × Y12 and Y21 × Y22 with cell counts yij.. and y..lm. Note that κ̂1 is

the agreement between the two readings using the first method and κ̂2 using the

second one. Interest is in testing

H0 : κ1 = κ2 versus H1 : κ1 6= κ2 (7.18)

and estimating the common value of the kappa coefficient if H0 is not rejected.

Let π = (π1111, π1112, · · · , πKK11, · · · , πKKKK)′ denote the K4 × 1 vector of cell

probabilities for the Y11×Y12×Y21×Y22 contingency table, where πijlm = P (Y11 =

i, Y12 = j, Y21 = l, Y22 = m). Denoting κ = (κ1, κ2)
′, κ can be written as an explicit

function of π, called the response function, in the following form (Barnhart and

Williamson, 2002):

κ = F (π) ≡ expA4 lnA3 expA2 lnA1A0π (7.19)

where the matrices Ai (i = 0, · · · , 4) are defined later, depending on which kappa

is used. The notation lnAB stands for taking the napierian logarithm of each

element of the matrix resulting from the multiplication of matrices A and B.

The weighted least-squares estimator of κ is

κ̂ = expA4 lnA3 expA2 lnA1A0P (7.20)

where P is the vector of the cell proportions of the K4 table, which estimates π.

The estimated variance-covariance matrix of κ̂ is

cov(κ̂) =

(
∂F

∂P

)
V

(
∂F

∂P

)′
(7.21)

where V = (diag(P ) − PP ′)/N is the estimated variance-covariance matrix of

P , diag(P ) denotes the diagonal matrix with P in the diagonal entry, ∂F
∂P

is the

partial derivative of F with respect to π evaluated at π = P and N is the total

number of items. The partial derivative of the F function defined in Equation

7.19 has the following form

∂F

∂P
= diag(B4)A4diag(B3)

−1A3diag(B2)A2diag(B1)
−1A1A0 (7.22)

where B1 = A1A0P , B2 = expA2logB1, B3 = A3B2 and B4 = expA4logB3.
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Using formulas 7.20 and 7.21, Barnhart and Williamson (2002) constructed a Wald

test to test the hypothesis 7.18 using the Z-score

Z =
κ̂1 − κ̂2

[var(κ̂1) + var(κ̂2)− 2cov(κ̂1, κ̂2)]
1
2

. (7.23)

Barnhart and Williamson (2002) expressed Cohen’s kappa coefficient as follows:

κ =
(π11 + π22)− (π1.π.1 + π2.π.2)

1− (π1.π.1 + π2.π.2)

= exp(1 − 1) ln

(
−1 −1 1 0

−1 −1 0 1

)
exp


1 0 1 0 0 0

0 1 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1



× ln



1 1 0 0

0 0 1 1

1 0 1 0

0 1 0 1

1 0 0 1

1 1 1 1




π11

π12

π21

π22


= expA4 lnA3 expA2 lnA1π. (7.24)

The matrix A1 produces a vector with the row marginals, column marginals, dia-

gonal sum and total sum of cell probabilities, A2 produces a vector with four main

quantities in the log scale of κ, A3 produces the vector of the numerator and the

denominator of κ and A4 divides the numerator by the denominator to produce

κ.

The formula 7.24 was only for a single Cohen’s kappa coefficient. Since two kappa

coefficients have to be estimated from π, Barnhart and Williamson (2002) pre-

sented the following formula:

(
κ1

κ2

)
= F (π) = exp(A4) ln(A3) exp(A2) ln(A1)A0π

= exp

(
A44 0

0 A44

)
ln

(
A33 0

0 A33

)
× exp

(
A22 0

0 A22

)
ln

(
A11 0

0 A11

)
A0π (7.25)
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where A0 is a 2K2 ×K4 matrix with the form

A0 =


e′K2 0 · · · 0

0 e′K2 · · · 0
...

...
...

...

0 0 · · · e′K2

IK2 IK2 IK2 IK2


eK is a K × 1 vector of ones, IK is the K ×K identity matrix and 0 is a matrix

of all zeros, with dimensions conforming to the other part of the block matrices.

For the different versions of the kappa coefficient, Barnhart and Williamson (2002)

proposed the following expressions for the matrices A11, · · · ,A44.

Cohen’s kappa coefficient. Barnhart and Williamson (2002) used matrices

with dimensions 1 × 2 for A44, 2 × (K + 2) for A33, (K + 2) × (2K + 2) for A22

and (2K + 2)×K2 for A11:

A44 =
(

1 −1
)
,

A33 =

(
−e′K 1 0

−e′K 0 1

)
,

A22 =

(
IK IK 0

0 0 I2

)
,

A11 =



e′K 0 · · · 0
...

...
...

...

0 0 · · · e′K
IK IK · · · IK
IK(1) IK(2) · · · IK(K)

e′K e′K · · · e′K


where IK(j) is the jth row of the identity matrix IK .

Intraclass kappa coefficient. For the intraclass kappa coefficient, Barnhart

and Williamson (2002) used the same A44 and A33 matrices as for Cohen’s kappa

coefficient but

A22 =

(
2IK 0

0 I2

)
,
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A11 =



e′K+IK(1)

2
IK(1)

2
· · · IK(1)

2
IK(2)

2

e′K+IK(2)

2
· · · IK(2)

2
...

...
...

...
IK(K)

2
IK(K)

2
· · · e′K+IK(K)

2

IK(1) IK(2) · · · IK(K)

e′K e′K · · · e′K


where A22 and A11 are (K+ 2)× (K+ 2) and (K+ 2)×K2 matrices, respectively.

Weighted kappa coefficient. For the weighted kappa coefficient, Barnhart and

Williamson (2002) used the same A44 matrix as for Cohen’s kappa but

A33 =

(
−w′ 1 0

−w′ 0 1

)
,

A22 =


eK 0 · · · 0 IK 0

0 eK · · · 0 IK 0
...

...
...

...
...

...

0 0 · · · eK IK 0

0 0 · · · 0 0 I2

 ,

A11 =



e′K 0 · · · 0
...

...
...

...

0 0 · · · e′K
IK IK · · · IK

w′

e′K e′K · · · e′K


where w = (w11, w12, · · · , wKK) is the K2 × 1 vector of weights. The dimensions

of the A matrices are 2 × (K2 + 2) for A33, (K2 + 2) × (2K + 2) for A22 and

(2K + 2)×K2 for A11.

The number of cells of the four-way contingency table Y11×Y12×Y21×Y22 increases

rapidly as the number of categories K increases. This may result in many zero

cells even if the sample size is large. For valid inference using WLS, one needs

to assume that the sample response functions are normally distributed and that

their estimated variance-covariance matrix is nonsingular. In estimating kappa,

this assumption usually requires that most of the marginal or diagonal counts in

the bivariate marginal tables Y11 × Y12 and Y21 × Y22 exceed 5. Barnhart and

Williamson (2002) therefore proposed to replace zeros cell counts by 1e − 20 if

frequency data are used or missing data by 1e − 20 if raw data are used to treat

all zeros as sampling zeros.
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7.3.1.2 Comparison of several kappa coefficients

The WLS approach for comparing correlated kappa statistics can easily be ex-

tended to include discrete covariates and to study designs with multiple methods

and multiple time points. If there are G methods (G > 2), we have KG contin-

gency tables and the A matrices, except A0, will have G blocks (instead of two)

with the same blocks as specified previously.

7.3.2 Generalized estimating equations

Binary scale. Klar et al. (2000) proposed the use of generalized estimating equa-

tions (GEE) to identify covariates predictive of agreement, in the case of intraclass

kappa coefficients. The proposed model may include arbitrary and variable num-

ber of raters per item. Generalized estimating equations (GEE1) with a logistic

link function are used in order to identify covariates associated with the marginal

probabilities of classification by each rater. A second set of generalized estimating

equations (GEE2), based on Fisher’s Z transformation, are then used to identify

covariates associated with the intraclass kappa coefficient.

Suppose that N items are being assessed by Ri independent or dependent raters

(i = 1, · · · , N) where Ri need not be the same for all N items. The binary ratings

related to item i are summarized in the Ri× 1 vector Y i = (Yi,1, · · · , Yi,Ri
)′ where

the binary random variable Yi,r = 1 when rater r classifies item i as positive and

Yi,r = 0 otherwise. Each item has a p1×1 covariate vector gi including item specific

covariates and a p2×1 covariate vector gi,r (r = 1, · · · , Ri) including rater specific

covariates. Let x′i,r = (gi, gi,r) and X i = (xi,1, · · · ,xi,Ri
)′ represent the Ri × p

matrix of covariates relative to item i (p = p1 + p2). The marginal distribution of

Yi,r is Bernoulli with πi,r = P (Yi,r = 1|x′i,r,β) such that

ln

(
πi,r

1− πi,r

)
= ln

(
πi,r(β)

1− πi,r(β)

)
= x′i,rβ (7.26)

where β is a p× 1 vector of parameters. The probabilities πi,r(β) can be grouped

together to form a vector πi(β) containing the marginal probabilities of success

πi(β) = E(Y i|xi,r,β) = (πi,1, · · · , πi,Ri
)′.

Following Shoukri and Mian (1996), the intraclass coefficient of agreement between

Yi,s and Yi,t, κi,st, can be expressed as

κi,st = κi,st(γ) =
2[πi,st − πi,sπi,t]

πi,s(1− πi,t) + πi,t(1− πi,s)
(7.27)

where γ is a q× 1 vector of parameters, and solving Equation 7.27 for πi,st, we get

πi,st = πi,sπi,t + κi,st
[πi,s(1− πi,t) + πi,t(1− πi,s)]

2
. (7.28)
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Klar et al. (2002) accomplished the adjustment for covariates associated with the

intraclass kappa coefficient using the model

g(κi,st) = ln

(
1 + κi,st
1− κi,st

)
= z′i,stγ (7.29)

where z′i,st is a q × 1 vector of covariates. The link function g(.), used to model

kappa, is selected to avoid the need of constraints on the vector of parameters γ

which would have been the case, for example, if the identity link had been used

since −1 ≤ κi,st ≤ 1.

Klar et al. (2000) obtained parameter estimates for β and γ by specifying and

solving two sets of estimating equations. The first set of estimating equations for

β is given by

uβ(β̂) =
N∑
i=1

D̂
′
iV̂
−1

i (Y i − πi(β̂)) = 0 (7.30)

where the p× Ri matrix Di = ∂πi/∂β, V i = V i(γ,β) is a Ri × Ri ’working’ co-

variance matrix of Y i. The correlation does not need to be correctly specified for

consistent parameter estimation, although the closer V̂ i is of the true covariance

matrix of Y i, the greater the efficiency of β̂. Klar et al. (2000) considered two

approaches to construct estimating equations for γ. These approaches can be dis-

tinguished by their use of unconditional (Prentice, 1988) and conditional (Carey

et al., 1993) residuals.

The unconditional residuals are expressed as deviations about the unconditional

expectations, i.e.,

uri,st = Yi,sYi,t − E(Yi,sYi,t|xi,s,xi,t) = Ui,st − πi,st (7.31)

where Ui,st = Yi,sYi,t. Klar et al. (2000) grouped the unconditional residuals to form

a Ri(Ri− 1)/2 vector ur = U i−λi, where U i = (Ui,12, Ui,13, · · · , Ui,(Ri−1)Ri
)′ and

λi = (πi,12, πi,13, · · · , πi,(Ri−1)Ri
)′. The second set of estimating equations (GEE2)

for γ is then given by

uγ(γ̂) =
N∑
i=1

Â
′
iĤ
−1

i (U i − λi(β̂, γ̂)) = 0 (7.32)

where the q × [Ri(Ri − 1)/2] matrix A′i = ∂λi/∂γ, and H i ≈ cov(U i).

Conditional residuals are expressed as deviations about the conditional expecta-

tions, i.e.,

cri,st = Yi,t − E[Yi,t|yi,s,xi,s,xi,t] = Ui,st − ηi,st (7.33)
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where Ui,st = Yi,t and

ηi,st = E(Yi,t|Yi,s = yi,s,xi,s,xi,t) = P (Yi,t = 1|Yi,s = yi,s,xi,s,xi,t)

= yi,s

(
πi,st
πi,s

)
+ (1− yi,s)

(
πi,t − πi,st
1− πi,s

)
.

Klar et al. (2000) then grouped the conditional residuals to form a Ri(Ri −
1)/2 vector cr = U i − ηi, where U i = (Ui,12, Ui,13, · · · , Ui,(Ri−1)Ri

)′ and ηi =

(ηi,12, ηi,13, · · · , ηi,(Ri−1)Ri
)′. The second set of estimating equations (GEE2) for γ

is then given by

uγ(γ̂) =
N∑
i=1

Ĉ
′
iŴ

−1

i (U i − ηi(β̂, γ̂)) = 0 (7.34)

where the q × [Ri(Ri − 1)/2] matrix C ′i = ∂ηi/∂γ, and W i ≈ diag(cov(U i)).

Inferences on the intraclass kappa coefficient can be constructed using the joint

distribution of β̂ and γ̂ which is, asymptotically, multivariate Normal. Note that

more precise estimators of γ and hence of kappa are obtained by constructing the

estimating equations using conditional residuals. Lipsitz and Fitzmaurice (1996)

have shown that the gain in efficiency obtained by constructing estimating equa-

tions using conditional as opposed to unconditional residuals is particularly notable

when the number of raters per item is variable.

Multinomial scale. Williamson et al. (2000) proposed the use of generalized

estimating equations to model dependent agreement indexes when the scale is

categorical in a way similar to Klar et al. (2000). Suppose again that N items

are assessed by Ri independent or dependent raters. The response of interest is

a categorical outcome with K categories denoted Yi,r, where Yi,r = k if response

of rater r for item i falls in category k, r = 1, · · · , Ri and k = 1, · · · , K. The

Ri(K−1)×1 response vector Y i consists of the binary random variables Yik,r, where

Yik,r = 1 if Yi,r = k (Y i = (Yi1,1, · · · , Yi(K−1),1, · · · , Yi1,(Ri−1), · · · , Yi(K−1),(Ri−1))
′).

For ordinal responses, the marginal cumulative probabilities of response, νik,r =

P (Yi,r ≤ k), k = 1, · · · , K − 1, are modeled. Let

πik,r = πik,r(β) = P (Yi,r = k) = P (Yik,r = 1) = νik,r − νi(k−1),r

denote the marginal probabilities. These probabilities can be grouped to form a

Ri(K − 1)× 1 vector πi. The vectors Y i and πi require only Ri(K − 1) elements

instead of RiK since
∑K

k=1 Yik,r = 1, for i = 1, · · · , N and r = 1, · · · , Ri. Let xik,r
be the (p + K − 1) × 1 vector of covariates relative to item i and rater r, which

consists of covariates for the K − 1 cutpoints of the categorical response and p

covariates relative to the raters and the items. Williamson et al. (2000) related
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the cumulative marginal response probabilities to the covariates through the link

function g(.) and the (p+K − 1)× 1 marginal parameter vector β,

g(νik,r) = x′ik,rβ. (7.35)

For example, g(.) might be the cumulative logit function resulting in a proportional

odds model for ordinal responses or the polytomous link function for nominal res-

ponses.

Williamson et al. (2000) then consider the joint distribution of raters s and t for

item i (Yi,sYi,t) with

πijk,st = P (Yi,s = j, Yi,t = k|xi,s,xi,t) (7.36)

denoting the associated probabilities (j, k = 1, · · · , K) and then defined the agree-

ment index

κi,st =
Poi,st − Pei,st

1− Pei,st
(7.37)

with

Poi,st =
K∑
j=1

πijj,st (7.38)

and

Pei,st =
K∑
j=1

πij,sπij,t. (7.39)

Williamson et al. (2000) next consider the regression model for Cohen’s kappa

coefficient, following Klar et al. (2000) to avoid restrictions on the parameter space

(see Equation 7.29). The first set of generalized estimating equations (GEE1)

relative to the marginal distribution of the responses is then defined by

uβ(β̂) =
N∑
i=1

D̂
′
iV̂
−1

i (Y i − πi(β̂)) = 0 (7.40)

where the (p+K − 1)×Ri(K − 1) matrix Di = ∂πi/∂β and V i = V i(γ,β) is a

Ri(K−1)×Ri(K−1) ’working’ covariance matrix of Y i. Williamson et al. (2000)

proposed a second set of estimating equations (GEE2) for the joint distribution of

responses by noting that

Poi,st = Pei,st + κi,st(1− Pei,st). (7.41)

Following Liang et al. (1992), they considered a product of indicator variables. Let

Ui,st =
K∑
k=1

Yik,sYik,t (7.42)



150 7.3. Dependent agreement indexes

be a binary random variable depicting agreement between raters s and t with

E(Ui,st) = Poi,st. When considering Ri raters, they are Ri(Ri− 1)/2 distinct pairs.

Hence, U ′i = (Ui,12, Ui,13, · · · , Ui,(Ri−1)Ri
) and P ′oi = (Poi,12, Poi,13, · · · , Poi,(Ri−1)Ri

)

are vectors of dimension Ri(Ri−1)/2×1 with E(U i) = P oi. The kappa coefficient

is then estimated by solving a second set of estimating equations (GEE2)

uγ(γ̂) =
N∑
i=1

Ĉ
′
iŴ

−1

i (U i − P oi(β̂, γ̂)) = 0 (7.43)

where the q × [Ri(Ri − 1)/2] matrix C ′i = ∂P oi/∂γ and W i ≈ diag(cov(U i)).

Williamson et al. (2000) used Fisher scoring algorithm to estimate γ and β.

β̂
(m+1)

= β̂
(m)

+

[
N∑
i=1

D̂
′
iV̂
−1

i D̂i

]−1 [ N∑
i=1

D̂
′
iV̂
−1

i

{
Y i − πi(β̂

(m)
)
}]

,

γ̂(m+1) = γ̂(m) +

[
N∑
i=1

Ĉ
′
iŴ

−1

i Ĉi

]−1 [ N∑
i=1

Ĉ
′
iŴ

−1

i

{
U i − P oi(γ̂

(m), β̂)
}]

.

Finally, they used Liang and Zeger (1986) empirically corrected variance estimate

of β̂, i.e.,

Vβ =

[
N∑
i=1

D̂
′
iV̂
−1

i D̂i

]−1 [ N∑
i=1

D̂
′
iV̂
−1

i cov(Y i)V̂
−1

i D̂i

][
N∑
i=1

D̂
′
iV̂
−1

i D̂i

]−1

(7.44)

and Prentice (1988) empirically corrected variance estimate of γ̂

Vγ = BΛ11B
′ +BΛ12E +EΛ21B

′ +EΛ22E (7.45)

where

B =

[
N∑
i=1

Ĉ
′
iŴ

−1

i Ĉi

]−1 [ N∑
i=1

Ĉ
′
iŴ

−1

i

∂U i

∂β

][
N∑
i=1

D̂
′
iV̂
−1

i D̂i

]−1

E =

[
N∑
i=1

Ĉ
′
iŴ

−1

i Ĉi

]−1

Λ11 =
N∑
i=1

D̂
′
iV̂
−1

i cov(Y i)V̂
−1

i D̂i

Λ12 =
N∑
i=1

D̂
′
iV̂
−1

i cov(Y i,U i)Ŵ
−1

i D̂i

Λ21 = Λ′12

Λ22 =
N∑
i=1

Ĉ
′
iŴ

−1

i cov(U i)Ŵ
−1

i Ĉi
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Williamson et al. (2000) conducted analyses using simulated data to assess the

performance of their method. They examined the effects of a misspecified marginal

distribution on the association parameters and determined how well the empirically

corrected standard error estimate performs with small to moderate sample size.

It results that the standard error estimate of the kappa coefficient may be biased

in small samples (N ≤ 30). The association model needs not to be correctly

specified for unbiased estimation with the marginal model because the first set

of estimating equations does not involve kappa. But, it is crucial to model the

marginal distribution carefully even when interest is only in the agreement between

responses because omission of an important (significant) marginal covariate may

produce a biased estimate of the kappa coefficient.

Ordinal scale. Gonin et al. (2000) proposed the use of generalized estimating

equations to model dependent agreement data, using the weighted kappa coeffi-

cient. They used an ordinal logistic regression model to identify covariates that are

associated with the marginal probability of classification by each rater and a se-

cond set of estimating equations, based on the Fisher’s Z transformation, to model

the weighted kappa coefficient as a function of covariates. Using the same nota-

tion as in previous section, Gonin et al. (2000) considered the weighted agreement

index

κwi,st =
Powi,st − Pewi,st

1− Pewi,st
(7.46)

with

Powi,st =
K∑
j=1

K∑
k=1

wjkπijk,st (7.47)

and

Pewi,st =
K∑
j=1

K∑
k=1

wjkπij,sπik,t (7.48)

where the weights wjk satisfy wjj = 1 and 0 ≤ wjk ≤ 1. Next, they considered the

regression model for the weighted kappa coefficient similarly to Klar et al. (2000)

(see Equation 7.29). The first set of generalized estimating equations (GEE1) to

estimate the vector of parameters β used by Gonin et al. (2000) is defined by

Equation 7.40.

Denote by Uwi,st =
∑K

j=1

∑K
k=1wjkYij,sYik,t, the product of indicator variables. To

define the second set of estimating equations, Gonin et al. (2000) noted that

E (Uwi,st|X i) = Powi,st (7.49)

by assuming that rater specific covariates from rater t does not influence the ratings
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of rater s, t 6= s, i.e. E[Yij,sYik,t|X i] = E[Yij,sYik,t|xi,s,xi,t]. Moreover,

Powi,st = κwi,st

(
1−

K∑
j=1

K∑
k=1

wjkπij,sπik,t

)
+

K∑
j=1

K∑
k=1

wjkπij,sπik,t, (7.50)

implying that Uwi,st−Powi,st is unbiased for 0. They therefore proposed, for GEE2,

uγ(γ̂) =
N∑
i=1

∑
s<t

Ĉ
′
wi,stŴ

−1
wi,st

(
Uwi,st − Powi,st(β̂, γ̂)

)
= 0 (7.51)

where Ĉ
′
wi,st = ∂Powi,st/∂γ, W is the ’working’ variance of Uwi,st, W ∼ var(Uwi,st).

Using Taylor series expansions similarly to Prentice (1988), and assuming that

the model for κwi,st, πij,s and πik,t are correctly specified, (β̂, γ̂) is consistent and

asymptotically Normal, with variance-covariance matrix V (β̂, γ̂). This covariance

matrix can be consistently estimated using a Jackknife estimate (Lipsitz et al.,

1990):

V (β̂
′
, γ̂ ′)′ =

N∑
i=1

((β̂
′
, γ̂ ′)−i − (β̄

′
, γ̄ ′))′((β̂

′
, γ̂ ′)−i − (β̄

′
, γ̄ ′)) (7.52)

where (β̂
′
, γ̂ ′)−i is the estimate of (β′,γ ′) obtained by deleting the Ri ratings on

item i and (β̄
′
, γ̄ ′) is the average of the (β̂

′
, γ̂ ′)−i over the N individuals. Gonin

et al. (2000) proposed then to solve the two sets of estimating equations using a

Fisher scoring type of algorithm and an exchangeable working correlation matrix

for Y i. They shown that this permits to completely specify the working correlation

of Uwi,st.

7.4 Simulations

The bootstrap method of Vanbelle and Albert (2008) was applied to simulated

data sets in order to study the behavior of the type I error (α) of the homogene-

ity test for G = 3 Cohen’s kappa coefficient and compare the results with the

WLS and GEE2 approaches. Each simulation consisted in applying the bootstrap

method to 3000 data sets generated under the null hypothesis H0 : κ1 = κ2 = κ3

and to determine the number of times H0 was rejected. The simulated data set

was based on 4 binary random variables X, Y , Z and V . The agreement bet-

ween X and Y (κXY ), X and Z (κXZ) and X and V (κXV ) were compared using

the bootstrap method with q = 2000 iterations. Simulations were repeated for 3

sample sizes (50, 75 and 100) and 5 levels of agreement (κ=0, 0.2, 0.4, 0.6 and 0.8).
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To obtain a given level of agreement (κ), 2 vectors of size N from binary random

variables (U and W ) were generated. Then, a vector of size N with uniform ran-

dom numbers between 0 and 1 was generated. Each time the random uniform

number was less than or equal to the given level of agreement (κ), the value of

W was changed into the value of U , otherwise it remained unchanged. The kappa

coefficient was derived from the 2× 2 table obtained by cross-classifying the vec-

tors U and W . The codes for the simulations were written in R language using

uniform random number generator with seed equal to 2. The GEE2 (Williamson

et al., 2000) and the WLS (Barnhart and Williamson, 2002) approaches were also

applied to the 3000 simulated data sets. Results are summarized in Table 7.1.

Table 7.1. Type I error for the comparison of G = 3 correlated kappa
coefficients, according to κ level and sample size (figures are based on
3000 simulations each)

κ level
Sample size Method 0 0.2 0.4 0.6 0.8
50 Bootstrapa 0.065 0.069 0.061 0.076 0.056

GEE2 0.067 0.061 0.063 0.052 0.044
WLS 0.0027 0.037 0.062 0.0769 0.064

75 Bootstrap 0.070 0.061 0.061 0.063 0.063
GEE2 0.046 0.058 0.057 0.051 0.040
WLS 0.0030 0.040 0.060 0.071 0.069

100 Bootstrap 0.089 0.065 0.064 0.061 0.058
GEE2 0.057 0.054 0.050 0.053 0.040
WLS 0.0027 0.037 0.055 0.064 0.064

a q = 2000

It is seen that type I error rates obtained with the bootstrap method are slightly

but systematically higher than the expected 5% nominal level. While the GEE2

approach appears to be optimal, the bootstrap was better than the WLS, at least

for elevated κ values. However, the bootstrap method may be preferred to the

GEE2 approach because of the ease of implementation in all settings as compared

to the GEE2 method, which requires the writing of a lengthy and specific program

for each particular problem.
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7.5 Examples

7.5.1 Blood clots detection

The presence of blood clots was assessed on 50 patients (23 women and 27 men)

with a reference method (Standard) and two new methods (Method 1 and Method

2) by two medical raters (see Chapter 2, Section 2.6.2). The aim of the study was

to compare the agreement obtained between Method 1 and the Standard method

to the agreement obtained between Method 2 and the Standard.

Weighted least-squares approach. Cohen’s kappa coefficient was 0.41 ± 0.12

between Method 1 and the Standard method and 0.71 ± 0.10 between Method 2

and the Standard. A test of equality of these agreement indexes using the WLS

approach resulted in a chi-square value of 6.16 (p = 0.013). A better agreement

with the Standard method was observed for Method 2 than for Method 1. There-

fore, Method 2 should be preferred to Method 1 (this is consistent with the results

of the bootstrap method (Vanbelle and Albert, 2008)). The estimated correlation

between the two kappa estimates was 0.43.

When testing the effect of sex on Cohen’s kappa coefficients, we obtained an es-

timate of -0.23 (p = 0.20), resulting in no agreement difference between men and

women. For Method 1, the estimate of Cohen’s kappa coefficients were 0.26 and

0.49 for men and women, respectively. For Method 2, the estimate of Cohen’s

kappa coefficients were 0.58 and 0.81 for men and women, respectively.

GEE2 and initial method of Lipsitz et al. (2001). Although constraints

are needed to ensure that Cohen’s kappa coefficient is comprised in the interval

[−1, 1], an identity link was used to simplify the interpretation of the parameters

and permit the comparison of the GEE2 and the method proposed by Lipsitz et al.

(2001). Note that this is not statistically correct to apply the alternative method

to test for equality between the agreement obtained for Method 1 and Method 2

since the data are dependent. The model for Cohen’s kappa coefficient was

κ = Intercept+ β1SEX + β2AGE + β3METHOD1 + β4AGE ×METHOD1

+β5SEX ×METHOD1 + β6AGE × SEX (7.53)

where METHOD1 = 1 when agreement is searched between Method 1 and the

Standard method (METHOD1 = 0 otherwise), SEX = 1 for men (SEX = 0 for

women) and AGE is patient’s age (years). The resulting parameter estimates are

displayed in Table 7.2 for the GEE2 and the method of Lipsitz et al. (2001).

Method 1 showed lower agreement with the Standard method than with Method

2 (p = 0.024 with GEE2, p = 0.034 with the method of Lipsitz et al. (2001)).
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Table 7.2. Estimates of the model of Cohen’s kappa coefficient for the blood clots
detection example with GEE2 and method of Lipsitz et al. (2001)

GEE2 Lipsitz et al. (2001)
Parameter β̂ SE p-value β̂ SE p-value
Intercept 1.42 0.39 < 0.0001 1.20 0.24 < 0.0001
SEX -1.38 0.67 0.038 -1.15 0.56 0.040
AGE -0.0083 0.0065 0.20 -0.0060 0.0052 0.25
METHOD1 -1.25 0.55 0.024 -1.32 0.63 0.034
AGE ×METHOD1 0.013 0.0076 0.093 0.014 0.0081 0.086
SEX ×METHOD1 0.14 0.26 0.53 0.16 0.28 0.56
AGE × SEX 0.017 0.0095 0.073 0.014 0.0077 0.076

Agreement was also lower for men than for women (p = 0.038 with GEE2, p =

0.040 with the alternative method). There was no evidence for an effect of age.

Thus, Method 2 should be preferred to Method 1. This result is consistent with

the WLS and the bootstrap approaches. Note that the parameter estimates and

the standard errors were similar for both GEE2 and the method of Lipsitz et al.

(2001).

Method of Lipsitz et al. (2001). The alternative procedure proposed by Lip-

sitz et al. (2001) was applied to study the effect of patient’s age and sex on the

kappa coefficients obtained for Method 1 and Method 2, separately. The marginal

model relative to the classification of the patients for each method was

logitP (Yi,r = 1) = Intercept+β1SEX+β2AGE, (r = 1, 2; i = 1, · · · , N) (7.54)

where SEX = 1 for men and SEX = 0 for women and AGE is patient’s age

(years). The parameter estimates are given in Table 7.3.

Table 7.3. Parameter estimates of the marginal models relative to each method for the
blood clots detection example (p for pvalue)

Method 1 Method 2 Standard method
Parameter β̂ SE p β̂ SE p β̂ SE p

Intercept 1.48 1.52 0.33 0.57 1.45 0.15 1.24 1.45 0.39
SEX -1.83 0.66 0.0053 -0.99 0.61 0.10 -0.89 0.61 0.14
AGE -0.0028 0.020 0.89 -0.0066 0.0192 0.73 -0.016 0.019 0.40

The marginal distribution obtained with Method 1 was related to patient’s sex.

The probability to detect blood clots was higher in women than in men with
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Method 1 (p < 0.01). This was not the case for Method 2 and for the Standard

method. There was no effect of age.

For both methods, the effect of sex and patient’s age was tested on Cohen’s kappa

coefficient obtained by the Standard method with the model

κg = Intercept+ β1SEX + β2AGE (7.55)

where g = 1 for Method 1 and g = 2 for Method 2. The parameter estimates are

displayed in Table 7.4.

Table 7.4. Parameter estimates of the model for the kappa coefficients
obtained with Method 1 and Method 2 for the blood clots detection
example

Method 1 Method 2
Parameter β̂ SE p-value β̂ SE p-value
Intercept -1.20 0.46 0.0093 1.13 0.26 <0.0001
SEX -0.049 0.22 0.83 -0.34 0.21 0.11
AGE 0.023 0.0056 <0.0001 -0.0038 0.0039 0.34

No covariate effect was found for the agreement obtained for Method 2. On the

other hand, the agreement between Method 1 and the Standard method increased

with patient’s age. When computing Cohen’s kappa coefficient for patients below

median age (73.5 years) and above median age, we obtained Table 7.5, confirming

the effect of age on the agreement obtained with Method 1. Note that results were

consistent with the results obtained with the method introduced by Fleiss (1981)

(see Chapter 6, Section 6.5.1), where there was no sex effect on the agreement.

Table 7.5. Cohen’s kappa coefficient ±SE for
each method according to patient’s median age
for the blood clots detection example
Age N Method 1 Method 2
≤73.5 years 27 0.080± 0.18 0.63± 0.17
>73.5 years 23 0.76± 0.13 0.76± 0.13

7.5.2 Cervical ectopy size

Cervical ectopy size of 85 women was determined on a 4-category scale by two

medical raters with direct visual assessment and the computerized planimetry
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method. To test if agreement between the two raters was the same for the planime-

try and the visual methods, the WLS, GEE2 and the method proposed by Lipsitz

et al. (2001) (although data are repeated) were used to test the equality of the

agreement obtained between the two raters with the visual and the planimetry

methods. Since the alternative method is only designed for unweighted kappa co-

efficients, Cohen’s kappa coefficient was used as measure of agreement to permit

the comparison of the different approaches. Results are summarized in Table 7.6

with the estimated correlation between the agreement indexes for the visual and

the planimetry method.

Table 7.6. Results of the WLS, GEE2 and alternative method when tes-
ting for equality between the agreement for the visual and the planimetry
methods in the cervical ectopy size example

Visual Planimetry
assessment method

Method κ̂v ± SE κ̂p ± SE p-value corr(κ̂v, κ̂p)
WLS 0.34± 0.068 0.63± 0.067 0.0022 0.064
GEE2 0.33± 0.099 0.63± 0.041 0.0019 0.0041
ALTERNATIVE 0.33± 0.070 0.63± 0.068 0.0026 -0.020

The three approaches lead to the same conclusion, the agreement between the two

raters was higher with the planimetry method than with direct visual assessment.

The estimated correlation between the two agreement indexes was negligible.

GEE2. The marginal probabilities of classification by each rater were modeled

following

logitP (Yi ≤ k) = αk+β1PL+β2R1+β3PL×R1 (k = 1, 2, 3; i = 1, · · · , N) (7.56)

where R1 = 1 for rater 1 (R1 = 0 for rater 2) and PL = 1 for the planimetry

method (PL = 0 for the visual method). The resulting parameter estimates are

displayed in Table 7.7.

The probability of being classified with smaller ectopy sizes was lower for rater 1

than for rater 2 (p = 0.0009) and higher with the planimetry method than with

visual assessment (p < 0.0001). The estimates of Cohen’s kappa coefficients were

given in Table 7.6.
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Table 7.7. Parameter estimates of the
GEE2 model in the cervical ectopy
size example
Parameter β̂ SE p-value
α1 -0.77 0.19 <0.0001
α2 0.86 0.20 <0.0001
α3 1.65 0.25 <0.0001
PL 0.60 0.18 0.0009
R1 -0.79 0.16 <0.0001
PL×R1 0.55 0.20 0.007

Method of Lipsitz et al. (2001). The marginal probabilities were modeled

with respect to the method used for each rater

logitP (Yi,r ≤ k) = αkr + β1PL, (r = 1, 2; k = 1, 2, 3; i = 1, · · · , N). (7.57)

Results are given in Table 7.8. The marginal probabilities distribution of both

raters was related to the method used. The probability to be classified has having

smaller ectopy sizes was higher with the planimetry method than with the visual

assessment.

Table 7.8. Parameter estimates of the marginal models for
each rater obtained with the alternative approach correspon-
ding to the classification of cervical ectopy sizes

Rater 1 Rater 2
Parameter β̂ SE p-value β̂ SE p-value
α1 -1.62 0.25 <0.0001 -0.80 0.22 0.0003
α2 0.10 0.21 0.62 0.74 0.22 0.0006
α3 0.73 0.22 0.0009 1.75 0.27 <0.0001
PL 1.15 0.29 <0.0001 0.60 0.28 0.034

The model for Cohen’s kappa coefficient was

κ = Intercept+ βPL. (7.58)

The parameter estimates relative to this model are displayed in Table 7.9. Co-

hen’s kappa coefficient was better for the planimetry method than for the visual

assessment (p = 0.0030)
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Table 7.9. Parameter estimates of the
model for the Cohen’s kappa coefficient
using the alternative method for the
cervicl ectopy size example
Parameter β̂ SE p-value
Intercept 0.33 0.070 <0.0001
PL 0.30 0.098 0.0030

7.6 Discussion

Only some of the existing modeling techniques were reviewed in this chapter.

Firstly, methods allowing the modelization of independent agreement indexes were

reviewed (Lipsitz et al., 2001, 2003). These methods are heuristic but permit to

model directly the kappa coefficient in function of continuous and categorical co-

variates. Nevertheless, they do not permit the modeling of weighted agreement

indexes and do not allow to study correlated agreement indexes. However, one can

possibly use generalized estimating equations instead of simple logistic regression

to allow for dependent agreement indexes. Indeed, when modifying their approach,

Lipsitz et al. (2003) have shown that their method was equivalent to using one set

of generalized estimating equations. The generalization of the method of Lipsitz

et al. (2001, 2003) to weighted agreement indexes might be an interesting theme

for future research.

Then, approaches allowing for dependent agreement indexes were reviewed. The

weighted least-squares approach permits the comparison of several correlated agree-

ment coefficients between two raters. This approach has to be viewed more as a

comparison method than a modeling technique since it gives estimated values of

the agreement coefficients rather than estimates of the effect of covariates, i.e model

kappa coefficients with respect to covariates. The method is easy to implement

using, for example, PROC CATMOD in the SAS software but is, however, restri-

cted to categorical covariates. On the other hand, the GEE2 approach is based

on the estimation of two generalized estimating equations, one to characterize the

marginal classifications of the raters and a second to study the effect of covari-

ates on the agreement index obtained between the raters. The GEE2 approach

has the advantage of allowing for continuous covariates but requires programming

work since there is no procedure for GEE2 in standard statistical packages, to our

knowledge. Moreover, efficiency of the estimates depends on the choice of a wor-

king correlation matrix although consistency does not. For categorical covariates,

Miller et al. (1993) have shown that the WLS approach for analysing multi-way

contingency tables is asymptotically equivalent to the GEE2 approach under a
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common unspecified working correlation matrix for all covariate patterns.

The WLS and GEE2 approaches were compared to the bootstrap method of Van-

belle and Albert (2008). The WLS method developed by Barnhart and Williamson

(2002) and the GEE2 approach of Williamson et al. (2000) led to the same con-

clusions as the bootstrap procedure for both examples, although estimates of the

kappa coefficients obtained with the bootstrap method were slightly biased. How-

ever, Efron and Tibshirani (1993) suggested that if the estimate of the bias ( ˆbias)

is small compared to the estimate of the standard error (ŜE), i.e. ˆbias/ŜE ≤ 0.25,

the bias can be ignored. Otherwise, it may be an indication that κ̂ is not an ap-

propriate estimate of the parameter κ. The bootstrap approach also yields slightly

higher standard errors than the WLS and the GEE2 methods, as it was expected

from the results of the simulations. Indeed, the type I errors obtained with the

bootstrap method were more liberal than those with the GEE2 method, in particu-

lar if the sample size (N) was small with respect to the number (G) of kappas to be

compared. This finding confirms the remark made by McKenzie et al. (1996). Ne-

vertheless, the type I error obtained by the bootstrap remains acceptable although

it is recommended to use more than 1000 bootstrap iterations when the number

of agreement coefficients to be compared is greater than 2. The bootstrap method

outlined in Section 6.4.3 can be easily implemented in many statistical packages

and programming languages since the method merely requires the generation of

random uniform numbers and simple matrix calculations. By contrast, modeling

techniques require specific programming for each problem encountered in practice.

Their use is nevertheless highly recommended when it comes to account for many

covariates. Lin et al. (2003) estimated the sample size that is required for depen-

dent agreement studies by adapting the GEE2 approach for modeling dependent

kappa statistics. Note that Klar et al. (2000); Williamson et al. (2000); Gonin

et al. (2000); Lipsitz et al. (2001, 2003) stressed the fact that it is important to

overfit the marginal models to avoid bias in the estimation of the agreement index.

The modeling techniques presented in this chapter were limited to the case of two

or more raters. They have not yet been generalized to the case of two groups of

raters or an isolated rater and a group of raters. Further research is needed on

this topic.
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This work has focused on the agreement between raters in various situations. A

short review of agreement indexes for quantitative scales was provided in the first

chapter, with particular emphasis on indexes also applicable to qualitative scales.

Actually, Lin et al. (2007) proposed a unified approach for categorical and continu-

ous data. The main corpus of this work, however, was devoted to the measurement

of agreement between two or more raters on a categorical scale. Preference was

given to agreement coefficients belonging to the kappa-like family. As clearly ex-

plained by Kraemer (1992), agreement on a categorical scale is often assessed by

(1) defining some measure of pairwise agreement, (2) giving to each item an agree-

ment score equal to the pairwise agreement measure averaged over all pairs of

raters/ratings, (3) averaging the agreement scores over items, and (4) assessing

how the agreement scores relate to what one would define as random and ideal

agreement in that dataset.

One crucial point is to provide a clear definition of ’perfect agreement’. While it is

unambiguous for two raters (they agree or do not agree), this is not the case when

agreement is searched between several raters (where agreement can be defined on

a continuum beginning with agreement between a pair of raters to agreement bet-

ween all raters) or between groups of raters. In the latter case, the issue arises as

to whether agreement within groups is needed to have agreement between groups.

Another question is what is meant by chance agreement. For example, for Cohen’s

kappa coefficient (Cohen, 1960), chance agreement was defined as agreement bet-

ween the two raters under the independence assumption. By contrast, Kraemer

(1979) used the additional assumption of homogeneous marginal distribution for

the intraclass kappa coefficient and Bennett et al. (1954) the additional assumption
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of uniform marginal distribution for both raters. Different definitions of ’perfect

agreement’ and ’chance agreement’ lead to different indexes and possibly to differ-

ent conclusions.

Once clear definitions of ’perfect agreement’ and ’chance agreement’ have been

specified, a raw measure of agreement (po) and the corresponding measure obtained

by pure chance (pe) are derived. Finally, an agreement coefficient is constructed,

κ̂ = (po − pe)/(pm − pe), with the property of having a value equal to 1 when

agreement is perfect. In this formula, pm corresponds to the value of po under the

definition of perfect agreement adopted. Based on this principle, Cohen’s kappa

coefficient (Cohen, 1960), the weighted kappa coefficient (Cohen, 1968) and the

intraclass kappa coefficient (Kraemer, 1979) were reviewed. Then, the intraclass

kappa coefficients based on one-way (Fleiss, 1971) and two-way (Davies and Fleiss,

1982) ANOVA models and the g-wise agreement indexes (Conger, 1980) were in-

troduced to quantify the agreement between several raters. Finally, Schouten

(1982) and Vanbelle and Albert (2009a,b) proposed agreement indexes for quan-

tifying the agreement between an isolated rater and a group of raters or between

two groups of raters. The question of ”what is meant by agreement between two

groups of raters?” remains a subject of debate. Vanbelle and Albert (2009a,b)

offered an alternative proposal to existing methods, such as the consensus method

and Schouten’s approach (Schouten, 1982). The proposed agreement coefficients

were defined on less restrictive definitions of perfect agreement than in Schouten’s

approach, in the sense that agreement within each group of raters was not re-

quested to reach agreement between two groups of raters. The consensus method,

consisting in summarizing the responses of each group of raters in a unique quan-

tity, should be avoided since the information about the dispersion of the responses

within each group of raters is erased. Moreover, the agreement index resulting from

the consensus method is generally overestimated, because items without consensus

are merely discarded from the statistical analysis. We are aware that the kappa-

like family is not the unique issue in the study of agreement between raters but

this remains the family of coefficients mostly used in practice at the moment. Al-

ternative approaches suggest the use of log-linear models, Rash models or mixture

models (Schuster, 2004) but also of other coefficients like the tetrachoric correla-

tion coefficient (Pearson, 1900).

After having defined an agreement index belonging to the kappa-like family, prac-

tical interpretation of the values taken by the coefficient should be provided. For

values like 0 (agreement due to chance) or 1 (perfect agreement), there is not much

discussion, while for values between 0 and 1 the interpretation remains open. Lan-

dis and Koch (1977b) qualified the strength of agreement (from ”poor” to ”almost

perfect”) according to values taken by Cohen’s kappa coefficient. Although widely
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used in practice, this classification should be avoided because the qualification is

arbitrary. A better approach would consist in the determination of a lower bound

for the agreement index. This can be achieved by calculating the standard error

of the estimated agreement index and by determining a 95% confidence interval

for the unknown coefficient. While several methods have been developed over the

years in this respect for agreement indexes between two raters, it is not the case

for the other coefficients of agreement. This prompted us to propose the Jack-

knife technique to estimate sampling variability. Another aspect of interpretation

that requires clarification is that concerning the use of weights. Weighted kappa

coefficients are widely used for ordinal scales. Weights can be arbitrarily defined

but traditionally linear or quadratic forms are applied. We gave an interpretation

for the linear weighting scheme (Vanbelle and Albert, 2008) while (Schuster, 2004)

proposed an interpretation for quadratic weights. However, guidelines for choosing

one or the other type of weighting scheme are still missing. Further research is

therefore needed on this important topic.

While the first part of the present work was devoted to quantification of agree-

ment in various contexts, the second part was dedicated to hypothesis testing and

modeling. Asymptotic and exact statistical tests for agreement assessment were

provided. Exact methods are being preferred for small sample sizes because the

distribution of kappa coefficients is not symmetric. When testing for differences

between several agreement coefficients, we made a clear distinction between the

paired and unpaired cases. Independent agreement indexes are obtained when

considering independent samples of items, while dependent agreement indexes are

obtained when considering the same sample of items but possibly different raters.

We spotted only one asymptotic method in the literature (Fleiss, 1981) for com-

paring several independent agreement indexes. A search for exact methods may be

another option for future research. The bootstrap method developed by McKenzie

et al. (1996) to compare two dependent agreement indexes was generalized to the

case of several raters by Vanbelle and Albert (2008). The method is simple to apply

but suffers from the known drawbacks of the bootstrapping, namely that different

results might be obtained when the entire bootstrap distribution is not determined.

Finally, methods to model agreement indexes according to categorical and conti-

nuous covariates between two raters were exposed. These methods are based on

or are equivalent to the generalized estimating equations. A first set of equations

is used to determine the marginal distribution of the responses of the raters and

a second set to model the agreement coefficient according to covariates. The ge-

neralized estimating equations offer the advantage of adjusting for categorical and

continuous covariates but the efficiency of parameter estimation highly depends

on the correct specification of the model. These methods need to be expanded
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to model agreement indexes between an isolated rater and a group of raters or

between two groups of raters.

Some aspects of rater agreement were not discussed in this work like agreement

coefficient developed for paired data (Oden, 1991; Schouten, 1993; Shoukri et al.,

1995) and stratified agreement coefficients (Barlow et al., 1991). Our contribution

to the vast domain of rater agreement has raised more questions than solving ones

but it has hopefully opened new pathways for future research.
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APPENDIX A

Data sets

A.1 Chapter 1

The serum gentamicin concentrations (µmol/L) measured twice with the EMIT

and the FIA methods on 56 specimens are given in Table A.1.
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Table A.1. Serum gentamicin concentrations (µmol/L) measured with the EMIT and
the FIA methods on 56 specimens

Specimen EMIT FIA
Measure 1 Measure 2 Measure 1 Measure 2

1 2.5 2.6 2.4 2.3
2 4.4 3.9 4.2 3.9
3 2.4 2.7 2.1 1.9
4 4 3.8 3.6 3.5
5 4.9 4.1 3.1 2.8
6 2.4 2.2 2.3 2.4
7 2.9 3.3 3.4 3.3
8 8.5 6.7 12 8.5
9 2.7 2.6 2.9 3
10 2.6 3.1 2.8 2.7
11 2.4 3.3 2.8 2.6
12 3.2 2.6 3.4 3.4
13 5.3 3.7 6.8 6.7
14 2 2.4 2.3 3.5
15 4.7 4.7 4.1 4.1
16 2.7 2.9 2 2
17 6 4.2 4.5 4.6
18 3.8 3.6 3.6 3.7
19 3.1 3.3 4.8 4.6
20 7.9 5.6 4.2 3.6
21 1.4 3.2 2.4 2.3
22 2.1 1.8 2.3 2.3
23 2.6 1 2.1 2.1
24 3 5.2 1.4 2.7
25 5 4.5 4.8 4.9
26 2 2.2 2.8 2.4
27 1 1 1.2 1.2
28 11 11.2 10.6 11.3
29 1.2 1.3 1.8 0.8
30 2.3 1 3.9 4.2
31 6.4 5.9 5.3 5.8
32 4.8 4 5.8 6.3
33 2.2 1.8 2.1 2.2
34 3.7 3.2 4.2 4.1
35 7.4 6.7 9.2 9.4
36 1 2.5 2.4 2.6
37 6.8 8.5 7.2 7.4
38 1 1.4 1.8 1.9
39 1 1 2.5 2.5
40 5 4.5 6.4 6.7
41 2.1 1.1 3.2 3.4
42 5.4 6.2 5.8 6.1
43 10.4 8.6 9.6 10.1
44 6.8 6.9 7.6 7.9
45 7.3 8 5.2 6.4
46 7.6 6.1 6.2 6.2
47 10.5 11.5 10.2 10.2
48 9.8 11.5 10.5 10.5
49 14.5 13.5 12.8 12.4
50 16.5 12.5 13.2 13.2
51 19 16.5 15.5 15.8
52 19 17.5 15.7 16.2
53 12.8 11.9 12.5 12.9
54 17.4 13.3 15.7 16
55 11 10.8 12.3 11.7
56 13.9 14.2 13.5 13.8



A. Data sets 167

A.2 Chapter 3

The data of Williams (1976) relative to the classification of 28 specimens for

syphilis serology on a 3-category scale (NR=Non reactive, BL=Bordeline, RE=Re-

active) by 2 individual laboratories (L and H) and 3 reference laboratories are

presented in Table A.2.

Table A.2. Classification of 28 specimens for syphilis serology on a 3-category scale
(NR=Non reactive, BL=Bordeline, RE=Reactive) by 2 individual laboratories (L and
H) and 3 reference laboratories (Data from Williams (1976))

Participant Reference
Specimen L H∗ R1 R2 R3

1 RE RE RE RE RE
2 RE RE RE RE RE
3 BL NR NR NR NR
4 BL NR NR NR NR
5 BL NR NR NR NR
6 RE RE RE RE RE
7 BL NR NR NR NR
8 RE RE RE RE RE
9 NR NR NR NR NR
10 NR NR NR NR NR
11 RE RE RE RE RE
12 RE BL RE BL BL
13 RE RE RE RE RE
14 RE BL RE BL BL
15 RE RE RE RE RE
16 RE BL RE NR BL
17 RE BL RE NR BL
18 RE RE RE RE RE
19 RE RE RE RE RE
20 BL NR BL NR NR
21 RE RE RE RE RE
22 BL NR NR NR NR
23 BL NR BL NR NR
24 BL NR BL NR NR
25 RE RE RE RE RE
26 NR NR NR NR NR
27 RE RE RE RE RE
28 NR NR NR NR NR

∗Hypothetical participant (see text)





APPENDIX B

Asymptotic and exact methods

B.1 Introduction

First, the multivariate Delta method will be exposed in the general case and in

the particular case of multinomial distribution in order to determine the standard

error of Cohen’s kappa, intraclass kappa and weighted kappa coefficients. Then,

sampling methods such as Jackknife, bootstrap and Monte Carlo approximation

will be introduced.

B.2 Multivariate Delta method

B.2.1 General case

Let θ be a vector of population parameters of dimension T × 1: θ=(θ1, . . . , θT )′;

θ̂n be a vector of estimators of dimension T × 1 of the vector of θ for a size N :

θ̂N = (θ̂N1, . . . , θ̂NT )′.

Suppose that θ̂N is asymptotically normally distributed, i.e.,

L[
√
N(θ̂N − θ)] −→ N (0,Σ(θ)) (B.1)

where L represents convergence in law and Σ(θ) is the T × T asymptotic cova-

riance matrix of θ̂N . This matrix is singular if θ̂N has a distribution included in a

sub-space of the T-dimensional space.
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Suppose that f is a function defined on an open subspace of the T-dimensional

space and taking values in a R-dimensional space,

f : RT → RR : θ 7→ f(θ) = (f1(θ), . . . , fR(θ))′.

Assume that f is at least one time differentiable in θ, i.e.

fi(x) = fi(θ) +
T∑
j=1

(xj − θj)
∂fi
∂xj

∣∣∣∣ x = θ
+ o(||x− θ| |) if x→ θ for i = 1, . . . , R.

If

(
∂f

∂θ

)
is the R × T matrix whose element (i, j) is the partial derivative of fi

with respect to the jth element of x = (x1, . . . , xT )′ evaluated in x = θ, i.e.,(
∂f

∂θ

)
ij

=
∂fi
∂xj

∣∣∣∣ x = θ,

Then,

f(x) = f(θ) +

(
∂f

∂θ

)
(x− θ) + o(||x− θ| |) if x→ θ. (B.2)

Bishop et al. (1975) have shown that

Theorem B.2.1. If θ̂N , θ and f are defined as above and (B.1) and (B.2) hold,

then, the asymptotic distribution of f(θ̂N) is given by

L[
√
N(f(θ̂N)− f(θ))] −→ N

(
0,

(
∂f

∂θ

)
Σ(θ)

(
∂f

∂θ

)′)
. (B.3)

B.2.2 Particular case: multinomial distribution

Simplifications occur in the multinomial case. Suppose that we have a K × K

contingency table and that the cell counts (n11, . . . , n1K , . . . , nK1, . . . , nKK)′ follow

a multinomial distribution with probability cells

π = (π11, . . . , π1K , . . . , πK1, . . . , πKK)′.

We have
K∑
i=1

K∑
j=1

nij = N.

Let p = (p11, . . . , p1K , . . . , pK1, . . . , pKK)′ be the vector of sample proportions

where pij = nij/K.

Let the ith observation be yi = (yi11, . . . , yi1K , . . . , yiK1, . . . , yiKK) where yijl = 1

if item i is placed in category j by rater 1 and in category l by rater 2, yijl = 0

otherwise. We have
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pjl =
1

N

N∑
i=1

yijl,
K∑
j=1

K∑
l=1

yijl = 1 and yijlyimr = 0 if j 6= m or if l 6= r.

Moreover, E(yijl) = πjl = E(y2
ijl) and E(yijlyimr) = 0 if j 6= m or if l 6= r. So,

E(yi) = π and cov(yi) = Σ (i = 1, . . . , N) where Σ = (σjl) with σjj = var(yijl) =

πjl(1− πjl) and σjl = cov(yijl, yimr) = −πjlπmr if j 6= m or if l 6= r.

If diag(π) denotes the diagonal matrix with the elements of π, the matrix Σ is

determined by

Σ = diag(π)− ππ′. (B.4)

Thus, we have

cov(p) =
1

N
(diag(π)− ππ′).

This matrix is singular since
K∑
i=1

K∑
j=1

pij = 1.

The multivariate central-limit theorem (Rao, 1973) implies that

L
[√

N [p− π]
]
−→ N [0, diag(π)− ππ′] .

If g(t11, · · · , t1K , · · · , tK1, · · · , tKK) is a differentiable function and

φij =
∂g

∂πij
i, j = 1, . . . , K

is
∂g

∂t
evaluated in t = π, the Delta method implies that

L
[√

N [g(p)− g(π)]
]
−→ N (0,φ′ [(diag(π)− ππ′)]φ)

where φ′ = (φ11, · · · , φ1K , · · · , φK1, · · · , φKK).

The asymptotic covariance matrix of g(p) is thus equal to

φ′diag(π)φ− (φ′π)2 =
K∑
i=1

K∑
j=1

πijφ
2
ij − (

K∑
i=1

K∑
j=1

πijφij)
2. (B.5)

To determine the sampling variance of a kappa coefficient, the function g(p) = κ(p)

is considered.
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B.3 Jackknife method

The Jackknife is a statistical method introduced by Quenouille (1956) and further

developed by Tukey (1958) for reducing the bias in an estimator of some popula-

tion parameter and for obtaining an estimate of the standard error of the improved

estimator.

Suppose one has classified N items into K mutually exclusive and exhaustive

categories, and that the number of items assigned to the respective categories are

n1, · · · , nK , with
∑K

i=1 ni = N . Consider some function F = F (n1, · · · , nK) that

is to serve as an estimator of a parameter θ, but suppose that F is such that

E(F ) = θ +O(
1

N
)

The Jackknife estimator, F̃ , will be such that

E(F̃ ) = θ +
1

N2
.

Let F−i be the value of the function when one unit is deleted from the ith category

and define the K so-called pseudovalues F̃i = NF − (N − 1)F−i. The Jackknife

estimator of θ, F̃ is the weighted average of the pseudovalues,

F̃ =
1

N

K∑
i=1

niF̃i. (B.6)

and the estimate variance of F̃ is

var(F̃ ) =
1

N(N − 1)

K∑
i=1

ni(F̃i − F̃ )2. (B.7)

If N is ’large’, inferences about θ may be based on the fact that F̃ is approximately

normally distributed about θ with a standard error of
√

(var(F̃ )).

The Jackknife is useful when no explicit formula is available for the variance of F

or when the variance formula is complicated.

B.4 Bootstrap and Monte Carlo approximation

B.4.1 Bootstrap

Assume a data set has N observations. The bootstrap first forms a finite popu-

lation by giving each observation a probability 1/N . From this finite population,
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there are NN possible samples of size N obtained with replacement. For each of

these samples, value of the statistic under study can be computed, given NN such

values. The empirical distribution of the statistic is the exact bootstrap distribu-

tion. The end points of the 95% bootstrap confidence interval are obtained by the

percentile method, i.e., by taking the 2.5th and the 97.5th percentiles from the

bootstrap distribution.

B.4.2 Monte Carlo approximation

Unfortunately, for most problems, calculating the exact bootstrap distribution is

computationally prohibitive. Therefore, a Monte Carlo approximation is used.

The Monte Carlo bootstrap draws B samples of size N with replacement from

the original data set. For each of these B samples, the value of the statistic is

calculated, giving B possibly different values. The end points of the 95% Monte

Carlo bootstrap confidence interval are obtained by taking the 2.5th and the 97.5th

percentiles from the empirical distribution of the B values of κ.





APPENDIX C

Generalized linear models

C.1 Introduction

In this Appendix, the generalized exponential family is outlined. The first two

moments of such random variable are determined. Generalized linear models and

logistic regressions are introduced for binary and ordinal variables (Nelder and

Wedderburn, 1972). It is a generalization of the linear model defined for normally

distributed populations to the generalized exponential family. Maximum likelihood

equations for such model and iterative Fisher scoring method are exposed.

C.2 Generalized exponential family

C.2.1 Definition

Let Y be a random variable and suppose that (y1, · · · , yN) represent the values of

N independent observations of the random variable Y .

Y is a generalized exponential random variable if the density of each yi (i =

1, · · · , N) with respect to a Lebegue or count measure λ can be written as

f(yi; θi, φ) = exp [(yiθi − b(θi))/a(φ) + c(yi, φ)] . (C.1)

The parameter θi is called the canonical parameter and the parameter φ the dis-

persion parameter. The functions a(φ) and b(θi) are supposed to be at least two

times continuously differentiable in the parameter space.
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C.2.2 Two first moments of Y

Consider the contribution of the ith observation to the likelihood logarithm

l(θi, φ; yi) = ln(f(yi; θi, φ)) = [(yiθi − b(θi))/a(φ) + c(yi, φ)]. (C.2)

We have

∂l/∂θi = [yi − b′(θi)] /a(φ) (C.3)

∂2l/∂θ2
i = −b′′(θi)/a(φ) (C.4)

where b′(θi) and b′′(θi) are, respectively, the two first derivatives of b evaluated at θi.

It is easily shown that if the conditions of permutation of the integration and

derivation operators are satisfied,

E

(
∂l

∂θi

)
= 0 (C.5)

and

−E
(
∂2l

∂θ2
i

)
= E

(
∂l

∂θi

)2

. (C.6)

It implies, with respect to (C.3) and (C.5), if µi represents E(Yi),

µi = b′(θi) (C.7)

and with respect to (C.4) and (C.6),

E
[
(yi − b′(θi))2

/a2(φ)
]

= var(Yi)/a
2(φ) = b′′(θi)/a(φ).

Finally,

var(Yi) = b′′(θi)a(φ). (C.8)

C.3 Systematic component and link function

Let xi1, · · · , xip be the values of p covariates relative to the ith observation. The

systematic component links the unknown parameter to the covariates using a linear

predictor

ηi =

p∑
j=1

βjxij, i = 1, · · · , N

or under matricial notation,

η = Xβ (C.9)

where η = (η1, · · · , ηN)′ is a vector of linear predictors, β = (β1, · · · , βp)′ is a

vector of unknown parameters and X is a N × p matrix of covariates.
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We also defined

ηi = g(µi) (C.10)

where g is a strictly monotone function at least two times continuously differen-

tiable with respect to µ1, · · · , µN . g is called the link function and the function g

for which g(µi) = θi is called the canonical link.

C.4 Estimation of the parameters

For N independent observations, the likelihood logarithm is

L(β) =
N∑
i=1

ln(f(yi; θi, φ)) =
N∑
i=1

li (C.11)

where li = l(θi, φ, yi), (i = 1, · · · , N).

The maximum likelihood equations are obtained by calculating

∂li
∂βj

=
∂li
∂θi

∂θi
∂µi

∂µi
∂ηi

∂ηi
∂βj

. (C.12)

We have
∂li
∂θi

= [yi − b′(θi)]/a(φ), µi = b′(θi) and var(Yi) = b′′(θi)a(φ). Therefore,

∂li
∂θi

= (yi − µi)/a(φ) and
∂µi
∂θi

= b′′(θi) =
var(Yi)

a(φ)
.

Moreover,

ηi =

p∑
j=1

βjxij thus
∂ηi
∂βj

= xij.

This implies
∂li
∂βj

=
yi − µi
a(φ)

a(φ)

var(Yi)

∂µi
∂ηi

xij. (C.13)

After some elementary algebraic manipulations, we obtain the maximum likelihood

equations
N∑
i=1

(yi − µi)
var(Yi)

xij
∂µi
∂ηi

= 0, j = 1, · · · , p (C.14)

or, under matricial notation,

X ′∆(y − µ) = 0 (C.15)

where ∆ is the diagonal matrix composed by the elements (
∂µi
∂ηi

1

var(Yi)
).
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Such equations do not have analytical solution. The iterative method used to fit

the generalized linear model is the Fisher iterative method described in next Sec-

tion.

Convergence rate of β̂ to β depends of the information matrix.

We have

−E
(

∂2li
∂βh∂βj

)
= E

[(
∂li
∂βh

)(
∂li
∂βj

)]
= E

[
(Yi − µi)xih
var(Yi)

∂µi
∂ηi

(Yi − µi)xij
var(Yi)

∂µi
∂ηi

]
=

xihxij
var(Yi)

(
∂µi
∂ηi

)2

. (C.16)

Thus,

−E
(
∂2L(β)

∂βh∂βj

)
=

N∑
i=1

xihxij
var(Yi)

(
∂µi
∂ηi

)2

. (C.17)

Under matricial notation,

H = X ′WX (C.18)

where

H = E

(
−∂

2L(β)

∂βh∂βj

)
is called information matrix ;

W is the diagonal matrix with wi =

(
∂µi
∂ηi

)2

/var(Yi) on the main diagonal.

C.5 Fisher scoring method

Let β(m) be the mth approximation of the estimation β̂ obtained by the Newton-

Raphson method where the matrix of the second derivatives is replaced by its

expectation −H .

We have

β(m+1) = β(m) + (H(m))−1q(m) (C.19)

where

H is the non-singular matrix defined in (C.18) ;

q is the vector with elements
∂L(β)

∂βj
;

H(m) and q(m) are H and q evaluated at β = β(m).
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Regarding Equations C.14 and C.17,

H(m)β(m) + q(m) =

p∑
j=1

(
N∑
i=1

xihxij
var(Yi)

(
∂µi
∂ηi

)2

β
(m)
j

)
+

N∑
i=1

(yi − µ(m)
i )

var(Yi)
xik

(
∂µi
∂ηi

)

where µi and

(
∂µi
∂ηi

)
are evaluated at β(m).

So,

H(m)β(m) + q(m) = X ′W (m)Z(m) (C.20)

where W (m) is W evaluated at β(m) and Z(m) is composed by the elements

z
(m)
i =

p∑
j=1

xijβ
(m)
j + (yi − µ(m)

i )

(
∂η

(m)
i

∂µ
(m)
i

)

= η
(m)
i + (yi − µ(m)

i )

(
∂η

(m)
i

∂µ
(m)
i

)
. (C.21)

Finally, Fisher’s equations (C.19) have following form

H(m)β(m+1) = H(m)β(m) + q(m)

X ′W (m)Xβ(m+1) = X ′W (m)Z(m). (C.22)

If the solution exists and is uniquely defined, the solution of the equations is

β(m+1) = (X ′W (m)X)−1X ′W (m)Z(m). (C.23)

The vector Z(m) represents, in that expression, a linearized form of the link func-

tion in µ evaluated at y.

g(yi) ∼ g(µi) + (yi − µi)g′(µi)

∼ ηi + (yi − µi)
∂ηi
∂µi

= zi. (C.24)

It is important to remark that Fisher scoring method does not always converge. In

practice, we consider ε > 0 and a maximal number of iterations M . The iterative

procedure stops if

∀j ∈ {1, · · · , p}

∥∥∥β(m+1)
j − β(m)

j

∥∥∥
‖β(m)‖

< ε

or if m = M .
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C.6 Logistic regression

C.6.1 Binary logistic regression

Many categorical variables only possess two categories. Each observation on each

item may be a success (value 1) or a failure (value 0). For binary random variables,

the Bernoulli distribution specifies the probabilities P (Y = 1) = π, P (Y = 0) =

1− π. It results that E(Y ) = π and var(Y ) = π(1− π). When Yi has a Bernoulli

distribution with parameter πi, the density distribution is

f(yi, πi) = exp

[
yi ln

(
πi

1− πi

)
+ ln(1− πi)

]
(C.25)

for yi = 0 and yi = 1. This distribution takes place in the generalized exponen-

tial distribution. The canonical parameter, θi, is ln(
πi

1− πi
). This term is called

logit(πi).

C.6.1.1 Linear regression

For a binary response and one covariate, the linear regression model is

E(Y ) = π(x) = β0 + β1x. (C.26)

When the observations y are independent, this model corresponds to the genera-

lized linear model with identity link.

The major default of the model is the following. While proportions π(x) have to be

between 0 and 1, the linear function permits values on all the real line, i.e., values

of π smaller than 0 or greater than 1. It is then proposed to take a non-linear

relation between π(x) and x. The appropriate model is introduced in the next

Section.

C.6.1.2 Logistic regression for a single covariate

For one covariate, the proposed model is the following:

π(x) =
exp(β0 + β1x)

1 + exp(β0 + β1x)
(C.27)

called the logistic regression function.

When x→∞, π(x) ↓ 0 if β1 < 0;
π(x) ↑ 1 if β1 > 0.
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The model is represented by a sigmoidal curve and possesses the properties of a

continuous repartition function. The link function for which the logistic regression

model is a generalized linear model is the logit link

ln(
π(x)

1− π(x)
) = β0 + β1x. (C.28)

Suppose they are g groups of ni observations (i = 1, · · · , g). Let yi be the ith

observation of the study binomial random variable.

ln

(
yi

ni − yi

)
(C.29)

is not defined when yi = 0 or yi = ni. Therefore, the empirical logit, which is a

biased estimator of the real logit, is sometimes used instead:

ln

(
yi + 1/2

ni − yi + 1/2

)
. (C.30)

The generalization of the logit function to several covariates is simple. Let x =

(x1, · · · , xp)′ be the values of p covariates. The logistic regression model is:

ln

(
π(x)

1− π(x)

)
= β0 + β1x1 + · · ·+ βpxp. (C.31)

C.6.1.3 Likelihood estimators

Let (y1, · · · , yN) be the values of N binary variables. We suppose that those

random variables are independent and possess a Bernoulli distribution.

Let xi = (xi0, · · · , xip) be the ith set of p covariates, i = 1, · · · , I and xi0 = 1.

When covariates are continuous, a different set of covariates may exist for each

subject and I = N .

The logistic regression model is:

π(xi) =
exp

(∑p
j=0 βjxij

)
1 + exp

(∑p
j=0 βjxij

) . (C.32)

Let ni be the number of observations for a fixed value of xi = (xi0, · · · , xip). Yi
is a random variable counting number of successes. The random variables Yi,

(i = 1 · · · , I) are independent binomial random variables where E(Yi) = niπ(xi)

and n1 + · · ·+ nI = N .

The probability density is

f(yi, π) = exp

[
yi ln

(
π(xi)

1− π(xi)

)
+ ni ln(1− π(xi))

]
. (C.33)
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Thus, we have

ηi = θi; µi = niπ(xi); b(θi) = −ni ln(1− π(xi));

var(Yi) = niπ(xi)(1− π(xi)) et a(φ) = 1.

∂θi
∂µi

=
1

niπ(xi)
+

1

ni(1− π(xi))
=

1

niπ(xi)(1− π(xi))
.

So, the maximum likelihood equations are

I∑
i=1

(yi − niπi)xij = 0, j = 0, · · · , p (C.34)

or, under matricial form, ifX is the I×(p+1) matrix composed by {xij}, Equation

C.34 has the form

X ′y = X ′µ (C.35)

Information matrix can then be written as

Hkj =
I∑
i=1

xikxijvar(Yi) (C.36)

or

H = X ′diag(var(Yi))X. (C.37)

For the logistic regression, the maximum likelihood estimators exist and are uni-

quely defined except under limit cases (see Wedderburn (1976), Albert and An-

derson (1984) and Lesaffre and Albert (1989) for more detail). The maximum

likelihood equations are non linear functions of the maximum likelihood estima-

tions β̂. Resolution of those equations can be done using the Newton-Raphson

iterative method.

C.6.2 Ordinal logistic regression

Different models exist for ordinal data. Only the most popular in the modelisation

of agreement data will be exposed here (see Hosmer and Lemeshow (2000) for the

other models).

Let Y be an ordinal random variable, which may take K+1 values, noted 0, · · · , K
and x = (x1, · · · , xp)′ a vector of p covariates.

Let

P [Y = k|x] = φk(x). (C.38)
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Suppose we may to compare the probabilities P [Y ≤ k|x] and P [Y > k|x].

We define

ck(x) = ln

[
P [Y ≤ k|x]

P [Y > k|x]

]
= ln

[
φ0(x) + · · ·+ φk(x)

φk+1(x) + · · ·+ φK(x)

]
= ln

[
γk(x)

1− γk(x)

]
= τk − x′β (C.39)

for k = 0, · · · , K − 1, where γk = φ0(x) + · · ·+ φk(x) and τk is the intercept.

That model is called the linear cumulative logistic model and possess the following

property

ln

(
γk(x1)

1− γk(x1)

)
− ln

(
γk(x2)

1− γk(x2)

)
= β′(x1 − x2) (C.40)

i.e., the difference between the two logistic is independent of the category k.

Mc Cullagh (1980) has defined the maximum likelihood equations and the iterative

Newton-Raphson procedure for the ordinal logistic regression.

C.7 Goodness of fit

C.7.1 The goodness of fit statistic

A quality criterion of the fitting of a logistic (ordinal) regression is given by

G2 = −2
N∑
i=1

[li(µ̂i)− li(yi)] (C.41)

where li are defined by Equation C.11) This statistic G2 is called the likelihood

ratio. It can be shown that G2 follows asymptotically a chi-square distribution on

N − p degrees of freedom where p is the number of estimated parameters.

Consider two hierarchical models

M0 : ln(
πi

1− πi
) = β0 and Mp : ln(

πi
1− πi

) = β0 +

p∑
j=1

xijβj (i = 1, · · · , N).

Let G2(M0) and G2(Mp) be the likelihood ratios relative to the models M0 and

Mp respectively.
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It can be shown that

G2(Mp|M0) = G2(M0)−G2(Mp) (C.42)

is asymptotically distributed as a chi-square statistic with p degrees of freedom.

G2(Mp|M0) appreciates the goodness of fit of the regression involving p covariates.

C.7.2 Standard error of the parameters

It is well known that the standard error of the estimator β̂j, j = 0, · · · , p is given

by

SE(β̂j) = (H−1)jj, (j = 1, · · · , p) (C.43)

where H−1 is the inverse of the information matrix and that

Z(β̂j) =
β̂j − βj
SE(βj)

(C.44)

is approximately normally distributed with mean 0 and standard deviation 1.

It is then possible to test hypotheses

H0 : βj = 0 vs H1 : βj 6= 0 (j = 0, · · · , p)

at the α significance level by comparing |Z(β̂j)| to QZ(1− α

2
).

Several authors test H0 with the Wald statistic defined by

χ2
βj

= Z2(βj) (C.45)

H0 is rejected at α significance level if χ2
βj
> Qχ2(1 − α; 1) otherwise H0 is not

rejected.

C.8 Generalized estimating equations

Aim of this Section is to extend the generalized linear models to the case of paired

data. Approach of Liang and Zeger (1986) will be developed. They defined gene-

ralized estimating equations (GEE) based on a mean population model.

Consider I blocs of paired data mutually independent.

Note

y = (y11, · · · , y1n1 , · · · , yI1, · · · , yInI
) = (y1, · · · ,yI)
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the vector of observations,

µ = (µ11, · · · , µ1n1 , · · · , µI1, · · · , µInI
) = (µ1, · · · ,µI)

the mean vector and

X i =

 xi11 · · · xi1p
...

...

xini1 · · · xinip


the matrix ni × p of covariates relative to the ith item (i = 1, · · · , I) where

xij = (xij1, · · · , xijp) is the vector of covariates corresponding to the jth observa-

tion of the ith item.

Suppose that the vector y is extracted from a generalized exponential population

and that the following linear model exists:

ηi = X iβ, i = 1, · · · , I

where ηi = (ηi1, · · · , ηini
)′ is a vector of linear predictors and β = (β1, · · · , βp)′ is

a vector of unknown parameters. Moreover,

ηim = g(µim) i = 1, · · · , I m = 1, · · · , ni

is the link function.

Liang and Zeger (1986) approach needs hypotheses on the correlation nature bet-

ween the paired data.

For example, a ni × ni correlation matrix proposed by Liang and Zeger (1986),

noted Ri(α), has the form

Ri(α) =


1 α · · · α

α
. . . . . .

...
...

. . . . . . α

α · · · α 1


where the unknown constant correlation between the paired data is noted α.

Let Ai = diag(b′′(θim)a(φ)) (i = 1, · · · , I) be the ni × ni matrix corresponding to

the variances under the generalized exponential model and V i = A
1/2
i Ri(α)A

1/2
i .

By analogy with Equation C.15, Liang and Zeger (1986) proposed the generalized

estimating equations
I∑
i=1

X ′i∆iAiV
−1
i (yi − µi) = 0. (C.46)
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These equations do not possess an analytical solution. If the solution exists and

is uniquely defined, the equations can be solved by the iterative Newton-Raphson

procedure. Moreover, Liang and Zeger (1986) showed that

Theorem C.8.1. Under mild regularity conditions and given that:

(i) α̂ is I
1
2 -consistent given β and a(Φ),

(ii) â(Φ) is I
1
2 -consistent given β,

(iii) ∂α̂(β,a(Φ))/∂a(Φ) ≤H(Y ,β) which is Op(1)

then I
1
2 (β̂ − β) is asymptotically multivariate geussian with zero mean and cova-

riance matrix V β given by

V β = lim
I→∞

I

[
I∑
i=1

D′iV
−1
i Di

]−1 [ I∑
i=1

D′iV
−1cov(Y i)V

−1
i Di

][
I∑
i=1

D′iV
−1
i Di

]−1

where D′i = X ′i∆iAi.



APPENDIX D

Weighted least-squares approach

Weighted least-squares approach is an alternative to the maximum likelihood ap-

proach. Let g = 1, · · · , G index the G conditions under which measurements on

the same basic response with K categories are observed. Let j = 1, · · · , r index

the set of categories corresponding to the Kr response profiles associated with the

simultaneous classification for the G responses of interest. Let i = 1, · · · , s index a

set of categories corresponding to distinct sub-populations defined in terms of in-

dependent variables. If samples of size ni (i = 1, · · · , s) are independently selected

from the respective sub-populations, the resulting data can be summarized in an

s× r contingency table (Table D.1) where nij denotes the frequency of profile j in

the sample from the ith sub-population.

Table D.1. Observed contingency table

Response profile categories
Sub-population 1 . . . r Total

1 n11 . . . n1r n1

...
...

...
...

...
s ns1 . . . nsr ns

The vector n′i = (ni1, · · · , nir) is assumed to follow a multinomial distribution with

parameters ni and π′i = (πi1, · · · , πir), where πij represents the probability that a

randomly selected element from the ith population is classified in the jth profile

(
∑r

i=1 πij = 1 for i = 1, · · · , s).
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Let pi = ni/ni be the r × 1 vector of observed proportions associated with the

sample from the ith sub-population and let p′ = (p′1, · · · ,p′s). A consistent esti-

mator for the covariance matrix of p is given by the sr× sr block diagonal matrix

V (p) with the matrices

V i(pi) =
1

ni

[
Dpi
− pip′i

]
(i = 1, · · · , s) (D.1)

on the main diagonal, where Dpi
is an r× r matrix with elements of the vector pi

on the main diagonal.

Let F1(p), · · · , Fu(p) be a set of u functions of p. Each of these functions is

assumed to have continuous partial derivatives up to second order with respect to

the elements of p within an open region containing π = E(p). If

F ′ = [F (p)]′ = [F1(p), · · · , Fu(p)] (D.2)

then a consistent estimator of the covariance matrix of F is the u×u matrix (Delta

method)

V F = H [V (p)]H ′ (D.3)

where

H =
∂F (x)

∂x
|x=p . (D.4)

It is assumed that the functions comprising F are chosen so that V F is asympto-

tically nonsingular. The function F is a consistent estimator of F (π). We assume

that the functions F1(π), · · · , Fu(π) are jointly independent of one another. The

variation among elements of F (π) can be investigated by fitting linear regression

models by the method of weighted least-squares. Assume that

EA [F (p)] = F (π) = Xβ (D.5)

where X is a prespecified u× p design matrix of known coefficients with full rank

p ≤ u, β is an unknown p×1 vector of parameters and EA denotes the ’asymptotic

expectation’.

An appropriate test statistic for the goodness of fit of the model D.5 is

Q = Q(X,F ) = (RF )′ [RV FR
′]
−1
RF (D.6)

where R is any full rank (u− p)× u matrix orthogonal to X. Q is approximately

distributed according to the chi-square distribution with (u−p) degrees of freedom

if the sample sizes ni are sufficiently ’large’ such that the elements of the vector F

have an approximately multivariate Normal distribution (Central Limit theorem).
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These test statistics, (D.6), are obtained by using weighted least-squares on the

basis of the fact that Q is identically equal to

Q = (F −Xb)′V −1
F (F −Xb) (D.7)

where b = (X ′V −1
F X)−1X ′V −1

F F is a BAN estimator for β. Both Q and b are re-

garded as having reasonable statistical properties in samples which are sufficiently

large for applying CLT to the functions F . As a result, a consistent estimator for

the covariance matrix of b is given by

V b =
(
X ′V −1

F X
)−1

. (D.8)

If the model D.5 does adequately characterize the vector F (π), tests of linear

hypotheses pertaining of the parameters β can be undertaken by standard multiple

regression procedures. In particular, for a general hypothesis of the form

H0 : Cβ = 0 versus H1 : Cβ 6= 0 (D.9)

where C is a known c× p matrix of full rank c ≤ p and 0 is a c× 1 vector of 0′s,

a suitable test statistic is

QC = (Cb)′
[
C(X ′V −1

F X)−1C ′
]
Cb (D.10)

which has approximately a chi-square distribution with c degrees of freedom in

large samples under H0 in D.9.

Predicted values for F (π) based on the model D.5 can be calculated from

F̂ = Xb = X(X ′V −1
F X)−1X ′V −1

F F . (D.11)

Thus, consistent estimators for the variances of the elements of F̂ can be obtained

from the diagonal elements of

V F̂ = X(X ′V −1
F X)−1X ′. (D.12)

A wide range of problems in categorical data analysis can be expressed in terms

of repeated applications of any sequences of the following matrix operations:

1. linear transformations of the type

F 1(p) = A1p = a1

2. logarithmic transformations of the type

F 2(p) = ln(p) = a2

3. exponential transformations of the type

F 3(p) = exp(p) = a3

Then the linearized Taylor-series based estimate of the covariance matrix of F l

for l = 1, 2, 3 is given by D.3, where the corresponding H l matrix operator is

H1 = A1, H2 = D−1
p and H3 = Da3 .
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