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Summary

Agreement between raters on a categorical scale is not only a subject of scientific
research but also a problem frequently encountered in practice. Whenever a new
scale is developed to assess individuals or items in a certain context, inter-rater
agreement is a prerequisite for the scale to be actually implemented in routine use.
Cohen’s kappa coefficient is a landmark in the developments of rater agreement
theory. This coefficient, which operated a radical change in previously proposed
indexes, opened a new field of research in the domain.

In the first part of this work, after a brief review of agreement on a quantitative
scale, the kappa-like family of agreement indexes is described in various instances:
two raters, several raters, an isolated rater and a group of raters and two groups of
raters. To quantify the agreement between two individual raters, Cohen’s kappa
coefficient (Cohen, 1960) and the intraclass kappa coefficient (Kraemer, 1979)
are widely used for binary and nominal scales, while the weighted kappa coef-
ficient (Cohen, 1968) is recommended for ordinal scales. An interpretation of the
quadratic (Schuster, 2004) and the linear (Vanbelle and Albert, 2009¢) weighting
schemes is given. Cohen’s kappa (Fleiss, 1971) and intraclass kappa (Landis and
Koch, 1977c) coefficients were extended to the case where agreement is searched
between several raters. Next, the kappa-like family of agreement coefficients is
extended to the case of an isolated rater and a group of raters (Vanbelle and Al-
bert, 2009a) and to the case of two groups of raters (Vanbelle and Albert, 2009b).
These agreement coefficients are derived on a population-based model and reduce
to the well-known Cohen’s kappa coefficient in the case of two single raters. The
proposed agreement indexes are also compared to existing methods, the consensus
method and Schouten’s agreement index (Schouten, 1982). The superiority of the
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iv Summary

new approach over the latter is shown.

In the second part of the work, methods for hypothesis testing and data modeling
are discussed. Firstly, the method proposed by Fleiss (1981) for comparing several
independent agreement indexes is presented. Then, a bootstrap method initially
developed by McKenzie et al. (1996) to compare two dependent agreement in-
dexes, is extended to several dependent agreement indexes (Vanbelle and Albert,
2008). All these methods equally apply to the kappa coefficients introduced in the
first part of the work. Next, regression methods for testing the effect of continu-
ous and categorical covariates on the agreement between two or several raters are
reviewed. This includes the weighted least-squares method allowing only for cate-
gorical covariates (Barnhart and Williamson, 2002) and a regression method based
on two sets of generalized estimating equations. The latter method was developed
for the intraclass kappa coefficient (Klar et al., 2000), Cohen’s kappa coefficient
(Williamson et al., 2000) and the weighted kappa coefficient (Gonin et al., 2000).
Finally, a heuristic method, restricted to the case of independent observations, is
presented (Lipsitz et al., 2001, 2003) which turns out to be equivalent to the gene-
ralized estimating equations approach. These regression methods are compared to
the bootstrap method extended by Vanbelle and Albert (2008) but they were not
generalized to agreement between a single rater and a group of raters nor between
two groups of raters.



Résumé

Sujet d’intenses recherches scientifiques, ’accord entre observateurs sur une échelle
catégorisée est aussi un probleme fréquemment rencontré en pratique. Lorsqu’une
nouvelle échelle de mesure est développée pour évaluer des sujets ou des objets,
I’étude de I'accord inter-observateurs est un prérequis indispensable pour son uti-
lisation en routine. Le coefficient kappa de Cohen constitue un tournant dans les
développements de la théorie sur 'accord entre observateurs. Ce coefficient, ra-
dicalement différent de ceux proposés auparavant, a ouvert de nouvelles voies de
recherche dans le domaine.

Dans la premiere partie de ce travail, apres une breve revue des mesures d’accord
sur une échelle quantitative, la famille des coefficients kappa est décrite dans
différentes situations: deux observateurs, plusieurs observateurs, un observateur
isolé et un groupe d’observateurs, et enfin deux groupes d’observateurs. Pour
quantifier 'accord entre deux observateurs, le coefficient kappa de Cohen (Cohen,
1960) et le coefficient kappa intraclasse (Kraemer, 1979) sont largement utilisés
pour les échelles binaires et nominales. Par contre, le coefficient kappa pondéré
(Cohen, 1968) est recommandé pour les échelles ordinales. Schuster (2004) a donné
une interprétation des poids quadratiques tandis que Vanbelle and Albert (2009c¢)
se sont interessés aux poids linéaires. Les coefficients d’accord correspondant au
coefficient kappa de Cohen (Fleiss, 1971) et au coefficient kappa intraclasse (Lan-
dis and Koch, 1977c) sont aussi donnés dans le cas de plusieurs observateurs. La
famille des coefficients kappa est ensuite étendue au cas d’un observateur isolé
et d'un groupe d’observateurs (Vanbelle and Albert, 2009a) et au cas de deux
groupes d’observateurs (Vanbelle and Albert, 2009b). Les coefficients d’accord
sont élaborés a partir d'un modele de population et se réduisent au coefficient
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kappa de Cohen dans le cas de deux observateurs isolés. Les coefficients d’accord
proposés sont aussi comparés aux méthodes existantes, la méthode du consensus et
le coefficient d’accord de Schouten (Schouten, 1982). La supériorité de la nouvelle
approche sur ces dernieres est démontrée.

Des méthodes qui permettent de tester des hypotheses et modéliser des coefficients
d’accord sont abordées dans la seconde partie du travail. Une méthode permet-
tant la comparaison de plusieurs coefficients d’accord indépendants (Fleiss, 1981)
est d’abord présentée. Puis, une méthode basée sur le bootstrap, initialement
développée par McKenzie et al. (1996) pour comparer deux coefficients d’accord
dépendants, est étendue au cas de plusieurs coefficients dépendants par Vanbelle
and Albert (2008). Pour finir, des méthodes de régression permettant de tester
I'effet de covariables continues et catégorisées sur 1’accord entre deux observateurs
sont exposées. Ceci comprend la méthode des moindres carrés pondérés (Barnhart
and Williamson, 2002), admettant seulement des covariables catégorisées, et une
méthode de régression basée sur deux équations d’estimation généralisées. Cette
derniere méthode a été développée dans le cas du coefficient kappa intraclasse (Klar
et al., 2000), du coefficient kappa de Cohen (Williamson et al., 2000) et du coeffi-
cient kappa pondéré (Gonin et al., 2000). Enfin, une méthode heuristique, limitée
au cas d’observations indépendantes, est présentée (Lipsitz et al., 2001, 2003).
Elle est équivalente a 'approche par les équations d’estimation généralisées. Ces
méthodes de régression sont comparées a ’approche par le bootstrap (Vanbelle and
Albert, 2008) mais elles n’ont pas encore été généralisées au cas d’un observateur
isolé et d'un groupe d’observateurs ni au cas de deux groupes d’observateurs.



Samenvatting

Het bepalen van overeenstemming tussen beoordelaars voor categorische gegevens
is niet alleen een kwestie van wetenschappelijk onderzoek, maar ook een probleem
dat men veelvuldig in de praktijk tegenkomt. Telkens wanneer een nieuwe schaal
wordt ontwikkeld om individuele personen of zaken te evalueren in een bepaalde
context, is interbeoordelaarsovereenstemming een noodzakelijke voorwaarde voor-
aleer de schaal in de praktijk kan worden toegepast. Cohen’s kappa coéfficiént is
een mijlpaal in de ontwikkeling van de theorie van interbeoordelaarsovereenstem-
ming. Deze coéfficiént, die een radicale verandering met de voorgaande indices
inhield, opende een nieuw onderzoeksspoor in het domein.

In het eerste deel van dit werk wordt, na een kort overzicht van overeenstemming
voor kwantitatieve gegevens, de kappa-achtige familie van overeenstemmingsindi-
ces beschreven in verschillende gevallen: twee beoordelaars, verschillende beoorde-
laars, één geisoleerde beoordelaar en een groep van beoordelaars, en twee groepen
van beoordelaars. Om de overeenstemming tussen twee individuele beoordelaars
te kwantificeren worden Cohen’s kappa coéfficiént (Cohen, 1960) en de intraklasse
kappa coéfficiént (Kraemer, 1979) veelvuldig gebruikt voor binaire en nominale
gegevens, terwijl de gewogen Kappa coéfficiént (Cohen, 1968) aangewezen is voor
ordinale gegevens. Een interpretatie van de kwadratische (Schuster, 2004) en li-
neaire (Vanbelle and Albert, 2009¢) weegschema’s wordt gegeven. Overeenstem-
mingsindices die overeenkomen met Cohen’s Kappa (Fleiss, 1971) en intraklasse-
kappa (Landis and Koch, 1977c) coéfficiénten kunnen worden gebruikt om de
overeenstemming tussen verschillende beoordelaars te beschrijven. Daarna wordt
de familie van kappa-achtige overeenstemmingscoéfficiénten uitgebreid tot het ge-
val van één geisoleerde beoordelaar en een groep van beoordelaars (Vanbelle and

vii



viii Samenvatting

Albert, 2009a) en tot het geval van twee groepen van beoordelaars (Vanbelle
and Albert, 2009b). Deze overeenstemmingscoéfficiénten zijn afgeleid van een
populatie-gebaseerd model en kunnen worden herleid tot de welbekende Cohen’s
coéfficiént in het geval van twee individuele beoordelaars. De voorgestelde over-
eenstemmingsindices worden ook vergeleken met bestaande methodes, de consen-
susmethode en Schoutens overeenstemmingsindex (Schouten, 1982). De superior-
iteit van de nieuwe benadering over de laatstgenoemde wordt aangetoond.

In het tweede deel van het werk worden hypothesetesten en gegevensmodeller-
ing besproken. Vooreerst wordt de methode voorgesteld door Fleiss (1981) om
verschillende onafhankelijke overeenstemmingsindices te vergelijken, voorgesteld.
Daarna wordt een bootstrapmethode, oorspronkelijk ontwikkeld door McKenzie
et al. (1996) om twee onafhankelijke overeenstemmingsindices te vergelijken, uitge-
breid tot verschillende afthankelijke overeenstemmingsindices (Vanbelle and Albert,
2008). Al deze methoden kunnen ook worden toegepast op de overeenstemmings-
indices die in het eerste deel van het werk zijn beschreven. Ten slotte wordt een
overzicht gegeven van regressiemethodes om het effect van continue en categorische
covariabelen op de overeenstemming tussen twee of meer beoordelaars te testen.
Dit omvat de gewogen kleinste kwadraten methode, die alleen werkt met cate-
gorische covariabelen (Barnhart and Williamson, 2002) en een regressiemethode
gebaseerd op twee sets van gegeneraliseerde schattingsvergelijkingen. De laatste
methode was ontwikkeld voor de intraklasse kappa coéfficiént (Klar et al., 2000),
Cohen’s kappa coéfficiént (Williamson et al., 2000) en de gewogen kappa coéfficiént
(Gonin et al., 2000). Ten slotte wordt een heuristische methode voorgesteld die
alleen van toepassing is op het geval van onafhankelijk waarnemingen (Lipsitz
et al., 2001, 2003). Ze blijkt equivalent te zijn met de benadering van de gegenera-
liseerde schattingsvergelijkingen. Deze regressiemethoden worden vergeleken met
de bootstrapmethode uitgebreid door Vanbelle and Albert (2008) maar werden
niet veralgemeend tot de overeenstemming tussen een enkele beoordelaar en een
groep van beoordelaars, en ook niet tussen twee groepen van beoordelaars.
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General introduction

Reliable and accurate measurements serve as the basis for evaluation in social, me-
dical, behavioral and biological sciences (Barnhart et al., 2007). As new concepts,
theories and technologies continue to develop, new scales, methods, tests, assays
and instruments become available for the evaluation. Since errors are inherent to
every measurement procedure, one must ensure that the measurement is accurate
before it is used in practice. In simple intuitive terms, a reliable and accurate mea-
surement may simply mean that the new measurement is the same as the truth or
agree with the truth. However, requiring the new measurement to be identical to
the truth is often impracticable because we are willing to accept a measurement
up to some tolerable error or because the truth is simply not available to us. To
deal with these issues, a number of theoretical and methodological approaches has
been proposed over the years in different disciplines. A vast literature is covering
aspects related to the concordance between quantitative scales, in particular in
methods comparisons. A classical example is laboratory medicine, where any new
analytical technique or instrument needs to be compared to the routine one before
it is actually implemented in practice. We shall briefly review this topic although
it is not the major focus of the present work.

This work rather focuses on agreement between raters on a categorical scale. The
most elementary situation concerns agreement assessment between two raters on
a binary scale. For example, we may be interested in the agreement between two
radiologists (say, a junior one and a senior one) in visualizing patient x-rays and
classifying them as normal or abnormal, or in the agreement between two scientific
experts judging separately a series of grant applications as accepted or rejected.
Clearly in both examples, we would hope that raters agree to a large extent. Un-
fortunately, agreement can occur by chance alone. Thus, in the examples above,
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if the two radiologists or the two experts toss a coin for each item to be classified
rather than doing their job, there will be a non negligible number of cases where
the coin toss will give the same outcome.

Cohen (1960) was the first to recognize this fact which led him to introduce the
celebrated kappa coefficient, also known as Cohen’s kappa coefficient. The latter
has been widely used ever since. The extension of Cohen’s kappa coefficient bet-
ween two raters for categorical scales was straightforward and followed the same
principle as for the dichotomous scale. Categorical scales are widely used in psy-
chometry, as for instance the well-known Likert scale. The agreement between
several raters appeared as a natural extension of the two raters problem but raised
a number of new issues that had to be tackled. Approaches similar to those avai-
lable for quantitative scales were developed, leading to the definition of so-called
intraclass coefficients (Fleiss, 1971; Davies and Fleiss, 1982). Landis and Koch
(1975a,b) made a comprehensive review of the various agreement indexes between
two or more raters used for categorical scales.

There are situations where agreement is searched between an isolated rater and a
group of raters, or between two groups of raters. For instance, in medical educa-
tion and even more generally, it is common to assess the knowledge level of the
students by challenging them against a group of experts. The Script Concordance
Test (SCT) proposed by Charlin et al. (2002) is one way to do this assessment.
Although our personal interest for agreement coefficients arose with our master
thesis (Vanbelle, 2002), the SCT application really motivated our research work
because existing solutions were not satisfactory.

The present work is divided in seven chapters. Chapter 1 gives a brief overview
of agreement measures for quantitative scales. After describing two graphical
methods (e.g., Bland and Altman plot), we present the concordance correlation
coefficient (CCC) introduced by Lin (1989) which quantifies the agreement bet-
ween two raters for quantitative data. Then we move to the intraclass correlation
coefficients (ICC), allowing to assess quantification of agreement between several
raters. The description of the various agreement coefficients is limited to the most
simplest cases and particular emphasis is placed on aspects that were used later
on for qualitative scales.

In Chapter 2, kappa-like agreement indexes are reviewed to quantify the agreement
between two raters on a categorical scale. This includes Cohen’s kappa coefficient
(Cohen, 1960), the intraclass kappa coefficient (Kraemer, 1979) and the weighted
kappa coefficient (Cohen, 1968). Interpretation of the weights is provided for the
two most used weighting schemes: the linear (Vanbelle and Albert, 2009¢) and the
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quadratic (Schuster, 2004) weighting schemes. The asymptotic sampling variance
of the agreement indexes is also considered.

Chapter 3 generalizes the agreement indexes introduced in Chapter 2 to the case
of several raters. These agreement indexes are mostly based on linear ANOVA
models and mimic the intraclass correlation coefficients introduced for quantita-
tive scales (Landis and Koch, 1977c¢) or are based on pairwise agreement (Davies
and Fleiss, 1982). All agreement indexes are given for both binary and multino-
mial scales.

Novel extensions of agreement coefficients described in Chapter 2 are dealt with
in chapters 4 and 5. They constitute the salient core of this work. The agreement
problem between an isolated rater and a group of raters is discussed in depth in
Chapter 4, whereas the agreement between two groups of raters is the subject
topic of Chapter 5. New agreement indexes are proposed (Vanbelle and Albert,
2009a,b) and compared to the consensus method, known to be unsatisfactory, and
to the more general method developed by Schouten (1982).

Hypothesis testing methods on kappa coefficients are described in Chapter 6. A
distinction is made between tests on a single kappa coefficient and tests on several
kappa coefficients. When comparing several kappa coefficients, a further distinc-
tion is made between independent (unpaired case) coefficients (Fleiss, 1981) and
dependent (paired case) coefficients (McKenzie et al., 1996; Vanbelle and Albert,
2008).

Finally, Chapter 7 is devoted to recent advances on kappa coefficients in the con-
text of generalized linear mixed models (GLMM). Theses approaches permit the
modeling of agreement indexes according to covariates. This includes the weighted
least squares (Barnhart and Williamson, 2002) approach and the generalized esti-
mating equations (Klar et al., 2000). Their performance are compared to ours on
a couple of examples (Vanbelle and Albert, 2008).

In summary, the present work intends to provide a comprehensive overview of the
problem of rater agreement, which hopefully could serve as a reference text for
any scientist interested in the domain. We have incorporated our personal original
research findings in a more general framework in order to present a global and
coherent view of past developments and recent advances in the problem of rater
agreement.






CHAPTER 1

Agreement on a quantitative scale

1.1 Introduction

From a statistical standpoint, the problem of agreement on a quantitative scale
has been a subject of interest before that of agreement on a qualitative scale
and some of the methods developed for quantitative measurements were adapted
to the case of categorical observations. When measuring a quantity with a new
instrument, two questions typically arise: (1) is the new instrument calibrated
against the established method, and (2) are the measurements made with the new
instrument reproducible? The established method is often regarded as a ’gold
standard’ or reference method measuring the ”true” value of the quantity to be
determined. However, when comparing two methods, it is frequent that none of
them can be viewed as giving a true value. Then, an assessment of the degree
of agreement between the two methods is required to evaluate the comparability
of the measurements. In practice, the measurements obtained with the two me-
thods can be plotted on a 2-dimensional graph, perfect agreement occurring when
all measurements fall on the 45° line. Another approach (Bland and Altman,
1986) is to display the difference of the two measurements against their mean in
which case perfect agreement would correspond to all points laying on the ab-
scissa. These methods are basically visual. Lin (1989) therefore introduced the
concordance correlation coefficient (CCC) measuring the correlation between du-
plicate measurements falling around the 45° line through the origin. The CCC was
generalized to more than two measurement methods in various situations. The in-
terested reader can refer to Barnhart et al. (2007) for a complete overview. As an

5
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alternative approach, a methodology based on the analysis of variance (ANOVA)
was developed by Fisher (1958), leading to the intraclass correlation coefficient
(ICC) which is a reliability criterion giving the proportion of variance attributable
to differences between methods. The ICC was developed to deal with several mea-
surement methods and has emerged as a universal and widely accepted reliability
index (Shoukri, 2004). Several versions of the ICC were derived depending on the
study scheme (Bartko, 1966; Shrout and Fleiss, 1979). In this chapter, we shall
restrict our overview of agreement indexes on a quantitative scale to those which
have been extended to qualitative scales.

1.2 Agreement between two raters

1.2.1 Visual assessment of agreement

Let Y denote a quantity associated with each element (item) of an infinite popula-
tion Z. For simplicity, let Y > 0. Further, let Y; and Y5 denote the corresponding
quantities as measured by two distinct raters. In theory, perfect agreement between
the raters occurs when Y; = Y5. Thus, given a sample of items, the agreement bet-
ween the two raters is best seen by plotting the paired observations with respect to
the 45° line (Y2 = Y7). If the two raters are in perfect agreement, all observations
will fall on the 45° line. By contrast, disagreement between the two raters can take
different forms: (i) a constant bias (Yo = a + Y1, a € R), (ii) a proportional bias
(Yo = bY1, b € R), or (iii) both types of biases (Y2 = a + bY1, a,b € R). This led
Bland and Altman (1986) to suggest plotting the difference of the measurements
(Y2 — Y)) against their mean (Y7 4 Y3)/2, the so-called "Bland and Altman plot”.
In case of constant bias, Y2 — Y] = a (a # 0), the observations will tend to lie
around a horizontal line; in case of proportional bias, Y5 —Y; = (b—1)Y; (b # 0),
the points will be scattered around an increasing (b > 1) or decreasing (b < 1)
line passing through the origin; when both biases are present, the increasing or
decreasing line will not pass through the origin. Bland and Altman plot can also
reveal whether agreement is item related. For instance, two raters may agree
closely in estimating the size of small items, but disagree about larger items. The
two methods described are essentially graphical, although by regression analysis
it is possible to estimate the constant and proportional bias factors.

Example. Shrout and Fleiss (1979) considered the following hypothetical exam-
ple, where 4 raters measured 6 items on a 10-point scale (see Table 1.1). Consider
only the measurements of raters 1 and 4.

As seen on the 45° line plot and on Bland and Altman plot (see Figure 1.1), perfect
agreement occurs only for one item (item 3). Moreover, it appears that rater 1
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Table 1.1. Example of Shrout and Fleiss (1979)

Rater
Item 1 2 3 4 Y1-Yy (Y1+Yy)/2
1 9 2 5 8 1 8.5
2 6 1 3 2 4 4
3 8 4 6 8 0 8
4 7 1 2 6 1 6.5
5 10 5 6 9 1 9.5
6 6 2 4 7 -1 6.5

gives in general higher values than rater 4. The mean difference (£5D) is 1.0+£1.67
(95% CI: [-2.28;4.28]).
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Rater 1 Mean between the 2 raters

Figure 1.1. 45° line plot (left) and Bland and Altman plot (right) for the measure-
ments of raters 1 and 4 of 6 items on a 10-point scale

1.2.2 Concordance correlation coefficient

There is the need to derive an index reflecting the agreement between the two
raters. The recourse to Pearson’s correlation coefficient, paired t-test, least-squares
analysis of slope and intercept or to the coefficient of variation is always failing in
some cases, as shown by Lin (1989). This led Lin (1989) to develop the concordance
correlation coefficient (CCC), a reproducibility index measuring the correlation
between two readings that fall on the 45° line through the origin.

Definition. Suppose that the joint distribution of ¥; and Y5 is bivariate Normal
with mean (u1, 12) and variance-covariance matrix

2
< 01 012 >
9 .
021 0'2
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The degree of concordance between Y; and Y5 can be characterized by the expected
value of the squared difference

E(Yi =Y2)" = (m — p)? + (07 + 05 — 2012)
= (m —p2)* + (01 — 02)* +2(1 = p)oroy (1.1)

where p = corr(Y1,Ys) = 012/0102. Lin (1989) proposed to apply a transforma-
tion to scale the agreement index between -1 and 1, leading to the concordance
correlation coefficient

EY,-Y)? 2p010
(11— p2)? +0f + 03 (1 — p2)* + 0% + 03

cCcC=1- = pC, (1.2)

where Cy, = [(v + 1/v +u?)/2)]"! with v = 01/0, representing the scale shift and
u = (p1 — p2)/+/0107 the location shift relative to the scale. Lin (1989) noted that
Cy (0 < Cp <1) is a bias correction factor measuring how far the best-fit deviates
from the 45° line (measure of accuracy). No deviation occurs when Cj, = 1. The
Pearson’s correlation coefficient p measures how far observations deviate from the
best-fit line (measure of precision).

The concordance correlation coefficient possesses the following properties:

—1<—|p|<CCC<|p| <1
CCC =0 if and only if p = 0;
CCC = pif and only if 01 = 09 and p; = uo;

= W =

CCC = =1 if and only if each pair of measurements is in perfect agreement
or perfect reverse agreement.

Estimation of the parameters. For asample of N independent pairs (y;.1, ¥i2),
if 7, denotes the estimated mean and s? the sample variance of the measurements
made by rater r (r = 1,2),

1 ZN 1 ZN
y~,7' - N p yZ,T‘ and sr - N — (yz,r y,,r) ’ (13)
and if p is the sample Pearson’s correlation coefficient

R ZZI\L (?Ji,l -V 1)(%‘,2 -V 2)/N
p fry 1 57182 : 3 (1'4>

the CCC is estimated by

2pA8152
(T1—T2)?+si+s35

CCC = (1.5)
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Sampling variability. When sampling from a bivariate normal distribution,
Lin (1989) showed that CCC has an asymptotic Normal distribution with mean
CCC' and variance

var(CCC) = ﬁ[u — p?)CCC*(1 = CCC?)/p* +4CCC*(1 = CCOYW?/p
— 200C**/p?). (1.6)

Example. Consider again the measurements of raters 1 and 4 in the hypothetical
example of Shrout and Fleiss (1979) (see Table 1.2).

Table 1.2. Measurements
of raters 1 and 4 in the ex-
ample of Shrout and Fleiss

(1979)
Rater
Item 1 4
1 9 8
2 6 2
3 8 8
4 7 6
5 10 9
6 6 7
Yr 7.7 6.7
Sy 1.63 2.50

We have p = 0.75 and thus,

— 2x0.75 x 1.63 x 2.50
coC = = 0.62
(7.7 —6.7)% + 1.632 + 2.50?

with C, = 0.82, 7 = 0.65 and @ = 0.49. We have

L [(1-075%)062°(1 - 0.75%) | 4% 0.62%(1 —0.62)0.49"
6—2 0.75? 0.75

var(@) =

2 x 0.62%0.494

The lower bound of the one-sided 95% confidence interval for the CCC is equal to
0.62 — 1.641/(0.067) = 0.20. Thus, with 95% confidence CCC > 0.20.
1.3 Agreement between several raters

The intraclass correlation coefficient (ICC) introduced by Fisher (1958) is univer-
sally used as a reliability index. There are several versions of the ICC depending of
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the study design (Bartko, 1966), all based on the analysis of variance and the esti-
mation of several variance components. The use of ICC should be restricted by the
underlying model which most adequately describes the experiment situation and
the conceptual interest of the study. The guidelines for choosing an appropriate
form of the ICC are given in Shrout and Fleiss (1979). They suggested determining
three important issues to choose an appropriate model: (1) Is one-way or two-way
analysis of variance appropriate for the analysis of the reliability study? (2) Are
differences between the rater’s mean readings relevant to the reliability study? (3)
Is the unit of the analysis an individual rating or the mean of several ratings?

Typically, in inter-rater reliability studies, each of a random sample of N items
from a population of items 7 is rated independently by R raters belonging to a
population of raters R. Three different study designs are considered:

Model 1. Each item is rated by a different set of R raters, randomly selected
from a larger population of raters. This leads to a one-way random effects ANOVA
model.

Model 2. Each item is rated by the same random sample of R raters selected
from a larger population. This leads to a two-way random effects ANOVA model
with interaction.

Model 3. Each item is rated by each of the same R raters, who are the only raters
of interest. This leads to a two-way mixed effects ANOVA model with interaction.

Each kind of study thus requires a separately specified mathematical model to des-
cribe its results. The model specifies the decomposition of a measurement made
by rater v (r = 1,--- ,R) on item ¢ (i = 1,---,N) in terms of various effects.
Among the possible effects are the overall effect and the effects for rater r, item
i, the interaction between raters and items and for a random error component.
Depending on the study design, different effects are estimable, different assump-
tions must be made about the estimable effects and thus different structures of the
ANOVA model are obtained. McGraw and Wong (1996) also distinguished bet-
ween intraclass correlation coefficients measuring consistency (denoted by ICC¢)
and absolute agreement (denoted by 1C'C4). The first type of coefficients excludes
the variance term relative to the raters from the denominator while the second type
does not. To illustrate the distinction between the two kinds of ICC, consider two
measurements on a series of items with the second measurement always 2 units
higher than the first one. These paired measurements are in perfect agreement
using the consistency definition (/CC¢) but not using the absolute agreement
definition (/C'C4). The absolute agreement is sensitive to scale shifts while the
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consistency agreement is not.

1.3.1 One-way random effects ANOVA model

Suppose that each of a random sample of items (1,---, N) is rated by a different
set of raters (1,---,R;, 7 = 1,--- ,N). The case of a constant number of ratings
(Ri=R,i=1,---,N) for each item is first considered. When each item is rated
by a different set of R raters, randomly selected from a larger population of raters
(Model 1), the effect due to raters, to the interaction between raters and items
and to random error can not be estimated separately. Therefore, only the absolute

agreement is measurable. If Y;, denotes the measurement of rater r (r =1,--- , R)
onitemi (i =1,---,N), the following linear model is assumed,
Y;,T:M_FBZ'—FVVZ',T‘? (izla"'aN;T:L"'aR) (17)

where p is the overall population mean of the measurements, B; is the deviation
of item 7 from p and W;, is a residual component equal to the sum of the non
separable effects of the raters, the interaction between the raters and the items
and the error term.

It is assumed that the component B; ~ N(0,0%) (i = 1,---, N), the component
Wi, ~ N(0,0%) (i=1,---,N;r=1,---, R) and that the B; are independent of
Wi . The expected mean squares related to the one-way random effects ANOVA
model are given in Table 1.3.

Table 1.3. One-way random effects ANOVA model (Model 1)

Variability Sum of squares Degrees of freedom Mean squares E(MS)
Between items BSS N -1 BMS Ra% + O'%V
Within items WSS N(R-1) WMS o3
Total TSS NR-—-1

One can see in Table 1.3 that WS is an unbiased estimate of o3, and (BMS —
WMS)/R is an unbiased estimate of 0%. The intraclass correlation coefficient
(ICC4y) is defined by

covi,Yis)  op

ICCy = = _
Al Vvar(Yivar(Yis) oty + 0%

(1.8)

Estimation of the parameters. The intraclass correlation coefficient 1C'C4q

is estimated by
BMS —-WMS

I6Ch = s (R—1)WMS’

(1.9)
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This estimate is consistent but biased (Olkin and Pratt, 1958) since the expectation
of a ratio is not equal to the ratio of the expectations. Let y;, denote the observed
value of the random variable Y;, (i = 1,--- ,Ny = 1,--- | R), 7, the mean value
over the raters and y the overall mean, i.e.,

We have
BSS = R» (W, -7.)"
WSS = 3 (ir—7:,)%

7SS = 33 (i —7.)* (1.10)

Confidence interval. Note that

BMS — WMS Fy—1

ICC = =
COm= Brs (R—1)WMS Fy+(R-1)

(1.11)

where Fy = BMS/WMS is the usual variance ratio distributed as a Snedecor
F with N — 1 and N(R — 1) degrees of freedom since B; and W, are normally
distributed. If Qr(1 —«;v4, 12) denotes the (1 — a)-percentile of the F distribution
with v; and vy degrees of freedom, then

Frp—1 Fyp—1

IOy < ———— 1.12
Fo+(R—1) MR+ (R-1) (1.12)

is a (1—a)100% confidence interval for the intraclass correlation coefficient, IC'C 4y,
with

F. = F/Qe(1- 5N~ LN(R-1)

and Fy = FOQF(l—%;N(R—l),N—l).

Note that in practice, only the lower bound of the confidence interval is usually of
interest.

Unequal number of ratings per item. Suppose now that each of a random
sample of items (1,---, N) is rated by a different set of raters (1,--- , R;), where
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R; is not the same for all items. In that case, we have

N R;
BSS = Y > (. -9.)
i=1 r=1
N R
WSS = 3 (yir—7.)%
i=1 r=1
N R
TSS = Y > (i —7.)" (1.13)
i=1 r=1
with
E(BSS) = Ryo}, + oy (1.14)
where
(NR)?? — 3oL, R?
= = ! 1.15
Ho (N —1)NR (1.15)
The estimation of the intraclass correlation coefficient IC'CYy; is then
— BMS —-WMS
1CC 41 = (1.16)

BMS + (R — 1)WMS

The reader interested by the proofs in case of unequal number of ratings per item
may refer to Vanbelle (2002).

Example. Consider again the 4 raters measuring 6 items on the 10-point scale
(see Table 1.1) and suppose that the measurements on each item are made by a
different set of 4 raters. This leads to the following ANOVA table (Table 1.4). The
estimated intraclass correlation coefficient is I/C’E’ a1 = 0.17. We have F, = 1.79
leading to F, = 1.79/2.77 = 0.65. The one-sided 95% lower bound is equal to
-0.10. Thus, there is no evidence for agreement between the 4 raters at the 95%
confidence level.

Table 1.4. One-way random effects ANOVA table relative to the example
of Shrout and Fleiss (1979)

Variability Sum of squares Degrees of freedom Mean squares
Between items 56.21 ) 11.24
Within items 112.75 18 6.26

Total 168.96 23
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1.3.2 Two-way ANOVA models

Random raters (two-way random effects ANOVA model with interac-
tion). Suppose now that each item is rated by the same random sample of R
raters selected from a larger population (Model 2). The component W;, can be
further specified. A two-way model can be used to represent the data because
there is a systematic source of variation between items and between raters. The
component representing rater r effect may thus be estimated.

}/Z,T:M+B1+AT+(AB)1,T+E1,T7 (Z:L ,N,T’Zl, 7R> (117)

The terms Y; ,, i and B; were defined in Section 1.3.1. The component A, denotes
the deviation of rater » measurements from the overall mean, (AB);, is the degree
to which the rater r departs from his/her usual rating tendencies when confronted
to item ¢ (interaction effect) and E;, is the random error in ratings of rater r
on item . It is assumed that A, ~ N(0,0%), B; ~ N(0,0%), E;, ~ N(0,0%)
are independently distributed. Finally, all components (AB);, (i =1,--- ,N;r =
1,---, R) are assumed to be mutually independent and (AB);, ~ N(0,0%). The
ANOVA table corresponding to Model 2 is given in Table 1.5.

Table 1.5. Two-way random effects ANOVA model with interaction (Model 2) (MS

for mean squares)

Variability Sum of squares Degrees of freedom ~ MS E(MS)
Between items BSS N -1 BMS Ro% + 02+ 0%,
Within items WSS N(R-1) WMS 0% 407+ 0%
Between raters JSS (R-1) JMS No? +0?+0%
Residuals ESS (N-1)(R-1) EMS o? + 0%
Total 7SS NR -1

Under Model 2, the intraclass correlation coefficient measuring absolute agreement
(ICC42) and the consistency (/CCps) are defined by

2 2

] 0B
and ICCge =
0% + 0% + 0t + 0% ©

[CCyy = (1.18)

2 2 2
op+or+og

Fixed raters (two-way mixed effects ANOVA model). Model 3 is similar
to Model 2 except that raters are considered as fixed.

Y;,r:M+Bl+ar+(aB)z,r+Ez,r7 (Z:L 7N,7":1, 7R> (119)

The same assumptions are made as in Model 2 for the components Y; ., i and B;
but here, a, is a fixed effect subject to the constraint Zle a, = 0. The parameter
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corresponding to 0% is
R
05=> a/(R—1). (1.20)
r=1

It is assumed that (aB);, ~ N(0,0%) (i = 1,--- ,N;r = 1,---, R) but inde-
pendence can only be assumed for interaction components that involve different
items. For the same item ¢, the components are assumed to satisfy the constraint

> Li(aB)iy = 0.

One implication of the raters being fixed is that no unbiased estimator of 0% is
available when 0% > 0. 0% is no longer the covariance between Y;, and Y , (1 # s).
The interaction term has variance o and

0_2
COU(Y;,T‘) Y;,s) = 02 L

B~ R (1.21)
The ANOVA table relative to Model 3 is given in Table 1.6 where f = R/(R—1).
It is crucial to note that the expectation of BM S under Models 2 and 3 is different
of that under Model 1 even if the computation is the same. Because the effect of
raters is the same for all items under Models 2 and 3, inter-rater variability does
not affect the expectation of BMS. An important practical implication is that for
a given population of items, the observed value of BM S in a Model 1 design tends
to be larger than in a Model 2 or 3 design.

Table 1.6. Two-way mixed effects ANOVA model (Model 3) (MS for mean squares)

Variability Sum of squares Degrees of freedom  MS E(MS)
Between items BSS N-1 BMS Ra% + 0%
Within items WSS N(R-1) WMS 0%+ fof+ o},
Between raters JSS (R-1) JMS N9%+f0%+0123
Residuals ESS (N-1)(R-1) EMS foi +o%,
Total TSS NR -1

Under Model 3, the intraclass correlation coefficients IC'Cy3 and ICCp3 are defined
as

0% — o3/(R - 1) 0% —at/(R—1)

ICCy3 = and [ICCe3 =
Y, e

1.22
0%+ 0%+ 0%, ( )

Estimation of the parameters. Although the definition of the agreement in-
dexes are different depending if raters are considered as random or fixed, the
estimated intraclass correlations are the same ([/C?? A2 = @ A3 = I/C’E’ 4 and
1cC c2 = I/C\ch = I/C\C’C) The intraclass correlation coefficients are estimated
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by
— BMS — EMS
1CC, = 1.2
CCA= Bt (R—1)EMS + R(JMS — EMS)/N (1.23)
and BMS — EMS
1CCe = — (1.24)

BMS + (R—1)EMS"

The agreement coefficient j{ele; 42 is also known as the criterion-referenced relia-
bility and the agreement coefficient ICC¢o as norm-referenced reliability and as
Winer’s adjustment for anchor points (McGraw and Wong, 1996).

The quantities y; and y are defined as previously. Let 7 , denote the mean over
the items for rater r (r=1,--- , R).

| XN
g,,r = X7 Z Yir-
N i=1
We have
N
BSS = RY (7, —-7.)%

R
JSS = N> ([@,-7.)"

ESS = )
TSS = 3.3 i —79.)" (1.25)

Confidence interval for ICC4. Let Fy = BMS/EMS be the usual variance
ratio distributed as a Snedecor F with N —1 and (N —1)(R—1) degrees of freedom.
The confidence interval is more complicated to derive since the index is a function
of three independent mean squares. Following Satterwhaite (1946), Fleiss and
Shrout (1978) derived an approximate confidence interval. Let F; = JMS/EMS
and

(R—1)(N — 1){R ICC4F; + N(1 + (R — 1)ICC4) — R ICC 4}?
(N — )RZICC 1 F2 + {N(1 + (R — )ICC ) — R ICC 4)?

(1.26)

UV =

The lower bound of the (1 — «)100% confidence interval for IC'C}y is defined by

N(BMS — Fy; EMS)

1.27
FyR JMS+ (RN —R—N)EMS+ N BMS (1.27)
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and the upper bound by

N(F,BMS — EMS)
R JMS+ (RN —R—N)EMS + N FyBMS’

(1.28)

where

FL = QF(l—%,V,N—l)

FU = QF(l—%,N—l,V)

Confidence interval for ICC¢. 1If Fy = BMS/EMS denotes the usual vari-

ance ratio distributed as a Snedecor F with N — 1 and (N — 1)(R — 1) degrees of
freedom,

Fr—1 Fy -1
—— < ICCo < —————
Fo+(R—-1) TR +(R-1)

is a (1 — a)100% confidence interval for IC'C¢ with

(1.29)

Fr = F/Qp(l— %;N ~1,(N—1)(R—1))

Fy = FQe(l—5i(N=1D(R-1),N-1).

Example. Consider again the example of Table 1.1 but suppose now that the
same set of 4 raters have all measured the 6 items on a 10-point scale and that the
4 raters are taken at random from a larger population of raters. This leads to the
following ANOVA table (Table 1.7).

Table 1.7. Two-way random effects ANOVA model with interaction (Model
2) relative to the example of Shrout and Fleiss (1979)

Variability Sum of squares Degrees of freedom Mean squares
Between items 56.21 5) 11.24
Within items 112.75 18 6.26
Between raters 97.46 3 32.49
Residuals 15.29 15 1.02
Total 168.96 23

The intraclass correlation coefficient with the absolute definition is then estimated

by
11.24 — 1.02

11.24 + 3 x 1.02 + 4(32.49 — 1.02)/6

We have v = 33123.31/6922.11 = 4.79, F, = 11.24/1.02 = 11.02 and F, =
32.49/1.02 = 31.85. The one-sided lower bound at 95% confidence level is equal

1CC 45 = 0.29.
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to 0.05, indicating that there is a slight agreement between the 4 raters. We also
have

— 11.24 — 1.02
ICC oy = —0.71
27 1124 +3 % 1.02

with 95% one-sided lower bound of 0.41 where F7, = 11.03/2.90 = 3.80, meaning
that the measurements of the 4 raters are consistent.

1.3.3 Mean of individual ratings

The ICCs discussed before express the expected reliability of the measurements
of single raters. Sometimes, it is not the individual ratings that are used but
rather the mean of m ratings (m < R), i.e. m is not necessarily equal to the
number of raters in the study. The unit of analysis is then a mean of ratings
rather than individual ratings. In such case the reliability of the mean rating is
of interest; the reliability will always be greater in magnitude than the reliability
of the individual ratings, provided the latter is positive (Lord and Novick, 1968).
An example of a substantive choice is the investigation of the decisions (ratings)
of a team of physicians, as they are found in a hospital setting. More typically, an
investigator decides to use a mean as a unit of the analysis because the individual
ratings are too unreliable (Shrout and Fleiss, 1979). The number of raters (i.e.,
m) used to form the mean ratings needs to be determined. Given a lower bound,
ICCy, and the minimum acceptable value of the reliability coefficient ICC* (e.g.,
ICC* =0.75) it is possible to determine m as the smallest integer greater than or
equal to (Shrout and Fleiss, 1979)

[1CC*(1 - ICCY)
m = .
ICCL(1—ICCY)

(1.30)

Once m is determined, either by a reliability study or by a choice made on sub-
stantive grounds, the reliability of the ratings averaged over the m raters can be
estimated using the appropriate intraclass correlation coefficient described earlier.
When data from m raters are actually collected, they can be used to estimate the
reliability of the mean ratings in one step, using the formulas below, depending of
the study design. In these applications, we suppose that m = R.

One-way random effects ANOVA model. The intraclass correlation coeffi-
cient corresponding to the one-way random effects ANOVA model when conside-
ring averaged measurements rather than single measurements is defined by

2
Op

O TR

(1.31)
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and is estimated by

— BMS —-WMS
ICC a1 R = LS ) (1.32)
Letting Fyy and Fj, defined as for 1CCxy,
1—1<ICC <1—1 (1.33)
7 ALR I .

is a (1 — @)100% confidence interval for IC'C 4y g.

Two-way random effects ANOVA model with interaction. The degree of
absolute agreement is expressed as

2

g
1CC = B 1.34
AR = T (T VTR (1.34)

and estimated by

BMS — EMS

ICC p2.r = BMS + (JMS — EMS)/N"

(1.35)

The confidence interval used the confidence bounds obtained for ICC4y. For
example, the lower bound for ICCy p is

ICCy = 5 " (gI_CIO)LI o (1.36)
where /CCT* is the lower bound obtained for IC'Cy,.
On the other hand, the degree of consistency can be quantified using
o
ICCeop = 2 (07 1+ oL/ (1.37)
and estimated by
1CCeop = BM;&Q?MS. (1.38)
Let Fyy and F, be defined as for 1CCpo,
1_L<IOCCQR<]._L (1.39)
Fr, ’ Fy

is a (1 —a)100% confidence interval for ICCeg r. Note that ICCeq g is equivalent
to Cronbach’s alpha (Cronbach, 1951). Cronbach’s alpha will generally increase
when the correlation between the items increases. For this reason the coefficient
is also called the internal consistency or the internal consistency reliability of the
test (Shrout and Fleiss, 1979). Internal consistency is a measure based on the
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correlations between different items on the same test (or the same subscale on
a larger test). It measures whether several items proposed to measure the same
general construct produce similar scores. For example, if a respondent expressed
agreement with the statements "I like to ride bicycles” and "I've enjoyed riding
bicycles in the past”, and disagreement with the statement ”I hate bicycles”, this
would be indicative of good internal consistency of the test. A commonly-accepted
rule of thumb is that a Cronbach’s alpha coefficient of 0.6-0.7 indicates acceptable
reliability, and 0.8 or higher indicates good reliability. Note that extremely high
reliabilities (0.95 or higher) are not necessarily desirable, indicating that the items
may be not just consistent, but redundant.

Alternatively, Cronbach’s alpha coefficient can also be defined as
Np

ICCoop=—"
ETI R (N-1)p

(1.40)
where p is the average of all Pearson’s correlation coefficients between the items.

Two-way mixed effects ANOVA model. The generalization from single ra-
ting to mean rating reliability is not quite as straightforward as in the random
effects model. Although the covariance between two ratings is 0% — o7 /(R — 1),
the covariance between two means based on R raters is 0. No estimator exists for
this term. If, however, the rater x item interaction can be assumed to be absent
(02 = 0), the agreement indexes ICCa3 g and ICCp3 r are defined by

op—oi/(R=1) _ ok

o3+ (04 +oi+02)/R o4+ (04 +0%)/R

ICCysp = (1.41)

and ) ) )
OB _UI/(R_ 1) _ OB
o5+ (0?2 +0%)/R o4+ 0%/R

and estimated by ]/C’\C A2,r and I/C'E’CZ R, respectively.

ICCesr =

(1.42)

Example. Consider again the example described in Table 1.1 and suppose that
measurements are average measures rather than single measures and let deter-
mine Cronbach’s alpha coefficient of reliability. We have ]/C'\CCQA = (11.24 —
1.02)/11.24 = 0.91 (see Table 1.7). We obtained, in case of individual measure-
ments F;, = 3.80, leading to a one-sided lower bound at 95% confidence level of
1 —1/3.80 = 0.74. There is thus a good consistency between the raters.

1.4 Serum gentamicin

Serum gentamicin (umol/L) was measured by two assay methods, the enzyme-
mediated immunoassay technique (EMIT), used in routine at the time of the study,
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and the fluoro-immunoassay (FIA), a new method to be tested (Strike, 1991).
Data are given in Appendix A (see Table A.1). Serum specimens from 56 patients
receiving gentamicin have been assayed twice by each assay method in separate
assay batches. Agreement between the two methods is needed to validate the new
assay method. Firstly, the mean value of the two repeated measurements was
calculated for each method. The resulting 45° line plot and Bland and Altman
plot are given in Figure 1.2. The mean of the differences between the two methods
of measurements was equal to —0.084 + 1.18 with 95%CI: [-2.39,2.22]. Thus, there
was no systematic bias between the two methods.

15 (uiriolL) wilh FIA
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Figure 1.2. Serum gentamicin concentrations (umol/L) measured with the EMIT
and the FIA methods on a 45° line plot (left) and Bland and Altman plot (right)
with 95% confidence interval

The concordance correlation coefficient was equal to CCOC = 0.96 with a lower
bound of two-sided 95% CI equal to 0.90. The two-way mixed effects ANOVA
table corresponding to the 4 separate measurements is given in Table 1.8.

Table 1.8. Two-way mixed effects ANOVA model (Model 3)

Variability Sum of squares Degrees of freedom Mean squares
Between patients 4105.72 55 74.65
Between methods 4.00 3 1.33
Residuals 129.71 165 0.79
Total 4239.43 223

Assuming no interaction between the methods and the patients, the intraclass
correlation coefficient using the definition of absolute agreement was equal to
I/CZ’ 432 = 0.99 with a one-sided 95% lower confidence bound of 0.97. The in-
traclass correlation coefficient between the two methods using the consistency de-
finition was equal to I/C’\C'ng = 0.99 with a one-sided 95% lower bound of 0.99.
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This indicated quite good agreement between the two methods, suggesting that
the FIA method could be used confidently in daily routine.

1.5 Discussion

Some basic statistical approaches for assessing agreement between two or more
raters on a quantitative scale were reviewed in this chapter. This is common
practice when validating new measurement methods with respect to existing ones.
When comparing two methods, one method is usually the reference method and
the other method a new method to be tested. The problem is therefore one with
fixed raters rather than random raters (calibration problem).

The simplest practical way to assess the agreement between two raters on a quan-
titative scale is from the visual plots (deviation from the 45° line or Bland and
Altman plot). The difficulty in Bland and Altman plot is to determine what is
a reasonable 95% CI around the mean difference between the two measurements.
Therefore, the need for formal testing and quantification of the amount of agree-
ment between raters led Lin (1989) to define the concordance correlation coefficient
(CCCQC). In recent years, the CCC was extended to various situations (Barnhart and
Williamson, 2002; King and Chinchilli, 2001; Lin et al., 2002).

The intraclass correlation coefficients (ICC) are also widely used to quantify agree-
ment on quantitative scales and should be used with care depending on the study
design and the question of interest. As stated by Shrout and Fleiss (1979), an im-
portant issue is the choice of an appropriate ANOVA model. This was seen with
the example of Shrout and Fleiss (1979), where conclusions were different depend-
ing on the ANOVA model chosen. McGraw and Wong (1996) reviewed intraclass
correlation coefficients introduced by Shrout and Fleiss (1979) and made the dis-
tinction between accuracy and absolute agreement indexes. They also stressed the
difference between treating the raters as fixed or random. In practical terms, one
knows that the levels of a variable are random when a change in those levels of
the variable would have no effect on the question being asked. As an example of
fixed effect variables, McGraw and Wong (1996) considered the biological relation
between mother and child. By changing the levels in uncle and nephew would
imply a totally different research interest. Although the estimated intraclass cor-
relation coefficients are the same when raters are treated as fixed or as random,
the interpretation is different. When treated as random, the results can be genera-
lized at the population level which is not the case when treated as fixed. Carrasco
and Jover (2003) showed that the CCC is equivalent to the ICC under a two-way
mixed effects ANOVA model with fixed raters. A more detailed review of methods
to quantify agreement on a quantitative scale is given in Barnhart et al. (2007).



CHAPTER 2

Agreement between two
independent raters

2.1 Introduction

The problem of rater agreement on a categorical scale originally emerged in human
sciences, where measurements are made on a nominal or ordinal scale rather than
on a continuum. For example, in psychiatry, the mental illness of a subject may be
judged as "light”, "moderate” or "severe”. Clearly two psychiatrists assessing the
mental state of a series of patients do not necessarily give the same grading for each
patient. Medicine is not an exact science but we would expect that physicians tend
to agree with each other. The validation process of any new scale also requires the
study of agreement among raters. The simplest case is to determine the agreement
between two raters (methods or observers) on a binary scale (e.g. diseased/ non
diseased). Several coefficients for quantifying the agreement between two raters
have been introduced over the years. The most salient one is the kappa coefficient
introduced by Cohen (1960). It is the most widely used coefficient of agreement in
scientific research (Blackman and Koval, 2000; Ludbrook, 2002). Cohen’s kappa
coefficient differs from the others in the sense that it accounts for agreement bet-
ween the two raters due to chance. Indeed, if two raters randomly assign a series of
items on a categorical scale, the observed agreement between them is then only due
to chance. Cohen (1968) also introduced the weighted kappa coefficient to allow
for the fact that some disagreements may be more important than others. Indeed,
disagreements between two raters occurring on the categories "light” and ”severe”

23
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may be viewed as more important than on ”light” and "moderate”. Finally, Krae-
mer (1979) defined a kappa coefficient by assuming that the two raters have the
same marginal distribution. Agreement indexes are reviewed in this chapter and
their asymptotic sampling variance derived.

2.2 Early agreement indexes

Consider two independent raters who have to classify a sample of N items (sub-
jects or objects) into K exhaustive and mutually exclusive categories of a nominal
or ordinal scale. The observations made by the 2 raters can be summarized in a
K x K contingency table (Table 2.1), where n;; is the number of items classified
in category j by rater 1 and category k by rater 2; let n; be the number of items
classified in category j by rater 1 and nj the number of items classified in category
k by rater 2. By dividing these numbers by N, the corresponding proportions pjy,
Pj., Pk are obtained.

Table 2.1. K x K contingency table summarizing the classification of N
items by 2 raters on a K-category scale in terms of frequency (proportion)

Rater 2
Rater 1 1 . j e K Total
1 ni (p11) -+ ny (py) .. mk (Pik) ni. (p1.)
j nj1 (pj1) - ngi (py) - nix (Pjx) g (p))
K ni1 (px1) - nkj (prj) - nrxx (PkKr) "k (PK)
Total n1 (p.l) n.;j (p_j) n K (PK) N (1)

When there are only two categories (binary case), Table 2.1 reduces to a 2 x 2
contingency table, where the categories are often labeled as 0 and 1 (see Table 2.2).

Intuitively, it seems obvious to use the sum of the diagonal proportions of Table
2.2 to quantify the agreement between the two raters. Indeed, it represents the
proportion of items classified in the same category by the 2 raters. It is called the
observed proportion of agreement

Do = P11 + P22.

The index p, is the simplest agreement index (Holley and Guilford, 1964; Maxwell,
1977).
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Table 2.2. 2 x 2 contingency table correspon-
ding to the classification of IV items on a binary
scale by 2 raters in terms of frequency (propor-

tion)
Rater 2
Rater 1 1 0 Total
1 ni1 (p11) ni12 (p12) n1. (p1.)
0 na1 (p21) naz (p22) na. (p2.)
Total ni(p1) na (p2) N (1)

Suppose that the trait under study is relatively rare. In that case, negative agree-
ments (pgg) may be more frequent than positive agreements (p11). Then, it may
be reasonable to omit the proportion pss in the construction of the agreement
index because that proportion will be large (since the trait under study is rare)
and inflate the value p,. For that reason, a number of indexes based only on the
proportions piq, p12 and po; were proposed. The index proposed by Dice (1945)

was

P11
Sg=+——"-—.
%(pl. +p.a1)

The index Sy can be interpreted as a conditional probability. Indeed, if we ran-
domly choose one of the two raters and consider the items classified positive by
this rater, Sy is the conditional probability that the second rater classifies the item
positive while the first rater classified the item positive. The same index exists if
we decide to ignore the proportion p;; instead of the proportion pss. This index
writes

D22
S =— "
I %(Pz. +p2)
Rogot and Goldberg (1966) proposed to take the mean of S; et S, as agreement
index between the two raters

P11 D22
+ .
(p1. +p1) (P2 +p2)

A2 —
Note that As = 1 in case of perfect agreement. Goodman and Kruskal (1972)
suggested the following index

A — 2p11 — (P12 + pa1)
" 2pn+ (P12 + pa1)’

It is easily seen that A, = 2S; — 1. The maximum value of A, is 1 when agreement
is perfect and the minimum value is —1 when p;; = 0.
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In all coefficients given above, the agreements due to chance alone have not been
taken in account. However, Scott (1955) introduced an index of inter-rater agree-
ment taking into account chance agreement. This is known as Scott’s 7,

Po — Pe
1_pe

T = (2.1)
where p, is defined as earlier and p, is the proportion of agreement to be expected
by chance, namely,

Pe = P} + 3. (2.2)

In this expression, p; = (p,;+p;.)/2 is the overall proportion of items in the sample
classified in category j (j = 1,2). A more general way to correct for chance effect
is introduced in the next section.

2.3 Cohen’s kappa coefficient

2.3.1 Binary scale

Cohen (1960) introduced two proportions to define an agreement index between
two independent raters on a binary scale, the observed proportion of agreement

_ N1t Ngg

L Sl 2.3
p N P11 + P22 (2.3)

and the proportion of agreement expected by chance

NN +nano
Pe=—""""75—— =DP1L.P1 T P2Po. (24)

N2
To define the agreement index, Cohen (1960) considered the observed proportion
of agreement after that the proportion of agreement expected by chance is removed
from consideration. The result is then scaled to obtain a value 1 when agreement is
perfect, a value 0 when agreement is only due to chance and negative values when
observed agreement is lower than agreement expected by chance. Specifically,
Cohen’s kappa coefficient writes

(2.5)

2.3.2 Categorical scale

By extension, Cohen (1960) defined the observed proportion of agreement on a
categorical scale by

K K
_ 5
Po = ; N ;ij (2.6)
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and the proportion of agreement expected by chance by
Ko K
pe=)»_ = > pips, (2.7)
j=1 j=1
leading to the Cohen’s kappa coefficient
-~ Po — Pe
= ) 2.8
Ch (2.8)

Landis and Koch (1977b) proposed to qualify the strength of agreement according

to the values taken by Cohen’s kappa coefficient (see Table 2.3), although no longer

recommended today because the divisions are clearly arbitrary and vary depending

on the problem under study. The precision with which Cohen’s kappa coefficient

is estimated is also an important aspect (statistical significance).

Table 2.3. Qualification of the
strength of agreement according
to values of % following Landis
and Koch (1977b)
Agreement k
Almost perfect > (.81
Substantial 0.61 —0.80

Moderate 0.41 — 0.60
Fair 0.21 —0.40
Slight 0—0.20
Poor <0

2.3.3 Properties

Hereafter, we look at the properties of Cohen’s kappa coefficient.

Property 1. k =1 if and only if p;; =0 (i #jel,--- | K).

The upper limit of ¥ is equal to 1, occurring if and only if there is perfect agreement

between the two raters. The condition : p; = p,, j = 1,..., K is necessary but

not sufficient to have perfect agreement. Indeed, if 35 € 1,--- , K : p; # p;., there

is automatically disagreement.

Property 2. Given fized margins, the maximum value of k is obtained for p, =

PoMm = Zjil an(pjapj)
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For given margins, Cohen (1960) proposed the following expression, in order to
determine the maximum value of &:

(2.9)

where
Pom = Z an(pjupj>
j=1

is the maximum proportion of observed agreement permitted by the marginals.

Property 3. The minimum value of k is obtained for p, = 0.

The lower limit k,, of Cohen’s kappa coefficient is attained when the observed
proportion of agreement p, between the two raters is nil. Thus,

o Pe
m = — ) 2.10
8 1 — Pe ( )

The lower limit %, only depends on the marginal distributions p; and p;, (j =
1,---, K) since it only involves the proportion p. and depends on the direction of
the two ratings. If the ratings go in the same direction, then &, < —1/(K —1).
Otherwise, &, > —1. When the scale is binary, k,, > —1.

Property 4. Relationship between binary and K-category scales

Cohen’s kappa coefficient relative to a K-category scale can be derived from Co-
hen’s kappa coefficients derived on a binary scale obtained by isolating a category
j from the other categories (j = 1,---, K). This leads to the contingency table
displayed in Table 2.4.

Table 2.4. 2 x 2 contingency table obtained by isolating category

j from the other categories (j = 1,---, K) in terms of frequency
(proportion)
Rater 2
Rater 1 Category j Other categories Total
Category j n;j; n;. — njj n;,
Other categories  nj —nj; N —nj—n; +nj; N —mn;
Total n.; N — n.j N

From this contingency table, the proportion of observed agreement is defined by

n;j + N —n; —n; +n;;
Pofj) = = ]\Jf P =pj+ 1 —pj—pi Dy (2.11)
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and the proportion of agreement expected by chance relative to category j by

n;n;+ (N —n;)(N —n;)
N2

Pelj] = =pjpj+ (1 —pi)(1—p;) (2.12)

leading to the Cohen’s kappa coefficient relative to category 7,

. %m—Pmy

o 2.13
=T (2.13)

Remark that agreement (diagonal) and disagreement (off-diagonal) cells of the
K x K contingency table are mixed in the quantity N —n_j —n; +n;;. The overall
Cohen’s kappa coefficient can then be rewritten

Y (Pofi) — Per) =
e Z = Pelj]))R1j)- (2.14)
Zj:l(l — Pelj) Z] 1(1 Pelj]) j=1

Property 5. Relation between ik and Pearson’s chi-square QAS coefficients for binary
scales

Cohen (1960) investigated the relation between Cohen’s kappa (£) and Pearson’s
chi-square (¢) coefficients for binary scales. The coefficient gb can be expressed as
followed :

o~ MM — Ni2Nay

¢ = NoTETTT (2.15)

By simple algebraic transformations, Cohen’s kappa coefficient can be written as

followed:
2(“11”22 - n12n21)

NNy, + Nany.
If we suppose that n; = vN (ny = (1 —v)N) and n;, = wN (ng, = (1 — w)N),
with 0 < wv,w < 1, then

(2.16)

R =

@ =7 <1 + M) . (2.17)

4dn 1n.gng no.

In general, 52 > R2, 52 =&? if and only if n; = ny =ny. = ny, = N/2.

Property 6. Population model and maximum likelthood estimator

Cohen (1960) defined Cohen’s kappa coefficient as a descriptive statistic on an ad
hoc basis and not in terms of population parameters. However, Bloch and Krae-
mer (1989) derived a population model in the case of a binary scale yielding the
Cohen’s kappa coefficient as maximum likelihood estimator.
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Consider a population of items Z. Let Y;, be the random variable such that
Y, = 1if rater r (r = 1,2) classifies a randomly selected item i of population Z
in category 1 and Y;, = 0 otherwise. Over the population of items, E(Y;,) = m,
and var(Y;,) = 02 = m,(1 — ). If p denotes the correlation between Y;; and Y; ,
Table 2.5 corresponds to the population model.

Table 2.5. Theoretical model in the case of two independent raters
and a binary scale

Rater 2
Rater 1 0 1
0 B(-Yi)(-%a)] Bll-Yala 1-m
(1 =m)(1 —m2) + poroa (1 —m)ma — poioa

1 ElYi (1 —Yip)] E[Y;1Yi] 1
7T1(1—71’2)—p0'102 7T17T2+p0’10’2
1 — T2 9 1

Cohen’s kappa coefficient is then defined as

Expected agreement — Random agreement

Maximum expected agreement — Random agreement

[mimy + (1 — m1)(1 — ma) + 2poi09] — [mima + (1 — 1) (1 — 7o)
1 —mme+ (1 —m)(1 —ma)

2p0109
= ) 2.18
Il —mm+ (1 —m)(1 —my) (2.18)

Suppose that the two raters classify a random sample of N items from population
7 on a binary scale. This leads to the contingency table displayed in Table 2.2.
The log-likelihood function is then

In L(7y, 72, K|n11, Nig, No1, Na2)

+n1y Infmim + %“(Wl(l — ) + (1 — m)m2)]
g lnl(m (1= ) = Sa(m (1= 73) + (1= m)ms)
(1 = m)m = Sa(m(l = m) + (1= 7))

g n[(1 — m)(1 — ) + %m(m(l )+ (1—m)m)]. (219)
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The maximum likelihood estimators of 71, o and k are respectively

. nip+n
T =P = % = p11 + P12, (2-20)
ny+n
Mg =p1 = 2 N 2 = P11 + Do, (2.21)
and
- _ 2(7111:&22 —AT71127"L21)A _ 2(”11”22 - n12n21) (2'22)
771(1 —7T2) +7T2(1 —7T1) n.1N2 + NN,

corresponding to Equation 2.16 and thus to the original definition given by Cohen
(1960).

2.3.4 Sampling variability

Delta method. The expression of the large sample variance of Cohen’s kappa
coefficient given by the Delta method (Bishop et al., 1975) is

AN po(l — po) 2(p0 _ 1)(01 - 2pope) (po _ 1)2(02 - 4pz)
var(k) = N(L=p.)? + N —p) + N po)t (2.23)

where

ijj Dj. +p] and C’2 Zzpﬂc D.j +pk

j=1 7=1 k=1

The Delta method is exposed in Appendix B in the general case and in the par-
ticular case of multinomial data.

Garner’s method. Garner (1991) derived a simple expression for an appro-
ximate large sample variance of Cohen’s kappa for binary scales and a general
procedure for K-categorical scales. Only the binary case will be exposed here.
Garner (1991) took the following theoretical representation of the ratings made by
2 raters (Table 2.6). Note the similarity with Table 2.5 when considering 0 = po 0.

Table 2.6. Garner’s theoretical representation of ratings made by
two raters on a binary scale

Rater 2
0 1 Total
0 (1—7T1)(1—7T2)+(5 (1—7T1)7T2—(5 1—m

Rater 1
1 71'1(1—71’2)—(5 T + 0 T
Total 1—my T 1
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Cohen’s kappa coefficient is directly related to ¢ through the formula

26
T Tt (L —m)(1 —m)] (2:24)

Conditioning on the observed marginal values, the theoretical proportion in the
(1,1) cell is w946 and the observed proportion is 77y +6. Therefore the difference
between the two is £(5 — 6) in each cell. Garner (1991) used the fact that, in large
samples, the conditional log-likelihood may be approximated by (—1/2)x?, where
x? may be taken as the following sum over the four cells:

(observed frequency—expected frequency)?/(an estimate of the cell frequency).

If (6 — 3) denotes the difference between an observed and expected cell proportion,
the large sample approximation to twice the negative log-likelihood may be written
as

where Npj, is the observed cell frequency or some ’smoothed’ estimate thereof.
Since x? has an asymptotically chi-square distribution with one degree of freedom
when the four cell frequencies are ’large’,

N2
- A 1

Y2~ (5 ?) where SE(0) ~ 5 5 —.

SE(0) N i 2 Moty

This yields the following large sample variance estimate for &,

var(k) = A 5 (2.25)

2 2
(1 = pe)>N? [23:1 D ket ﬁ;k

Garner (1991) proposed to replace N Pjr by njx +1 to avoid the problem of having
a zero cell frequency.

Jackknife Method. Fleiss and Davies (1982) derived the Jackknife estimator
of Cohen’s kappa coefficient, 4, obtained by a weighted average of pseudo-values.
The pseudo-values are defined as kKj, = Nk — (N — 1)A_;;, where &_j; is Cohen’s
kappa coefficient obtained when one unit is deleted from the cell (5, k), 7,k =
1,---, K . The Jackknife estimator of Cohen’s kappa coefficient is then

| KK
Fi= E > nikEn (2.26)

Jj=1 k=1
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and the estimated variance is

var(ky) = m Z Zn]—k(?{jk — k)2 (2.27)

7=1 k=1

The Jackknife procedure is described in general in Appendix B.

Bootstrap Method. The large sample variance of the Cohen’s kappa coefficient
can be determined by the bootstrap method as explained in Appendix B, by taking
the variance of the bootstrapped coefficients.

2.3.5 Example

Cervical ectopy, defined as the presence of endocervical-type columnar epithelium
on the portio surface of the cervix, has been identified as a possible risk factor
for heterosexual transmission of human immunodeficiency virus (HIV). To assess
the importance of cervical ectopy, methods for measuring ectopy with precision
are needed. A computerized planimetry method was developed for measuring cer-
vical ectopy and the reliability of that method was compared with direct visual
assessment in a study conducted by Gilmour et al. (1997). Photographs of the
cervix of 85 women without cervical disease were assessed for cervical ectopy by
three medical raters who used both assessment methods. The response of interest,
cervical ectopy size, was an ordinal variable with four categories: (1) minimal, (2)
moderate, (3) large and (4) excessive. The classification of the 85 women by 2 of
the 3 raters is summarized in Table 2.7 for the direct visual assessment in terms
of frequency.

Table 2.7. 4 x 4 contingency table resulting from the direct visual
assessment of cervical ectopy size by 2 medical raters on 85 women in
terms of frequency

Medical rater 2
Medical rater 1 Minimal Moderate Large Excessive Total

Minimal 13 2 0 0 15
Moderate 10 16 3 0 29
Large 3 7 3 0 13
Excessive 1 4 12 11 28
Total 27 29 18 11 85

Overall, the observed proportion of agreement is equal to

po= (13416 + 3+ 11)/85 = 0.506.
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The proportion of agreement expected by chance is equal to
Pe = (27 X 15+ 29 x 29+ 18 x 13 + 11 x 28)/85* = 0.247.

The two medical raters agree on 50.6% of the patients and agreement due to chance
amounts 24.7%. This leads to a Cohen’s kappa coefficient of

i = (0.506 — 0.247) /(1 — 0.247) = 0.343.

The maximum observed proportion of agreement permitted by the marginals is
equal to poyr = (15 + 29 + 13 4 11)/85 = 0.800, leading a maximum value of
Cohen’s kappa coefficient of &y, = 0.734.

To determine the agreement on each category, 2 x 2 tables were constructed by
isolating one category and collapsing all the other categories together. They are
represented in Table 2.8. The corresponding observed proportions of agreement
(po), proportions of agreement expected by chance (p.), Cohen’s kappa coefficients
(), maximum observed proportion of agreement permitted by the marginal (poas)
and the resulting kappa coefficient k), are also provided.

Table 2.8. 2 x 2 contingency tables obtained from the classification of the ectopy
size of 85 women by two medical raters with direct visual assessment when isolating
each category of the 4-categorical scale

Category Minimal Category Moderate
Rater 2 Rater 2
Rater 1 Minimal Other Total Rater 1 Moderate Other Total
Minimal 13 2 15 Moderate 16 13 29
Other 14 56 70 Other 13 43 56
Total 27 58 85 Total 29 56 85
Category Large Category Excessive
Rater 2 Rater 2
Rater 1 Large Other Total Rater 1 Excessive Other Total
Large 3 10 13 Excessive 11 17 28
Other 15 57 72 Other 0 57 57
Total 18 67 85 Total 11 74 85

As seen in Table 2.9, the agreement on extreme categories (Minimal and Excessive)
is better than agreement on middle categories (Moderate and Large). This is a
well-know phenomenon. It is easier to distinguish between extreme categories than
middle ones. The agreement on category Large is almost nil while the agreement
on category Excessive is the maximal agreement permitted by the marginals.
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Table 2.9. Observed proportions of agreement (p,),
proportions of agreement expected by chance (p.),
Cohen’s kappa coefficients (%), maximum observed
proportions of agreement permitted by the marginal
(porr) and the resulting kappa coefficients ks rela-
tive to the tables given in Table 2.8

Category  po Pe K Pom  Rum
Minimal  0.812 0.618 0.507 0.859 0.631
Moderate 0.694 0.550 0.320 1.0 1.0
Large 0.706 0.700 0.019 0.941 0.803
Excessive 0.800 0.626 0.465 0.800 0.465
Overall 0.506 0.247 0.343 0.800 0.734

2.4 Intraclass kappa coeflicient

2.4.1 Definition

Kraemer (1979) proposed to define kappa in terms of population parameters, by
analogy to the intraclass correlation coefficient for continuous data, but adapted
to the categorical case. The intraclass kappa coefficient can be viewed as a special
case of Cohen’s kappa coefficient where it is assumed that the ratings are inter-
changeable. In other words, the two raters are assumed to have the same marginal
probability distribution. The resulting index is algebraically equivalent to Scott’s
index of agreement in the 2 x 2 case (Scott, 1955).

Consider again a population of items Z. Let Y;;, be a random variable such that
Yi;» = 1 if a randomly selected item 4 of population 7 is classified in category j
(j=1,---,K)byrater r (r =1,2). Let E(Yj;,) = m;, (7; = 1—m;), expectations
being taken over the population of items. The intraclass kappa coefficient relative

to category j is defined by

COU(Y;‘jJa Y;jz)

w1l - ) 22

ki) =

and the global intraclass kappa coefficient (kr) over the K categories is given by

S cov(Yiga, Yija)
L .
Zj:l (1 —m;)

The intraclass kappa coefficient has the same form as Cohen’s kappa coefficient,

(2.29)

R =

Ho[ - He[

2.30
T, (2.30)

R =
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M-

K
where Ho[ = Z E(}/;jﬂ}/;’j,?) = (COU(}/;J'J, }/;j,Q) + 7TJ2)

j=1 J=1
K K
and Iy = ) [E(Yi0)E(Yya)l = )77
j=1 J=1

2.4.2 Estimation of the parameters

Using the notations introduced in Table 2.1, the estimation of the intraclass kappa

A

coefficient is obtained by replacing in the expression of x; Il,; by Il,; = p,r with
K
Dol = ijj (2.31)
j=1
and II.; by II.; = p.; with

per = i <w>2. (2.32)

Jj=1

2.4.3 Properties for binary scales
Property 7. Population model and mazximum likelihood estimator

As before (see Section 2.3.3, Property 6), consider the binary random variable Y; .
For item i, let P(Y;, = 1) = E(Y;,|i) = P, since the raters are assumed to be
interchangeable. Over the population of items, let E(P;) = 7 and var(P;) = o2

Then, the intraclass kappa coefficient can be rewritten as
cou(Yi1,Yie)  E(Yi1Yig) — 7’
Vovar(Yii)var(Y;z) (l—m)

(2.33)

Rr

if the data are summarized in a 2 x 2 contingency table (Table 2.10).

Table 2.10. Theoretical model for binary ratings made by 2
raters with equal marginal distributions

Rater 2
Rater 1 0 1 Total
0 El(1-Yi1)(1=Yip)] E[(1-Yi1)Yig] 1-m
1 E[Y;1(1 - Yi»)] E[Y;1Yi2] Tr
Total 1—m s 1

Using the expression of x; given by Equation 2.33, Table 2.10 can be rewritten
(see Table 2.11). When the two discordant cells are grouped together, this table
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expresses the probabilities of a model, known as the common correlation model
(Bloch and Kraemer, 1989).

Table 2.11. Expected probability of joint responses for the
classification of two raters on a binary scale (common corre-
lation model)

Rater 2
Rater 1 0 1 Total
0 Q-7 +rm(l—7) 7(l-m)(1—ky) 1-—7
1 (1 —7m)(1 — ky) 72 + k(1 — ) 0
Total 1—m7 7r 1

Suppose the two raters classify a random sample of N items, leading to the con-
tingency Table 2.2. The log-likelihood function is then

In L(?T, /ﬁ?[‘nn, N12,MN21, n22) = N1 1H[7T2 + H[7T(1 — ’/T)]
+ (n12+n21)1n[7((1—71')(1—/{[)]
+ noeIn[(1 —m)% + k(1 — )] (2.34)

The maximum likelihood estimators of m and x; are

2n11 + N2 + ngo

2.35
Tatna, (235)

T =

4 - — (n1z — na1)?
&= (n11n22 7112”21) (7112 n21) (2.36)
(2n11 + na2 + n21) (2092 + nyg + N2y

which can be rewritten under the same form as Cohen’s kappa coefficient, i.e.,
i1 = (Por — Per) /(1 = per) with po; = (n11 4 na2) /N and per = 7° + (1 — 7)*.

Property 8. Effect of prevalence, sensitivity and specificity

Kraemer (1979) showed the influence of the prevalence on the intraclass kappa coef-
ficient in the binary case. Let M be a disease with prevalence noted P = P(M) or
equivalently the population of diseased subjects. Denote by M the population of
non diseased subjects. Suppose that a test 7" is available such that a given subject
will be declared ”diseased” if the test is positive (7,) and "non-diseased” if the
test is negative (7). Let Y; be random a variable such that Y; = 1 if the test is
positive and Y; = 0 otherwise.

The sensitivity of the test is defined as the probability for a given subject to be
declared positive if he/she is diseased. We have S. = P(T\|M) = EjnYi.
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In the same way, the specificity is defined as the probability for a given subject to
be declared negative if he/she is disease free, S, = P(T_|M) = Em(1-Y)).

Since
m=P(Ty)=P(T | M)P(M)+ P(T,|M)P(M) = PS. + (1 - P)(1-S,),
the probability 7 is the expectation of Y;. Indeed,
E(Y:) = EnY;P(M) + Eg;Y;P(M) = PS. + (1—- P)(1-5,) = 7.
The variance of Yj is
var(Y;) = P(1 — P)(S. + S, — 1)
From Equation 2.28, we have

P(1—P)(S.+ S, —1)?
(1 —m) '

R = (237)
It results that k; = 1 if and only if S = 1 and S, = 1, i.e.,, T' is a perfect test
(pathognomonic test). If P = 0 or P = 1, k; = 0. Except for these extreme
aSp 2
h =5,(1—-S8
P where o W )
and age = S.(1 — S.). By replacing the corresponding values in the expression of

values, Ky presents a maximum (k) if P =

kr, we find
kvt = [(S.5,)2 = [(1 = (1 = 5,2 (2.38)

Property 9. Relation between Cohen’s kappa and intraclass kappa coefficients

When K = 2, both Cohen’s kappa (&) and intraclass kappa (Kr) coefficients can
be written under the same form:

ko= 2.39
" 11— DPe ( )
with Do = (7111 + ngg)/N and Pe = (nl,n,1 + nQ_TL_g)/N2 and
~ Dol — Per
R = ——m— 2.40
! 1 - DPer ( )

with
Dor = (n11 + na2a) /N,
Per = ((2n11 + N2 + n21)/2N)2 + ((2n22 + 112 + 7”621)/2]\7)2 .

It results that Cohen’s kappa and the intraclass kappa are asymptotically equiva-

lent. Indeed, since

1 N—oo
Pel — Pe = W(nw —n91)® =70 (2.41)
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we have

. ~1 __|Po—DPe Po— Der| _ (pe - pel)(po — 1) N—o0
A — k1| = - = -
1_pe 1_pel (1_pc)(1_pel)

Moreover, it can be noted that Cohen’s kappa and the intraclass kappa coefficient

0. (2.42)

are equivalent when nio = nsy, i.e., there is no rater bias.

2.4.4 Sampling variability

Delta method. Using the Delta method, the large sample variance of Cohen’s
kappa coefficient, with the additional assumption of homogeneous margins, sim-
plifies to

var(K;) = NI = 03 {ijj —4p;(1 — Ry

7j=1

2
(1= ijkz(l_?j +7,)7 = [y — Ca(1 — '%I)]z} (2.43)
j=1 k=1
where p;, = n;,/N, j,k = 1,21, p;, = n; /N, p; = n /N, Pj = (pj. +p;)/2 and
Cs =D, + Ps.

Bloch and Kraemer method. The expression of the standard error of the
intraclass kappa obtained by the Delta method being quite unpleasant, Bloch and
Kraemer (1989) instead proposed to use the formula derived by Fisher (1958).
This method is based on the Taylor series expansion and led to

(1—Ap) Rr(2 —Rp)

N (1 —A&7)(1—2k) + 271 7)

(2.44)

var(ky) =

Jackknife and bootstrap methods. The standard error of the intraclass kappa
coefficient can also be derived by the Jackknife and the bootstrap method, in the
same way as for Cohen’s kappa coefficient (see Section 2.3.4).

2.4.5 Example

Pursuing with the cervical ectopy data obtained on 85 women by two raters, we
calculated the intraclass kappa coefficient for each category of the 4-category scale
(see Table 2.12).

For example, when considering the category ”Minimal” against all other categories,
the proportion of observed agreement is equal to

13 + 56

= 0.812
85

DPor = Po =
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Table 2.12. Observed proportions
of agreement (p,), proportions of
agreement expected by chance (per)
and, intraclass kappa coeflicients
(k1) relative to the tables in Table
2.8

Category  por  Per  Ki
Minimal  0.812 0.628 0.494
Moderate 0.694 0.550 0.320
Large 0.706 0.702 0.014
Excessive 0.800 0.646 0.434
Overall 0.506 0.263 0.330

but the proportion of agreement expected by chance differs, namely
per = ((2x 134+2+14)/(2 x 85))? + ((2 x 56 + 2+ 14)/(2 x 85))* = 0.628.

This leads to an intraclass kappa coefficient of

fp = Dol T Pel _ g 4oy

- Per
Remark that, when the marginal distribution of the two raters are the same (see
Category Moderate in Table 2.12), we effectively have # = k7. The overall intra-

class coefficient is equal to Ky = (0.506 — 0.263) /(1 — 0.263) = 0.330.

2.5 Weighted kappa coefficient

2.5.1 Definition

Often some disagreements between the two raters can be considered as more im-
portant than others. For example, disagreement on two distant categories should
be considered more important than on neighbouring categories on an ordinal scale.
For this reason, Cohen (1968) introduced the weighted kappa coefficient. Agree-
ment (w;),) or disagreement (v;;,) weights are a priori distributed in the K? cells
of the K x K contingency table (see Table 2.1). The weighted kappa coefficient is
defined in terms of agreement weights

fyy = Pow ™ Pew (2.45)

1 — Pew

K K K K
with po, = Z ijkpjk and pe, = Z ijkpj.p.k (0 < wjr <1 and wj; =1).
Jj=1 k=1 j=1 k=1
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It can also be defined with disagreement weights,

Qow
Qew

Ry =1—

(2.46)

K K K K
with Qow = Z Zvjkpjk and Qew = Z Zvjkpj.p.k (0 < Ujk <1 and Vjj = 0)

j=1 k=1 j=1 k=1

Although weights can be arbitrarily defined, two weighting schemes are most com-
monly used. These are the ”linear” weights introduced by Cicchetti and Allison
(1971)

J — K|
e=1— 2.4
ik K—1 (247)
and the quadratic weights introduced by Fleiss and Cohen (1973)
i — K\

Note that the disagreement weights v;; = (j — k)? are also commonly used (Lud-
brook, 2002; Agresti, 1992) and that Cohen’s kappa coefficient is a particular case
of the weighted kappa coefficient where w;;, = 1 when j = k and wj;, = 0 otherwise.

2.5.2 Properties

Quadratic weighting scheme. Cohen (1968) showed that if the marginal dis-
tribution of the two raters are the same and if the weights of disagreement are
defined as v = (j — k)?, the weighted kappa coefficient is equivalent to the Pear-
son’s correlation coefficient. This is a generalization of what was found for binary
scales (k = ¢). Furthermore, Fleiss and Cohen (1973) showed that using these
weights vj;, the weighted kappa coefficient has the same interpretation as the in-
traclass correlation coefficient of reliability when systematic variability between
raters is included as a component of total variation. Finally, Schuster (2004) ex-
plicitly decomposed the weighted kappa coefficient defined with the weights vjy,
in terms of rater means, rater variances and rater covariance in the context of a
two-way ANOVA setting.

Consider the following two-way analysis of variance model. Let rater r (r = 1,2)
assign item ¢ (¢ = 1,--- ,N) in category k (k = 1,---,K) and Y;, denote the
category score of item i.

Yir=p+B;+A +E;, (2.49)
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where B; represents the random item effect, A, the rater effect, either considered
as fixed or random and E;, the error term. Using the disagreement weights v;, =
(j — k)%, Fleiss and Cohen (1973) shown that the weighted kappa coefficient can
be rewritten as

B BMS — EMS
"~ BMS+EMS + 2 JMS

A

Kaw

(2.50)

where BMS, JMS and EMS refer to item, rater and error mean squares, respectively
based on N—1, R—1 and (R—1)(N —1) degrees of freedom. Schuster (2004) showed
that under the assumption of equal rater means, the weighted kappa coefficient is
equivalent to ICCgy or ICCe3 depending if raters are considered as random or
fixed, respectively.

 BMS-EMS  BMS-EMS
"= BMS+ (R—1)EMS  BMS + EMS’

(2.51)

By additionally assuming equality of rater variances, Cohen (1968) showed that
the weighted kappa coefficient is equivalent to Pearson’s correlation coefficient.
Schuster (2004) remarked that the Pearson’s correlation coefficient thus represents
an upper limit of the weighted kappa coefficient.

Linear weighting scheme. Vanbelle and Albert (2009¢) revisited the weighted
kappa coefficient with linear weights for ordinal scales to provide an intuitive in-
terpretation of it. For any ”cut-off” value k (k = 1,--- , K — 1), they reduced
the K x K contingency table (see Table 2.1) into a 2 x 2 classification table by
summing up all observations below and above the first k rows and first & columns
(see Table 2.13) where

Nu(k) = 22:1 Zf:lanJ Nia(k) = 221 E]K:l}(-j-l Nij
Not(k) =3 ik Zj:l ni; Noo(k) =324 Ej:k+1 Nij
1 1 1 .
Let Fy, (k) = NNlm(k), F = NNL(]{?) and F,, = NNm(k:) be the corresponding
joint and marginal frequencies (I,m =1,2;k =1,--- , K — 1). Finally, denote by

Po(k) = Fu1(k) + Faa(k) (2.52)

and
pe(k) = Fy.(k)F1(k) + Fa.(k)Fa(k) (2.53)

the observed and expected proportions of agreement corresponding to Table 2.13.
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Table 2.13. Reduction of the K x K
contingency table into a 2 x 2 classifi-
cation table by selecting a cut-off level
k (k=1,---,K) on the ordinal scale

Rater 2
Rater 1 <k >k Total
<k Ni1(k) Nio(k) Ni(k)
>k Noy (k’) NQQ(k) Ng(k)

Total Nl(k‘) NQ(k) N

Now, consider the quantities

Py = —Kl_ - po(k) (2.54)

and
1 K-1
S nh), (2.55)
k=1

Vanbelle and Albert (2009¢) showed that p} = pow and pi = pe, where p,, and
Pew are respectively the "linearly” weighted observed and expected agreement, as
defined by Cicchetti and Allison (1971) (see proof in Section 2.8). Specifically, they
showed that the observed and expected agreements are merely the mean values of
the corresponding proportions of all 2 x 2 tables obtained by collapsing the first
k categories and last K — k categories (k = 1,--- , K — 1) of the original K x K
classification table, giving an intuitive interpretation of the linearly weighted kappa
coefficient.

2.5.3 Sampling variability
The Delta method gives

var(fy) = 4{2 ijk Wi (1= pew) — (@ + W) (1 = pow)]”

1 _pEUJ ] 1 k=1
(powpew - 2pew + pow) } (256)

where w ; = Zﬁzl Wi jPrm. and Wy, = Zle wisp.s- The large sample variance can
also be derived by the Jackknife and the bootstrap method.

2.5.4 Example

In the cervical ectopy example (Gilmour et al., 1997), women were classified on a
4-category Likert scale. Disagreements between category 1 (Minimal) and 4 (Ex-
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cessive) may be considered more important than disagreements between category
1 (Minimal) and 2 (Moderate). The linear and quadratic weights corresponding
to a 4-category scale are given in Table 2.14.

Table 2.14. Linear (left) and quadratic (right) weighting schemes for a 4-
category scale

Rater 2 Rater 2
Rater 1 1 2 3 4 Rater 1 1 2 3 4
1 1.00 0.67 0.33 0.00 1 1.00 0.89 0.56 0.00

2 0.67 1.00 0.67 0.33
3 0.33 0.67 1.00 0.67
4 0.00 0.33 0.67 1.00

0.89 1.00 0.89 0.56
0.56 0.89 1.00 0.89
0.00 0.56 0.89 1.00

- W N

To determine the linearly weighted kappa coefficient, consider Table 2.15. The
weighted observed agreement is the sum of the elements obtained by multiplying
the columns w;; and p;;. The weighed expected agreement is the sum of the ele-
ments obtained by multiplying the columns w;; and p; p ;.

The linearly weighted kappa coefficient was found to be 0.520 with p,,, = 0.800
and pe,, = 0.583 while the quadratic weighted kappa coefficient was equal to 0.666
(Pow = 0.907 and p,,, = 0.722).

Table 2.15. Elements to determine the linearly weighted kappa coefficient for the
cervical ectopy size example

Rater 1 Rater 2 w;;  pij pip,; Rater 1 Rater 2 w;;  pij pip,;

1 1 1.00 0.15 0.05 3 1 0.33 0.04 0.04
0.67 0.02 0.05 0.67 0.08 0.04
0.33 0.00 0.03 1.00 0.04 0.03
0.00 0.00 0.02 0.67 0.00 0.02
0.67 0.12 0.09 0.00 0.01 0.09
1.00 0.19 0.10 0.33 0.05 0.10
0.67 0.04 0.06 0.67 0.14 0.06
0.33 0.00 0.04 1.00 0.13 0.04

N NN N ==
=W N = W
= ok e e W W W
=W N = R W
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2.6 Examples

2.6.1 Agreement and association

A frequent mistake is to use a chi-square test to quantify agreement between raters.
The example of Fermanian (1984) illustrates this confusion. Let two raters classify
independently N = 100 patients in three diagnostic categories A, B and C', leading
to the contingency table displayed in Table 2.16 (first line). Under the hypothesis
of independence of the two ratings, the expected cell counts are determined (second
line of Table 2.16).

n;mng

Tje= 5% jk=123 (2.57)

Table 2.16. Fermanian’s example
(1984): observed and expected
cell counts

Rater 2

Rater1 A B (C Total

A 16 0 24 40
16° 8 16

B 20 6 4 30
12 6 12

C 4 14 12 30
12 6 12

Total 40 20 40 100
% Observed cell count

b Expected cell count

Under the hypothesis of independence between the two raters, the statistic

=22 W (2.58)

where Ojy, is the observed cell count in the cell (j, k) and Ejj is the corresponding
expected cell count, follows a chi-square distribution with (K — 1)(K — 1) degrees
of freedom.

For the example, x?, = 38.7 with 4 degrees of freedom. Hence, there is a highly
significant association between the two ratings. However, the observed proportion
of agreement is equal to p, = 0.34 and the proportion of agreement expected by
chance to p. = 0.34. Thus, Cohen’s kappa coefficient is equal to

0.34—0.34

F="T_o3 "
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Despite the existence of a strong association between the two ratings, agreement
between the raters is only to be expected by chance. This example shows that
agreement and association are different things.

2.6.2 Blood clots detection

A study was conducted on 50 patients to measure the efficacy of two new methods
with respect to a standard method in the detection of blood clots in the legs (un-
published data). Each patient was classified as having (1) or not having (0) blood
clot(s) in the legs with respect to a reference method called ”Standard” and 2 new
methods ”"Method 17 and ”Method 2”. Age and gender were also recorded for
each patient. The study aimed at comparing the agreement between the standard
method and each of the new methods in order to make a choice between them.
There were 23 (46.0%) women and 27 (54.0%) men involved in the study. Their
mean age was 69.0 £ 16.1 years (range: 32-97 years). The classification of the
patients according to the presence of blood clots is given in Table 2.17 for the
entire population and in Table 2.18 according to gender.

Table 2.17. Blood clots detection (0=No, 1=Yes) in the legs
of 50 patients with a standard method and two new methods

Method 1 Method 2
0 1 Total 0 1 Total
Standard 0 18 11 29 26 3 29
1 4 17 21 4 17 21
Total 22 28 50 30 20 50

Table 2.18. Blood clots detection (0=No, 1=Yes) in the legs of 23 women
and 27 men with a standard method and two new methods

Method 1 Method 2

Gender Method 0 1 Total 0 1 Total
Women Standard 0 5 6 11 10 1 11
1 0 12 12 1 11 12
Total b5 18 23 11 12 23
Men Standard 0 13 5 18 16 2 18
1 4 5 9 3 6 9
Total 17 10 27 19 8 27

Cohen’s kappas corresponding to Tables 2.17 and 2.18 are given in Table 2.19 with
their standard error (SF) determined by the Delta and the Jackknife methods.
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Table 2.19. Blood clots detection example: Cohen’s kappa coefficients (k +
SE) for all patients and according to patients’ gender

All (N =50) Men (N =27) Women (N = 23)

Delta SE

Method 1 - Standard 0.41£0.12 0.2740.19 0.47+0.16
Method 2 - Standard 0.71+0.10 0.57+0.17 0.83+0.12
Jackknife SE

Method 1 - Standard 0.41£0.13 0.2740.20 0.47+0.17
Method 2 - Standard 0.71£0.10 0.5740.18 0.8340.12

Method 2 clearly gives better agreement with the Standard method than Method
1 and should thus, at this stage of the study, be preferred to Method 1.

2.6.3 Cervical ectopy size

Partial data of the study of Gilmour et al. (1997) were presented in Section 2.3.5.
The classification of the cervical ectopy size of 85 women by the 2 medical raters
using direct visual assessment and the computerized planimetry method is given
in Table 2.20.

Table 2.20. Assessment of the cervical ectopy size (1=Minimal, 2=Moderate,
3=Large and 4=Excessive) of 85 women by 2 raters with the visual assessment
and the computerized planimetry methods

Visual assessment Computerized planimetry
Rater 2 Rater 2
Rater1 1 2 3 4 Total Rater1 1 2 3 4 Total
1 13 2 0 0 15 1 30 1 1 0 32
2 10 16 3 0 29 2 7 25 3 0 35
3 3 7 3 0 13 3 1 4 1 1 7
4 1 4 12 11 28 4 0 1 2 8 11
Total 27 29 18 11 85 Total 38 31 7 9 85

The weighted kappa coefficients with quadratic weights corresponding to these
classifications are given in Table 2.21. The agreement between the two medical
raters was slightly higher with the planimetry method than with the direct visual

assessment.
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Table 2.21. Cervical ectopy example: weighted kappa
coefficients with quadratic weights (4, £+ SE)

Visual assessment Planimetry method
Delta SE 0.67£0.061 0.82+0.051
Jackknife SE 0.67+0.062 0.82+0.053

2.7 Discussion

In this chapter, measures of agreement between two raters on a K-categorical scale
were introduced: Cohen’s kappa, intraclass kappa and weighted kappa coefficients.
Cohen’s kappa coefficient is mainly used to quantify agreement on nominal scales,
the intraclass kappa coefficient on binary scales when no rater bias is assumed and
the weighted kappa coefficient on ordinal scales. These coefficients all possess the
same property of being equal to 1 when agreement is perfect and equal to 0 when
agreement is due to chance and will therefore be said to belong to the kappa-like
family. However, as mentioned in the review of Banerjee et al. (1993), this fa-
mily does not represent the only issue in the measurement of agreement between
two raters on a categorical scale. Indeed, when the binary scale can be viewed
as a dichotomization of an underlying continuous variable that is unidimensional
with normal distribution, the tetrachoric correlation coefficient (TCC) (Pearson,
1900) is preferred. This may be the case, for example, for radiological assessment
of pneumoconisis (normal/abnormal), which is assessed from chest radiographies
displaying a profusion of small irregular opacities (Banerjee et al., 1993). Note
that the TCC quantifies agreement in a different context and estimate, albeit re-
lated, different quantities (Kramer, 1997). Bennett et al. (1954) also derived the
S agreement coefficient, assuming a uniform marginal distribution for both raters.

Several criticisms on kappa coefficients were formulated in the literature. Firstly,
Thompson and Walter (1988), Feinstein and Cicchetti (1990), Cicchetti and Fein-
stein (1990) and Byrt et al. (1993) pointed out that Cohen’s kappa coefficient is
dependent on the prevalence of the trait under study which indicates a serious
limitation when comparing values of Cohen’s kappa coefficient among studies with
varying prevalence. The dependence studied by Thompson and Walter (1988) was
relative to the prevalence of the true latent binary variable under study, keeping
sensitivity and specificity fixed, while Feinstein and Cicchetti (1990) studied the
dependence of Cohen’s kappa coefficient on observed marginal prevalences, kee-
ping the proportion of observed agreement fixed. Indeed, it may appear surprising
to find a low agreement when diagonal cells in the 2 x 2 contingency table show
substantially greater frequency than the off-diagonal cells. However, Bloch and
Kraemer (1989) and Vach (2005) criticized the results of Thompson and Walter
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(1988) by noting that the dependence occurred only if one can change the preva-
lence without changing sensitivity and specificity, which is generally not the case.
Moreover, Vach (2005) pointed out that the dependence studied by Feinstein and
Cicchetti (1990) is simply a consequence of the purpose of Cohen’s kappa coef-
ficient. This was also noted by Hoehler (2000), who remarked that rater bias,
by definition, indicates disagreement. The latter author added that kappa should
never be adjusted for bias and prevalence, as made by Banerjee et al. (1993) and
Lantz and Nebenzahl (1996). An alternative should be the use of the intraclass
kappa coefficient, which ignores the bias existing between the raters. However,
Zwick (1988) proposed to study the bias that may arise between the raters and to
only assume no rater bias when it is plausible.

The use of weighted kappa coefficients was also criticized. The weights are gene-
rally given a priori and defined arbitrarily. In practice, the linear (Cicchetti and
Allison, 1971) and quadratic (Fleiss and Cohen, 1973) weighting schemes are the
most widely used. Quadratic weights have received much attention in the lite-
rature because of their practical interpretation. For instance, Fleiss and Cohen
(1973) and Schuster (2004) showed that using the weights v, = (j — k)?, the
weighted kappa coefficient can be interpreted as an intraclass correlation coeffi-
cient in a two-way analysis of variance setting. In addition, Schuster (2004) noted
that the weighted kappa coefficient is sensitive to change in location and scale of
the scores, the intraclass correlation coefficient only to changes in scale while the
Pearson’s correlation coefficient is not sensitive to any change in location or scale
and thus stressed the searcher to use the right coefficient according to the question
of interest. On an other hand, Vanbelle and Albert (2009¢) focused on the line-
arly weighted kappa coefficient defined by Cicchetti and Allison (1971) and strove
to give an intuitive interpretation of it. Graham and Jackson (1993) observed
that the value of the weighted kappa coefficient can vary considerably according
to the weighting scheme used and henceforth may lead to different conclusions
but guidelines for the selection of weights are inexistent unlike in Brenner and
Kliebsch (1996), who demonstrated, using simulations, that with linear weights,
the weighted kappa coefficient is less sensitive to the number of categories and
should therefore be preferred when the number of categories of the ordinal scale is
large. Finally, Roberts and McNamee (1998, 2005) developed a symmetric matrix
of kappa-type coefficients to assess the agreement on an ordinal scale, arguing that
collapsing all aspects of agreement into a single measure (i.e., the weighted kappa
coefficient) may be not sufficient when categories are defined qualitatively. The
matrix elements measure how well different parts of the scale may be distinguished
from each other and a weighted kappa coefficient can be derived from the diagonal
elements of the matrix.
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Another criticism about the kappa-like family agreement indexes is that, like cor-
relation coefficients, the interpretation of kappa statistics is not clear except for 0
and 1 values. Landis and Koch (1977b) therefore constructed a classification to
appreciate the strength of agreement. This classification is widely used but should
be avoided since its construction is totally arbitrary. It is preferable to consider a
confidence interval to appreciate the value of a kappa estimate, the lower bound
being often the only of interest. Several methods were derived to estimate the
sampling variability of agreement coefficients belonging in the kappa-like family.
Fleiss and Cuzick (1979) wrote "Many human endeavors have been cursed with
repeated failures before final success is achieved. The scaling of Mount Everest is
one example. The discovery of the Northwest Passage is a second. The derivation
of a correct standard error for kappa is a third’. This is still the case. Only the
Delta, Kraemer, Jackknife and Garner’s methods were presented in this chapter
because Blackman and Koval (2000) conducted a simulation study to compare the
confidence intervals obtained for the intraclass kappa coefficient in the binary case
based on these methods. As conclusion, they provided a guidance in selecting a
method in small samples, showed in Table 2.22.

Table 2.22. Guidance table for constructing confidence interval in small samples for
the intraclass kappa coefficient in the binary case

I3 Interpretation Prevalence Sample size ~ Method
0.0<#<0.2 Slight 01<P <09 N >20 Kraemer, Delta
02<#i <04 Fair 0.1<P <09 N > 20 Kraemer, Delta,
Jackknife
0.4 <k <06 Moderate 02<P<08 20 < N <40 Garner
P<02;P>08 N>40 Jackknife
0.6 < i< 1.0 Substantial 0.1<P <09 N > 20 Garner

However, in the literature, rules relative to the minimal sample size and marginal
totals to justify the asymptotic approximation of the Delta method or Kraemer’s
method are not clear. Bloch and Kraemer (1989) and Donner and Eliasziw (1992),
however, noted that the confidence interval obtained with Kraemer method is only
reasonable with ’large’ sample size that were not found to be attained in most
of the agreement studies. Bloch and Kraemer (1989) therefore proposed a vari-
ance stabilizing transformation of the intraclass kappa coefficient or the use of the
Jackknife estimator of the variance while Donner and Eliasziw (1992) proposed a
procedure based on the x? goodness of fit statistic for binary scales and extended
the procedure to multinomial scales later (Donner and Eliasziw, 1997). Donner
and Eliasziw (1992) found satisfactory results for N = 25 as Bloch and Kraemer
(1989). However, both methods perform poorly when agreement or prevalence is
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extreme (near 0 or near 1). Note that the Jackknife estimation of the variance was
also proposed by Fleiss and Davies (1982). Cantor (1996) provided sample-size
determination for Cohen’s kappa coefficient in the binary case when variance is
estimated by the Delta method. Nam (2000) proposed an alternative procedure,
the score method, to derive confidence interval for the intraclass kappa coefficient
and shown that the method performed better than the method of Donner and
Eliasziw (1992) for small sample sizes.

Despite the disadvantages and limitations of Cohen’s kappa coefficient, this index
is popular due to its simplicity and wide applicability. It should just be known,
that kappa mixes two sources of disagreement among raters, disagreement due to
bias among raters and disagreement that occur because raters evaluate the items
differently (Mielke and Berry, 2008).

2.8 Proofs

Equivalence 1. If

. 1
Py = e 2 polk)
k=1
and
| K
Pe = K_1 ;Pe(k)

where p,(k) and p.(k) are defined in Equation 2.52 and 2.53, then p’ = po, and
Di = Dew, Where poy, and pe,, are respectively the “linearly” weighted observed and
expected agreement, as defined by Clicchetti and Allison (1971).

Proof. Indeed, since
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and
—\ i —Ji
Po = ZZ(l_K_l)pij
i=1 j=1
K JK 1 K K
= Zzpw ﬁZZ“ J1pij

it suffices to prove that

- (Z Z Dij + Z Z?%) = : Z (j_i)pij+ZZ(i_j)pij' (2-59)

k=1 i=1 j=k+1 i=k+1 j=1

We have successively,
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= =3 =K
K—1 K—2
+ (K —jpxj+ > (K—1—j)px-1;+---
= =
K—(K—-1)
+ (K — (K = 1) = j)Pr—(K-1),
=
K-1 K K i
= G =Dpi+ Y (= i)piy (2.60)
=1 j—it1 i—1 =1

Thus, p; = pow. The proof for p; = p., proceeds similarly by replacing p;; by
Di.D.j (27]:177[() "






CHAPTER 3

Agreement between several raters

3.1 Introduction

While it is easy to define the agreement between two raters on a categorical scale
for a given item (they agree or they don’t agree), this is not the case when agree-
ment is searched between several raters (R > 2). Indeed, agreement on a given
item between R raters may be defined by an arbitrary choice along a continuum
ranging from agreement between a pair of raters to agreement among all raters,
i.e. a concordant classification between g raters (¢ = 2,---, R). The most restric-
tive definition is to ask that all R raters agree on the categorization of the item
(De Moivre’s definition of agreement) and the less restrictive one is the pairwise
definition of agreement, assuming that an agreement occurs if and only if two
raters categorize the item consistently (Hubert, 1977). The pairwise definition of
agreement was used by Fleiss (1971) and Davies and Fleiss (1982). In between,
Conger (1980) developed a general framework, permitting to choose the definition
of agreement on the continuum going from 2 to R, the g-wise agreement indexes
(9 = 2,--+,R), including the De Moivre’s (R-wise) and pairwise (2-wise) defini-
tions of agreement. Recently, Mielke and Berry (2008) proposed a weighted kappa
coefficient between R raters using the De Moivre’s definition of agreement.

However, Light (1971) used another definition of agreement. Specifically, he iden-
tified a rater among the R raters as the gold standard or the reference and defined
agreement as a consistent classification between the standard (or reference) and
another rater. Conger (1980) showed that this coefficient of agreement is equiva-

25
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lent to taking the average of the Cohen’s kappa coefficients determined between
all the R(R — 1) possible pairs of raters among the R raters.

Finally, a third approach consists in developing an agreement coefficient based on
models analogous to the ANOVA models for quantitative variables (Landis and
Koch, 1977c). More recently, Schuster and Smith (2005) proposed a dispersion-
weighted kappa framework for multiple raters (not shown here) to determine the
degree of agreement between many raters. The resulting framework includes the
2-wise agreement index (Conger, 1980) and the agreement index developed by
Landis and Koch (1977¢) as special cases.

3.2 Intraclass correlation coefficients

3.2.1 Omne-way random effects ANOVA model

3.2.1.1 Binary scale

Definition. Landis and Koch (1977c) considered the case of R raters classify-
ing independently N items on a binary scale (K = 2) when the items are not
always classified by all the raters. This corresponds to the one-way random effects
ANOVA model (see Chapter 1, Section 1.3.1). In this section, the number of raters
classifying each item will first be considered to be constant and equal to R. This
does not mean that the same R raters all classify each item. Based on the one-way
random effects ANOVA model (see Chapter 1, Equation 1.7) and similarly to the
quantitative case, Landis and Koch (1977¢) proposed to define the agreement as
the ratio of the between items variability and the total variability (see Chapter 1,

Equation 1.8)

2

O'B
== 3.1
Rrco; 0_2 + 0_% ( )

Estimation of the parameters. Suppose that item i is classified on a bi-
nary scale by R raters. For each item, the R raters are not necessarily the
same (¢ = 1,---,N). Consider the random variable Y;, equal to 1 if rater r
(r = 1,---,R) classifies item ¢ (i = 1,---,N) in category 1 and equal to 0
otherwise. Denote by y;, the observed value of the random variable Y;,. Let
n; = Zle yir be the number of raters among the R raters classifying item ¢ in
category 1 and p; = n;/R be the corresponding proportion (i = 1,--- , N). Finally,
let p = Zf\il n;/NR denote the overall proportion of items classified in category
1.
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The between sum of squares is estimated by

N 2

BSS =33 =3 Y (= (3

i=1 r=1 i=1 r=1 i=1
with NV — 1 degrees of freedom and the within sum of squares by
Al al n;(R —n;)
WSS=2 > wr—p?=) —F— (3.3)

=1 r=1 =1

with N(R — 1) degrees of freedom. The mean squares BM.S and WM S are then
respectively defined by

BMS = % ; @ (3.4)
and
WMS—N(R_l)Z = (3.5)

i=1

Note that BM S = BSS/N and not BSS/(N — 1) as it should be the case. This
approximation was made by Fleiss (1981) provided that N > 20. The agreement
coefficient, by analogy to the quantitative case, is defined by

BMS — WMS
BMS + (R— )WMS'

(3.6)

H;ICCl -

After some elementary algebraic manipulation, Equation 3.6 can be expressed as

Y Em(R=n) - YN pi(l—p)
NR(R—1)p(1—p) ! N(R—1)p(1—p) (3.7)

Rico, =1

This agreement coefficient possesses the following properties:

1. Ifpp=p(i=1,---,N), with p # 0 and p # 1, there is no more discordance
within items than between items. In that case, ~ijcc, takes its minimum
value, i.e. —1/(R —1).

2. If each proportion p; is equal to 0 or is equal to 1, the agreement on the
items is perfect and Koo, = 1.

When there are only two raters (R = 2), the proposed agreement coefficient ~roc,
reduces to the intraclass kappa coefficient k; defined in Chapter 2, Section 2.4.1.
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Sampling variability. Fleiss et al. (1979) showed that under the null hypothesis

Hy: Kkice, =0, )
var(Rioe,) = —=—o—- (3.8)

~ NR(R-1)
Remark that var(foc,) is independent of the overall proportion of items clas-
sified in category 1 (i.e., p). Since this is only asymptotic and valid to test for
null agreement, it is recommended to use the Jackknife estimator of the sampling
variability instead.

Unequal number of raters per item. When the number of raters classifying
each item is not constant and is equal to R; (i = 1,---, N), the between mean
squares and the within mean squares are respectively defined by

N
1 (n; — Rip)?
BMS = = § i 2Py .
S=+ ; D (3.9)
and

1 al n;(R; — n;)
WMS = —— SR 3.10
N(R-1) ; R; (3.10)

N
where R = Z R;/N. The agreement coefficient, by analogy to the quantitative

i=1
case, is estimated by

~ BMS-WMS
MO = BMS + (Ro — 1)WMS

(3.11)

where

Ry = R— ZfV:1<Ri _§)2'
N(N—l)R

Fleiss (1981) remarked that when N is "large”, Ry and R are similar. By replacing

Ry by R in Equation 3.11, the agreement coefficient is estimated by
BMS —WMS

BMS +(R—-1)WMS

Kico, = (3.12)

Fleiss and Cuzick (1979) showed that under the null hypothesis Hy : kjco, = 0,

(R — Ry)(1 —4p(1 —p))
Rp(1—p)

1

UCLT(/%[CCl) = ]\T(E——l)QEH (2(}_%]{ - 1) +

) (3.13)

where
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is the harmonic mean of the number of observations per item. However, since this
is only asymptotic and valid to test for null agreement, it is recommended to use
the Jackknife estimator of the sample variance instead.

3.2.1.2 Nominal scale

Definition. Suppose that the number of categories on which the items are clas-
sified is equal to K > 2. Denote by p; the overall proportion of ratings in category
7 and by /%Iccm the value of the intraclass correlation coefficient obtained when
category j is isolated from the other K — 1 categories (j = 1,---, K). Landis and
Koch (1977¢) proposed to take the weighted average

K R
> e (L= pj)iy
K
Zj:l pi(1 —pj)

K= (3.14)

as an overall measure of inter-rater agreement. This expression simplifies to

NR? — sz\il Zszl n?j
NR(R—1)>5 pi(1—py)

Rroo, = 1 (3.15)

where n;; is the number of raters classifying item ¢ (¢ = 1,--- ,N) in category j
(j=1,---,K) (ZJK:1 n;; = R). An algebraically equivalent version of Equation
3.15 was first presented by Fleiss (1971), who showed explicitly how the intraclass
correlation coefficient represents a chance-corrected measure of agreement (see
Section 3.6 for proof).

Sampling variability. Fleiss et al. (1979) showed that

2 |(S =) = Sl - )1 - 2)

> pi(1 = )P NR(R - 1)

~

var(r) =

(3.16)

3.2.1.3 Example

Conger (1980) considered the following hypothetical example. Suppose that 4
raters (R = 4) have to assign 10 subjects (N = 10) in 3 categories (K = 3). The
data are presented in Table 3.1 and summarized in Table 3.2. Suppose that the 4
raters are not necessarily the same for all subjects.

When interest is on category 1, the between sum of squares is equal to

1
BSS = 1 {(4—4x0375)*+(2—4x0.375)> + - + (0 — 4 x 0.375)*} = 4.125
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Table 3.1. Category assignment of 10 subjects by 4 raters
in 3 categories and number of subjects assigned in each ca-
tegory by each rater

Subject Category

Rater 1 2 3 4 5 6 7 8 9 10 1 2 3
1 111 11 2 2 2 3 3 5 3 2

2 1111 2 1 2 3 3 3 5 2 3

3 12 2 3 11 2 2 2 3 3 5 2

4 33 3 3 1 1 2 2 2 3 2 3 5

Table 3.2. Number of raters classifying each of 10 subjects
into one of 3 categories

Subject
Category 1 2 3 4 5 6 7 8 9 10 p;
1 3 2 2 2 3 3 0 0 0 0 037
2 01 1.0 1 1 4 3 2 0 0325
3 1 11 2 0 0 0 1 2 4 0.300

and the within sum of squares is equal to

Wssz}1{3<4—3>+2<4—2>+---+0(4—o)}:5.25.

This leads to BMS = 4.125/10 = 0.413 and WMS = 5.25/10(4 — 1) = 0.175,

whence

0.413 — 0.175
i1ce, = — 0.253.
MG T 0 413 + (4 — 1)0.175

In the same way, we obtained A;cc, = 0.278 and Ao, = 0.206 for categories 2
and 3, respectively. Since

3
S " pi(1 = p;) = 0.375(1 — 0.375) + 0.325(1 — 0.325) + 0.300(1 — 0.300) = 0.664,
j=1

the overall agreement coefficient is equal to

- 0.375(1 — 0.375)0.253 + 0.325(1 — 0.325)0.278 4 0.300(1 — 0.300)0.206

e = 0.664

= 0.247.
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3.2.2 Two-way ANOVA models

3.2.2.1 Binary scale

Definition. Similarly to the approach of Landis and Koch (1977c), it is possible
to determine an agreement index when each item is rated on a binary scale by
the same group of R raters, considered as fixed or randomly selected from a larger
population (see Chapter 1, Section 1.3.2). The agreement index takes into account
the systematic source of variation between items and between raters and is defined
by analogy to the quantitative case by

o op —of/(R—1)

and Kroce = .
2 2 2 2 2 2 2 2
op+o4+o7+o%g op+ 04 +o;+o5

Ricce = (317)

in case of random raters and fixed raters, respectively.

Estimation of the parameters. The coefficient K;cc9, in case of random and
fixed raters, is estimated by

P BMS — EMS s,
1™ BMS + (R—1)EMS + R(JMS — EMS)/N’ '
We have, by analogy to the quantitative case,
R N R N
BMS =5 ;(pz P =57 ;(pz P, (3.19)
R R
_ N _ , N L
JMS = 5 ;(y.,r P =5 z(y ), (3.20)

BMS = (N — 1)1(3 —1) D> Wi -7, =R (0i—p)’]. (3.21)

=1 r=1 1=1

where p; and p were defined previously and y , = Zf\;l Yir/N. After some ele-
mentary algebraic manipulation, Equation 3.18 can be expressed as

krce, = 1
_ (N =37 ni(R = ni) 322)
RN (i —p)2 = NN S (yir — 7.2+ NR2(N — 1)p(1 — p)

Sampling variability. It is suggested to use the Jackknife estimator to deter-
mine the sampling variability.
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3.2.2.2 Nominal scale

Definition. The approach of Landis and Koch (1977¢) defined in the one-way
ANOVA setting can be applied to the two-way ANOVA setting (see Equation
3.14), leading

K A
Zj:l pj(l - pj)K’ICC2[j]
i .
Zj:l pi(1 —pj)

Rrcc, = (3.23)

Sampling variability. It is suggested to determine the sampling variability us-
ing the Jackknife technique.

3.2.2.3 Example

Suppose now that in the hypothetical example of Conger (1980), each subject is
classified by the same set of 4 raters in the 3 categories. To calculate the overall
agreement index over the 3 categories, the agreement indexes are needed for each
category. The ANOVA table relative to category 1 is given in Table 3.3.

Table 3.3. Two-way ANOVA table when interest is on category 1 for the
example of Conger (1980)

Variability Sum of squares Degrees of freedom Mean squares
Between items 4.125 9 0.458
Within items 131.083 30 4.369
Between raters 129.708 3 0.169
Residuals 9.275 27 0.140
Total 135.208 39

The intraclass correlation coefficient relative to category 1 is thus equal to

R 0.458 — 0.169 0902
1602 ™ 0458 + (4 — 1)0.169 + 4(0.492 — 0.169)/10

In the same way, the intraclass coefficient relative to categories 2 and 3 are equal
to 0.302 and 0.280, respectively, leading an overall agreement index of

0.375(1 — 0.375)0.313 + 0.325(1 — 0.325)0.302 + 0.300(1 — 0.300)0.280
0.664

Rrcc, =
= 0.334.
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3.3 g-wise agreement indexes

3.3.1 General framework

Definition. Suppose that R raters have to classify /V items on a K-categorical
scale and that agreement is defined as a consistent classification of g raters (g <
R). Let n;; denote the number of raters classifying item ¢ in category j (i =
l,---,N;j =1,--- ,K), pj, the proportion of items assigned in category j by
rater r and p; = Zil p;r/ R the overall proportion of items classified in category

j(j=1,---,K). The g-wise observed proportion of agreement is defined as
N K —1
. D im1 Zj:l [ —o(ni; — 1)
NTIZo(R —7)
and the proportion of g-wise agreement expected by chance is equal to

ORI SIS | (1 (3.25)

R LWccple) j=1 s=1

Po(9) (3.24)

where Y 1)_.._,( is the summation over all g-tuples of raters such that 1 < r) <

--- <79 < R. This leads to the g-wise agreement index

/%(g) _ po(g) _pe<g)'

3.26
1- Pe (g) ( )
The intraclass version is obtained by considering
K
pe(g) = Zp?. (3.27)
j=1

Sampling variability. It is suggested to use the Jackknife estimator of the
standard error for the g-wise agreement indexes.

3.3.2 Pairwise agreement index

Definition. Davies and Fleiss (1982) proposed a chance-corrected measure of
agreement based on pairwise agreement which can be expressed in terms of mean
squares under a two-way ANOVA setting when the scale is binary and is equivalent
to the 2-wise agreement index introduced by Conger (1980). Suppose that each of
several raters (r = 1,--- | R) classify each of a sample of items (i = 1,--- ,N) on a
K-categorical scale. Let the random variable Y;;, equal to 1 when rater r classifies
item 7 in category j (Zfil Yi;» = 1) and y;;, denote the achievement of the random
variable Y;;,. Finally, let n;; = Zle Yij,» be the number of raters classifying item
iin category j (i =1,--- ,N;j=1,--- R). Davies and Fleiss (1982) defined the
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observed proportion of agreement as the mean observed proportion of agreement
between all R(R — 1) possible pairs of raters among the R raters.

Po = _1 ZZOTT

r=1 r/#r
N K R

ST T E D DD NI

11] 1 r=1 r'#r

S S DN

=1 j=1

1 N K ,
- m{ZZnij—NR}. (3.28)

In the same way,

= RE-D ZZZyﬂyﬂ

j=1 r= 17"7£r
= Zp] ZZ Yo —5)° (3.29)
]:1 r=1

where p; = Zle Y;»/ R is the overall proportion of items classified in category j
(j=1,---,K). Davies and Fleiss (1982) then defined the agreement coefficient

A _ Po = Pe
1_pe

RKp =

NR? =N 8 nZ.
= 1- Lim1 21 . (3.30)

N{R(R = 1) 3250 pi(1 =) + 22500 001 (T — 23)%)

When there are only two raters (R = 2), the agreement coefficient defined by

Equation 3.30 reduces to Cohen’s kappa coefficient (see Chapter 2, Section 2.3).
The pairwise agreement index proposed by Davies and Fleiss (1982) is equivalent
to the 2-wise agreement index of Conger (1980).

When interest lies in only one category 7, all the other categories than the category
of interest may be combined into a single category and the problem reduces to the
binary case. The resulting agreement coefficient proposed by Davies and Fleiss
(1982) then simplifies to

fpy) = Po — Pe _ 1— ZZ]L ni; (R — nyj) (3.31)
J — .
L =pe N{R(R = Dp;(1 = pj) + 3,5, (@ — )%}
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and can be expressed in terms of mean squares

o BMS — EMS
"PUl = BMS + (R — 1)EMS + R JMS/(N — 1)

where BM S, EMS and JM S were defined previously.

(3.32)

However, the agreement coefficient relative to the two-way analysis of variance is
given by Equation 3.18. Davies and Fleiss (1982) observed the equivalence of & pyj
and Arcc, provided that N is large (N > 15).

Sampling variability. Davies and Fleiss (1982) only gave the formula of the
standard error for the binary case and proposed a FORTRAN program for the
nominal case since the form is to complicated. The Jackknife estimator to com-
pute the sampling variance of this agreement index may therefore be an interesting
alternative.

3.3.3 Weighted R-wise agreement index

Definition. Recently, Mielke and Berry (2008) introduced a weighted agreement
index between R raters using the De Moivre’s definition of agreement. Although
their method is valid for any number R of raters, the method is presented for three
raters (R = 3) for notation convenience. Let nj;; be the number of items classified
in category j by rater 1, category k by rater 2 and category [ by rater 3 and p;, the

proportion of items assigned in category j by rater r (j = 1,--- , K;r = 1,2,3).
The weighted observed agreement is defined by
K K K

Pow(3 Z Z Z WiikiNjki (3.33)
j 1 k=1 [=1

and the weighted agreement expected by chance is defined by

K K K

Pew(3 ZZZ WjkiPj1Pk,2P1,3 (3.34)
=1 k=1 I=1

leading to the weighted agreement index

pow(S) - pew<3)
1- pew(3)

Mielke and Berry (2008) proposed weighting schemes corresponding to the linear

Kuw(3) = (3.35)

and the quadratic weighting schemes introduced in the case of two single raters.
In case of three raters, the linear weighting scheme writes
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and the quadratic weighting scheme is
wig=G—k?+0G -0+ k=0 G kl=1, K). (3.37)
When the weights are defined to be

wigw=1if j=k=1(j,k,1=1,2,3)
w;p = 0 otherwise,

the weighted agreement index of Mielke and Berry (2008) is equivalent to the
3-wise agreement index of Conger (1980). This is also the case for R > 3.

Sampling variability. Mielke and Berry (2008) proposed to use an exact per-
mutation test to test hypotheses. The procedure consists in generating all possible
arrangements of the N items in the K # cells of the contingency table resulting from
the classification of the R raters, while preserving the marginal totals. For each
arrangement of the cell frequencies, the weighted agreement index is determined.
The number of times that the resulting weighted agreement indexes exceed or are
equal to the value of the weighted agreement obtained from the original sample is
then recorded. If this number, divided by the total number of permutations, is less
than or equal to the o confidence level, then the null hypothesis is rejected. Since
the number of permutations is usually very large for multi-way contingency tables,
Mielke and Berry (2008) proposed to calculate the weighted agreement index for
a large number (e.g., 1 000 000) of random tables.

3.3.4 Example.

Consider again the example of Conger (1980). To calculate the 2-wise (pairwise)
agreement index, we need

Do (100 — 10 x 4) = 0.500

1
C10x4(4-1)

and

p. = 0.375% 4+ 0.325% + 0.300°

_ {(0.500 — 0.375) + -+ + (0.500 — 0.300)°} _ .0
4(4-1) T

This leads to
~0.500 —0.322

_ — 0.263.
oD [ —o32m 0203
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Then, to determine the 3-wise agreement index, we need

1
PG = a—oa-na—2
< 1B=0)3=1)(3—2) +(0—0)(0—1)(0—2) + (1 —0)(1 — 1)(1—2)
b (0= 0)(0 = 1)(0 = 2) + (0 — 0)(0 — 1)(0 — 2)
boA—0)4—1)4—2)
~ 0.300
and
Pe(3) = i[(O.S x05x034+03x02x05+02x0.3x0.2)+---

+ (0.5x0.3x0.240.2x0.5x0.3+0.3x0.2x0.5)]=0.100.

This leads to
~0.300 —0.100

(3 _
7(3) 1-0.100

In the same way, the 4-wise agreement index is equal to

= 0.222.

~0.200 —0.039

G(4) = — 0.175.
f(4) o003 0P

3.4 Syphilis serology

A proficiency testing program for syphilis serology was conducted by the College of
American Pathologists (CAP). For the fluorescent treponemal antibody absorption
test (FTA-ABS), 3 reference laboratories were identified and considered as experts
in the use of that test. During 1974, 40 syphilis serology specimens were tested
independently by the 3 reference laboratories. Williams (1976) presented results
obtained by the 3 reference laboratories and an additional participant (noted L)
for 28 specimens (see Appendix A.2, Table A.2). Each specimen was classified
as non-reactive (NR), borderline (BL) or reactive (RE). The different agreement
coefficients between the 3 reference laboratories are given in Table 3.4 with their
standard error derived by the Jackknife technique.

All the agreement indexes gave similar results. There is agreement between the
3 reference laboratories. As expected, the 2-wise agreement index is equal to the
agreement index derived by Davies and Fleiss (1982). Although, Light’s and the
2-wise agreement indexes seemed to be equal, Light’s agreement index is equal
to 0.67932 while the 2-wise agreement index is equal to 0.67908. It should be
noted that it is not correct to compute the agreement index A;c¢, since the same
3 reference laboratories classified all specimens.
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Table 3.4. Agreement coeffi-
cients obtained for the classifi-
cation of 28 specimen by 3 re-
ference laboratories

Coefficient Estimate SE

krce, 0.676  0.099
kice, 0.684  0.096
/(2) 0.679  0.097
i(3) 0.697  0.095
iD 0.679  0.097
R Light 0.679  0.097

3.5 Discussion

Several approaches were presented in this chapter. Firstly, agreement was defined
as the ratio of the between items variability and the total variability by Landis
and Koch (1977c). These agreement indexes are all based on the absolute defini-
tion and not on the consistency definition of agreement. The model on which the
agreement coefficient is constructed should be chosen with care because the results
have to be interpreted differently, depending on the model, as it was the case on
quantitative scales. To our knowledge, only the coefficients derived by Landis and
Koch (1977¢) and Davies and Fleiss (1982) are usually used in practice although
agreement indexes might be constructed on other ANOVA models.

As an alternative, agreement was defined as a concordant classification of g raters
among the R raters (¢ < R). Conger (1980) defined a general framework, the
g-wise agreement indexes, including the less restrictive (2-wise) and the most re-
strictive (R-wise) definition of agreement. No guideline was provided to determine
the optimal number of raters g, which depends on the total number of raters R.
The larger the number of raters, the more difficult it will be to have a concordant
classification between all the raters. In practice, g is often determined to corre-
spond to the majority of the raters (¢ > R/2). Note that Mielke and Berry (2008)
preferred the R-wise rather than the 2-wise definition of agreement because all in-
teractions between the R raters are not taken into account in the 2-wise definition.

Although the agreement coefficients were developed in different frameworks, the
agreement coefficient proposed by Landis and Koch (1977¢) in a one-way ANOVA
framework is equivalent to the pairwise agreement coefficient derived by Fleiss
(1971) and the agreement coefficient developed by Davies and Fleiss (1982) can be
expressed in terms of mean squares in a two-way ANOVA setting. Note that this
latter coefficient is also equivalent to the 2-wise agreement coefficient developed by
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Conger (1980). In the present example, all approaches led to similar results. To our
knowledge, guidelines for choosing between the different definitions of agreement
do not exist and might therefore be the incentive for further research.

3.6 Proofs

Equivalence 2.

N K
froo =1 - MY (3.38)
' NR(R—1)31 pi(1—pj)

can be expressed as a chance-corrected measure of agreement,

Rrce, = : (3.39)

Proof. Indeed, the number of pairs in agreement out of all R(R — 1) possible pairs

18
K

Poi = R(Rl— 1y 2 Ml = 1) = ﬁ(z =R (340)

Fleiss (1971) then defined the overall proportion of agreement as

Do Z _1 Zznfj NR) (3.41)

=1 j5=1

and the proportion of agreement expected by chance by

K
=> 7 (3.42)
j=1
Simple algebraic manipulations show that

N K
_ - Zi:l Zj:l nzzj _ Po—Pe
NR(R—1)3 1 pi(l—p;) 1—p

kico, = (3.43)






CHAPTER 4

Agreement between an isolated
rater and a group or raters

4.1 Introduction

Cohen (1960) introduced the kappa coefficient & = (p, — pe)/(1 — pe) to quan-
tify the agreement between two raters classifying items on a categorical scale. He
corrected the proportion of items with concordant classification (p,) for the pro-
portion of concordant pairs expected by chance (p.) and standardized the quantity
to obtain 1 in case of perfect agreement between the two raters and 0 when the
raters agree by chance. There are situations where agreement is searched between
an isolated rater and a group of raters, regarded as a whole, a reference, expert or
gold standard group, in which all raters may not perfectly agree with each other.
For example, each of a series of candidates may be assessed against a group of
experts with the purpose of evaluating their knowledge and classifying the candi-
dates. This is a frequent exercise in education or in competence examinations. In
the context of accreditation, a routine laboratory may have to reach a pre-defined
level of agreement when challenged against a set of reference laboratories for a
number of test specimens. Acknowledgment has to be make for the fact that the
reference laboratories exhibit themselves analytical variability and do not neces-
sarily agree with each other. The traditional approach to solve this problem is to
determine a consensus in the group of raters and to measure the agreement bet-
ween the isolated rater and the consensus in the group (Landis and Koch, 1977a;
Soeken and Prescott, 1986; Salerno et al., 2003). Thus, the so-called ”consensus

71
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method” reduces the problem to computing the classical Cohen’s kappa coeffi-
cient. The consensus may be defined as the category chosen by a given proportion
of raters in the group (for example, Ruperto et al. (2006) defined the consensus as
the category chosen by at least 80% of the raters in the group) or the category the
most frequently chosen by the raters in the group (Kalant et al., 2000; Smith et al.,
2003). In both cases, however, the problem of handling items without consensus
in the group arises. Ruperto et al. (2006) discarded all items without consensus
from the analysis, while Kalant et al. (2000) and Smith et al. (2003) did not en-
counter the problem. The method consisting in reducing the judgements made by
a group of raters into a consensus decision was criticized by Eckstein et al. (1998),
Salerno et al. (2003) and Miller et al. (2004). Eckstein et al. (1998) studied the
bias that may result from removing items without consensus, while Salerno et al.
(2003) argued that the dispersion likely to occur in the classifications made by the
raters in the group may not be reflected in the consensus. Finally, Miller et al.
(2004) showed that different conclusions may be obtained by using different rules
of consensus.

Williams (1976) developed a measure for comparing the joint agreement of se-
veral raters with another rater without determining a consensus in the group of
raters. Specifically, he compared the mean proportion of concordant items bet-
ween the isolated rater and each rater in the group to the mean proportion of
concordant items between all possible pairs of raters among the group. The ratio
derived, known as Williams’ index, is compared to the value of 1. Unfortunately,
Williams’ index does neither account for agreement due to chance nor measure the
agreement between the isolated rater and the group of raters. In a different con-
text, Schouten (1982) described a hierarchical clustering method based on pairwise
weighted agreement measures (referred hereafter as Schouten’s agreement index)
to identify homogeneous subgroups among a group of raters classifying items on a
nominal or ordinal scale. Lastly, Light (1971) investigated the reverse problem of
comparing the joint agreement of several raters with a gold standard. He derived a
statistic based on the proportion of concordant pairs obtained between each rater
in the group and the gold standard (the isolated rater). As for Williams’ index,
Light’s method does not actually quantify the agreement between the gold stan-
dard and the group of raters.

Vanbelle and Albert (2009a) proposed a novel coefficient for quantifying the agree-
ment between an isolated rater and a group of raters, considered as a well-defined
entity with its own heterogeneity. This coefficient overcomes the problems of con-
sensus by capturing the variability within the group of raters. It generalizes the
approach of Schouten (1982) and possesses the same properties as Cohen’s kappa
coefficient.
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4.2 A novel agreement index

4.2.1 Binary scale

Consider a population Z of items and a population R of raters. Suppose that the
items have to be classified in two categories (K = 2) by the raters of the population
and by an isolated rater, not belonging to R. Consider a randomly selected rater
r from population R and a randomly selected item ¢ from population Z. Let X,
be the random variable such that X;, = 1 if rater r classifies item 7 in category
1 and X;, = 0 otherwise. For each item i, F(X;,|i) = P(X;, = 1) = P, over the
population of raters and var(X;,|i) = P;(1 — P;). Then, over the population of
items, E(P;) = F[E(X;,|i)] = 7 and var(P;) = 0. Suppose that the agreement in
the population of raters is quantified by the intraclass correlation coefficient (see
Chapter 2, Section 2.4.1), labeled IC'C' in this chapter for convenience reasons,

0.2

cc=-—2__
ce (1l —m)

In the same way, let Y; denote the random variable equal to 1 if the isolated rater
classifies item ¢ in category 1 and Y; = 0 otherwise. Over the population of items,
E(Y;) = 7 and var(Y;) = 0** = 7*(1 — 7*). The correlation between P; and Y;
over Z writes

E(PY;) — nm*

P= oo* '

Now, consider the joint probability distribution of the classification of item ¢ made
by the population of raters and the isolated rater. On a binary scale, this consists
of 4 probabilities (1 — P)(1 —Y;), (1 = P;)Y;, P,(1 = Y;) and BY;, respectively. For
example, P;Y; denotes the probability that the population of raters and the isolated
rater both classify item ¢ in category 1. The expectations, over the population of
items, of these joint probabilities can be represented in a 2 x 2 classification table,

as displayed in Table 4.1.

The probability that the population of raters and the isolated rater agree on item
1 is given by

I, =PY,+(1-P)(1-Y;) (4.1)
so that, over the population of items Z, the mean probability of agreement is given
by the expression

Iy =FE(1L)=m1"4+ (1 —7)(1 — ") + 2poc™ (4.2)

which corresponds to the sum of the diagonal elements in Table 4.1. Surprisingly,
for a given level of agreement (IC'C') within the population of raters, the maximum
attainable value Il is not necessarily equal to 1 as shown below.
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Table 4.1. Expected joint and marginal probability distri-
butions resulting from the binary classification of a ran-
domly selected item ¢ from the population Z by the popu-
lation of raters R and the isolated rater
Isolated rater
R 0 1
0  E[(1-F)(1-Y)] E(1-R)Y] 1-7
(1—7m)(1—=7")+ poo* (1 —m)n* — poc*

1 E[P,(1-Y;)] E[RY}] v
(1l —7*) — poo* Tt 4 poo*
1—7* * 1

By definition, the population of raters and the isolated rater ”perfectly agree”
when 7 = 7* and p = 1 (Vanbelle and Albert, 2009a). In terms of the random
variables P; and Y;, this is equivalent to writing (see proof in Section 4.10.1)

P, =711 —VICC)+VICCY;.

where, for convenience, 7** denotes the common value of m = 7*.

Replacing P; in Equation 4.1 and taking the expectation over population Z, the
maximum attainable value of IIr is found to be

My =1 —22"(1 — 7*)(1 — VICO). (4.3)

This quantity turns out to be equal to 1 if and only if ICC = 1, i.e., there is
perfect agreement in the population of raters R, or trivially, if #** = 0 or 1. It
should be remarked at this stage that Schouten (1982), in his paper, implicitly
assumed II,, = 1.

Following the results above, the coefficient of agreement between the population of
raters and the isolated rater can be advantageously defined in a kappa-like manner,
namely,

My —TIg
Iy — g
with IIr the theoretical agreement, II;; the maximum attainable agreement and
[1g the agreement expected by chance. Il is the probability that the population of
raters and the isolated rater agree under the independence assumption, E(F;Y;) =
E(P)E(Y;). llg is defined by

(4.4)

K

Op=nr"+ (1 —m)(1 —7"). (4.5)
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Note that II; = Il (see Equations 4.2 and 4.5) in the absence of correlation bet-
ween the ratings of the population of raters and of the isolated rater (p = 0) or
when there is no variability in the classifications made by the population of raters
(0 = 0) or by the isolated rater (6** = 0). The agreement coefficient (Equation
4.4) has been standardized in such a way that x = 1 if the agreement between
the isolated rater and the group of raters reaches the maximum attainable value
[Ty, (perfect agreement) and x = 0 when agreement can only be explained by
pure chance. Lastly, observe that Equation 4.3 reduces to Schouten’s index when
Iy, = 1.

An intraclass version of k can be derived using the additional assumption 7 =
7 = 1 (equality of marginal probabilities). In that case, we have

E(BY;) _ 71_**2

0.**2

(4.6)

R =

which is equivalent to the correlation coefficient between P; and Y; under the
assumption of equal marginal probabilities.

4.2.2 Nominal scale

When K > 2, the coefficient of agreement between the population of raters and
the isolated rater is defined by

K
> o Uyr =) Ty — Tl

K = —
S (Mg — Tye) T —1g

where IIj;r, ;g and Il correspond to the quantities described in the binary
case (K = 2) when the nominal scale is dichotomized by grouping all categories
other than category j together. Iy, Iz and I, are defined respectively by

K
Iy =Y  E[P;Yy);
j=1
K
Iy = Z T
j=1
K

My = > Bl + (1 =) /ICC)Yy] = (x5 + (1 — 7)/ICC))

j=1 j=1

where P;; denotes the probability for a randomly selected item 4 to be classified
in category j (j = 1,---, K) by the population of raters, with E(P;;) = 7;. Yi;
denotes the random variable equal to 1 if the isolated rater classifies item ¢ in
category j (Y;; = 0 otherwise). Finally, IC'C; denotes the intraclass kappa coeffi-
cient relative to category j (7 = 1,---, K) in the population of raters (see proof
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in Section 4.10.2).

The coefficient x possesses the same properties as Cohen’s kappa coefficient, k = 1
when agreement is perfect (Ilp = II/), K = 0 if observed agreement is equal to
agreement expected by chance (Il = Ilg) and k < 0 if observed agreement is
lower than expected by chance (IIp < Ilg).

4.2.3 Ordinal scale

A weighted version of the agreement index can be defined in a way similar to the
weighted kappa coefficient (see Chapter 2, Section 2.5),

P Urw —1lpw

W= 2 —EW

Uyw —Hew
with

My = 3 Y wiB[(75 + (1 — 73%)\/ICC; Y)Y .

j=1 k=1

4.3 Estimation of the parameters

Consider a random sample of N items drawn from population Z. Let each item
be classified independently on a K-categorical scale by a random sample (group)
of R raters from population R and by the isolated rater.

4.3.1 Binary scale

Let x;, designate the observed value of the random variable X ,, denoting the cate-
gory assignment made for item i by rater r from population R (i =1,--- ,N;r =
1,---,R). Then, let n; = Zle x;, denote the number of times that item 7 is
classified in category 1 by the group of raters and p; = n;/R the corresponding
proportion (i = 1,---, N). If y; denotes the observed value of the random vari-
able Y;, representing the category assignment of item ¢ by the isolated rater, the
probability that the population of raters and the isolated rater agree is estimated
by the observed proportion of agreement,

~ fiy :%Zw (= p)(1 = g0 (4.7
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The probability of agreement expected by chance is estimated by the proportion
of agreement expected by chance,

pe=Tp=py+1-p)(1—y)

where y is the proportion of items classified in category 1 by the isolated rater,

|
y—N;yl

and p is the overall proportion of items classified in category 1 by the group of
raters,

The degree of agreement x between the group of raters and the isolated rater is
then estimated by

Po — Pe

Pm — De

where p,,, corresponds to the maximum possible proportion of agreement derived

K=

from the sample. Since each response y; given by the isolated rater can only be 0 or
1, it is easily seen that for each item i, p;y; + (1 —p;) (1 —v;) < maz(p;, 1 —p;) (i =
1,--+,N). It follows from Equation 4.7 that the maximum attainable proportion
of agreement is given by the expression

N
~ 1
Pm = 1y = N izlmﬂw(lh‘a 1—p;).

This quantity can only be equal to 1 if p; = 0 or 1 for all items (i = 1,--- ,N) as
assumed by Schouten.

4.3.2 Nominal scale

The estimation of the parameters easily extends to the case K > 2. Let x;;, denote
the observed value of the random variable X;;, equal to 1 if rater r (r =1,--- , R)
of the group classifies item i (¢ = 1,--- , N) in category j (j = 1,--- , K) and equal
to 0 otherwise. Then, let n;; = Zil x;;,» denote the number of times the item ¢ is
classified in category j by the raters of the group and p;; the corresponding propor-
tion. We have Zlepij =1, (i=1,---,N). Finally, let y;; denote the observed
value of the random variable Y;; corresponding to the category assignment of item
1 made by the isolated rater. Then, the data can be conveniently summarized in
a two-way classification table (see Table 4.2) by defining the quantities

N
1 .
Cjk = szwyzka j)k = ]-7 7K'
i=1
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Table 4.2. Two-way classification table of the NV items by
the group of raters and the isolated rater

Isolated rater

Group of raters 1 R | ... K Total
1 C11 e C1j e C1K C1.
j Cj1 N Cjj PN CiK Cj.
K CK1 CKj CKK CK.
Total c1 ceeCy ... CK 1

The observed proportion of agreement between the group of raters and the isolated

rater is defined by
K

ZszyU chj'

lel

The marginal classification distribution of the isolated rater, namely,
|
j—ﬁzw, j=1,---,K (4.8)

with ZJK=1 y; = 1 and the marginal classification distribution of the group of raters,

N
1 Z .
i=1

with Z]KZI p;j = 1 are needed to estimate the agreement expected by chance. The
proportion of agreement expected by chance is given by

K

K
Pe= ) DU =Y ;.
j=1

Jj=1

The degree of agreement x between the population of raters and the isolated rater
is then estimated by

Do — Pe

Pm — Pe

where p,, corresponds to the maximum possible proportion of agreement derived

K=

from the data set. By extending the argument used for the binary case, it is easily
seen that

N
1
=5 Z Max;pij. (4.10)
i=1
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Observe that in the calculation of p,,, no explicit use is made of category 7 in which
the maximum occurs. Thus, in case where the maximum is not unique, only the
value of the maximum is actually important.

4.3.3 Ordinal scale

The estimation of the weighted agreement index is simply done by introducing
weights in the estimations previously defined. Hence,

~ Pow — Pew
Ky = —/————
Pmaw — Pew
with
1 N K K
Pow = N Z Z Z WikPijYik
i=1 j=1 k=1
K K
Pew = DD Wikbilk

1 1

T.
ZTT

Pmw = _Z GIE] ijkpzk~

The unweighted agreement index k can be obtained using the weights w;; = 1 and

2

4.3.4 Sampling variability

The Jackknife method (Efron and Tibshirani, 1993) can be used to determine the
sampling variance of the agreement index. Suppose that the agreement between
the isolated rater and the population of raters was estimated on a random sample of
N items. Let Ky denote that agreement index and //%%)_1 the estimated agreement
index when observation ¢ is deleted. These quantities are used to determine the
pseudo-values

Rvi=Niy — (N = 1)rY |

The Jackknife estimator of the agreement index is then defined by

- 1
Ry = Z_
with variance

_ 1 1 S
var(Ry) = N {m Z(/@N,i —Rn) } :

=1

The bias of the Jackknife estimator is estimated by
BZ‘CZS(T%N) = (N — 1) {%N — RN} .
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4.3.5 Example

Consider the following hypothetic example (Vanbelle et al., 2007) to illustrate how
to calculate the proposed agreement index. Suppose that an isolated rater and a
group of 12 raters have to classify 3 items on a 5-point Likert scale with values
—2,—1,0, 1 and 2. The data are given in Table 4.3.

Table 4.3. Classification of 3 items on a 5-point Likert scale given by a group
of 12 raters and an isolated rater (hypothetic example)

Raters in the group Isolated rater
Item 1 2 3 4 5 6 7 8 9 10 11 12 1
1 o 1 2 2 2 1 2 1 1 1 1 1 1
2 o -r 1.0 0 -1 -1 0 0 -1 -1 -1 0
3 11 -2 -1 -1 1 -2 -2 -1 -1 1 1 -2

The responses given by the group of raters can then be summarized (see Table
4.4). For example, 7 raters of the group have classified item 1 in category (1).

Table 4.4. Distribution of the responses given by the group of 12
raters and the isolated rater (hypothetic example)

Group of raters Isolated rater

Category Category
fem (-2) (1) (0) () @) (2 () (0 1) (2
1 0 0 1 7 4 0 0 0 1 0
2 0 6 5 1 0 0 0 1 0 0
3 3 4 0 5 0 0 1 0 0 0

The responses of the group of raters and the isolated rater are then expressed in
terms of proportions (p;; = n,;/12) and the marginal classification distribution
of the group of raters (p;) determined using Equation 4.9. In the same way, the
marginal distribution of the isolated rater (y;) can be determined by Equation 4.8.
The values of these parameters are given in Table 4.5.

The observed proportion of agreement is equal to

N K
1 Z Z 0.58 +0.42 4+ 0.25
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Table 4.5. Distribution of the responses given by the group of 12 raters and
the isolated rater expressed in terms of proportion (hypothetic example)

Group of raters Isolated rater
Category Category
Item (-2) (1) (0) (1) (2 2 (1) (O @ (2
1 0 0 0.08 0.58 0.33 0 0 0 1 0
2 0 0.50 0.42 0.08 0 0 0 1 0 0
3 0.25 0.33 0 0.42 0 1 0 0 0 0
Dj 0.08 0.28 0.17 0.36 0.11 033 0 033 033 O
the proportion of agreement expected by chance to
K
pe =Y pjy; =0.08x0.3340.28 x 0+0.17 x 0.33 4 0.36 x 0.33 + 0.11 x 0 = 0.20
j=1
and the maximum possible proportion of agreement to
1« 0.58 + 0.50 + 0.42
Pm = 37 ZZI max;p;j = 3 = 0.50.

This leads to an agreement index of

Po—pe  0.42—-0.20
Pm —Pe  0.50 — 0.20

=0.73.

K=

4.4 The consensus approach

4.4.1 Binary scale

Consider a population Z of items and a population R of raters. Suppose that the
items have to be classified in two categories (K = 2) by the raters of the population
and by an isolated rater, not belonging to R. As already mentioned, the consensus
approach consists in summarizing the responses given by the raters of the group in
a unique quantity for each item. Very often the consensus category is taken as the
modal category (majority rule) or the category chosen by a prespecified proportion
of raters (e.g., > 80%). Evidently, a consensus may not always be defined. For
example, on a nominal scale, one could have two modal categories or no category
chosen by the prespecified proportion of raters. Therefore, suppose that on the
N items drawn from population Z, a consensus can only be defined on No < N
items. Let Zo denote the sub-population of items on which a consensus is always
possible and Z; be a random variable equal to 1 if category 1 corresponds to the
consensus category given by the population R of raters for item ¢ and equal to 0
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otherwise. Then, over Z¢, F(Z;) = ¢ and var(Z;) = 02 = ¢(1 — ¢). In the same
way, let Y; denote the random variable equal to 1 if the isolated rater classifies item
i in category 1 and Y; = 0 otherwise. Over the population of items, E(Y;) = 7*
and var(Y;) = 0 = 7*(1 — 7*). If p' denotes the correlation coefficient between
Y; and Z;, we have the following representation of the cross-classifications of the
items by the isolated rater and the population of raters (Table 4.6).

Table 4.6. Expected probabilities of the classification of the iso-
lated rater and the population of raters over the sub-population
Zc of items where a consensus is possible

Isolated rater

0 1
0 E(1-2Z)(1-Y)) E((1-%)Y;) 1-¢
(1-¢)1 —7")+poco™ (1—¢)r* —ploco™
R
1 E(Zi(1-Y) E(Z:Y;) ¢
(1 —7*) — ploco™ o + plogo*
1—7* T 1

The agreement between the consensus in the population of raters and the isolated
rater is defined by

e = ZiY; + (1 - Z;)(1 - Y)). (4.11)
Thus,
Hre = E(Ilic) = ¢ + (1 — ) (1 — 7*) + 2p/oc0™. (4.12)
The agreement expected by chance is defined by
g = ¢ + (1 — ¢)(1 — %) (4.13)
and perfect agreement is achieved when Z; =Y, for all items in Zs, leading to
Mye = E(IL;) = 1. (4.14)

Therefore, the agreement coefficient between the population of raters and the

isolated rater is defined by
_ Hre —ge

R =
1 —1Ilge
and corresponds to Equation 2.18 derived in Chapter 2, Section 2.3.3.

(4.15)

4.4.2 Nominal scale

Equation 4.15 can be extended to the case of a scale with K > 2 categories in the
following way:
o — Sima(Myre = Mype) _ Tre —Tlpe
> (1= iee) 1—1Ilgc

j=1

(4.16)
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where IIjjjr¢ and IIjjgc correspond to the quantities described in the binary case
when the nominal scale is dichotomized by grouping all categories other than
category j together and Ilr, I1g and II,; are defined respectively by

K K
Mrc = Y E(Z;Y;) and Hpe = Y ¢ (4.17)
j=1 Jj=1

where Z;; = 1 if category j corresponds to the consensus in the population of
raters for item ¢ (Z;; = 0 otherwise) with F(Z;;) = ¢; and Y;; = 1 if item 1 is

classified by the isolated rater in category j (Yi; = 0 otherwise) with E(Yj;) = 77.

4.4.3 Ordinal scale

The weighted version of the agreement index (kw¢) can the be derived by intro-
ducing weights in the expression of Il;¢ and Ilg¢ in the following way,

K
HT,WC = Z Z wjkE k and HE we = Z Z wjk.gbjﬂ,’; (418)
7=1 k=1 7j=1 k=1
leading to the agreement index

rwe — ewe (4.19)

Rwc =
1 -Igwc

4.4.4 Estimation of the parameters

Suppose that z; (resp. y;;) denote the observed values of the random variables
Z;j (resp. Y;j) (i=1,---, N¢) defined in Section 4.4.2. The assessment of the N¢
items on which it is possible to determine a consensus by the two groups of raters
can be conveniently summarized by the quantities

1 e
=N ;-1 ZiYik (J ) (4.20)

Similarly to what was done in Section 4.3, the observed weighted agreement bet-
ween the two groups of raters is obtained by

K K | Ne K K
Hrwe = powe = Z Z wikdj, = No Z Z Z WikZijYik (4.21)
j=1 k=1 i=1 j=1 k=1
and the weighted agreement expected by chance by the expression

R K K K K
Hpwe = pewe = Z Z wijkd;dy = Z Z WjkZYk (4.22)

j=1 k=1 j=1 k=1
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Nc
where z; = N Z z;;. This leads to the agreement index
¢z

Powc — PewcC

4.23
- Pewc ( )

Rweo =

4.4.5 Example

Let illustrate the consensus method on the example developed in Section 4.3.5.
Using the majority rule (consensus category = category chosen by the majority of
the raters) to determine a consensus in the group of raters, the consensus category
corresponds to category (1), (-1) and (1) for items 1, 2 and 3, respectively. This
results were cross-classified with the responses given by the isolated rater to be
summarized in a 5 x 5 contingency Table (see Table 4.7).

Table 4.7. Cross-classification of the responses given by the group
of raters (consensus) and the isolated rater on 3 items in terms of

proportion
Isolated rater

Category (-2) (-1) (0) (1) (2) Total

(-2) 0 0 0 0 0 0
(-1) 0 0 033 O 0 0.33

Group of raters (0) 0 0 0 0 0 0
(1) 0 0 0 033 033 0.66

(2) 0 0 0 0 0 0

Total 0 0 033 033 0.33 1

The observed proportion of agreement is equal to

K
Poc = Zdjj = 0.33,
j=1

and the proportion of agreement expected by chance to

K
pec = did;=0x0+0x0.33+0.33 x 0+ 0.33 x 0.66 + 0.33 x 0 = 0.22.

j=1
Cohen’s kappa coefficient is then equal to

o P —pec _ 033022
S 1—0.22

= 0.14.
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4.5 Schouten’s agreement index

Schouten (1982) derived an index to select one or more homogeneous subgroups
of raters when each item of a sample of items is classified on a K-category scale
by each of a fixed group of R + 1 raters. In this perspective, Schouten (1982) in-
troduced weighted agreement indexes to measure the degree of agreement between
two particular raters, between a particular rater and the other raters of the group
and within subgroups of raters.

4.5.1 Definition

Suppose that N items were classified in K categories by a group of R + 1 raters.
Let p,s(J, k) denote the proportion of items assigned in category j by rater r and
category k by rater s (j,k € {1,--- ,K};r,s € {1,--- , R+ 1}). The proportion

PGk = 5 S Pl k) (4.24)
SFET

was introduced by Schouten (1982) to estimate the probability that a randomly
selected item is assigned to category j by rater r and to category k by an randomly
taken rater from the remaining R raters. Then, Schouten (1982) defined the

proportion
1 R+1
k) = ——— rs( 7y K 4.25

to estimate the probability for a randomly selected item to be assigned to category
7 and k by two raters randomly taken for the population of raters.

Finally, Schouten (1982) denoted by

K
pr(§) = prald, k) (4.26)
k=1
the proportion of items assigned to category j by rater r. The proportion

Grs (5, k) = pr(5)ps(K) (4.27)

then estimated to probability that for a randomly selected item to be assigned
in category j by rater r and category k by rater s if the two assignments were
independently distributed. Then,

w0 F) = 5 3 0GB (4.28)
S#T
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estimates the probability that a randomly selected item is assigned to category
j by the rater r and to category k by another rater taken randomly from the
remaining R raters. Finally,

R+1

q(j. k) = R+1 ———— > 4.5 k) (4.29)

r=1 s#r

is an estimate of the probability that a randomly selected item is assigned to ca-
tegory j by the first and to category k by the second of 2 raters who are taken at
random and without replacement from the whole group of raters.

For two raters r and s, Schouten (1982) defined the observed weighted agreement
by

K K
Ors Z Z w]kprs ]a (430)
=1

J=1 k=

—

and the weighted agreement expected by chance by

K K
ers Zzw]k‘qrs ], (431)

7j=1 k=1
leading to a weighted kappa coefficient between raters r and s of

ors(W) — e 5(w)
1 —e(w)

Ry s(w) =

(4.32)

This corresponds to the usual definition of the weighted kappa coefficient (Cohen,
1968) between two single raters (see Chapter 2, Section 2.5).

The measure of agreement between rater r and the other R raters of the group
was defined by Schouten (1982) to be

or(w) — e, (w)
1 —e - (w)

1
= E Z Or.s (’LU) (434)

i (w) = (4.33)

where

and

o) = 3 enaluw). (4.35)

S#T

Finally, Schouten (1982) defined the weighted kappa coefficient x(w) as a group
measure of agreement among the R + 1 raters:

o(w) — e(w)

Alw) = 1 —e(w)

(4.36)
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where
R+1

1
o(w) = RELD) > ona(w) (4.37)

r=1 s#r

and
R+1

e(w) = ﬁ Z Z ers(w). (4.38)

r=1 s#r

Using the agreement weights w;; =1 and w;, =0 (j,k =1, -- , K), the weighted
kappa coefficient is equivalent to the pairwise agreement index derived by Davies
and Fleiss (1982) (see Chapter 3, Section 3.3.2).

4.5.2 Example

Consider the data in Table 4.3. For simplicity, consider the weights w;; = 1
and w;, = 0 (j,k = 1,---,K). The observed proportion of agreement and the
proportion of agreement expected by chance between each rater of the group and
the isolated rater are given in Table 4.8. This leads to a Schouten’s agreement

index of
op(w) —e.(w)  0.42—10.20

l—e@w  1-—020

Ry(w) = =0.27.

Table 4.8. Proportion of observed agreement o, s(w), of agreement expected by chance
ers(w) and Cohen’s kappa coefficient &, (w) between the isolated rater and each rater of
the group

Rater 1 2 3 4 5) 6 7 8 9 10 11 12

ors(w) 033 0.33 033 0.33 033 0.33 0.33 1 0.67 033 033 0.33
ers(w) 033 022 022 011 0.11 0.22 011 033 022 011 0.22 0.22
Ry (w) 0 014 014 025 0.25 0.14 0.25 1 0.57 025 0.14 0.14

The mean of the kappa coefficients is equal to 0.273, while Schouten’s index
amounts 0.267. Remark that these values are close but not equal.

4.6 William’s agreement index

4.6.1 Definition

The idea of Williams (1976) was to derive an agreement index giving an answer to
the following question: given a group of raters (namely, raters 1,--- , R) and one
other rater (rater R + 1), does the isolated rater agree with the group of raters as
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often as a member of that group agrees with another member in the group? Using
the notation introduced in Section 4.5, William’s agreement index is

s ops1(w)

In=-" ) (4.39)

with .
O(U)) Z Z O, s (440)
r=1 s#r

Then, Williams (1976) used Normal approximation to test if the ratio Iy is different
from the value 1, in which case the rate of agreement obtained between the isolated
rater and the group of raters is different from the rate of agreement in the group
of raters.

4.6.2 Example

Consider again the data in Table 4.3 with weights w;; = 1 and w;, = 0 (5, k =
1,---, K). The observed proportion of agreement between the isolated rater and
the raters in the group is calculated in the same way as for Schouten’s agreement
index and is equal to o,.(w) = 0.42. Since the observed agreement in the group
of raters is equal to o(w) = 0.36, William’s agreement index is equal to Ip =
0.42/0.36 = 1.17.

4.7 Comparison of the agreement indexes

4.7.1 Comparison with the consensus method

There are two major differences between the consensus method and the agreement
index proposed by Vanbelle and Albert (2009a). Firstly, a consensus method can
not always be defined while the new agreement index can always be determined.
For example, using the majority rule, there is no consensus in the group of raters if
the distribution of the responses are uniformly distributed. Secondly, the strength
of the consensus is not taken into account by the random variable Z;; while the
proposed agreement does, being based on the probability distribution of the res-
ponses in the group of raters. For example on a binary scale, using the majority
rule, we will have Z;; = 1 if P;; = 0.6 but also if P;; = 0.9.

It can easily be shown that the new methodology defined by Vanbelle and Albert
(2009a) and the consensus approach are equivalent only in two particular cases,
firstly when there is only one rater in the group of raters (R = 1) and secondly
when Z¢ = 7 and there is perfect agreement in the population of raters (ICC = 1).
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4.7.2 Comparison with Schouten’s index

We can easily show that p,,, and ogyi(w) are equivalent. Indeed,
K
K

Pow = WikPijYik

R
1
Wik 4 E LijrYik
R r=1
N
1
w'kN E 1 LijrYik
1=

2|
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In the same way, p.,, and egryi(w) are equivalent. The difference between the
agreement index of Schouten (1982) and the agreement index proposed by Vanbelle
and Albert (2009a) lies in the definition of perfect agreement. The definition taken
by Schouten is more restrictive, requiring /C'C' = 1 in the population of raters
(perfect agreement within the population of raters) to have perfect agreement
between the isolated rater and the group of raters.

4.8 Examples

4.8.1 Syphilis serology

In Chapter 3, the syphilis serology example was introduced. 28 syphilis specimens
were categorized in 3 categories by 3 reference laboratories and a participant. The
agreement between the 3 references laboratories was determined. Discordances
occurred between the 3 reference laboratories for seven specimens. Now, let deter-
mine the agreement between the participant and the 3 reference laboratories. Data
are therefore summarized in a two-way classification table (Table 4.9) as explained
in Section 4.3. In this example R = 3, K = 3 and N = 28. Results are summa-
rized in Table 4.10. The standard error was determined with the Jackknife method.

Using the quadratic weighting scheme, the weighted coefficient of agreement Ky, (4
SE) between the participant and the 3 reference laboratories, as defined in Section
4.2, was equal to 0.79 (£0.06). When applying the consensus approach based on
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Table 4.9. Two-way classification table of the 28 syphilis
serology specimens as NR (non-reactive), BL (borderline)
and RE (reactive) by 3 reference laboratories and parti-
cipant L

Participant L
Reference laboratories NR BL RE Total

NR 0.143 0.250 0.024 0.417

BL 0 0.036 0.071 0.107

RE 0 0 0.476 0.476
Total 0.143 0.286 0.571 1

Table 4.10. Weighted (Ay) and unweighted (k) agreement
indexes corresponding the the syphilis serology example

Method N AwxSE iK£SFE

Vanbelle and Albert (2009a) 28 0.79£0.06 0.55+0.10
Consensus (majority) 26 0.76£0.06 0.42+0.11
Schouten (1982) 28 0.73£0.07 0.46+0.09

the majority rule, we found a weighted kappa coefficient of 0.76 (£0.06), but two
specimens were eliminated because no consensus could be reached between the
3 reference laboratories. The weighted agreement index developed by Schouten
(1982) amounted 0.73 (£0.07), while the intraclass kappa coefficient (IC'C) in
the reference laboratory group was 0.68 (£0.06). Because of the lack of perfect
agreement among the reference laboratories (7 CC < 1), Schouten’s agreement
index can never be equal to 1 so that perfect agreement can never be attained.
According to Equation 4.10, the non-weighted maximum attainable proportion
was p, = 0.893, while the corresponding value for the quadratic weighting scheme
Was D = 0.973. To derive the highest possible value of the proposed agreement
index, consider the hypothetical laboratory H whose responses are given in Table
A.2. For this particular laboratory, since each specimen’s result corresponds to
the most frequent response given by the reference laboratories, our agreement
index yield the perfect value of 1 (0), while Schouten’s index is only equal to
0.94 (£0.025). For the consensus approach, the kappa coefficient derived was also
equal to 1, although 2 specimens (16 and 17) have to be excluded. Finally, it
should be remarked that if the hypothetical laboratory H had supplied results
different from BL for specimens 16 and 17, the non weighted agreement coefficient
obtained would still be 1 but the weighted version would yield a value less than 1
because of the weighting scheme (A = 0.958).
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4.8.2 Script Concordance Test

The Script Concordance Test (SCT) is used in medicine to evaluate the ability
of physicians or medical students (isolated raters) to solve clinical situations not
clearly defined (Charlin et al., 2002). The complete test consists of a number of
items (1,---, N) to be evaluated on a 5-point Likert scale (K = 5). Each item
represents a clinical situation likely to be seen in real life practice and a potential
assumption is proposed with it. The situation has to be unclear, even for an expert.
The task of the student or the physician being evaluated is to consider the effect
of additional evidence on the suggested assumption. In this respect, the candidate
has to choose between the following proposals: (-2) The assumption is practically
eliminated; (-1) The assumption becomes less likely; (0) The information has no
effect on the assumption; (+1) The assumption becomes more likely; (+2) The
assumption is basically the only possible one. The questionnaire is also given to
a panel of experts (raters 1,---, R). The problem is to evaluate the agreement
between each individual medical student and the panel of experts.

Between 2003 and 2005, an SCT was proposed to students training in general
practice (Vanbelle et al., 2007). The SCT consisted of 34 items relating possible
situations encountered in general practice. There were 39 students passing the
test and completing the entire questionnaire. Their responses were confronted to
the responses of a panel of 11 experts. The intraclass correlation coefficient in
the group of experts was 0.22 (£0.04). The individual Ky coefficients for the
39 students were computed using the quadratic weighting scheme. Values ranged
between 0.37 and 0.84 and the mean agreement index + standard deviation (SD)
was 0.61 £ 0.12. Schouten’s weighted index scores averaged 0.44 + 0.08 (range:
0.26-0.58).

Using the consensus method, where consensus was defined as either the majority
of the raters or a proportion of at least 50% of the raters, respectively 2 (6%) and
12 (35%) items had to be omitted from the analysis because no consensus was
reached among the experts. The mean weighted kappa values for the 39 students
was equal to 0.49 4 0.13 (range: 0.19-0.72) with the majority rule and 0.66 4 0.14
(range: 0.23-0.82) with the 50% rule. Figure 4.1 displays the individual agreement
coefficients relative to each student for the various methods. Marked differences
can be seen on the graph depending on the approach used. A ranking of the
students was needed for selection purposes. The ranking changed notably for some
students according to the agreement index calculated. For example, student No.
39 ranked at the 16th place with the new approach, the 9th place with Schouten
index, the 10th place using the majority rule and at 20th place using the 50% rule.
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Figure 4.1. Values of Ry (o), weighted kappa coeffi-
cients using the majority (A) and the 50% (+) rules
and weigthed agreement index of Schouten (o) for the
39 students passing the SCT

4.9 Discussion

Vanbelle and Albert (2009a) developed a method to quantify the agreement bet-
ween an isolated rater and a group of raters judging items on a categorical scale.
The group of raters is seen as a well-defined entity, a reference or gold standard
group with its own heterogeneity, whereas the isolated rater comes from a distinct
population. Therefore, the marginal classification probabilities of the isolated rater
and of the population of raters were basically assumed to be different (7 # 7*). In
the SCT example, it is realistic to admit that each student differs from the group
of experts by the knowledge he/she acquired so far in clinical decision-making.
Although the group of raters was seen as the "reference” group in the present
chapter, the theory is equally applicable to the case where the isolated rater repre-
sents the expert, at least as long as a single agreement index is looked for between
them. When neither the isolated rater nor the group of raters is considered as
the gold standard, an intraclass version of the proposed agreement index can be
derived. The latter reduces to the intraclass kappa coefficient (Kraemer, 1979) in
case of two isolated raters, by assuming that the isolated rater and the group of
raters come from the same population (7 = 7*).

The new agreement index was conveniently developed on a population-based model,
allowing an easy extension from dichotomous to nominal scales and the use of
weighted agreement coefficients. It also leads to a less restrictive definition of per-
fect agreement. Indeed, the isolated rater and the group of raters were defined to



4. Agreement between an isolated rater and a group or raters 93

be in "perfect agreement” when their respective classifications of items were line-
arly related and equal on average, without perfect agreement among all raters in
the group (/CC < 1). It was shown that under this assumption and the additional
assumption of perfect agreement within the population of raters (ICC = 1), the
agreement index x proposed by Vanbelle and Albert (2009a) is algebraically equi-
valent to the agreement coefficient derived by Schouten (1982). In other terms, the
approach of Vanbelle and Albert (2009a) is based on less stringent assumptions
than those made by Schouten. This was illustrated on the syphilis example where
it was not possible for Schouten’s agreement index to achieve the maximum value
of 1 to the contrary of the new agreement index. The latter further overcomes the
shortcomings of the widely used consensus method, in particular the fact that a
decision is not required for items lacking a consensus in the group. It should be
remarked, however, that for items lacking consensus among the members of the
group, the responses given by the isolated rater can lead to different kappa values
depending on the scheme uses (weighted or non weighted) as demonstrated by
the hypothetical laboratory in Williams’ example. The agreement index proposed
by Vanbelle and Albert (2009a) also takes into account the existing variability
in the group of raters while the strength of consensus, as already indicated, is
completely ignored in the consensus method. Lastly, as illustrated in the SCT
example and pointed out by Salerno et al. (2003) and Miller et al. (2004), the re-
sults may vary markedly according to the definition of the consensus method used.

The notion of perfect agreement appears to play a major role in the definition of
the new agreement coefficient and particularly of its maximum value of 1. Here,
the population of raters is seen as a whole, a single entity composed of equally
valued members but displaying heterogeneity in their judgments of items. Hence,
perfect agreement is defined between the isolated rater and the population of itself,
not between the isolated rater and the individual members of the population. As
a consequence, agreement may be perfect without forcing all raters, including the
isolated one, to classify all items in the same way. The present definition also does
not preclude that the agreement between the isolated rater and the population
may be better than the agreement between the population and some of its indi-
vidual members. In other terms, the isolated rater can perform better than some
of the experts. This may sound somewhat contradictory in the context of a gold
standard. In Schouten’s view, an agreement value of 1 can only be achieved when
all raters of the population and the isolated rater perfectly and thoroughly agree
in allocating items. A gold standard generally represents some definite, practi-
cally not attainable but only approachable level, determined by a single reference
method. There are situations, however, where a gold standard may result from the
application of several reference methods or the opinions of several experts, without
necessarily achieving a perfect consensus on all items. In a medical context, the
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various responses of an expert group may not only reflect the absence of a clear
consensus among experienced physicians but also the fuzzy character of the clinical
situation at hand. As seen with Williams’ syphilis serology data, major discrepan-
cies were observed in the responses given by the 3 reference laboratories for some
of the assayed specimens. Therefore, Vanbelle and Albert (2009a) proposed that
proficiency testing programs should allow for the fact that a particular non refe-
rence laboratory is in perfect agreement with the references laboratories without
being in perfect agreement with each of them separately, unlike Schouten’s index.

While in theory we may assume that there is always a category of the K-categorical
scale with a maximum proportion of raters for each item, it is not necessarily the
case in practice. There may indeed be a maximum shared by 2 or more categories,
which have to be compared with the category chosen by the isolated rater for this
item (see hypothetical laboratory example in Table A.2). However, as mentioned
previously, this has virtually no impact on the agreement coefficient obtained. In
other terms, two distinct isolated raters will yield the same agreement coefficient
(ignoring the weighting scheme) although their response profile is not exactly iden-
tical.

In sum, the agreement index proposed by Vanbelle and Albert (2009a) provides
a useful alternative to the consensus method and to Light’s approach. It also
generalizes the agreement index proposed by Schouten (1982) as well as Cohen’s
kappa coefficient while keeping its attractive properties.

4.10 Proofs

4.10.1 Perfect agreement when K =2

Equivalence 3. The definition of perfect agreement, E(P;) = E(Y;) = 7 and
corr(P;,Y;) = 1, is equivalent to writing P, = 7**(1 — v ICC) +VICC'Y;.

Proof. Indeed, p = 1 leads to the linear relation P; = a + bY;. This implies

EP) = 7 =FE(a+0bY;)=a+br™
var(P;) = o* = wvar(a+bY;) = bPvar(Y;) = bP7** (1 — 7).
Thus, a = (1 — b)7** and P, = (1 — b)7™** + bY}.

0.2 B 27.‘_**(1 _ 7.‘_**)

i I = =
Since ICC 0 =) e p——
we have P, = 7**(1 — VICC) + VICC Y. ]

=’
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4.10.2 Perfect agreement when K > 2

Equivalence 4. If 11, is defined by

My =Y El(n}" + (1 - ")/ICC;)Yy]

j=1
where E(P;;) = E(Yi;) = 77" and ICCj denotes the intraclass kappa coefficient
relative to category j (j =1,---, K) in the population of raters, we have

K

> My =2Iy + K -2

j=1

where Il corresponds to the quantity described in the binary case (K = 2) when
the nominal scale is dichotomized by grouping all categories other than category j
together.

Proof. When the population of raters and the isolated rater are in perfect agree-
ment, we have from Equivalence 1

Py = (1 = /ICC;) + /ICC;Yy;.
Therefore,
K K

My = E[)_ PyYyl = ED (7" + (1 — ;") /ICC;Y;)Yy]

j:l :1

= ZW**—l— (1 —m")\/I1CCy)T}

=1

K
_ 2 : **2 **2 § : **2 . )

=1 7j=1

.

.

From Equation 4.3,

K K
> Tyu = Z (1 =27 (1 — 77) (1 — \/ICCy))
j=1

o

K o
= Z 1—20**2—J e %)

Jj=1 i
K K K

= Zl 220;*2—1—220;‘*@
j=1 j=1 j=1

K
= K—-2+ 22(7@7*2 +0j05")
j=1

= 2l + K —2.






CHAPTER 5

Agreement between two
independent groups of raters

5.1 Introduction

Kappa-like agreement indexes to quantify agreement between two raters on a cate-
gorical scale were introduced in Chapter 2. They include Cohen’s kappa coefficient
(Cohen, 1960), the weighted kappa coefficient (Cohen, 1968) and the intraclass
kappa coefficient (Kraemer, 1979). All these coefficients are based on the same
principle: the proportion of concordant classifications between the two raters (p,)
is corrected for the proportion of concordant classifications expected by chance
(pe) and standardized & = (p, — pe)/(1 — pe) to obtain a value 1 when agreement
between the two raters is perfect and 0 in case of agreement due to chance alone.
Although agreement is often searched between two individual raters, there are si-
tuations where agreement is needed between two groups of raters. For example, a
group of students may be evaluated against another group of students or against
a group of experts, each group classifying the same set of items on a categorical
scale. Likewise, agreement may be searched between two groups of physicians with
different specialties or professional experience in diagnosing patients by means of
the same (positive/negative) clinical test. In such instances, each group is seen as
a whole, a global entity with its own heterogeneity. Interest resides in the overall
degree of agreement between the groups, not in the agreement between individuals
themselves. In fact, the groups may perfectly agree while some of their members
may not.

97
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Methods testing for evidence of agreement between two groups of raters when
ordering items were proposed by Schucany and Frawley (1973), Hollander and
Sethuraman (1978), Kraemer (1981) and Feigin and Alvo (1986). These methods
are generally based on the Spearman rank correlation coefficient or Kendall’s tau
coefficient. However, methods designed to quantify the degree of agreement bet-
ween two groups of raters on a nominal or ordinal scale barely exist and it appears
that the only reference found in the literature is a paper written by Schouten
(1982). He developed a measure of pairwise interobserver agreement between two
groups of raters to find clusters of homogeneous subgroups of raters when all raters
classify the items on a categorical scale. His method consists in substituting in the
kappa coefficient the observed proportion of agreement (p,) and the proportion of
agreement expected by chance (p.) by, respectively, the mean of the observed (7,)
and of the expected (p,) proportions of agreement obtained between all possible
pairs of raters formed with one rater in each group, namely & = (p, —p,)/(1 —D,)-
Unfortunately, in Schouten’s approach, perfect agreement between the two groups
can only be achieved if there is perfect agreement within each group.

Although there is a clear lack of theoretical work on agreement measures between
two groups of raters, it is common practice in the applied literature to determine
empirically a consensus category in each group of raters in order to reduce the
problem to the case of two raters. To our knowledge, the consensus method is
used as an intuitive method and there is no theoretical proof to justify its use.
The consensus category may be defined as the modal category (e.g., van Hoeij
et al. (2004)), the median category (e.g., Raine et al. (2004)) or the mean cate-
gory (e.g., Bland et al. (2005)) if the scale is ordinal. When a consensus category
is found in each group for each item, the agreement between these categories is
studied in the usual way (case of two raters). In all instances, however, the ques-
tion of how to proceed when a consensus can not be reached remains. Moreover,
different rules to define the consensus category may lead to different conclusions
(Kraemer et al., 2004). Indeed, consider a group of 10 raters allocating an item
on a 5-point Likert scale and suppose that 3 raters classify the item in category
1, 2 in category 2, none in categories 3 and 4, and 5 in category 5. The consensus
category defined by the modal rule is category 5, by the median rule category 2, 3,
4 or 5 and by the mean rule category 3 (category chosen by none of the raters in
the group). The three rules may almost inevitably lead to three different conclu-
sions. It should also be remarked that consensus does not take into account the
variability in the groups in the sense that different patterns of responses may lead
to the determination of the same consensus category and thus lead to the same
conclusions. Indeed, in the example above, if 6 instead of 5 raters classified the
item in category 5, the modal category would still be category 5, leading to the
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same conclusion although the variability in the group is different.

The present chapter aimed at defining an overall agreement index between two
groups of raters, taking into account the heterogeneity of each group. Furthermore,
the agreement index overcomes the problem of consensus and can be viewed as a
natural extension of Cohen’s kappa coefficient to two groups of raters. The novel
agreement index was defined on a population-based model (Vanbelle and Albert,
2009b) and its sampling variability determined by the Jackknife method (Efron
and Tibshirani, 1993).

5.2 The two group agreement index

5.2.1 Binary scale

Consider a population of items Z and two distinct populations of raters R; and
Rs. Suppose that items have to be classified in two categories (K = 2). Now,
consider a randomly selected rater  from population R, and a randomly selected
item ¢ from population Z. Let Xj, , be the random variable such that X;,, =1 if
rater r of population R, classifies item 7 in category 1 and X, , = 0 otherwise. For
each item i, E(X;,,|i) = P(X;., = 1) = P;, over the population of raters. Then,
over the population of items, F(P,,) = E[E(X;,4|i)] = 7, and var(P;,) = o2.

g
Finally, let

0.2

[CCy = ——4

Te(1 — m)
be the intraclass correlation coefficient in group g (g = 1,2) denoted by ICC, for
convenience (see Chapter 2, Section 2.4.1). The joint distribution of the classifica-
tions of item ¢ made by the two populations of raters consists of four probabilities
summing up to 1, (1 — P;1)(1 = Pia), (1 = P1) P, Pii(1— Pi2) and P P ». For
example, P; 1P, denotes the probability that both populations of raters classify
item ¢ into category 1. The expectations of these joint probabilities over the pop-
ulation of items Z can be represented in a 2 x 2 classification table, as displayed
in Table 5.1 with p = corr(P; 1, P,2) = [E(P;1P,2) — mim2)]/0102, the correlation
over Z between the random variables F;; and P, .

The probability that the two populations of raters agree on the classification of
item i is naturally defined by

I; =P P2+ (1—P1)(1— Pio). (5.1)

Thus, at the population level, the mean probability of agreement over T is (see
Table 5.1)
HTIE<H,L) I7T17TQ+<1—7T1>(1 —7T2)—|-2p0'10'2. (52)



100 5.2. The two group agreement index

Table 5.1. Expected joint classification probabilities of the two po-
pulations of raters over the population of items

Ro
0 1
0  E[(1-Fa1)1- Fp2) E(1-PF)P2] 1-m
(1 =m)(1 —ma) + porog (1 —m1)my — poio2

R
1 E[P1(1— P;2)] E[P,1 P, ™
(1 — m2) — poioa 1T + po102
1*7‘(’2 9 1

This quantity does not only involve the marginal probabilities that populations
R1 and R, classify items in category 1 (m; and my) but also the variability within
each population of raters (o7 and o3) and the correlation p.

Under the assumption of random assignment of item ¢ by the two populations of
raters (E[P,1 P, o] = E[P;1|E[P,2]), the mean probability of agreement expected by
chance is simply the product of the marginal probabilities, namely

Iy = mms + (1 — m)(1 — 7). (5.3)

It is seen that this quantity can be obtained by setting the correlation coefficient p
equal to 0 in Equation 5.2, or equivalently by setting either o2 and /or o3 equal to 0.

Vanbelle and Albert (2009b) defined the agreement index between the two popu-
lations of raters in a kappa-like way, namely

Iy —1lg

S — 1 4
I (5.4)

K
where 1), = max(Ilr) corresponds to the mazimum attainable value of the mean
probability of agreement (Equation 5.2) given the existing heterogeneity in each
population of raters. Thus, kK = 1 when agreement is perfect, x = 0 when agree-
ment is only due to chance and k < 0 when agreement is less than one would
expect by chance.

There is a need at this stage of the development to explicit the notion of ”perfect
agreement” (k = 1). By definition, the two populations of raters are said to be in
perfect agreement if and only if P,; = P,» = P;, for all items 7 in Z (Vanbelle and
Albert, 2009b). In other words, the two populations of raters ”perfectly” agree if
and only if the probability of classifying an item in a given category is the same for
the two populations. Intuitively, it is obvious that if the probability of classifying
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item ¢ in category 1 is different in the two populations of raters, the latter can not
agree perfectly. Note that the present definition extends that of perfect agreement
between two raters, namely that X;; = X;» = X, for each item ¢. Under the
definition of perfect agreement, if we write F(P;) = © and var(P;) = o?, we have
ICC, =1CC =o?/n(1 —7), (g = 1,2) and II) is then given by the expression

Iy = E(1L) =20 +21* —2r+1=1-2n(1 —7)(1 — ICC). (5.5)
It is seen that II,; = 1 if the intraclass kappa coefficient is equal to 1 in both
populations of raters (ICC = 1, i.e. perfect agreement within each population),
and/or trivially if 7 = 0 or 7 = 1 (no variability in the allocation process). Note
that Schouten’s agreement index is given by Equation 5.4 where 11, = 1.

An intraclass version of x can be derived using the additional assumption m; =

w9 = 7 (equality of marginal probabilities). In that case, we have
E(P1P,;) —
Ry = 0_2 (56)
which is equivalent to the correlation coefficient between F;; and F;, under the

assumption of equal marginal probabilities.

5.2.2 Nominal scale

When K > 2, Vanbelle and Albert (2009b) defined the coefficient of agreement
between two independent populations of raters by
K
_ 2y —yie) Ty — T,
oMy —Typ) T —1lg

where the quantities ITj;r, ;) and Il correspond to the quantities described

(5.7)

in the dichotomous case when the nominal scale is dichotomized by grouping all
categories other than category j together and Ilr, I and II,,; are defined by

K K K
Iy = Z E(Pij1Pij2); g = Zﬂj,ﬂm; and Iy = Z E(P))

j=1 j=1 j=1
and extend naturally the quantities defined in the dichotomous case. Indeed, P,
denotes the probability for item i to be classified in category j (j = 1, -, K)
by the population of raters R, (¢ = 1,2) and is a random variable over the
population of items Z. We have P;; , = P(X;;-, = 1|¢) where the binary random
variable X, , is equal to 1 if rater r of population R, classifies item 7 in category
J and ZJI; P,;, = 1. Over the population of items Z, E(P;;,) = w4 (g = 1,2).
The equivalence of the two expressions in Equation 5.7 is proven in Section 5.9.
The two populations of raters are defined to be in perfect agreement if and only
if Pj1 = Pjo=PjforallitemsiinZ (j =1,---, K), extending the definition of
the dichotomous case.
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5.2.3 Ordinal scale

A weighted version of the agreement index between two populations of raters,
accounting for the fact that some disagreements may be more important than
others, is defined in the same way as the weighted kappa coefficient (Cohen, 1968).
We have

Hrw — e w
v yw — g w (5:8)
where
K K
Hrw = Z Z Wik E(Pij1Pik2), (5.9)
j=1 k=1
K K
HE,W = Z Z wjkﬂj717Tk’2, (510)
j=1 k=1
K K
Mgy = Y > winE (P Pu)- (5-11)
j=1 k=1

The unweighted agreement index k (see Equation 5.7) is obtained by using the
weighting scheme w;), = 1 if j = k and w;;, = 0 otherwise (j #k € 1,--- |, K).

5.3 Estimation of the parameters

Consider a random sample of N items from Z, a random sample of R; raters from
R1 (group G7) and a random sample of Ry raters from Ro (group Gs).

5.3.1 Binary scale

Suppose that x;, , denote the observed values of the random variables X;, ;, defined
in Section 5.2.1 (i=1,--- ,N;r=1,--- ,R,,;9=1,2). Let

RQ
Nig = § :xir,g
r=1

denote the number of raters of group G, classifying item 7 in category 1 (¢ = 1,2).
Then, let
Ni g

R,

Dig =

be the corresponding proportions (i =1,--- ,N;j=1,--- | K;g9 =1,2).
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At the population level, the mean agreement over the population of items I between
the two populations of raters, Ily, is estimated by the observed proportion of

agreement
N

=~ 1
Iy = po = N Z[pi,lpi,Q + (1 = pi)(1 = pi2)] (5.12)

i=1
Likewise, the mean probability of agreement expected by chance, Ilg, is estimated
by the proportion of agreement expected by chance

gy = pe = pips + (1 — p1)(1 — po) (5.13)

N
1
where p, = N ;pm (9 =1,2).
The agreement index between the two populations of raters is then estimated by

Po — Pe

5.14
Pm — Pe ( )

K =
where p,, corresponds to the maximum possible proportion of agreement derived
from the samples. Indeed, recall that 1I,; is obtained when P;; = P2 = P, and
corresponds to the maximum expected agreement over the population of items.
Thus, given the observed data, the maximum observed proportion of agreement
can be obtained when p; = p; 4 (9 = 1,2), leading to p, = p;, + (1 — p;)*. Since
piapi2 + (1 —pi1) (1 — pi2) < mazy[p}, + (1 — pig)?] for each item i, it follows that

N

~ 1

Oy = pm = v Zmaxg[pig + (1 = pig)?] (5.15)
i=1

It is seen that if p;y =pio (i =1,--+ ,N), po = pp, and & = 1.

5.3.2 Nominal scale

Let w5, denote the observed values of the random variables Xjj, , equal to 1 if
rater r (r=1,---, R,) of population R, (g = 1,2) classifies item i (i =1,--- ,N)
in category j (j = 1,---, K). The assessment of the N items by the two groups
of raters can be conveniently summarized in a two-way classification table as seen

in Table 5.2. Let
R!J
Nijg = Z Lijr,g
r=1

denote the number of raters of group G, classifying item 4 in category j (¢ = 1, 2).
Then, let
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be the corresponding proportions (i = 1,--- ,N;j=1,--- , K;g =1,2). We have

SE i pig=1 (=1 N;g=12). Finally, let

N
1 )
Cik = szij:lpikﬂ (j7k - 17 T 7K)
i=1

The quantities c;j, estimate the joint probability that populations R, and R, clas-
sify a randomly selected item 7 in category j and k, respectively (c;, = E(FZTR“),
j,k=1,--- K). A K x K matrix can then be derived from the original data (see
Table 5.2).

Table 5.2. Two-way classification table of the IV items
by the two groups of raters on a K-categorical scale

Go
Category 1 ... j ce K  Total
1 C11 e C1j e C1K C1.
Gl J le . e ij NN CjK Cj.
K CK1 CKj CKK CK.
Total c1 ... Cj ... CK 1

The mean probability of agreement between the two populations of raters, Iz, is
estimated by

N K K
~ 1
Iy =p, = N ; ;pij,lpij,z = ; Cjj (5-16)

and the mean probability of agreement expected by chance, llg, is estimated by

K K
g = pe = ij,lpj,z = Z Cj.C (5.17)
j=1 J=1
|
where p; , = N Epij’g'
The agreement index between the two populations of raters is then estimated as
before by
R = Po = Pe (5.18)
Pm — Pe
where

K

N K
DPm = % Zmax(z p?j,l? Zp?jz) (5.19)
i=1 j=1

j=1
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is the maximum possible proportion of agreement derived from the data, obtained
by extending the argument developed for the dichotomous case. Note that when
there is only one rater in each group of raters (R; = Ry = 1), the agreement
coefficient & merely reduces to Cohen’s r coefficient (Cohen, 1960).

5.3.3 Ordinal scale

The weighted version of the agreement index is estimated in exactly the same way,

namely
EW — pO,W - pE,W (5.20)
Pm,w — Pew
with
R | NE K K K
Hrw = pow = N Z Z Z WjkPijiPik2 = Z Z WjkCik, (5.21)
=1 j=1 k=1 =1 k=1
R K K K K
Hpw = pew = Z Z WjkPjiPr2 = Z Z W;jCj.Ch (5.22)
=1 k=1 =1 k=1
and
K K K K
M = Z max Z Z WikPij1Pik, 15 Z Z WjkPij2Pik2).  (5.23)

=1 j=1 k=1 j=1 k=1

5.3.4 Sampling variability

The Jackknife method (Efron and Tibshirani, 1993) can be used to determine the
sampling variance of the agreement indexes, as explained in Section 4.3.4.

5.3.5 Example

Consider the following hypothetic example to illustrate how to compute the pro-
posed agreement index. Suppose that a group G of 12 raters and a group Gs of
3 raters have to classify 3 items on a 5-point Likert scale ranging from (-2) to (2)
(Table 5.3).

The responses given by the 2 groups of raters are then summarized in Table 5.4
and expressed in terms of proportions (pi;, = nij./Ry) (9 = 1,2) in Table 5.5.
The marginal classification distributions of the groups of raters (p;,) are also de-
termined.
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Table 5.3. Responses given by the groups G (R; = 12) and G3 (Ry = 3)
for 3 items on a 5-point Likert scale (hypothetic example)
Group Gy Group Go
Item 1 2 3 4 5 6 7 &8 9 10 11 12 1 2 3
1 o 1 2 2 2 1 2 1 1 1 1 1 1 2 1
2 o -1r 1 o0 o0 -1 -1 0 O -1 -1 -1 0 2 2
3 11 -2 -1 -1 1 -2 -2 -1 -1 1 1 -2 -1 -2

Table 5.4. Summary of the responses given by the groups of raters
G and Gy (hypothetic example)

Group Gy Group Go
Category Category
Item (-2) (1) (0) (1) (2 (2) ) (0 1) (2
1 0 0 1 7 4 0 0 0 2 1
2 0 6 5 1 0 0 0 1 0 2
3 3 4 0 5 0 2 1 0 0 0

Table 5.5. Distribution of the responses given by the two groups of raters G
and Gy (hypothetic example)

Group G1 Group Go

Category Category
fem (2 () 0 1 @ 2 () © 1O @
1 0 0 0.08 0.58 0.33 0 0 0 0.66 0.33
2 0 050 042 0.08 0 0 0 033 0 0.66
3 025 033 0 042 O 0.66 033 O 0 0

Dj 0.08 0.28 0.17 0.36 0.11 0.22 0.11 0.11 0.22 0.33
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The observed proportion of agreement is equal to

1 MK
Do = szpij,lpijz
i=1 j=1

= (0.58 x 0.66 4 0.33 x 0.33 4+ 0.42 x 0.33 4+ 0.25 x 0.66 4 0.33 x 0.33)/3
= 0.31.

The proportion of agreement expected by chance is equal to

K
Pe = ij,lpj,z
j=1
= 0.08 x0.22+0.28x0.11+0.17x 0.11 +0.36 x 0.22 + 0.11 x 0.33 = 0.19.

To determine the maximum possible observed proportion of agreement, each group
is duplicated to artificially have perfect agreement and the observed proportion of
agreement is calculated (see Table 5.6).

Table 5.6. Squared proportion of raters classifying each item in the 5 categories as
explained in Equation 5.15 (hypothetic example)

Group G1 Group Go

Category Sum Category Sum
Fem (2 () (0 1 @ (2 ) 0 1) @
1 0 0 0.01 034 0.11 0.46 0 0 0 044 0.11 0.56
2 0 025 017 001 O 0.43 0 0 011 0 044 0.56
3 0.06 011 0 017 O 0.35 044 0.11 O 0 0 0.56

For each item, the highest observed proportion of agreement is chosen. It leads to
the maximum proportion of observed agreement

0.56 + 0.56 + 0.56
Pm =
3
The agreement index between the two groups is then equal to

Po—Pe _ 0.31—0.19
Pm —Pe  0.56 —0.19

= 0.56.

k=

= 0.33.

5.4 Consensus approach

5.4.1 Binary scale

Consider a population of items Z and two distinct populations of raters R; and
Ro. Suppose that items have to be classified in two categories (K = 2). Let Z¢
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denote the sub-population of items on which a consensus (C') is always possible
in both populations of raters. In Z¢, consider the random variable Z; ; such that
Z; 4 = 1 if there is a consensus on category 1 for item 7 in the population R, and
Zi ¢ = 0 otherwise. The agreement index based on the consensus method then re-
duces to the case of two raters, the consensus defining a single rater in each group.
Then, over Z¢, let E(Z;4) = ¢4 and var(Z; 5) = 07 = ¢g(1— ¢g). If p’ denotes the
correlation coefficient between Z; ; and Z, 5, we have the following representation
of the expected probabilities between the two consensus values (Table 5.7).

Table 5.7. Expected probabilities of the classification of the two
populations of raters over the sub-population Zg of items where a
consensus exists

Ro
0 1
0 El1—-Zi1)(A—Zip)] El(1-Zi1)Zip]  1-¢
(1—=¢1)(1 = 2) +p'oroy (1 —¢1)p2 — plofoy
R1
1 ElZi1(1 = Z;2)] E(Zi1Z;2) b1
¢1(1 — ¢2) — p'o oy P12 + p'otof
1 — ¢ ®2 1

The agreement between the two populations of raters on item i based on the
consensus, denoted II;¢, is defined by

Wie =Zi1Zig+ (1 —Ziq)(1 — Z;5). (5.24)

Thus,
E(ic) = Tlre = ¢1¢2 + (1 — ¢1)(1 — ¢2) + 2p'0 0. (5.25)

The agreement expected by chance is defined by

Hpe = ¢1d2 + (1 — ¢1)(1 — b2) (5.26)

and perfect agreement is achieved when Z;; = Z; 5, for all items in Z¢, leading to
E(Ilic) =ye = 1.

Therefore, the agreement coefficient between the two populations of raters is de-

fined by
_ Hye —ge

_ 27
T T e (5:27)
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5.4.2 Nominal scale

Consider the random variable Z;; , such that Z;; , = 1 if there is a consensus on
category j for item ¢ in population R, and Z;; , = 0 otherwise. Then, over Z, let
E(Zij4) = ¢j4. In the same way as before,

K
23:1 (e — Hijiec) _ Mye —lgce

= (5.28)
Z]['(:1(H[j]MC —jpe)  Hme —Uge

R =

where Iljjrc, e and Ilje correspond to the quantities described in the
dichotomous case when the nominal scale is dichotomized by grouping all categories
other than category j together. The quantities Ilr¢, [Igc and Il;¢ are defined
respectively by

K K
e = ZE(Zij,IZz‘j,Z); e = 2%,1%,2; Mo = 1.

J=1 J=1

5.4.3 Ordinal scale

The weighted version of the consensus approach can also be derived in the same
way as before by introducing weights in the expression of Ily¢, llgc and I1y¢.

K K
Hrwe = Z Z Wik E(Zij1 Zik2); (5.29)
=1 k=1
K K
Hegwe = Z Z Wik P Pr2; (5.30)
=1 k=1
K K
Mywe =Y > winB(Z;Zy) =1 (5.31)
=1 k=1
leading to
I1 —1I
Ko — T.WC EWC (5.32)
1 —-Igwc

5.4.4 Estimation of the parameters

Consider again a random sample of R; raters from R;, a random sample of R,
raters from R, and a random sample of NV items from Z. Let No (< N) denote the
number of items where a consensus exist in each group. Suppose that z;; , denotes
the observed values of the random variables Z;; , (i =1,--- ,Ng;j=1,--- ,K;9=
1,2) defined in the previous section. The assessment of the N¢ items on which the
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two groups of raters can determine a consensus can be conveniently summarized

by
1 C
djk = N_C ;Zij,lzik,z (jak =1,--- 7K)-

Similarly to what was done in Section 5.3, the observed weighted agreement bet-
ween the two groups of raters is obtained by

K K K K
Z Z Wik Zij1%ik,2 = Z Z Wjkd;p, (5.33)

i=1 j=1 k=1 j=1 k=1

N¢

~ 1
H = o = —_—
TWC = Po,WC Ne

and the agreement expected by chance by the expression

~ K K K K
HUpwe = pewe = Z Z WjkZ2j12k2 = Z Z wjgd; d g (5.34)
j=1 k=1

j=1 k=1

No

1
where z;, = No Z Zij.g» (9 =1,2) leading to the weighted agreement coefficient
i=1

how = PowC ~ PewcC: (5.35)

1_peWC’

5.4.5 Example

Consider the example developed in Section 5.3.5 to illustrate the consensus method.
A consensus is determined in each group using the majority rule i.e., the consen-
sus category is determined for each item as the category the most chosen by the
raters in the group. The data are then summarized in a 5 X 5 contingency table
by cross-classifying the consensuses found in the two groups of raters (see Table

5.8).

Table 5.8. Cross-classification of the responses given by the two
group of raters (consensus)

Group Go

Category (-2) (-1) (0) (1) (2) Total

(-2) O 0 0 0 0 0
(-1) O 0 0 0 033 033

Group G (0) 0 0 0 0 0 0
(1) 033 0 0 033 0 0.66

2) o 0 0 0 0 0

Total 033 0 0 033 0.33 1
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The observed proportion of agreement is equal to

K
PoCc = Z djj = 0.33,
j=1

and the proportion of agreement expected by chance to

K
pec =Y did; =0 0+0x0.33+0.33 x 0+0.33 x 0.66 +0.33 x 0 = 0.22.

j=1
This leads a Cohen’s kappa coefficient of

~ Poc — Pec o 0.33 — 0.22

- —0.14.
T e 1—0.22

5.5 Schouten’s agreement index

Schouten (1982) also developed a hierarchical clustering method, consisting in
grouping the raters with the highest inter-cluster agreement coefficient.

5.5.1 Definition

For two clusters G; and G5 consisting of R; and R, raters, where no rater belongs
to G; and G, simultaneously, Schouten (1982) defined the inter-cluster kappa

coefficient by (w) (w)
~ o 0G1,G2\W) — €G,1,G,\W
Fay e (w) = 1 —eq q,(w)

06,0 (1) = RllRQ S5 on(w) (5.37)

reG1 s€Gs

(5.36)

where

and

ec, (W) = RllRQ DY ens(w). (5.38)

reGq seGo

The quantities o, s(w) and e, ;(w) were defined in Chapter 4 (Section 4.5).

5.5.2 Hierarchical clustering

When the number of raters is large, Schouten (1982) proposed to divide the group
of raters into several homogeneous subgroups, with higher degree of pairwise inter-
rater agreement within subgroups than between subgroups, and to find out why
and in which way different subgroups differ in opinion. Schouten (1982) used the
weighted kappa coefficient defined in Equation 5.36 to identify such homogeneous
subgroups, called ”clusters”.
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The hierarchical cluster analysis starts with Ry + Ry clusters formed by the R+ R»
raters of the group. Next, the raters within the two clusters with the highest inter-
cluster kappa coefficient are grouped together and form a new cluster, and this may
go on until finally all raters are considered to be in one cluster.

5.5.3 Example

Consider the hypothetical example described in Table 5.3. The observed propor-
tion of agreement and the proportion of agreement expected by chance correspon-
ding to each pair formed by one rater in the group G; and one in the group G,
are given in Table 5.9.

Table 5.9. Observed proportion of agreement (p,), expected proportion of agree-
ment (p.) and Cohen’s kappa coefficients (%) between each rater of the group G
and each rater of the group Go

Po Pe K
Group G» Group G» Group G»
Rater 1 2 3 1 2 3 1 2 3
1 033 0 0 033 0 011 0 0 -0.13

2 033 0 033 0.22 0.11 0.22 0.14 -0.13 0.14
3 033 033 033 022 022 033 014 0.14 0
4 033 067 0 011 033 011 0.25 0.50 -0.13
b} 033 067 0 0.11 033 011 0.25 0.50 -0.13
6 033 0 033 0.22 011 0.22 0.14 -0.13 0.14
Group G 7 0.33 0.33 033 0.11 0.33 0.22 0.25 0 0.14
8 1 0 067 033 0 022 1 0 0.57
9 0.67 0.33 033 0.22 0.11 0.11 0.57 0.25 0.25
10 0.33 0.33 033 0.11 0.22 0.11 0.25 0.14 0.25
11 033 0 033 0.22 0.11 0.22 0.14 -0.13 0.14
12 033 0 033 0.22 0.11 0.22 0.14 -0.13 0.14

Mean 0.42 0.22 0.28 0.20 0.17 0.19 0.27 0.09 0.12

This leads to a Schouten’s agreement index of

0G1,G2 — €G1,G

e,
1,2 1 _ 6@17G2

(0.42 +0.22 + 0.28) /3 — (0.20 + 0.17 + 0.19) /3
1—(0.2040.17 +0.19)/3
0.31 — 0.19

= — =0.15. .
1019 0.15 (5.39)

Remark that the mean of the kappa coefficients (=0.16) is near Schouten’s index
(=0.15) but not equal.
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5.6 Comparison of the agreement indexes

5.6.1 With the consensus method

The consensus approach is equivalent to the new agreement index if and only if
Ry = Ry =1 or if and only if a consensus is always possible for each item in both
populations of raters (Z¢ = Z) and there is perfect agreement in both populations
of raters (P;1 = Pij2 = Py, Vi).

5.6.2 With Schouten’s index

As in the previous chapter, we can easily show that p, ., and og, ¢,(w) are equi-
valent as well as p,, and eg, g,(w). With the additional assumption ICC; =
ICCy =1, i.e., there is perfect agreement in each population of raters, the pro-
posed agreement index k is algebraically equivalent to the inter-cluster agreement
index introduced by Schouten (1982).

5.7 Script Concordance Test

Let look again to the example of the SCT developed in Chapter 4, Section 4.8.2
and consider now the 39 students training in ”general practice” as a whole group.
We thus have in the present example R; = 11, Ry = 39, N = 34 and K = 5.
The cross-classification matrix (cjz, 7,k = 1,---,5) between the group of medical
students and the group of experts is given in Table 5.10.

Table 5.10. Two-way classification table of the 34 items of the Script Con-
cordance Test (SCT) by the group of 11 medical experts and by the group
of 39 medical students using a 5-point Likert scale ((-2) The assumption is
practically eliminated; (-1) The assumption becomes less likely; (0) The in-
formation has no effect on the assumption; (+1) The assumption becomes
more likely (42) The assumption is practically the only possible)

Medical experts
2 (1) (0 1 (2 Towl
(-2)  0.077 0.054 0.028 0.009 0.002 0.170
(-1)  0.036 0.067 0.066 0.033 0.012 0.214
Medical students (0 0.022 0.053 0.187 0.062 0.013 0.337
(
(

)

1) 0.013 0.026 0.069 0.090 0.025 0.223
2) 0.005 0.009 0.013 0.020 0.010 0.057
Total 0.153 0.209 0.363 0.214 0.057 1

Since the scale is ordinal, weighted agreement indexes were calculated using the
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quadratic weighting scheme (w;, = 1 — (|k — j|/4)% k,j = —2,-++,2) (Fleiss and
Cohen, 1973). On the basis of the study material, we found that the observed
proportion of agreement, the proportion of agreement expected by chance and the
maximum proportion of agreement were respectively p, ., = 0.80, p.,, = 0.69 and
Pmw = 0.84, yielding a weighted agreement index sy = (0.80 — 0.69)/(0.84 —
0.69) = 0.72.

Table 5.11. Weighted agreement indexes between the group of 11 experts
and the group of 39 students for the Script Concordance Test (SCT) with 34
items obtained by four different methods with quadratic weighting scheme.

Method Coefficient N  p, De  Pm K SE(k)
Proposed Rw 34 0.80 0.69 0.84 0.72 0.049
Consensus (majority) Acwi 32 0.88 0.71 1 0.60 0.11
Consensus (50%) Rew2 18 093 060 1 0.82 0.11
Schouten Rsw 34 0.80 0.69 1 035 0.049

In Table 5.11, K¢ w1 corresponds to the consensus method using the majority rule
and Kcwa to the 50% rule (Equation 5.35), while kg is the agreement coefficient
derived by Schouten (1982). It should be noted that there were 2 items without
consensus for the majority rule and 16 for the 50% rule. When calculating the mean
(& SD) of weighted kappa coefficients for all possible pairs of raters (429 pairs)
between the two groups, we obtained 0.35 + 0.06, a value similar to Schouten’s
index. The intraclass correlation coefficient was 0.224+0.04 in the group of experts
and 0.29 + 0.03 in the group of students, reflecting a substantial heterogeneity in
both groups.

5.8 Discussion

Cohen’s kappa coefficient (Cohen, 1960) is widely used to measure agreement bet-
ween two raters judging items on a categorical scale. Weighted (Cohen, 1968) and
intraclass (Kraemer, 1979) versions of the coefficient were also proposed. Further,
the method was extended to several raters (Fleiss, 1981) and to an isolated rater
and a group of raters (Vanbelle and Albert, 2009a). The problem of assessing the
agreement between two groups of raters is not new. Applications are numerous
(e.g., van Hoeij et al. (2004); Raine et al. (2004)) and a variety of methods has
been proposed over the years to deal with this problem. Several recent articles
from the applied field (e.g. Kraemer et al. (2004)), however, while emphasing the
importance and relevance of the problem, claim that existing solutions are not
quite appropriate and that there is a need for novel and improved methods.
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The usual way to solve the problem of agreement between two groups of raters is
to define a consensus in each group and to quantify the agreement between them.
The problem is then reduced to the case of computing Cohen’s kappa agreement
coefficient between two raters on a categorical scale. The rule of consensus may be
defined as choosing for each item the modal (or majority) category or the category
whose frequency exceeds a given percentage (e.g. 50% or 80%) in each group of
raters. The consensus method, however, has serious limitations that weaken its use
in practice. Indeed, a consensus is not always possible for all items (as illustrated
by the SCT data) resulting in a loss of items and hence of statistical precision.
The variability of the responses within each group of raters is completely ignored
and the strength of the consensus is not really reflected. Further, the conclusions
can be highly dependent on which definition is used for the consensus Kraemer
et al. (2004). Moreover, since items without consensus (i.e., with high variability
among the raters) are generally discarded from the analysis, the results obtained
are prone to bias and over-optimistic estimation (see SCT example). Another na-
tural method for assessing the concordance between two sets of raters consists in
calculating the mean kappa coefficient between all possible pairs of raters com-
posed by one rater of each group. As seen in the SCT example, this approach
gives a value similar to the index developed by Schouten (1982) in the context of
hierarchical clustering of raters within a single population of raters.

The agreement between two groups of raters raises the basic question of what it
meant by "perfect agreement” between two groups. While this issue is meaningless
in the case of two raters (they agree or they don’t agree), it becomes critical at
the group level agreement. The consensus method is one way to circumvent the
difficulty and the mean of all pairwise kappa coefficients in another way. Schouten
(1982) eluded the problem by defining perfect agreement between two groups as
the situation where all raters of each group perfectly agree on all items, quite an
extreme assumption. The novelty of the method derived by Vanbelle and Albert
(2009b) is that it rests on a less stringent definition of perfect agreement in a
population-based context. Specifically, two populations of raters are defined to be
in perfect agreement (kappa coefficient equal to 1) if they have the same probability
of classifying each item on the K-categorical scale. With this definition in mind,
it does not really matter which raters agree or don’t agree for a given item within
each population, as long as the proportions in the two populations are equal. Each
population is viewed as a global entity with its own heterogeneity and there is no
direct interest in the agreement of individual raters within or between populations.
Actually, it is quite possible that the two populations perfectly agree while a sub-
stantial part of raters disagree with each other in their own population and with
some raters in the other population. As a consequence of the definition of per-
fect agreement, the maximum attainable proportion of agreement between the two
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populations (at least in the dichotomous case) can be expressed as an analytical
function of two factors, the intraclass correlation coefficient within each population
and the overall marginal probabilities of classifying the items. By setting the intra-
class correlation coefficient equal to 1, it turns out that the approach of Vanbelle
and Albert (2009b) rejoins Schouten’s assumption of perfect agreement, which can
therefore be regarded as a special (extreme) case of their general definition. As
illustrated on the SCT data, the difference between Schouten’s and Vanbelle and
Albert (2009b) approach can be marked (k = 0.72 and 0.35, respectively). This is
due to the fact that both groups of raters show a high variability in their responses
(the ICC was 0.22 £ 0.04 in the group of experts and 0.29 + 0.03 in the group of
students, respectively). The method of Vanbelle and Albert (2009b) allows for
prefect agreement in presence of group heterogeneity while Schouten’s approach
does not. Schouten’s index, however, can be derived directly from the K x K
contingency table of joint probabilities estimates, whereas this is not possible with
the proposed approach because the definition of perfect agreement requires the
raw original data to be available to compute the maximum attainable value. As
for the sampling variability aspects, Vanbelle and Albert (2009b) suggested to use
the Jackknife method rather than by asymptotic formulas.
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The agreement index proposed by Vanbelle and Albert (2009b) is also superior to
the consensus approach (a method that we tried to formalize more theoretically) in
the sense that it takes into account the variability among raters in each population
and it incorporates always all items to be allocated. An intraclass and weighted
versions were also proposed. If there is only one rater in each group, all coefficients
envisaged here reduce to Cohen’s kappa coefficient. Recently, Vanbelle and Albert
(2009a) envisaged the agreement between a single rater and a group of raters, a
situation which may be regarded as a special case of the present one but which
raises specific problems in practice.

In conclusion, the index proposed by Vanbelle and Albert (2009b) measures the
overall agreement between two independent groups of raters, taking into account
the within group heterogeneity. The method is a natural extension of Cohen’s
kappa coefficient and demonstrates similar properties.

5.9 Proofs

Equivalence 5. We have

K
_ Zj:l(H[j]T - H[j]E) _ Iy — IIg
S (Mg — Te) M —1g

where the quantities I, e and Il correspond to the quantities described
wn the dichotomous case when the nominal scale is dichotomized by grouping all
categories other than category j together and Iy, Ilg and 11y are defined by

K K K
Iy = ZE(Pij,IBj,Z)§ Il = Zﬁj,lﬂjz; Iy = Z E(Pi)
=1 =

J=1

Proof. Indeed, when grouping all categories other than [j] together, a 2 x 2 table
cross-classifying populations of raters R, and R» with respect to category j of the
nominal scale can be constructed (j = 1,--- , K) (Table 5.12).

Thus,

K K
Y Tyr = Y E[PjiPya+ (1— Py)(1 — Py2)))
P =1
K K K K
= E(2 Z Pij1Pij2 + Z 1- Z Pij1— Z Pij2)
Jj=1 j=1 j=1 j=1
K
= QE(Z Pij1Pyj2) + K —2
=1

= 20+ K —2.
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Table 5.12. 2 x 2 table cross-classifying the two populations of raters
with respect to a nominal scale, obtained when grouping all categories
other than category [j] together

Ra
li] Other
[j] E[P;j1P;j ] E[P;j1(1 — Pij2)] Tj1

R1
Other E[(1— P;1)Pyj2] FE[(1— Py1)(1— Pyj2)] 1—mj1
2 1-— 52 1

Likewise, it is easily seen that

K K

» Myp=Hp+K—2and Y T =1y + K —2.

j=1 j=1
It follows immediately that
Hy —1lg

ST T



CHAPTER 6

Tests on agreement indexes

6.1 Introduction

Agreement indexes between two raters, several raters, an isolated rater and a
group of raters and two groups of raters were introduced in previous chapters.
The large sample variance of these agreement indexes was also derived and allows
the determination of confidence intervals and testing if agreement is greater than
obtained by chance. This chapter investigates in more detail statistical tests for a
single kappa coefficient and for comparing several kappa coefficients. For the latter,
we shall distinguish agreement indexes obtained on independent samples and those
derived from the same sample of items. Fleiss (1981) developed a method based
on the chi-square decomposition theory for comparing two or more independent
agreement indexes. No method for comparing two dependent agreement indexes
was available before the work of McKenzie et al. (1996), who described a resampling
method based on the bootstrap. This method was generalized to several agreement
indexes by Vanbelle and Albert (2008). A third type of comparison may also arise,
as discussed by Williams (1976) and Schouten (1982), when testing the effect of a
single rater on the agreement within a group of raters. Schouten (1982) compared
the agreement obtained between an isolated rater (I) and a group of raters (G) to
the agreement within the group of raters formed by the group of raters and the
isolated rater (I4+G) to detect raters who significantly lower the agreement. The
methods exposed in this chapter will be illustrated on the comparison of agreement
indexes between two raters, between an isolated rater and a group of raters and
between two groups of raters.

119
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6.2 Test on a single kappa coefficient

6.2.1 Asymptotic method

In order to test the following hypothesis for some fixed kg,
Hy: k=kovs Hi : Kk # Ry,

consider the statistic .
KR — Ko

~ SE(k)
following asymptotically a Normal distribution Z ~ N(0,1). Hy is rejected if the
observed Z statistic (Zps) is such that

(6.1)

| Zows |2 Q2(1 = 3) (62

where Qz(1 — §) is the (1 — §)-quantile of the Normal distribution. H, is not
rejected otherwise.

The (1 — «)100% confidence interval for a kappa statistic is thus defined by

f—Qz(1— %)SE(/%) <KR<R+Qz(1- %)SE(/%).

6.2.2 Bootstrap method

Klar et al. (2002) proposed the use of the bootstrap method to form a (1 — «)
percentile confidence interval for Cohen’s kappa coefficient when the scale is bi-
nary. This should be interesting for small sample size (N < 200) because it has be
shown that the kappa statistic is not symmetrically distributed in that case (Bloch
and Kraemer, 1989). This is partially due to the fact that the statistic is bounded
by the value 1.

Suppose that two raters classify NV independent items on a binary scale and let Y; ,
denote the binary random variable associated with the classification of the raters
(see Section 2.3.3). Let Pj, = P(Y;1 = j,Y;2 = k) denote the joint probabilities
of Y;; and Y; 5. The joint probability function of Y;; and Y; 2 can be written as

P(Y;J = i1, Yz‘,2 _ %‘,2) _ Plyli,1yi,2P1y2¢,1(1fyi,2)Pz(llfyi,l)ymP2(21*y¢,1)(17yi,2)‘ (6.3)

Considering all N independent items, the joint distribution of the data is multi-
nomial

N!
n11!n121M21 Mgy

where P = (P11,P12>P217P22),> nn = Zfil YinYi2, N2 = Zf\il yi,l(l - yi,2)7
N N
nor = Y i (1=yi1)yi2, noa = 3 i (1= yi1) (1 —yi2) and nyg +nip+n9 +ngp = N

f(nn, ni2, N1, n22|P) = Pﬁllpgmpznflpgzm (6-4)
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(see Table 2.2). The maximum likelihood estimate (MLE) of Cohen’s kappa coef-
ficient for binary scales is given by Equation 2.22.

The bootstrap method first consists in creating a finite population, obtained by
giving each observation in the data set a probability of 1/N. From this finite
population, there are NV possible samples of size N obtained with replacement.
For each of these samples, the corresponding MLE of Cohen’s kappa coefficient
can be calculated, giving NV estimates. The empirical distribution of these NV
estimates of Cohen’s kappa coefficient is the exact bootstrap distribution.

Consider a random draw, say (Y;, Y;%) from the finite population. Since (Y}, ¥;%)
can take only four possible values, using discrete probability theory, we have

P =1,V = o) = pHphs " ph " ply (6.5)
where pjr. = njx/N, j,k = 1,2. Next, consider all NV possible samples of size N.
Since there are only four possible values of (y1,y2), many of these samples will be
identical. In particular, the probability of obtaining a sample of size N in which
myy of the (Y, Y;%)s equal (1,1), ma of the (Y}, Y%)s equal (1,0), my of the
(Y7, Yi5)s equal (0,1) and mgy of the (Y;,Y;%)s equal (0,0), is

mi11 ,,M12 ,,1M21 1122 (66)

N
P11 P12 P21 P22
ma1!maz!marmas!

f(ma1, mig, mo1, mao|p) =

where maoy + may + myz + my; = N and p = (p11, P12, P21, P22)’. Thus, instead of
needing to calculate explicitly all NV samples, the sample (i.e. all possible values)
of (mq1, my2,Ma1, Mgs) is sufficient to determine the exact bootstrap distribution
of Cohen’s kappa coefficient. To calculate the number of points in the sample
space Klar et al. (2002) supposed that mq; vary from 0 to N; then mis can vary
from 0 to N —my; and mg; can vary from 0 to N —mqs —mq;. The total number
of points in the sample space is thus

i Nfl N’"Z’" N4V +2)(N 41 6
m11=0 mi2=0 mao1=0 6
For each sample point (my1, m12, Ma1, Mag), the value of Cohen’s kappa coefficient
and its associated probability, given by Equation 6.6, are determined.

To obtain a two-sided (1 — «)100% confidence interval, Klar et al. (2002) ordered
the (N + 3)(N + 2)(N + 1)/6 values of Cohen’s kappa coefficient to calculate the
bootstrap distribution function and determine the percentiles /2 and (1 — «/2).
Since the bootstrap distribution is discrete, it is very unlikely that the standard
percentiles will occur at points of the discrete distribution. As such, Klar et al.
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(2002) suggested linear interpolation to calculate the percentiles. For the Qth
percentile, if Qp is the closest percentile greater than @ (with the corresponding
Cohen’s kappa coefficient equal to &y) and @y is the closest percentile less than
() (with the corresponding Cohen’s kappa coefficient equals to &), then the Qth
percentile obtained using linear interpolation is

P fr(Qu — Q) + ky(Q — Q)
¢ Qu—-Qr
Instead of using linear interpolation, Klar et al. (2002) proposed to choose the clo-

sest observed percentile that is less than («/2) and the closest observed percentile
that is greater than (1 — «/2). This is called the conservative method. After using

. (6.8)

linear interpolation or the conservative method, confidence interval can further be
refined by using the bias-corrected method (Efron and Tibshirani, 1993).

Finally, the exact bootstrap estimate of Cohen’s kappa can be calculated as

N N-—-mi1 N—mijs—mi1

K= Z Z Z f(m117m127m21,mzz‘p)/%(mn,m127m217m22)~

m11=0 mi2=0 mo1=0

Then, & can be used to calculate the exact bootstrap estimate of the variance,
N N—-mi1 N—miz—mn

var(k)= > Y > flmar,maz, mar, maalp) (B(may, mag, mar, mag) — )?

m11=0 mi12=0 ma1=0

and the exact bootstrap estimate of bias,

BIAS = Ry — F.

6.3 Tests on independent kappas

Independent agreement indexes refer to agreement indexes obtained on different
populations of items. This is the case when determining the agreement in the G
modalities of a categorical covariate. The raters may be the same or different in
the G modalities. For example, agreement between the two same raters may be
quantified for men and women (G = 2).

6.3.1 Two kappa coefficients

Suppose that we have to compare the agreement between raters obtained for two
independent samples of items. Let k1 and /o be the two kappa coefficients, respe-
ctively. To test the hypotheses Hy: k1 = ke vs Hi: K1 # Ko, the statistic
K1 — Ra K1 — R
1Z| = — . . (6.9)
| Vovar(iky) +var(ky)  SE(R1) + SE(Rs)
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follows asymptotically a Normal distribution Z ~ N(0,1). H, is rejected if the
observed Z statistic (Zps) is such that

| Zobs |Z QZ(l - %) (610)

where QQz(1 — §) is the (1 — §)-quantile of the Normal distribution. Hj is not

rejected otherwise.

6.3.2 Several kappa coefficients

Fleiss (1981) developed a method directly inspired by the classical one-way analysis
of variance and the chi-square decomposition theory for comparing several asso-
ciation measures. This methodology is applied to the kappa coefficients in this
section. Consider G independent estimates of a kappa coefficient (&1, ,kg)-
The coefficient &, denotes the kappa coefficient relative to modality g of the cate-
gorical covariate (9 = 1,--- ,G). Let SE(&,) be the standard error of the kappa
coefficient &, and w, = 1/[SE(#,)]*. Under the hypothesis of agreement only due
to chance in the modality g of the covariate, the statistic

Kg

Xg = SE(/%g) = K;g\/w_g (611)

follows approximately a Normal distribution (central-limit theorem) and the statis-
tic
X = wgk, (6.12)

follows approximately a chi-square distribution with one degree of freedom if the
sample sizes n, (9 =1,--- ,G) are sufficiently 'large’. Fleiss (1981) considered the
statistic

G
Xiwt = D X4 (6.13)
g=1

to compare the G kappa coefficients. Under the hypothesis of no agreement in
each of the G modalities, 2, follows a chi-square distribution with G degrees of
freedom.

Fleiss (1981) divided X7, in two terms X7, = Xiom + X-ss Where xi, — represents
the homogeneity degree between the G kappa coefficients and Y2, represents a
mean degree of agreement. The term 2, is computed as followed,

G A
_ 41 WeK
/%ass - Zg_l ! 9. (614)

G
Zg:l 'lUg
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Under the hypothesis of a global kappa coefficient equal to 0, /. has a value of 0

and .
SE(Rass) = ——-
Zg:l U)g
o G ~
VA _ Rass _ Zg:l wg"'ig
s SE Aass B G
<l{ ) Zg:l wg

is thus normally distributed. Fleiss (1981) considered that the statistic defined by

follows approximately a chi-square distribution with one degree of freedom. The
term x3,,, is obtained by subtraction.

el G G . .
A A (Kv - Kvass)g
X%om - Xtht - X?zss = ng"{'; - KZZSS ng = Z g—AQ (615)
[SE(Rg)]
g=1 g=1 g=1
In order to test the hypothesis Hy : k1 = - = kg vs Hy: i #j : Kk #
ki (i,7 € {1,--- ,G}), we have to compare X3, to the chi-square distribution with

G — 1 degrees of freedom, the null hypothesis being rejected at the a confidence
level if x7 ., is greater than Q,2(1—a; G—1), the (1 —a)-quantile of the chi-square
distribution on G — 1 degrees of freedom. The expression [SFE(k,)]? was originally
derived from the Delta method (see Chapter 2).

6.4 Test on dependent kappas

Dependent agreement indexes are obtained by determining an agreement index
several times on the same population of items. The raters may be the same or
different. For example, the agreement between two raters on a sample of items
using a first method may be compared with the agreement index obtained on the
same sample of items with a second method.

6.4.1 Selection of homogeneous subgroups of raters

Schouten (1982) developed a method to test whether removing one rater from a
group of raters significantly increased the agreement in the group of raters. Con-
sider a group of R+ 1 raters. Let &,(w) designate Schouten’s measure of agree-
ment between rater r and the R remaining raters in the group and #(w) designate
Schouten’s group measure of agreement between the R+ 1 raters, Schouten (1982)
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showed that #(w) significantly increases by removing the rater r from the group if

s (A(w) = & (w))?
XO) = Do (A () + var (e (w)) — 2co0(7(w), fn(w) (6.16)

is greater than the (1 — a)-quantile of the chi-square statistic on one degree of
freedom. This permits to study whether a rater is an "outlier” by significantly
decreasing the agreement existing in the group of raters. It is suggested to deter-
mine the large sample variance and the large sample covariance using the Jackknife
technique.

6.4.2 Two kappa coefficients

Suppose that raters classify N items on a categorical scale at two different occasions
or in two different experimental settings. Let & and &y be the agreement indexes
obtained. Since the two agreements are assessed on the same items, k; and ko are
correlated. Are they statistically different? Let Hy : k1 = ko, the null hypothesis to
be tested. The bootstrap method consists in drawing ¢ samples (1000 is generally
sufficient following McKenzie et al. (1996)) of size N with replacement. For each
generated sample, the agreement coefficient is estimated in the two settings and
their difference k; = Ko — K calculated. McKenzie et al. (1996) suggested to
determine the bootstrap two-sided (1 — «)100% confidence interval for the &g
differences, whence rejecting the null hypothesis if the confidence interval does not
include 0. This approach is equivalent to using a Student’s t-test (Vanbelle and
Albert, 2008) and to reject Hy at the « significance level if

|tobs| - ’SEKJ—(C?{d)‘ ZQt(l_%;q_l) (617)
where Ky and SFE(Rg) are respectively the mean and standard deviation of the ¢
bootstrapped kappa differences and Q;(1 — §;¢ — 1) is the upper (c/2)-quantile
of the Student’s t distribution on ¢ — 1 degrees of freedom. Otherwise, Hy is not
rejected.

McKenzie et al. (1996) proposed alternatively to use a Monte Carlo permutation
test, consisting in shuffling the sample 999 times. The number of times that
the difference between the original values of the agreement indexes is equaled or
exceeded by the difference between the randomly permuted values is then obtained
(k). This value, incremented by one is divided by 1000.

ke+ 1

"= 000

If the resulting value &, is less than or equal to the o significance level, then the
null hypothesis is able to be rejected.
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6.4.3 Several kappa coefficients

Vanbelle and Albert (2008) generalized the method of McKenzie et al. (1996) to
the comparison of more than two agreement indexes. Suppose we want to compare
G > 2 correlated agreement indexes (k1,- -+, kg), i.e., to test the null hypothesis
Hy: k1 = -+ = kg against the alternative hypothesis H; : 3k #1 € {1,--- |G} :
kr # K;. As before, the bootstrap method will consist in drawing ¢ samples of
size N with replacement from the original data. Then, for each bootstrapped
sample (j = 1,---,q), let K; = (R1(j), - , Ra(y))' be the vector of the G agreement
coefficients obtained. The null and alternative hypotheses can be rewritten in
matrix form as follows: Hy: Ck = 0 versus H; : Ck # 0, where k = (K1, ,kg)'
and C the (G — 1) x G patterned matrix

1 -1 0 0
1 0 -1 0
1 0 0 -1
Then, the test statistic is
T? = (Ck)'(CSC')"'CR, (6.18)

distributed as Hotelling’s T2, where K and S are respectively the sample mean
vector and covariance matrix of the ¢ bootstrapped vectors £. The null hypothesis
will be rejected at the a confidence level if

oo 1=D(G-1)

N PETeEsy Qr(l—a;G—1,¢g—G+1) (6.19)

where Qr(1—a; G—1,q—G+1) is the upper a-percentile of the F distribution on
G —1 and ¢ — G 4 1 degrees of freedom. Otherwise, Hy will not be rejected. Note
that, since 7q — G +1” will be large in general, the left-hand side of Equation 6.19
can be approximated by @Q,2(1 —a; G — 1), the (1 — a) percentile of the chi-square
distribution on G — 1 degrees of freedom. If ¢, denotes the g-th row of matrix C,
simultaneous confidence intervals for individual contrasts cix (g9 =1, ,G — 1)
given by

i la=1)(G-1) , I
cgnzl:\/ GG Qr(l—a;G—1,¢g—G+1),/c,Sc, (6.20)

can be used for multiple comparison purposes. When G = 3, Vanbelle and Albert
(2008) proposed to represent graphically the data with a 95% confidence ellipse

for the differences in agreement.
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6.5 Examples

6.5.1 Blood clots detection

The presence of blood clots was assessed on 50 patients (23 women and 27 men)
with a reference method (Standard) and two new methods (Method 1 and Method
2) by two medical raters (see Chapter 2, Section 2.6.2). For each new method, Co-
hen’s kappa coefficients were determined for men and women and compared with
the method developed by Fleiss (1981) (see Table 6.1). The Cohen’s kappa coeffi-
cient was 0.27 £ 0.19 (p = 0.16) for men and 0.47 + 0.16 (p = 0.0034) for women
with Method 1 and 0.57 £ 0.17 (p = 0.0008) for men and 0.83 +0.12 (p < 0.0001)
for women with Method 2. The agreement obtained for men with Method 1 was
not better than chance while all other agreement indexes were greater than chance.
For both methods, Cohen’s kappa coefficients for men and women were homoge-

neous.

Table 6.1. Results of the chi-square test comparing Cohen’s kappa
coefficients obtained for men and women when detecting blood clots
with a new method (Method 1 and Method 2) and a reference method
Men (N=27) Women (N=23) FR.s x> p-value
Method 1 0.27 +0.19 0.474+0.16 0.39 0.62 0.43
Method 2 0.57 £ 0.17 0.83 £0.12 0.74 1.52 0.22

Then, Cohen’s kappa coefficient obtained using Method 1 (A = 0.41 £ 0.12) was
compared to the kappa coefficient obtained using Method 2 (£ = 0.71+0.10) using
the bootstrap method with 2000 iterations and the permutation test. Figure 6.1
shows the different kappa values drawn with the bootstrap and the permutation
methods.
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Figure 6.1. Kappa values drawn by the bootstrap (left) and densities of Co-
hen’s kappa differences obtained with the permutation test (right) for the
comparison of kappa coefficients for Method 1 and Method 2 when detecting
blood clots
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The estimated correlation between the two Cohen’s kappa coefficients was 0.41
(p < 0.0001). The bootstrap method (Vanbelle and Albert, 2008) yielded a si-
gnificant result (p = 0.018) and the permutation test (McKenzie et al., 1996) a
95% confidence interval of [—0.54, —0.058]. Method 2 should thus be preferred to
Method 1 because there is a better agreement with the reference method.

6.5.2 Cervical ectopy size

Cervical ectopy size of 85 women was determined on a 4-category scale by two
medical raters by direct visual assessment and with the computerized planimetry
method. To test if agreement between the two raters is the same with the planime-
try and the visual method, the methods developed by McKenzie et al. (1996) and
Vanbelle and Albert (2008) were used. Remember that the weighted kappa coef-
ficient (with quadratic weights) was 0.67 £ 0.062 for direct visual assessment and
0.82 % 0.053 for the planimetry method. Both agreement indexes were better than
chance (p < 0.0001). The bootstrap method with 2000 iterations led to [-0.29,-
0.0023] as 95 % confidence interval for the weighted kappa differences and to a
p-value of p = 0.030 for the Student t-test. The estimated correlation between
the two kappas was 0.19 (p<0.0001). Using the permutation test, the p-value was
p = 0.031 for weighted kappa coefficient differences. Therefore, the planimetry
method should be preferred to visual assessment since the agreement between the
two raters was better. The results of the bootstrap steps and the density of the
kappa differences obtained by the permutation test are given in Figure 6.2.
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Figure 6.2. Kappa values drawn by the bootstrap (left) and densities of the
kappa differences obtained from the permutation test (right) for the quadratic
weighted kappa coeflicient obtained between two medical raters with direct
visual assessment and the planimetry method in the assessment of the cervical
ectopy size of 85 women
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6.5.3 Deep venous thrombosis

A study was conducted on 107 patients in the medical imaging department of
the university hospital to compare deep venous thrombosis (DVT) detection using
a multidetector-row computed tomography (MDCT) and ultrasound (US) (Van-
belle and Albert, 2008). The study also looked at the benefit of using spiral (more
images and possibility of multiplanar reconstructions) with respect to sequential
technique (less slices, less irradiation). Images were acquired in the spiral model
(ankle to inferior vena cava) and reconstructed in 5 mm thickness slices every 5
mm, 20 mm and 50 mm. Two radiologists (one junior and one senior) assessed for
each patient and each experimental setting (5/5, 5/20 and 5/50 slices) the presence
of DVT. The aim of the study was to compare agreement of the different MDCT
slices with the US method. Only data of the senior radiologist will be presented
here (see Table 6.2).

Table 6.2.  Cross-classification of DVT detection (0=absence,
1=presence) using different MDCT slices (5/5, 5/20 and 5/50 mm)
and US in 107 patients by a senior radiologist

MDCT slices

5/5 mm 5/20 mm 5/50 mm
US 0 1 0 1 0 1 Total
0 96 1 95 2 96 1 97
1 0 10 1 9 2 8 10
Total 96 11 96 11 98 9 107

1%5/5 =0.95 /%5/20 =0.84 1%5/50 = 0.83

The observed Cohen’s kappa coefficients (£SE) were 0.95 £ 0.053, 0.84 4+ 0.089
and 0.83 £ 0.098 for 5/5, 5/20 and 5/50 mm slices, respectively. The bootstrap
approach with 2000 iterations led to a Hotelling’s T2 value of 1.46 (p = 0.48) indi-
cating no evidence of a difference between the x coefficients at the 5% significance
level. The bootstrap estimates of bias were 0.003, 0.008 and 0.009 for the 5/5, 5/20
and 5/50 mm slices, respectively. According to the rule described in Efron and
Tibshirani (1993), the bias can be ignored. The differences between the Cohen’s
kappa coefficients generated by the 2000 iterations of the bootstrap are represented
in Figure 6.3 with the 95% confidence ellipse for the difference vector (&5 /5 — K520,
Rs/5 — Rs/50). 1t is seen that the origin (0,0) is well inside the confidence region,
as expected.



130 6.5. Examples

0.8
i

06
AN

0.4
i

0.0
i

K5/5-K5/50
0.2
L4
-
. o
s S REED L
£
R

-0.2
|

T T T T T T
-0.2 0.0 0.2 0.4 06 0.8
K5/5-K5/20

Figure 6.3. Kappa differences (k5.5 —
Rs/50 VS Rss — fisja0) generated by the
bootstrap (¢ = 2000) with 95% CI

6.5.4 Script Concordance Test

During 2006, a SCT in endocrinology was proposed to students in medicine in their
3, 4, 5 or 6th year at the University of Liege, Belgium (Collard et al., 2009). The
SCT consisted of 48 items relating possible situations encountered in endocrino-
logy. There were 35, 20, 26 and 27 students passing the SCT in the 3, 4, 5 and 6th
study year, respectively. Their responses were confronted to the responses given
by a panel of 10 experts. The 48 items were divided in two categories: situations
encountered by the students during their study (”inside context”) and situations
never seen during lessons ("outside context”). Firstly, the agreement obtained
between each expert and the remaining 9 experts in the panel was compared with
the agreement in the panel of experts using the method of Schouten (1982) to
see if some experts significantly decrease the agreement among the panel. Using
linear weights, the weighted agreement index derived by Schouten (see Chapter
4, Section 4.5) within the panel of experts was equal to 0.49 4+ 0.034. Expert 6
appeared to lower significantly the agreement in the panel of expert but was left
in the study (see Table 6.3).

Table 6.3. Results of Schouten’s method of homogeneous subgroups selection when
considering the group of 10 experts in the SCT example

Expert 1 2 3 4 5 6 7 8 9 10

Rr(w) 0.50 0.52 054 053 048 034 052 049 050 042
SE 0.055 0.046 0.041 0.045 0.051 0.079 0.042 0.052 0.044 0.046
x> 0.14 1.78 428 236 0.024 5.49 1.12 0.040 0.21 2.98

p-value 0.71 0.18 0.039 0.12 088 0.019 029 084 0.64 0.084
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Then, to study if the agreement between the students and the panel of experts was
related to the level of education (i.e., years of studies), the agreement between the
group of students and experts was determined in each study year (Vanbelle and

Albert, 2009b) and these agreement indexes were compared using the bootstrap
method (Vanbelle and Albert, 2008). The level of agreement between each group

of students and the panel of experts was determined using a linearly weighted
agreement index and are given in Table 6.4 and displayed in Figure 6.4.

Table 6.4.

Linearly weighted
agreement indexes between the
108 students and the panel of ex-
perts according to the study year

for the SCT in endocrinology

Year Ri Rs Ry SE
3 10 35 0.65 0.038
4 10 20 0.64 0.049
5 10 26 0.75 0.032
6 10 27 0.72 0.033

ALL 10 108 0.71 0.033
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Figure 6.4. Linearly weighted agree-
ment indexes (+SF) between the 108
students and the panel of experts ac-
cording to the study year for the SCT

T
5

Study year

in endocrinology

There was a significant difference according to the study year (7%

15.6, p =

0.0010). Students from year 5 presented better agreement with the panel of experts
than students from year 3 and 4. The estimated correlation matrix between the
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agreement indexes was

1 0.60 0.66 0.52
0.60 1 0.69 0.58
0.66 069 1 0.67
0.52 0.58 0.67 1

R:

Finally, the agreement obtained on items ”inside context” was compared to the
agreement obtained on items ”outside context” with the test exposed in Section
6.3.1. The hypothesis was that agreement should be better for items ”inside con-
text” than ”outside context” because the situations were encountered by the stu-
dents during their studies. However, there was no difference between the two types
of items (see Table 6.5).

Table 6.5. Linearly weighted agreement indexes between the 108
students and the panel of experts according to the study year for
the SCT in endocrinology for items ”inside context” and ”outside
context”

Inside context Outside context
Year Ri1 R Ry £ SE Ry SE p-value
3 10 35 0.64 + 0.055 0.68 £+ 0.053 0.65
4 10 20 0.61 £+ 0.076 0.68 £+ 0.068 0.52
5 10 26 0.77 £ 0.041 0.76 £ 0.049 0.85
6 10 27 0.73 £ 0.052 0.73 £0.045 0.99
ALL 10 108 0.70 4+0.047 0.73 £0.048 0.67

6.6 Discussion

This chapter was concerned with statistical hypothesis testing on kappa coeffi-
cients. We distinguished between single kappa tests and multiple kappa compari-
son tests. Confidence intervals were constructed for a single agreement coefficient
using an asymptotic method and the bootstrap method. One advantage of the
exact bootstrap procedure is that it does not force the confidence interval to be
symmetric around the estimate of the kappa coefficient as it is the case with the
asymptotic method. However, investigators may reach, by chance, different con-
clusions with the bootstrap method if the bootstrap distribution is not completely
specified.

Then, the methods discussed in this chapter to compare several agreement indexes
allow the comparison of several kappa coefficients, agreement being searched bet-
ween two raters, several raters, a group of raters and an isolated rater or two
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group of raters. A further distinction has to be made between the unpaired and
the paired cases. The asymptotic method of Fleiss (1981) is, to our knowledge, the
only method exposed in the literature to compare several independent agreement
indexes, which permits the comparison of all kinds of agreement indexes. This
method is based on the chi-square decomposition theory and has the disadvantage
of being asymptotic but is simple to apply. No guidelines relative to the required
sample size was provided with the method. To compare two or more correlated
agreement coefficients, the bootstrap method of Vanbelle and Albert (2008), ex-
tending the bootstrap method of McKenzie et al. (1996) provides an estimate of
the mean and the variance-covariance matrix of correlated agreement indexes and
hence a way to test their homogeneity by means of the Hotelling’s 72. These me-
thods are computer intensive and possess the drawbacks of the resampling methods
but are simple to implement. It should be noted that methods restricted to partic-
ular forms of agreement indexes were not discussed in this chapter. This includes
methods developed by Donner and Eliasziw (1992), Donner and Klar (1996), Don-
ner et al. (1996) and Donner (1998) for the comparison of independent intraclass
kappa coefficients between two raters. These methods are based on the common
correlation model given in Section 2.4.3 and on the chi-square statistic (”good-
ness of fit approach”). These methods were extended to the comparison of two
dependent intraclass kappa coefficients by Donner et al. (2000) and Nam (2003).
None of the techniques described in this chapter allows to study the influence of
continuous covariates on agreement indexes. This orientated the researchers to the
modeling methods, which are developed in the next chapter.






CHAPTER 7

Regression and kappa coefficients

7.1 Introduction

Methods for comparing several agreement indexes were introduced in Chapter 6.
However, with the development of generalized linear models (GLM), researchers
have focused on modeling techniques to account for categorical and continuous
covariates in the determination of agreement between raters. Developments were
first made on the basis of hierarchical log-linear models including two components:
a first component representing the effect of chance and a second the effect of rater
agreement (Tanner and Young, 1985a). They first introduced methods based on
the independence model in case of Cohen’s kappa coefficient between two or more
raters and symmetry and quasi-independence model in case of intraclass kappa
coefficients. Then, for ordinal ratings, they used a linear-by-linear baseline asso-
ciation model since ordinal rating scales almost always exhibit a positive associa-
tion between ratings (Tanner and Young, 1985b). Log-linear models were then
improved by Agresti (1988, 1992) and Becker and Agresti (1992). Graham (1995)
further extended the log-linear model proposed by Tanner and Young (1985a) to
the analysis of categorical covariate effects on chance corrected agreement and
Basu et al. (1999) used log-linear models to estimate hierarchical weighted agree-
ment coefficients between two raters. Finally, Perkins and Becker (2002) proposed
to model the bivariate marginal responses of the raters instead of modeling the
joint distribution of the raters responses using log-linear models. Agresti (1992)
used log-linear models but also latent class models and Rasch models to study
patterns of agreements and disagreements. Latent class models were first used by

135
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Uebersax (1988) and more recently by Schuster and Smith (2002, 2006). Latent
classes emerge form the factorial combination of the true category in which the
item belongs and the ease with which raters are able to classify items into the true
category. Note that Schuster (2002) also used mixture model approach to index
rater agreement.

Alternatively, developments were made on the basis of logistic regression analy-
sis. First, Coughlin et al. (1992) used logistic regression analysis by defining a
dependent variable equal to 1 if the raters agree and 0 otherwise and adjusted the
model for independent covariates. This approach is thus not corrected for chance.
Shoukri et al. (1995) and Shoukri and Mian (1996) derived the maximum likeli-
hood estimator of the intraclass kappa coefficient when the binary classification
of the raters depends on covariates relative to items and/or raters while Barlow
(1996) proposed, as alternative, the use of a conditional logistic regression model
to account for one or more covariates. Later, Lipsitz et al. (2001, 2003) constructed
models to account for categorical and continuous covariates permitting the com-
parison of independent agreement indexes between two raters.

Researchers also used generalized estimating equations (GEE) to model dependent
agreement indexes with respect to continuous and categorical covariates. Thom-
son (2001) used one set of estimating equations to estimate agreement coefficients
in various situations without giving the possibility to compare the agreement co-
efficients obtained. On another hand, Williamson and Manatunga (1997) first
used two sets of estimating equations to test for the equality of two or more de-
pendent inter-rater agreement coefficients when ordinal ratings are made on the
same sample. Then, Williamson et al. (2000) extended the methodology to the
general case of agreement between two or more raters and Gonin et al. (2000) to
weighted agreement indexes between two raters. Finally, Barnhart and Williamson
(2002) adapted the weighted least-squares approach for comparing several depen-
dent agreement indexes between two raters. Although various modeling techniques
were developed, most of them are only applicable to one particular form of the
kappa coefficient or does not link directly the agreement index to covariates. There-
fore, this chapter will be limited to the empirical methods of Lipsitz et al. (2001,
2003), the weighted least-squares approach and the generalized estimating equa-
tions. These methods will be reviewed, illustrated and compared to the bootstrap
method of Vanbelle and Albert (2008).

7.2 Independent agreement indexes

Lipsitz et al. (2001) developed a method for modeling Cohen’s kappa coefficient as
a function of covariates relative to the raters and/or the items. They proposed to
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use two logistic regressions and a linear regression for binary variables to estimate
Cohen’s kappa coefficient. A modified version of their method was developed by
Lipsitz et al. (2003).

7.2.1 Initial method

Binary scale. Let two raters assess each of N independent items on a binary
scale. As before, let Y;, denote the random variable such that Y;, = 1 if item ¢ is
rated positive by rater r and Y;, = 0 otherwise (r = 1,2). Suppose each item has
an item specific covariate vector x; and two vectors of covariates specific to the
raters @;,, m = 1,2 as it was supposed by Shoukri and Mian (1996) and denote
z; = (z;, T}, x;,). Then define the indicator random variable Y; such that Y; = 1
if both raters agree on item ¢ and Y; = 0 otherwise. In terms of ¥;; and Y; o, we
have

Y=Y 1Yio+ (1 —-Yi1)(1—Yia). (7.1)

Lipsitz et al. (2001) defined Cohen’s kappa coeflicient between Y; ; and Y; 5 as usual

Poi_Pei

2
1—- P, (72)

R; =
with
Poi = P[Y; = 1|Z7,} = P[Y;l = 1,}/;72 = 1|Zl] + P[Y;;J = O,YLQ = OIZZ] (73)
and
Pei = 7T7;717T2‘72 —|— (]_ — Wi,l)(l — 7Ti,2) (74)
where 7;, = P[Y;, = l|a;, x;,], r=1,2.

Adjustment for covariates associated with Cohen’s kappa coefficient can be accom-
plished using the model

9(ki) = ziy
where ¢(.) is a link function to ensure that —1 < k; < 1 and ~ is a vector of
unknown parameters. Fisher’s Z transformation might be used as link function.
However, Lipsitz et al. (2001) found that this link function and the associated

parameters < are not easily interpretable and thus preferred use the identity link
function without constraint on the kappa values in the estimation procedure,

ki=zry, i=1,---,N. (7.5)
Lipsitz et al. (2001) remarked that

P, =P+ ri(l—PF,) :Pei—i‘Z;’Y(l—Pei) :Peri‘zfl’)’ (7.6)
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where z7 = (1 — P.;)z;. Therefore, if P,; is known, the model of P,; is a linear
model with an identity link function, a known offset P.;, a known covariate vector
z? and an unknown parameter vector «v. Thus, to estimate ~y, if P.; is known, the
maximum likelihood based on the Bernoulli distribution of the random variables
Y; can be used. Unfortunately, P,; is rarely known. Instead of using the maximum
likelihood estimation based on the joint distribution of (Y1, Y; 2) to estimate jointly
(mi1,m2) and -, as made by Shoukri and Mian (1996), Lipsitz et al. (2001) replaced
P.; in Equation 7.6 by an estimate Pez- and estimated ~ using a linear model. In
particular, Lipsitz et al. (2001) estimated ;1 and ;2 using the logistic regression
model

logit(miy) = @, By, + @B, 1T =1,2 (7.7)

and then estimated P,.; by

A

P = piapiz + (1= pin)(1 — pio2) (7.8)
where p; . = 7., r = 1,2. Finally, they used the following linear model for P,;,
P~ P+ (1—P,)z~. (7.9)
In practice, the estimation of the parameter vector « involves

1. the use of logistic regressions of Y; . versus (x;,, ;) to obtain p;, (r =1,2),
2. the estimation of the ‘offset’ P,; = piiDi2 + (L —pi1)(1 —pia),

3. the use of a linear regression of the binary outcome Y; versus z; with a known
offset P,;.

Note that P,; should be in the range [0, 1] but it might not be the case since the
identity link function is used in the regression model of Cohen’s kappa coefficient.
However, Lipsitz et al. (2001) never found this to be true in the data they analyzed.

Lipsitz et al. (2001) remarked that, since the model for m;, (see Equation 7.7) is
not a function of 4, the estimate of 3, , and B, (r = 1, 2) will be the same, despite
the model for ;. However, the estimate of k; depends on the model used to esti-
mate the parameters 7;, and can be biased if the model is underfitted. Analyzing
several samples, Lipsitz et al. (2001) found that it was preferable to introduce too
much covariates to model 7;, than too less, even if covariates are not significant
at the «a significance level, a priori given. This method leads, however, to a small
increase of the estimated standard error of 4 (Lipsitz et al., 2001).

Let B = (81,85, B2, B5). Using Taylor series expansions similarly to Prentice
(1988) and assuming that the models for m; 1, m; 2 and k; are correctly specified, it

can be shown that (3,4') is consistent for (3, ') and that NY/2((8—8), (¥ —~)')
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has an asymptotic distribution which is multivariate Normal with mean vector 0
and variance-covariance matrix which can be consistently estimated by a robust
variance estimator such as Jackknife estimator. One form of the Jackknife variance
estimate is

N

V(B.AY=>(B8.4)-— (B

i=1

/ /

ANB LA~ (B,4) (7.10)

where (,B/, 4")_; is the estimate of (B/, 4"} obtained by deleting the two observations
relative to item ¢ and by recalculating both 8 and ~.

Categorical scale. Suppose now that the response is categorical with K cate-
gories and let Y;, denote the random variable such that Y;, = k if rater r classifies
item i in category k (r=1,2;i=1,--- ,N,k=1,--- | K). Extending the method
described in the binary case, Lipsitz et al. (2001) proposed to

1. use an ordinal or polynomial logistic regression of Y;, versus (x;, @;,) to
obtain P[Y;, = k|x;, x;,| (r=1,2),

2. form Pei = Zszl p[}/;71 = k:]zc“ Zvi’l]p[Y;‘,Q = k]:cz, 1131'72},

3. use a linear regression of the binary outcome Y; versus z} with a known offset
P, (i=1,---,N) to obtain 4.

7.2.2 Two-stage logistic regression

Lipsitz et al. (2003) proposed to modify their method (Lipsitz et al., 2001) by using
a two-stage logistic regression to estimate the agreement probability as a function
of covariates. The introduction of the two-stage logistic regression was motivated
by the following fact. Suppose that two binary observations are made completely
independently on the same item. Moreover, suppose that the prevalence for clas-
sifying an item as positive (which is a covariate) is large in some sub-group and
small in some others. Thus, by chance alone (since the reports are made indepen-
dently), agreement appears to be related to the covariates although agreement is
only due to chance. To overcome the problem, Lipsitz et al. (2003) proposed a
two-stage logistic regression, for which the parameters of the model are equal to
0 when agreement is only due to chance using an ’offset’, i.e., a known regression
coefficient.

Consider the vector z; of covariates and the indicator vector Y; described by Equa-
tion 7.1 (see Section 7.2.1). Suppose that the probability of agreement is modeled
with the following logistic regression model

logit(Py;) = @iy, + i1V + TioYs = 277 (7.11)
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Lipsitz et al. (2003) developed a logistic regression model for which v = 0 when
agreement is due to chance by introducing an offset.

l0git(Py;) = logit(Pe;) 4+ @iy, + T} 17y + T} 57y3 = logit(Pe;) + 2. (7.12)
In practice, the procedure of Lipsitz et al. (2003) thus consists in

1. using a logistic regression of Y;, versus (x;,, ;) to obtain p;, (r = 1,2),
2. estimating the offset’ logit(ﬁei) = logit[piipia + (1 — pi1)(1 — pi2)],

3. using logistic regression of Y; versus (x;, @; 1, «; 2) and a known offset logit(ﬁ&-)
to obtain 4.

Since the procedure does not involve a linear regression, as opposed to method des-
cribed in Section 7.2.1, Lipsitz et al. (2003) solved the problem of constraints on P,
(P,; € [0,1]). They also proposed, when raters are indistinguishable (m;; = 7;.5),
to estimate jointly the marginal probabilities rather than separately. This consists
in using one set of generalized estimating equations (GEE1) in step (1) rather than
2 separate logistic regressions.

For each item Lipsitz et al. (2003) proposed the following expression to determine
how agreement differs from chance for any covariate pattern

£ = logit(B,) — logit(P) = z4. (7.13)

In particular, the hypothesis Hy: agreement is due to chance, i.e., logit(P,) —
logit(P,.;) = 0 versus Hy: logit(P,;) — logit(P.;) # 0 can be tested.

For any bounded monotone function g(.), Lipsitz et al. (2003) proposed to use the

«_  gllogit(Py)] — gllogit(Pei)]
" {maxgllogit(P,)|} — gllogit(P.;)]

to test the hypothesis Hy. The summary measure & is equal to 0 if agreement is

estimate of

(7.14)

due to chance and 1 if agreement is prefect. In particular, for a given value of a,

the choice of u
e

- 14 e
yields an estimate of Cohen’s kappa coefficient for each covariate pattern when

glal

evaluated at (Poi, Ti1,Ti2), that is,

A A

Poi - Pei
g = 2 (7.15)
1— Pei

Lipsitz et al. (2003) noted that the estimated variance of 4 reported by standard
statistical software for logistic regression will not be correct since the offset is
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treated as known rather than estimated. Using Taylor series expansions similar to
Prentice (1988) and assuming that the models for m;;, m;2 and P,; are correctly
specified, it can be shown that (3,4) is consistent for (8,~) and N/2[(3—8)’, (¥—
~)’] has an asymptotic distribution which is multivariate Normal with mean vector
0 and a variance-covariance matrix which can be consistently estimated by a robust
variance estimator such as the sandwich estimator of White (1982) or the Jackknife
estimator (Quenouille, 1956). The Jackknife estimate can be obtained as follows

~

VE A = S B - @A B A - (F ) (T16)

where (B/, 4")_; is the estimate of (3’,4’) obtained by deleting the pair of ratings
on item 1.

Lipsitz et al. (2003) shown that the estimates obtained by their two-stage logistic
regression are also the estimates of the generalized estimating equations

U5 (8:7) ZDV (Uz'—m(B,‘y)) =0 (7.17)

where D', is the block-diagonal matrix D} = 9n,(8,~)/9(8,~), V; is the working
variance-covariance matrix, U; = (Y;1,Y ;5. Y;) and n, = E(U,|3,7).

7.3 Dependent agreement indexes

7.3.1 Weighted least-squares approach

The weighted least-squares approach (WLS) is an extension of the GSK (Grizzle,
Starmer and Koch) methodology, developed by Grizzle et al. (1969) for comparing
correlated categorical data. The method was initially developed by Koch et al.
(1977) and was adapted to the special case of kappa coefficients by Barnhart and
Williamson (2002).

7.3.1.1 Comparison of two kappa coefficients

The weighted least-squares approach allows the comparison of several correlated
agreement coefficients between two raters. Suppose that two raters classify each of
N items on a K-categorical scale with two methods and let Y7; and Yis represent
the classification of the two raters with the first method and Y5; and Y5, with
the second one. Suppose that interest is to determine whether the reproducibility
between the two classifications differs from method to method. Because the four
classifications are assessed on the same set of items, the two agreement indexes
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are generally correlated and this correlation must be taken into account for valid
inference.

Cross-classifying Y71, Y12, Yo1 and Yas, a K X K X K X K contingency table with cell
counts Y;jim (4,7,[,m =1,--- , K) is obtained. Interest is in two agreement indexes
k1 and ko obtained from the two bivariate marginal tables, i.e., the contingency
tables Y7, x Yio and Yy x Ysy with cell counts ;. and y 5. Note that k; is
the agreement between the two readings using the first method and ks using the
second one. Interest is in testing

Hy: k1= ko versus Hy : K1 # ko (7.18)

and estimating the common value of the kappa coefficient if Hj is not rejected.

Let m = (Ti111, T1112, * +* » TKEK11, -, TrkKE) denote the K* x 1 vector of cell
probabilities for the Y71 x Y5 X Y51 X Y9 contingency table, where 75, = P(Y11 =
i, Y12 = 7, Yo1 = [, Yoo = m). Denoting k = (k1, k2)’, k can be written as an explicit
function of 7, called the response function, in the following form (Barnhart and
Williamson, 2002):

k=F(mw)=expAy;ln Azexp Ay In A; Ay (7.19)

where the matrices A; (i = 0,--- ,4) are defined later, depending on which kappa
is used. The notation In AB stands for taking the napierian logarithm of each
element of the matrix resulting from the multiplication of matrices A and B.

The weighted least-squares estimator of K is
K=expAsln Asexp Ay In A{ AP (7.20)

where P is the vector of the cell proportions of the K* table, which estimates .
The estimated variance-covariance matrix of K is

OF OF\'
)= =—= |V | — 21
cov(R) <8P> (aP) (7.21)
where V' = (diag(P) — PP’)/N is the estimated variance-covariance matrix of
P, diag(P) denotes the diagonal matrix with P in the diagonal entry, g—l{i is the
partial derivative of F' with respect to 7 evaluated at # = P and N is the total

number of items. The partial derivative of the F' function defined in Equation
7.19 has the following form

2_112 = diag(B4) Asdiag(Bs) ™" Asdiag(Bz) Axdiag(Bi1) ™" A1 Ag (7.22)

where B, = A1AgP, By = expAslogB,, Bs = A3B, and B, = expA,logBs;.
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Using formulas 7.20 and 7.21, Barnhart and Williamson (2002) constructed a Wald
test to test the hypothesis 7.18 using the Z-score

7 =

R1 — Ra

(7.23)

(ST

[var(ky) + var(Ry) — 2cov(kq, Ro)]

Barnhart and Williamson (2002) expressed Cohen’s kappa coefficient as follows:

(m11 + mo2) — (M1 + To.ma)

1-— (7T1.7T.1 + 7T2.7T.2)

1 01 000
-1 -1 1 0 0101060
= 1 —1)1
exp( )n<—1 —101)eXp 000010
0 00O0O0T71
1 100
0011 11
1 010 192
X In
01 01 o1
1 001 729
1 1 11
= expAylnAsexp Ay In Ay, (7.24)

The matrix A; produces a vector with the row marginals, column marginals, dia-

gonal sum and total sum of cell probabilities, As produces a vector with four main

quantities in the log scale of k, A3 produces the vector of the numerator and the

denominator of x and A, divides the numerator by the denominator to produce

K.

The formula 7.24 was only for a single Cohen’s kappa coefficient. Since two kappa

coefficients have to be estimated from 7r, Barnhart and Williamson (2002) pre-

sented the following formula:

()

F(m) = exp(A4) In(A3) exp(Asz) In(A1) Ao
ex Au 0 In Az 0
PLlo Ay 0 A

A22 0 All 0
exp ( 0 A, ) In ( 0 A ) Aygm (7.25)
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where Ay is a 2K? x K* matrix with the form

8/1(2 0 . 0

0 6}(2 ce 0

AO — . E . .
0 0 ele

IKQ IK2 IKQ IKQ

ex is a K x 1 vector of ones, Iy is the K x K identity matrix and 0 is a matrix
of all zeros, with dimensions conforming to the other part of the block matrices.
For the different versions of the kappa coefficient, Barnhart and Williamson (2002)
proposed the following expressions for the matrices Ay, -+, Ay.

Cohen’s kappa coefficient. Barnhart and Williamson (2002) used matrices
with dimensions 1 x 2 for Ay, 2 x (K +2) for Ass, (K +2) x (2K + 2) for Ay
and (2K + 2) X K2 for All:

Ay = (1 -1),

—e 1 0
A33 = < /K ) s

Ix Ix O
A =
22 ( 0 0 IQ)’

ey 0 0
A, — 0 0 - €y
Iy I - Iy
I(l) Ig(2) -+ Ik(K)
e’K e/K ce e’K

where Ik (j) is the j row of the identity matrix I'.

Intraclass kappa coefficient. For the intraclass kappa coefficient, Barnhart
and Williamson (2002) used the same A4y and Ajss matrices as for Cohen’s kappa

21 O
A pu—
22 < 0 I2 )7

coefficient but
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e +IK(1) Ik(1) . Ix(1)
2 2 2

Ix(2) extlx(2) Ix(2)
2 2 2
A _ : : : :

1 Ik (K) Ix(K) .. etIx(K)
2 2 2
Te(l) T2 - Ix(K)
e/]{ e}{ .. e,[{

where Ayy and Ay are (K +2) x (K +2) and (K +2) x K? matrices, respectively.

Weighted kappa coefficient. For the weighted kappa coefficient, Barnhart and
Williamson (2002) used the same A4y matrix as for Cohen’s kappa but

—w' 1 0
A =
33 ( —w' 0 1 ) ’

Ay = : : : : : : ;
0O O 0O o0 I,

e. 0 0

/

All _ 0 0 ce eK
I Ix - Ig

wl
e/K e/K . e/K
where w = (wy1, wia, -+, Wk) is the K? x 1 vector of weights. The dimensions

of the A matrices are 2 x (K? + 2) for Ass, (K? +2) x (2K + 2) for Ay, and
<2K—|— 2) x K? for All-

The number of cells of the four-way contingency table Y71 x Y75 X Y51 X Yos increases
rapidly as the number of categories K increases. This may result in many zero
cells even if the sample size is large. For valid inference using W LS, one needs
to assume that the sample response functions are normally distributed and that
their estimated variance-covariance matrix is nonsingular. In estimating kappa,
this assumption usually requires that most of the marginal or diagonal counts in
the bivariate marginal tables Y;; x Yio and Y3, X Ys exceed 5. Barnhart and
Williamson (2002) therefore proposed to replace zeros cell counts by le — 20 if
frequency data are used or missing data by le — 20 if raw data are used to treat
all zeros as sampling zeros.
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7.3.1.2 Comparison of several kappa coefficients

The W LS approach for comparing correlated kappa statistics can easily be ex-
tended to include discrete covariates and to study designs with multiple methods
and multiple time points. If there are G methods (G > 2), we have K¢ contin-
gency tables and the A matrices, except Ag, will have G blocks (instead of two)
with the same blocks as specified previously.

7.3.2 Generalized estimating equations

Binary scale. Klar et al. (2000) proposed the use of generalized estimating equa-
tions (GEE) to identify covariates predictive of agreement, in the case of intraclass
kappa coefficients. The proposed model may include arbitrary and variable num-
ber of raters per item. Generalized estimating equations (GEE1) with a logistic
link function are used in order to identify covariates associated with the marginal
probabilities of classification by each rater. A second set of generalized estimating
equations (GEE2), based on Fisher’s Z transformation, are then used to identify
covariates associated with the intraclass kappa coefficient.

Suppose that N items are being assessed by R; independent or dependent raters
(1=1,---,N) where R; need not be the same for all N items. The binary ratings
related to item i are summarized in the R; x 1 vector Y; = (Y;1,---, Y, g,)’ where
the binary random variable Y;, = 1 when rater r classifies item ¢ as positive and
Y;, = 0 otherwise. Each item has a p; x 1 covariate vector g; including item specific
covariates and a py X 1 covariate vector g, . (r = 1,--- | R;) including rater specific
covariates. Let x}, = (g,,9;,) and X; = (%;1, - ,®;r,)" represent the R; X p
matrix of covariates relative to item i (p = p; + p2). The marginal distribution of
Y;, is Bernoulli with m;, = P(Y;, = 1|;,,3) such that

T . ﬂ-i,r(/B) R,
= (1 - w> = (m) = ;[ (7.26)

where 3 is a p x 1 vector of parameters. The probabilities 7;,.(8) can be grouped

together to form a vector 7;(3) containing the marginal probabilities of success
mi(8) = E(Yi‘wi,m/a) = (7Tz‘,1, T 77Ti,R¢)/-
Following Shoukri and Mian (1996), the intraclass coefficient of agreement between
Y, s and Y;4, K; 4, can be expressed as
2[5t — i sTit]
Tis(L—mie) +mir(1 — 7 5)

(7.27)

Ri st = "ii,st(q/) =

where v is a ¢ x 1 vector of parameters, and solving Equation 7.27 for m; &, we get

1,8 1- i % 1- %,8
Tist = TisTit + Kist ol = i) ; mell T, >] (7.28)
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Klar et al. (2002) accomplished the adjustment for covariates associated with the
intraclass kappa coefficient using the model

1 2,5
g("ii,st) =In (#) = z;,st7 (729)

where 2; ; is a ¢ x 1 vector of covariates. The link function g(.), used to model
kappa, is selected to avoid the need of constraints on the vector of parameters =y
which would have been the case, for example, if the identity link had been used
since —1 < K; ¢ < 1.

Klar et al. (2000) obtained parameter estimates for 3 and -~ by specifying and
solving two sets of estimating equations. The first set of estimating equations for
3 is given by

up(B) = 3 DIV (Y; —mi(B)) = 0 (7.30)

where the p x R; matrix D; = 0m;/08, V; = V(v,3) is a R; X R; 'working’ co-
variance matrix of Y;. The correlation does not need to be correctly specified for
consistent parameter estimation, although the closer V' is of the true covariance
matrix of Y, the greater the efficiency of 8. Klar et al. (2000) considered two
approaches to construct estimating equations for «v. These approaches can be dis-
tinguished by their use of unconditional (Prentice, 1988) and conditional (Carey
et al., 1993) residuals.

The unconditional residuals are expressed as deviations about the unconditional
expectations, i.e.,

Ur; st = Yz‘,sYi,t - E(Yi,syz‘,ﬂwz‘,s, wi,t) = Ui,st — Ty,st (7'31)

where U; &+ = Y; ;Y; ;. Klar et al. (2000) grouped the unconditional residuals to form
a R;(R; —1)/2 vector ur = U; — \;, where U; = (U;12,Ui1s, -+, Ui (ri—1)r,) and
Ai = (Ti12, Mg, -+ s Ti(r,—1)r:) - The second set of estimating equations (GEE2)
for ~ is then given by

. ! gl 5 .

uy(3) =) AH, (U= X(B,4)) =0 (7.32)
where the ¢ x [R;(R; — 1)/2] matrix A, = 9X;/0~, and H; ~ cov(U;).
Conditional residuals are expressed as deviations about the conditional expecta-

tions, i.e.,
Crist = Y;,t - E[Y;;,t’yi,s; L s, mi,t] = Ui,st — Mi,st (7~33)
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where U; o = Y;; and
7’@515 - E(}/i,t’Y:i,s = Yi,s) Li,s wi,t) = P(Y:i,t - 1|Yvi,s = Yi,s) Lis, wi,t)

T st T — T4 st
— i (2 1= gp) (=t
e (2 0= g (T

Klar et al. (2000) then grouped the conditional residuals to form a R;(R; —
1)/2 vector er = U; — n;, where U; = (U;12,Uins, - Ui (ri—)r,) and n; =

(Mi2s Minss -+ > Mi(ri—1)R;) - The second set of estimating equations (GEE2) for ~
is then given by

N
~ a o~ —1 A
uy () = Z C,W, (U;—n,B,7) =0 (7.34)
i=1
where the ¢ x [R;(R; — 1)/2] matrix C}; = dn,/0~, and W; = diag(cov(U;)).

Inferences on the intraclass kappa coefficient can be constructed using the joint
distribution of B and 4 which is, asymptotically, multivariate Normal. Note that
more precise estimators of v and hence of kappa are obtained by constructing the
estimating equations using conditional residuals. Lipsitz and Fitzmaurice (1996)
have shown that the gain in efficiency obtained by constructing estimating equa-
tions using conditional as opposed to unconditional residuals is particularly notable
when the number of raters per item is variable.

Multinomial scale. Williamson et al. (2000) proposed the use of generalized
estimating equations to model dependent agreement indexes when the scale is
categorical in a way similar to Klar et al. (2000). Suppose again that N items
are assessed by R; independent or dependent raters. The response of interest is
a categorical outcome with K categories denoted Y;,, where Y;, = k if response
of rater r for item i falls in category k, r = 1,--- ,R; and k = 1,--- , K. The
R;(K—1)x1 response vector Y'; consists of the binary random variables Y} ., where
Yie, = 1if Vi, = k(Y = (Yo, Yiwk—,1, - Yinri—1), - Yik—1),(Ri—1))")-
For ordinal responses, the marginal cumulative probabilities of response, v, =
P, <k), k=1,--- K —1, are modeled. Let

Tik,r = ’/Tik,r(/B) - P(Y;',r = k) = P(Y;k,r = 1) = Vikr — Vi(kfl),r

denote the marginal probabilities. These probabilities can be grouped to form a
R;(K — 1) x 1 vector m;. The vectors Y; and 7; require only R;(K — 1) elements
instead of R; K since Zszl Yip,=1,fort=1,--- ,Nandr=1,--- | R;. Let T,
be the (p + K — 1) x 1 vector of covariates relative to item 7 and rater r, which
consists of covariates for the K — 1 cutpoints of the categorical response and p
covariates relative to the raters and the items. Williamson et al. (2000) related
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the cumulative marginal response probabilities to the covariates through the link
function ¢(.) and the (p + K — 1) x 1 marginal parameter vector 3,

9(vis) = @y, B. (7.35)

For example, ¢(.) might be the cumulative logit function resulting in a proportional
odds model for ordinal responses or the polytomous link function for nominal res-
ponses.

Williamson et al. (2000) then consider the joint distribution of raters s and ¢ for
item i (Y;Y:;) with

Tijk,st = P(Yi,s =7, Yz‘,t = k‘|iBz‘,s, ilfi,t) (7-36)

denoting the associated probabilities (j,k = 1,--- , K) and then defined the agree-

ment index
Poz}st - Pei,st

ist = 7.37
T T P (737)
with
K
Pyt = Z Tijj,st (7.38)
j=1
and
K
Pei,st = Z Ti5,6Tig,t- (739)
j=1

Williamson et al. (2000) next consider the regression model for Cohen’s kappa
coefficient, following Klar et al. (2000) to avoid restrictions on the parameter space
(see Equation 7.29). The first set of generalized estimating equations (GEE1)
relative to the marginal distribution of the responses is then defined by

us(B) = YDV, (Vi m(B)) = 0 (7.40)

where the (p+ K — 1) x R;(K — 1) matrix D; = 0m;/08 and V; = V;(7,0) is a
R;(K —1)x R;(K —1) 'working’ covariance matrix of Y;. Williamson et al. (2000)
proposed a second set of estimating equations (GEE2) for the joint distribution of
responses by noting that

Poi,st = Pei,st + '%i,st(l - Pei,st)' (741)

Following Liang et al. (1992), they considered a product of indicator variables. Let

K
Uist = > YirYiks (7.42)
k=1
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be a binary random variable depicting agreement between raters s and t with
E(U;st) = Py st. When considering R; raters, they are R;(R; —1)/2 distinct pairs.
Hence, U/ = (Uz 125 Uz 13,0, Uj (RZ—I)RJ and P/ = (Poi,127Poi,13; T 7Poi,(R,-—1)Ri)
are vectors of dimension R; ( —1)/2x 1 with £ (U ) = P,;. The kappa coefficient
is then estimated by solving a second set of estimating equations (GEE2)

N
=N CW, (U~ Pa(B.4) =0 (7.43)
i=1
where the ¢ x [R;(R; — 1)/2] matrix C; = dP,;/0v and W, = diag(cov(U;)).

Williamson et al. (2000) used Fisher scoring algorithm to estimate « and 3.

N N
g g Zﬁ;v;lfxl [Zﬁi"? I{Yi—ﬂf’(m))}]’

-1 N

Finally, they used Liang and Zeger (1986) empirically corrected variance estimate
of B, ie.,

i=1

and Prentice (1988) empirically corrected variance estimate of 4

V, = BAB' + BARE + EAy B + EAuE (7.45)

where

N N oU, N -1
B - |y éw'e, [Z . ”ZD;fo)i]

N

Ap = Y DV, con(Y, U)W, D,
=1

Ay = Al
N / 1 1

Ay = ZClWZ_ cov(U)W, C;
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Williamson et al. (2000) conducted analyses using simulated data to assess the
performance of their method. They examined the effects of a misspecified marginal
distribution on the association parameters and determined how well the empirically
corrected standard error estimate performs with small to moderate sample size.
It results that the standard error estimate of the kappa coefficient may be biased
in small samples (IV < 30). The association model needs not to be correctly
specified for unbiased estimation with the marginal model because the first set
of estimating equations does not involve kappa. But, it is crucial to model the
marginal distribution carefully even when interest is only in the agreement between
responses because omission of an important (significant) marginal covariate may
produce a biased estimate of the kappa coefficient.

Ordinal scale. Gonin et al. (2000) proposed the use of generalized estimating
equations to model dependent agreement data, using the weighted kappa coeffi-
cient. They used an ordinal logistic regression model to identify covariates that are
associated with the marginal probability of classification by each rater and a se-
cond set of estimating equations, based on the Fisher’s Z transformation, to model
the weighted kappa coefficient as a function of covariates. Using the same nota-
tion as in previous section, Gonin et al. (2000) considered the weighted agreement

index
Powi st T Pewi st
. , 7.46
st 11— Pewi,st ( )
with
owz ,st — Z Z WjkTijk,st (747>
7=1 k=1
and

ewz st — Z Z WikTi5,sTik,t (748)

7=1 k=1

where the weights w;;, satisfy w;; = 1 and 0 < w;, < 1. Next, they considered the
regression model for the weighted kappa coefficient similarly to Klar et al. (2000)
(see Equation 7.29). The first set of generalized estimating equations (GEE1) to
estimate the vector of parameters B8 used by Gonin et al. (2000) is defined by
Equation 7.40.

Denote by Uy st = Z]K:1 Zszl w;kY;j Yk, the product of indicator variables. To
define the second set of estimating equations, Gonin et al. (2000) noted that

E (Uwi,st|Xi) = Powi,st (749)

by assuming that rater specific covariates from rater ¢ does not influence the ratings
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of rater s,t # s, i.e. E[Y;sYint| Xi| = E[YijsYiks

K K K K
Powz st = Ruwi,st E E WikT5,sTik t + E § WikTi4,sT ikt (750)

j=1 k=1 j=1 k=1

x; ;). Moreover,

implying that Uy st — Powi, st is unbiased for 0. They therefore proposed, for GEE2,

Z Z sz st Vi st (Uwi,st Powi st(,é )) (7.51)

=1 s<t

where C’;}i,st = 0P,y st/07v, W is the 'working’ variance of Uy; st, W ~ var(Uy; st)-

Using Taylor series expansions similarly to Prentice (1988), and assuming that
the model for Ky s, mijs and . are correctly specified, (B,ﬁ/) is consistent and
asymptotically Normal, with variance-covariance matrix V(B, 4). This covariance
matrix can be consistently estimated using a Jackknife estimate (Lipsitz et al.,

1990):
A= (8,4) (7.52)

where (ﬁ/,‘y')_i is the estimate of (3',4’) obtained by deleting the R; ratings on
item 4 and (BI,'?' ) is the average of the (B,,‘/)_i over the N individuals. Gonin
et al. (2000) proposed then to solve the two sets of estimating equations using a
Fisher scoring type of algorithm and an exchangeable working correlation matrix
for Y;. They shown that this permits to completely specify the working correlation
of Uy st-

7.4 Simulations

The bootstrap method of Vanbelle and Albert (2008) was applied to simulated
data sets in order to study the behavior of the type I error (a) of the homogene-
ity test for G = 3 Cohen’s kappa coefficient and compare the results with the
WLS and GEE2 approaches. Each simulation consisted in applying the bootstrap
method to 3000 data sets generated under the null hypothesis Hy : k1 = ko = k3
and to determine the number of times H, was rejected. The simulated data set
was based on 4 binary random variables X, Y, Z and V. The agreement bet-
ween X and Y (kxy), X and Z (kxz) and X and V' (kxy) were compared using
the bootstrap method with ¢ = 2000 iterations. Simulations were repeated for 3
sample sizes (50, 75 and 100) and 5 levels of agreement (k=0, 0.2, 0.4, 0.6 and 0.8).
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To obtain a given level of agreement (), 2 vectors of size N from binary random
variables (U and W) were generated. Then, a vector of size N with uniform ran-
dom numbers between 0 and 1 was generated. Each time the random uniform
number was less than or equal to the given level of agreement (k), the value of
W was changed into the value of U, otherwise it remained unchanged. The kappa
coefficient was derived from the 2 x 2 table obtained by cross-classifying the vec-
tors U and W. The codes for the simulations were written in R language using
uniform random number generator with seed equal to 2. The GEE2 (Williamson
et al., 2000) and the WLS (Barnhart and Williamson, 2002) approaches were also
applied to the 3000 simulated data sets. Results are summarized in Table 7.1.

Table 7.1. Type I error for the comparison of G = 3 correlated kappa
coefficients, according to k level and sample size (figures are based on
3000 simulations each)

K level
Sample size Method 0 0.2 0.4 0.6 0.8
50 Bootstrap® 0.065 0.069 0.061 0.076 0.056
GEE2 0.067 0.061 0.063 0.052 0.044
WLS 0.0027 0.037 0.062 0.0769 0.064
75 Bootstrap 0.070 0.061 0.061 0.063 0.063
GEE2 0.046 0.058 0.057 0.051 0.040
WLS 0.0030 0.040 0.060 0.071 0.069
100 Bootstrap 0.089 0.065 0.064 0.061 0.058
GEE2 0.057 0.054 0.050 0.053 0.040
WLS 0.0027 0.037 0.055 0.064 0.064

@ g = 2000

It is seen that type I error rates obtained with the bootstrap method are slightly
but systematically higher than the expected 5% nominal level. While the GEE2
approach appears to be optimal, the bootstrap was better than the WLS, at least
for elevated k values. However, the bootstrap method may be preferred to the
GEE2 approach because of the ease of implementation in all settings as compared
to the GEE2 method, which requires the writing of a lengthy and specific program
for each particular problem.
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7.5 Examples

7.5.1 Blood clots detection

The presence of blood clots was assessed on 50 patients (23 women and 27 men)
with a reference method (Standard) and two new methods (Method 1 and Method
2) by two medical raters (see Chapter 2, Section 2.6.2). The aim of the study was
to compare the agreement obtained between Method 1 and the Standard method
to the agreement obtained between Method 2 and the Standard.

Weighted least-squares approach. Cohen’s kappa coefficient was 0.41 + 0.12
between Method 1 and the Standard method and 0.71 £ 0.10 between Method 2
and the Standard. A test of equality of these agreement indexes using the WLS
approach resulted in a chi-square value of 6.16 (p = 0.013). A better agreement
with the Standard method was observed for Method 2 than for Method 1. There-
fore, Method 2 should be preferred to Method 1 (this is consistent with the results
of the bootstrap method (Vanbelle and Albert, 2008)). The estimated correlation
between the two kappa estimates was 0.43.

When testing the effect of sex on Cohen’s kappa coefficients, we obtained an es-
timate of -0.23 (p = 0.20), resulting in no agreement difference between men and
women. For Method 1, the estimate of Cohen’s kappa coefficients were 0.26 and
0.49 for men and women, respectively. For Method 2, the estimate of Cohen’s
kappa coefficients were 0.58 and 0.81 for men and women, respectively.

GEE2 and initial method of Lipsitz et al. (2001). Although constraints
are needed to ensure that Cohen’s kappa coefficient is comprised in the interval
[—1,1], an identity link was used to simplify the interpretation of the parameters
and permit the comparison of the GEE2 and the method proposed by Lipsitz et al.
(2001). Note that this is not statistically correct to apply the alternative method
to test for equality between the agreement obtained for Method 1 and Method 2
since the data are dependent. The model for Cohen’s kappa coefficient was

k = Intercept + 1SEX + 5 AGE + fsMETHOD1 + 8,AGE x METHOD1

+03:SEX x METHOD1 + BsAGE x SEX (7.53)
where M ETHOD1 = 1 when agreement is searched between Method 1 and the
Standard method (M ETHOD]1 = 0 otherwise), SEX = 1 for men (SEX = 0 for

women) and AGFE is patient’s age (years). The resulting parameter estimates are
displayed in Table 7.2 for the GEE2 and the method of Lipsitz et al. (2001).

Method 1 showed lower agreement with the Standard method than with Method
2 (p = 0.024 with GEE2, p = 0.034 with the method of Lipsitz et al. (2001)).
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Table 7.2. Estimates of the model of Cohen’s kappa coefficient for the blood clots
detection example with GEE2 and method of Lipsitz et al. (2001)

GEE2 Lipsitz et al. (2001)
Parameter 15} SE p-value I5] SE p-value
Intercept 1.42 0.39 < 0.0001 1.20 0.24 < 0.0001
SEX -1.38 0.67 0.038 -1.15 0.56 0.040
AGE -0.0083 0.0065 0.20 -0.0060 0.0052 0.25
METHOD1 -1.25 0.55 0.024 -1.32 0.63 0.034
AGE x METHOD1 0.013 0.0076 0.093 0.014 0.0081 0.086
SEX x METHOD1 0.14 0.26 0.53 0.16 0.28 0.56
AGE x SEX 0.017 0.0095 0.073 0.014 0.0077 0.076

Agreement was also lower for men than for women (p = 0.038 with GEE2, p =
0.040 with the alternative method). There was no evidence for an effect of age.
Thus, Method 2 should be preferred to Method 1. This result is consistent with
the WLS and the bootstrap approaches. Note that the parameter estimates and
the standard errors were similar for both GEE2 and the method of Lipsitz et al.
(2001).

Method of Lipsitz et al. (2001). The alternative procedure proposed by Lip-
sitz et al. (2001) was applied to study the effect of patient’s age and sex on the
kappa coefficients obtained for Method 1 and Method 2, separately. The marginal
model relative to the classification of the patients for each method was

logitP(Y;, = 1) = Intercept + 1 SEX + 5 AGE, (r=1,2;i=1,---,N) (7.54)

where SEX = 1 for men and SEX = 0 for women and AGFE is patient’s age
(years). The parameter estimates are given in Table 7.3.

Table 7.3. Parameter estimates of the marginal models relative to each method for the
blood clots detection example (p for pvalue)

Method 1 Method 2 Standard method
Parameter I} SE D 15} SE D 15} SE P
Intercept 1.48 1.52 0.33 0.57 1.45 0.15 1.24 1.45 0.39
SEX -1.83  0.66 0.0053 -0.99 0.61 0.10 -0.89 0.61 0.14
AGE -0.0028 0.020 0.89 -0.0066 0.0192 0.73 -0.016 0.019 0.40

The marginal distribution obtained with Method 1 was related to patient’s sex.
The probability to detect blood clots was higher in women than in men with
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Method 1 (p < 0.01). This was not the case for Method 2 and for the Standard
method. There was no effect of age.

For both methods, the effect of sex and patient’s age was tested on Cohen’s kappa
coefficient obtained by the Standard method with the model
kg = Intercept + 51 SEX + B, AGE (7.55)

where g = 1 for Method 1 and g = 2 for Method 2. The parameter estimates are
displayed in Table 7.4.

Table 7.4. Parameter estimates of the model for the kappa coefficients
obtained with Method 1 and Method 2 for the blood clots detection

example
Method 1 Method 2
Parameter B SE  p-value 5’ SE  p-value
Intercept -1.20 0.46 0.0093 1.13 0.26 <0.0001
SEX -0.049 0.22 0.83 -0.34 0.21 0.11
AGE 0.023 0.0056 <0.0001 -0.0038 0.0039 0.34

No covariate effect was found for the agreement obtained for Method 2. On the
other hand, the agreement between Method 1 and the Standard method increased
with patient’s age. When computing Cohen’s kappa coefficient for patients below
median age (73.5 years) and above median age, we obtained Table 7.5, confirming
the effect of age on the agreement obtained with Method 1. Note that results were
consistent with the results obtained with the method introduced by Fleiss (1981)
(see Chapter 6, Section 6.5.1), where there was no sex effect on the agreement.

Table 7.5. Cohen’s kappa coefficient £SFE for
each method according to patient’s median age
for the blood clots detection example
Age N Method 1~ Method 2
<73.5 years 27 0.080+0.18 0.63+0.17
>73.5 years 23 0.76 +£0.13 0.76+0.13

7.5.2 Cervical ectopy size

Cervical ectopy size of 85 women was determined on a 4-category scale by two
medical raters with direct visual assessment and the computerized planimetry
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method. To test if agreement between the two raters was the same for the planime-
try and the visual methods, the WLS, GEE2 and the method proposed by Lipsitz
et al. (2001) (although data are repeated) were used to test the equality of the
agreement obtained between the two raters with the visual and the planimetry
methods. Since the alternative method is only designed for unweighted kappa co-
efficients, Cohen’s kappa coefficient was used as measure of agreement to permit
the comparison of the different approaches. Results are summarized in Table 7.6
with the estimated correlation between the agreement indexes for the visual and
the planimetry method.

Table 7.6. Results of the WLS, GEE2 and alternative method when tes-
ting for equality between the agreement for the visual and the planimetry
methods in the cervical ectopy size example

Visual Planimetry
assessment method
Method Ry £ SE kp £ SE  p-value corr(ky,kp)
WLS 0.34 +£0.068 0.63+0.067 0.0022 0.064
GEE2 0.33+0.099 0.63+0.041 0.0019 0.0041
ALTERNATIVE 0.33 £0.070 0.63 £0.068 0.0026 -0.020

The three approaches lead to the same conclusion, the agreement between the two
raters was higher with the planimetry method than with direct visual assessment.
The estimated correlation between the two agreement indexes was negligible.

GEE2. The marginal probabilities of classification by each rater were modeled
following

logitP(V; < k) = o+ B PL+ByR1+3PLx R (k=1,2,3;i=1,--- ,N) (7.56)

where R1 = 1 for rater 1 (R1 = 0 for rater 2) and PL = 1 for the planimetry
method (PL = 0 for the visual method). The resulting parameter estimates are
displayed in Table 7.7.

The probability of being classified with smaller ectopy sizes was lower for rater 1
than for rater 2 (p = 0.0009) and higher with the planimetry method than with
visual assessment (p < 0.0001). The estimates of Cohen’s kappa coefficients were
given in Table 7.6.
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Table 7.7. Parameter estimates of the
GEE2 model in the cervical ectopy
size example

Parameter I} SE  p-value
o -0.77 0.19 <0.0001
g 0.86 0.20 <0.0001
Qs 1.65 0.25 <0.0001
PL 0.60 0.18 0.0009

R1 -0.79 0.16 <0.0001

PL x R1 0.55 0.20  0.007

Method of Lipsitz et al. (2001). The marginal probabilities were modeled
with respect to the method used for each rater

logitP(Yi, < k)= agr+ BPL, (r=12k=1,23i=1--- N). (7.57)

Results are given in Table 7.8. The marginal probabilities distribution of both
raters was related to the method used. The probability to be classified has having
smaller ectopy sizes was higher with the planimetry method than with the visual

assessment.

Table 7.8. Parameter estimates of the marginal models for
each rater obtained with the alternative approach correspon-
ding to the classification of cervical ectopy sizes

Rater 1 Rater 2
Parameter 154 SE  p-value 8 SE  p-value
o -1.62 0.25 <0.0001 -0.80 0.22 0.0003
g 0.10 0.21 0.62 0.74 0.22  0.0006
Qs 0.73 0.22 0.0009 1.75 0.27 <0.0001
PL 1.15 0.29 <0.0001 0.60 0.28 0.034

The model for Cohen’s kappa coefficient was
k = Intercept + SPL. (7.58)

The parameter estimates relative to this model are displayed in Table 7.9. Co-
hen’s kappa coefficient was better for the planimetry method than for the visual

assessment (p = 0.0030)
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Table 7.9. Parameter estimates of the
model for the Cohen’s kappa coefficient
using the alternative method for the
cervicl ectopy size example

Parameter 16} SE  p-value
Intercept 0.33 0.070 <0.0001
PL 0.30 0.098 0.0030

7.6 Discussion

Only some of the existing modeling techniques were reviewed in this chapter.
Firstly, methods allowing the modelization of independent agreement indexes were
reviewed (Lipsitz et al., 2001, 2003). These methods are heuristic but permit to
model directly the kappa coefficient in function of continuous and categorical co-
variates. Nevertheless, they do not permit the modeling of weighted agreement
indexes and do not allow to study correlated agreement indexes. However, one can
possibly use generalized estimating equations instead of simple logistic regression
to allow for dependent agreement indexes. Indeed, when modifying their approach,
Lipsitz et al. (2003) have shown that their method was equivalent to using one set
of generalized estimating equations. The generalization of the method of Lipsitz
et al. (2001, 2003) to weighted agreement indexes might be an interesting theme
for future research.

Then, approaches allowing for dependent agreement indexes were reviewed. The
weighted least-squares approach permits the comparison of several correlated agree-
ment coefficients between two raters. This approach has to be viewed more as a
comparison method than a modeling technique since it gives estimated values of
the agreement coefficients rather than estimates of the effect of covariates, i.e model
kappa coefficients with respect to covariates. The method is easy to implement
using, for example, PROC CATMOD in the SAS software but is, however, restri-
cted to categorical covariates. On the other hand, the GEE2 approach is based
on the estimation of two generalized estimating equations, one to characterize the
marginal classifications of the raters and a second to study the effect of covari-
ates on the agreement index obtained between the raters. The GEE2 approach
has the advantage of allowing for continuous covariates but requires programming
work since there is no procedure for GEE2 in standard statistical packages, to our
knowledge. Moreover, efficiency of the estimates depends on the choice of a wor-
king correlation matrix although consistency does not. For categorical covariates,
Miller et al. (1993) have shown that the WLS approach for analysing multi-way
contingency tables is asymptotically equivalent to the GEE2 approach under a
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common unspecified working correlation matrix for all covariate patterns.

The WLS and GEE2 approaches were compared to the bootstrap method of Van-
belle and Albert (2008). The WLS method developed by Barnhart and Williamson
(2002) and the GEE2 approach of Williamson et al. (2000) led to the same con-
clusions as the bootstrap procedure for both examples, although estimates of the
kappa coefficients obtained with the bootstrap method were slightly biased. How-
ever, Efron and Tibshirani (1993) suggested that if the estimate of the bias (bias)
is small compared to the estimate of the standard error (SF), i.e. bias / SE < 0.25,
the bias can be ignored. Otherwise, it may be an indication that & is not an ap-
propriate estimate of the parameter k. The bootstrap approach also yields slightly
higher standard errors than the WLS and the GEE2 methods, as it was expected
from the results of the simulations. Indeed, the type I errors obtained with the
bootstrap method were more liberal than those with the GEE2 method, in particu-
lar if the sample size (IV) was small with respect to the number (G) of kappas to be
compared. This finding confirms the remark made by McKenzie et al. (1996). Ne-
vertheless, the type I error obtained by the bootstrap remains acceptable although
it is recommended to use more than 1000 bootstrap iterations when the number
of agreement coefficients to be compared is greater than 2. The bootstrap method
outlined in Section 6.4.3 can be easily implemented in many statistical packages
and programming languages since the method merely requires the generation of
random uniform numbers and simple matrix calculations. By contrast, modeling
techniques require specific programming for each problem encountered in practice.
Their use is nevertheless highly recommended when it comes to account for many
covariates. Lin et al. (2003) estimated the sample size that is required for depen-
dent agreement studies by adapting the GEE2 approach for modeling dependent
kappa statistics. Note that Klar et al. (2000); Williamson et al. (2000); Gonin
et al. (2000); Lipsitz et al. (2001, 2003) stressed the fact that it is important to
overfit the marginal models to avoid bias in the estimation of the agreement index.

The modeling techniques presented in this chapter were limited to the case of two
or more raters. They have not yet been generalized to the case of two groups of
raters or an isolated rater and a group of raters. Further research is needed on
this topic.



Conclusion

This work has focused on the agreement between raters in various situations. A
short review of agreement indexes for quantitative scales was provided in the first
chapter, with particular emphasis on indexes also applicable to qualitative scales.
Actually, Lin et al. (2007) proposed a unified approach for categorical and continu-
ous data. The main corpus of this work, however, was devoted to the measurement
of agreement between two or more raters on a categorical scale. Preference was
given to agreement coefficients belonging to the kappa-like family. As clearly ex-
plained by Kraemer (1992), agreement on a categorical scale is often assessed by
(1) defining some measure of pairwise agreement, (2) giving to each item an agree-
ment score equal to the pairwise agreement measure averaged over all pairs of
raters/ratings, (3) averaging the agreement scores over items, and (4) assessing
how the agreement scores relate to what one would define as random and ideal
agreement in that dataset.

One crucial point is to provide a clear definition of 'perfect agreement’. While it is
unambiguous for two raters (they agree or do not agree), this is not the case when
agreement is searched between several raters (where agreement can be defined on
a continuum beginning with agreement between a pair of raters to agreement bet-
ween all raters) or between groups of raters. In the latter case, the issue arises as
to whether agreement within groups is needed to have agreement between groups.
Another question is what is meant by chance agreement. For example, for Cohen’s
kappa coefficient (Cohen, 1960), chance agreement was defined as agreement bet-
ween the two raters under the independence assumption. By contrast, Kraemer
(1979) used the additional assumption of homogeneous marginal distribution for
the intraclass kappa coefficient and Bennett et al. (1954) the additional assumption
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of uniform marginal distribution for both raters. Different definitions of 'perfect
agreement’ and 'chance agreement’ lead to different indexes and possibly to differ-
ent conclusions.

Once clear definitions of 'perfect agreement’ and ’chance agreement’ have been
specified, a raw measure of agreement (p,) and the corresponding measure obtained
by pure chance (p.) are derived. Finally, an agreement coefficient is constructed,
R = (po — Pe)/(Pm — Pe), With the property of having a value equal to 1 when
agreement is perfect. In this formula, p,, corresponds to the value of p, under the
definition of perfect agreement adopted. Based on this principle, Cohen’s kappa
coefficient (Cohen, 1960), the weighted kappa coefficient (Cohen, 1968) and the
intraclass kappa coefficient (Kraemer, 1979) were reviewed. Then, the intraclass
kappa coefficients based on one-way (Fleiss, 1971) and two-way (Davies and Fleiss,
1982) ANOVA models and the g-wise agreement indexes (Conger, 1980) were in-
troduced to quantify the agreement between several raters. Finally, Schouten
(1982) and Vanbelle and Albert (2009a,b) proposed agreement indexes for quan-
tifying the agreement between an isolated rater and a group of raters or between
two groups of raters. The question of "what is meant by agreement between two
groups of raters?” remains a subject of debate. Vanbelle and Albert (2009a,b)
offered an alternative proposal to existing methods, such as the consensus method
and Schouten’s approach (Schouten, 1982). The proposed agreement coefficients
were defined on less restrictive definitions of perfect agreement than in Schouten’s
approach, in the sense that agreement within each group of raters was not re-
quested to reach agreement between two groups of raters. The consensus method,
consisting in summarizing the responses of each group of raters in a unique quan-
tity, should be avoided since the information about the dispersion of the responses
within each group of raters is erased. Moreover, the agreement index resulting from
the consensus method is generally overestimated, because items without consensus
are merely discarded from the statistical analysis. We are aware that the kappa-
like family is not the unique issue in the study of agreement between raters but
this remains the family of coefficients mostly used in practice at the moment. Al-
ternative approaches suggest the use of log-linear models, Rash models or mixture
models (Schuster, 2004) but also of other coefficients like the tetrachoric correla-
tion coefficient (Pearson, 1900).

After having defined an agreement index belonging to the kappa-like family, prac-
tical interpretation of the values taken by the coefficient should be provided. For
values like 0 (agreement due to chance) or 1 (perfect agreement), there is not much
discussion, while for values between 0 and 1 the interpretation remains open. Lan-
dis and Koch (1977b) qualified the strength of agreement (from ”poor” to ”almost
perfect”) according to values taken by Cohen’s kappa coefficient. Although widely
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used in practice, this classification should be avoided because the qualification is
arbitrary. A better approach would consist in the determination of a lower bound
for the agreement index. This can be achieved by calculating the standard error
of the estimated agreement index and by determining a 95% confidence interval
for the unknown coefficient. While several methods have been developed over the
years in this respect for agreement indexes between two raters, it is not the case
for the other coefficients of agreement. This prompted us to propose the Jack-
knife technique to estimate sampling variability. Another aspect of interpretation
that requires clarification is that concerning the use of weights. Weighted kappa
coefficients are widely used for ordinal scales. Weights can be arbitrarily defined
but traditionally linear or quadratic forms are applied. We gave an interpretation
for the linear weighting scheme (Vanbelle and Albert, 2008) while (Schuster, 2004)
proposed an interpretation for quadratic weights. However, guidelines for choosing
one or the other type of weighting scheme are still missing. Further research is
therefore needed on this important topic.

While the first part of the present work was devoted to quantification of agree-
ment in various contexts, the second part was dedicated to hypothesis testing and
modeling. Asymptotic and exact statistical tests for agreement assessment were
provided. Exact methods are being preferred for small sample sizes because the
distribution of kappa coefficients is not symmetric. When testing for differences
between several agreement coefficients, we made a clear distinction between the
paired and unpaired cases. Independent agreement indexes are obtained when
considering independent samples of items, while dependent agreement indexes are
obtained when considering the same sample of items but possibly different raters.
We spotted only one asymptotic method in the literature (Fleiss, 1981) for com-
paring several independent agreement indexes. A search for exact methods may be
another option for future research. The bootstrap method developed by McKenzie
et al. (1996) to compare two dependent agreement indexes was generalized to the
case of several raters by Vanbelle and Albert (2008). The method is simple to apply
but suffers from the known drawbacks of the bootstrapping, namely that different
results might be obtained when the entire bootstrap distribution is not determined.

Finally, methods to model agreement indexes according to categorical and conti-
nuous covariates between two raters were exposed. These methods are based on
or are equivalent to the generalized estimating equations. A first set of equations
is used to determine the marginal distribution of the responses of the raters and
a second set to model the agreement coefficient according to covariates. The ge-
neralized estimating equations offer the advantage of adjusting for categorical and
continuous covariates but the efficiency of parameter estimation highly depends
on the correct specification of the model. These methods need to be expanded
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to model agreement indexes between an isolated rater and a group of raters or

between two groups of raters.

Some aspects of rater agreement were not discussed in this work like agreement
coefficient developed for paired data (Oden, 1991; Schouten, 1993; Shoukri et al.,
1995) and stratified agreement coefficients (Barlow et al., 1991). Our contribution

to the vast domain of rater agreement has raised more questions than solving ones

but it has hopefully opened new pathways for future research.
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APPENDIX A

Data sets

A.1 Chapter 1

The serum gentamicin concentrations (umol/L) measured twice with the EMIT
and the FTA methods on 56 specimens are given in Table A.1.
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Table A.1. Serum gentamicin concentrations (umol/L) measured with the EMIT and
the FTA methods on 56 specimens

Specimen EMIT FIA
Measure 1 Measure 2 Measure 1 Measure 2

1 2.5 2.6 2.4 2.3
2 4.4 3.9 4.2 3.9
3 2.4 2.7 2.1 1.9
4 4 3.8 3.6 3.5
5 4.9 4.1 3.1 2.8
6 2.4 2.2 2.3 2.4
7 2.9 3.3 3.4 3.3
8 8.5 6.7 12 8.5
9 2.7 2.6 2.9 3

10 2.6 3.1 2.8 2.7
11 2.4 3.3 2.8 2.6
12 3.2 2.6 3.4 3.4
13 5.3 3.7 6.8 6.7
14 2 2.4 2.3 3.5
15 4.7 4.7 4.1 4.1
16 2.7 2.9 2 2

17 6 4.2 4.5 4.6
18 3.8 3.6 3.6 3.7
19 3.1 3.3 4.8 4.6
20 7.9 5.6 4.2 3.6
21 1.4 3.2 2.4 2.3
22 2.1 1.8 2.3 2.3
23 2.6 1 2.1 2.1
24 3 5.2 1.4 2.7
25 5 4.5 4.8 4.9
26 2 2.2 2.8 2.4
27 1 1 1.2 1.2
28 11 11.2 10.6 11.3
29 1.2 1.3 1.8 0.8
30 2.3 1 3.9 4.2
31 6.4 5.9 5.3 5.8
32 4.8 4 5.8 6.3
33 2.2 1.8 2.1 2.2
34 3.7 3.2 4.2 4.1
35 7.4 6.7 9.2 9.4
36 1 2.5 2.4 2.6
37 6.8 8.5 7.2 7.4
38 1 1.4 1.8 1.9
39 1 1 2.5 2.5
40 4.5 6.4 6.7
41 2.1 1.1 3.2 3.4
42 5.4 6.2 5.8 6.1
43 10.4 8.6 9.6 10.1
44 6.8 6.9 7.6 7.9
45 7.3 8 5.2 6.4
46 7.6 6.1 6.2 6.2
47 10.5 11.5 10.2 10.2
48 9.8 11.5 10.5 10.5
49 14.5 13.5 12.8 12.4
50 16.5 12.5 13.2 13.2
51 19 16.5 15.5 15.8
52 19 17.5 15.7 16.2
53 12.8 11.9 12.5 12.9
54 17.4 13.3 15.7 16
55 11 10.8 12.3 11.7

ot
D

13.9 14.2 13.5 13.8
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A.2 Chapter 3

The data of Williams (1976) relative to the classification of 28 specimens for
syphilis serology on a 3-category scale (NR=Non reactive, BL=Bordeline, RE=Re-
active) by 2 individual laboratories (L and H) and 3 reference laboratories are
presented in Table A.2.

Table A.2. Classification of 28 specimens for syphilis serology on a 3-category scale
(NR=Non reactive, BL=Bordeline, RE=Reactive) by 2 individual laboratories (L and
H) and 3 reference laboratories (Data from Williams (1976))

Participant Reference

Specimen L H* R1 R2 R3
1 RE RE RE RE RE
2 RE RE RE RE RE
3 BL NR NR NR NR
4 BL NR NR NR NR
5 BL NR NR NR NR
6 RE RE RE RE RE
7 BL NR NR NR NR
8 RE RE RE RE RE
9 NR NR NR NR NR
10 NR NR NR NR NR
11 RE RE RE RE RE
12 RE BL RE BL BL
13 RE RE RE RE RE
14 RE BL RE BL BL
15 RE RE RE RE RE
16 RE BL RE NR BL
17 RE BL RE NR BL
18 RE RE RE RE RE
19 RE RE RE RE RE
20 BL NR BL NR NR
21 RE RE RE RE RE
22 BL NR NR NR NR
23 BL NR BL NR NR
24 BL NR BL NR NR
25 RE RE RE RE RE
26 NR NR NR NR NR
27 RE RE RE RE RE

28 NR NR NR NR NR
*Hypothetical participant (see text)







APPENDIX B

Asymptotic and exact methods

B.1 Introduction

First, the multivariate Delta method will be exposed in the general case and in
the particular case of multinomial distribution in order to determine the standard
error of Cohen’s kappa, intraclass kappa and weighted kappa coefficients. Then,
sampling methods such as Jackknife, bootstrap and Monte Carlo approximation
will be introduced.

B.2 Multivariate Delta method

B.2.1 General case

Let @ be a vector of population parameters of dimension 7" x 1: 8=(0y,...,01);
0,, be a vector of estimators of dimension 7" x 1 of the vector of @ for a size N:

On = (On1, -, On7).
Suppose that Oy is asymptotically normally distributed, i.e.,

LIVN@Oy —0) — N(0,%(8)) (B.1)

where L represents convergence in law and 3(60) is the 7" x T asymptotic cova-
riance matrix of @y. This matrix is singular if @y has a distribution included in a
sub-space of the T-dimensional space.
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170 B.2. Multivariate Delta method

Suppose that f is a function defined on an open subspace of the T-dimensional
space and taking values in a R-dimensional space,

F:RY — RE . 0 £(0)=(£10),...,fr(0)).
Assume that f is at least one time differentiable in 0, i.e.

fiw) = £0) + > (s - e»g—z

=1

+o(lle—0||)ife —Ofori=1,...,R.

r =20

If (g—g) is the R x T matrix whose element (i,7) is the partial derivative of f;

with respect to the jth element of @ = (x1,...,27) evaluated in ¢ = 0, i.e.,
ofy o
98 ) ;; Oz | z=0,
Then,
of .
f(x) = f(0)+ 20 (x—0)+o(|lx —0]|) if x — 6. (B.2)

Bishop et al. (1975) have shown that
Theorem B.2.1. If Oy, 0 and f are defined as above and (B.1) and (B.2) hold,
then, the asymptotic distribution of f(Oy) is given by

e - o) — N (0. ()50 (). ma

B.2.2 Particular case: multinomial distribution

Simplifications occur in the multinomial case. Suppose that we have a K x K
contingency table and that the cell counts (n1q,..., 1%, ..., nK1,...,nxxK) follow
a multinomial distribution with probability cells

T = (7711,-.-,7T1K,-.-,7TK1,---,7TKK)/-
We have
K K
D) DAY
i=1 j=1
Let p = (p11y---,P1K,-- > PK1,--->PKE) be the vector of sample proportions

where Pij = TL”/K

Let the ith observation be y; = (Vi11,- -, Yitk, - - - Vi1, - - - » Yix i) Where y;;; = 1
if item 7 is placed in category j by rater 1 and in category [ by rater 2, y;;; =
otherwise. We have
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N K K
1 e .
P = N izlyijla jzllzlyzjz =1 and yijYimr = 0 if j #Fm or if [ # r.
Moreover, E(y;i) = mj; = E(yfjl) and E(YijYimr) = 0 if j#= m or if [ # r. So,
E(y;) = mand cov(y;) =X (i =1,...,N) where 3 = (0;;) with 0;; = var(y;;;) =
(1 —mj;) and oj; = cov(Yiji, Yimr) = —TjiTmy if § 7# m or if [ # 7.

If diag(m) denotes the diagonal matrix with the elements of 7, the matrix ¥ is
determined by

Y = diag(w) — wr’. (B.4)

Thus, we have

1
cov(p) = N(diag(ﬂ') — 7).
K K
This matrix is singular since Z Z pij = L.
i=1 j=1

The multivariate central-limit theorem (Rao, 1973) implies that

L [\/N p— 71'}] — N[0, diag(m) — 7r’].

If g(t11,- - ,tig, - ,tx1, - ,txr) is a differentiable function and
dg
i = ,7=1,....K

)
is 99 evaluated in t = 7, the Delta method implies that

ot
c [m l9(p) — g(m)]| — N (0, ¢’ [(diag() — wn')] p)

where ¢' = (¢11,-+ , P15k, Pr1, "+ 5 OKK)-

The asymptotic covariance matrix of g(p) is thus equal to
K K K K
¢ diag(w)p — (¢'n)* = Z Z 7Tz‘j¢12j - (Z Z 7Tz'j¢z’j)2- (B.5)
i=1 j=1 i=1 j=1

To determine the sampling variance of a kappa coefficient, the function g(p) = x(p)
is considered.
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B.3 Jackknife method

The Jackknife is a statistical method introduced by Quenouille (1956) and further
developed by Tukey (1958) for reducing the bias in an estimator of some popula-
tion parameter and for obtaining an estimate of the standard error of the improved
estimator.

Suppose one has classified N items into K mutually exclusive and exhaustive
categories, and that the number of items assigned to the respective categories are
Ny, ,Ng, with Zfil n; = N. Consider some function F' = F(ny,--- ,ng) that
is to serve as an estimator of a parameter 6, but suppose that F' is such that

1
E(F)=0+0(—=
(F)=0+0(x)
The Jackknife estimator, F , will be such that
~ 1
E(F)=60+ ek

Let F_; be the value of the function when one unit is deleted from the ith category
and define the K so-called pseudovalues F; = NF — (N — 1)F_;. The Jackknife
estimator of 6, F' is the weighted average of the pseudovalues,

-1 XK
F= Z_;nF (B.6)
and the estimate variance of F is
N 1 Ko
F)= ———=> ni(F;,—F)>*. B.
var(F) = o=y P - P (B.7)

If N is 'large’, inferences about 6 may be based on the fact that Fis approximately
normally distributed about 6 with a standard error of \/(var(F)).

The Jackknife is useful when no explicit formula is available for the variance of F'
or when the variance formula is complicated.

B.4 Bootstrap and Monte Carlo approximation

B.4.1 Bootstrap

Assume a data set has N observations. The bootstrap first forms a finite popu-
lation by giving each observation a probability 1/N. From this finite population,
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there are NV possible samples of size N obtained with replacement. For each of
these samples, value of the statistic under study can be computed, given NV such
values. The empirical distribution of the statistic is the exact bootstrap distribu-
tion. The end points of the 95% bootstrap confidence interval are obtained by the
percentile method, i.e., by taking the 2.5th and the 97.5th percentiles from the
bootstrap distribution.

B.4.2 Monte Carlo approximation

Unfortunately, for most problems, calculating the exact bootstrap distribution is
computationally prohibitive. Therefore, a Monte Carlo approximation is used.
The Monte Carlo bootstrap draws B samples of size N with replacement from
the original data set. For each of these B samples, the value of the statistic is
calculated, giving B possibly different values. The end points of the 95% Monte
Carlo bootstrap confidence interval are obtained by taking the 2.5th and the 97.5th
percentiles from the empirical distribution of the B values of «.






APPENDIX C

Generalized linear models

C.1 Introduction

In this Appendix, the generalized exponential family is outlined. The first two
moments of such random variable are determined. Generalized linear models and
logistic regressions are introduced for binary and ordinal variables (Nelder and
Wedderburn, 1972). It is a generalization of the linear model defined for normally
distributed populations to the generalized exponential family. Maximum likelihood
equations for such model and iterative Fisher scoring method are exposed.

C.2 Generalized exponential family

C.2.1 Definition

Let Y be a random variable and suppose that (y;,- - ,yn) represent the values of
N independent observations of the random variable Y.

Y is a generalized exponential random variable if the density of each y; (i =
1,--+, N) with respect to a Lebegue or count measure A can be written as

f(Wi; 05, 0) = exp[(yi0; — b(6;))/a(®) + c(ys, )] .- (C.1)

The parameter 6; is called the canonical parameter and the parameter ¢ the dis-
persion parameter. The functions a(¢) and b(6;) are supposed to be at least two
times continuously differentiable in the parameter space.
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176 C.3. Systematic component and link function

C.2.2 Two first moments of Y

Consider the contribution of the ith observation to the likelihood logarithm

U0 &39:) = In(f (yi;0i, 0)) = [(vith — b(0:))/a(@) + c(yi, D)]- (C.2)

We have
01/06; = [y: — V'(6:)] /a(9) (C3)
51)967 = —V'(6,)a(9) (C.4)

where 0/'(6;) and 0" (0;) are, respectively, the two first derivatives of b evaluated at 6.

It is easily shown that if the conditions of permutation of the integration and

E<§é> 0 (C.5)

0l o1\
() = () o
It implies, with respect to (C.3) and (C.5), if u; represents E(Y;),
pi = b'(0;) (C.7)

and with respect to (C.4) and (C.6),

B |(y: = 0(0:))" /a*(6)| = var(¥i) fa*(6) = (6:) a(@).

derivation operators are satisfied,

and

Finally,
var(Y;) = b"(6;)a(9). (C.8)

C.3 Systematic component and link function

Let 1, -+, x;, be the values of p covariates relative to the ith observation. The
systematic component links the unknown parameter to the covariates using a linear
predictor

P
N = Zﬂjxija i=1,--- N
j=1
or under matricial notation,
n=Xpg (C.9)

where 1 = (n1,--- ,nn)" is a vector of linear predictors, 3 = (61, --,0,) is a
vector of unknown parameters and X is a N X p matrix of covariates.
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We also defined
i = (1) (C.10)

where ¢ is a strictly monotone function at least two times continuously differen-
tiable with respect to py, -+, un. g is called the link function and the function g
for which g(u;) = 0; is called the canonical link.

C.4 Estimation of the parameters

For N independent observations, the likelihood logarithm is
N N
= > n(f(yi0:,0) = D 1 (C.11)
=1 i=1

where [; = 1(0;,0,y;), (i=1,--- N).

The maximum likelihood equations are obtained by calculating

aﬁj B 00; Opi; Om; 5@"

(C.12)

We have gg = [y; — V'(6;)]/a(9), pi = V' (6;) and var(Y;) = 0"(6;)a(4). Therefore,
ol; e aﬂz 1" U&T(Y;'>
697, - (yl Mz)/a(gb) and 892 = (0 ) (Z(Qb) .

Moreover,

on;
Zﬁ]xw thus — 8[3 = Tjj.

J

This implies
i yi—pi a(d) Ou;

98, alg) var(Y;) om," "

After some elementary algebraic manipulations, we obtain the maximum likelihood

(C.13)

equations

N o,
Tiim— =0, j=1---, C.14
; var(Y; jam J p ( )

or, under matricial notation,
X'Aly—p)=0 (C.15)

ou; 1 )
on; var(Y;)

where A is the diagonal matrix composed by the elements (=—
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Such equations do not have analytical solution. The iterative method used to fit
the generalized linear model is the Fisher iterative method described in next Sec-
tion.

Convergence rate of B to B depends of the information matrix.

We have
—-F = F
(aﬁhaﬁj) Kaﬁi) (3@')]
_ E (Yi - ,Ui)xih O (Y;' - Hi)xij o
var(Y;) On;  wvar(Y;) O
2
_ TyjpZiy Op
- Zey ( am) . (C.16)
Thus,
azL(B))  Tandiy (3u->2
-F = e L. C.17
(aﬁhaﬁj ; var(Y;) \ On; ( )
Under matricial notation,
H=XWX (C.18)
where 2L
H=F (— 8&2@3) is called information matriz;

O
on;

2
W is the diagonal matrix with w; = ( ) Jvar(Y;) on the main diagonal.

C.5 Fisher scoring method

Let ﬁ(m) be the mth approximation of the estimation fi obtained by the Newton-
Raphson method where the matrix of the second derivatives is replaced by its
expectation —H.

We have
Ig(m+1) — ﬁ(m) + (H(m))—lq(m) (C.19)
where
H is the non-singular matrix defined in (C.18) ;
IL(B) .

q is the vector with elements ;
0B,
H™ and ¢'™ are H and q evaluated at 8 = ™.
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Regarding Equations C.14 and C.17,

m) glm) . m) _ N\, T 5’/% 3m) - m) O
HM™BM 4 gm = %" ZZIMT() an ) +ZZI = o

=1

O
where p; and ( 0M ) are evaluated at g™
T

So,
H™3m 4 gm) — x'pym zm (C.20)

where W™ is W evaluated at 8™ and Z™ is composed by the elements
D m)
(m) (m)y [ On;
Z = i 5 — ;) m
2. (o)

- e [ O™
= "™+ (g — ))<77 > (C.21)

Finally, Fisher’s equations (C.19) have following form

HMGm+)  — frim gm) | glm)
X'wmxgmtl) —  x'wm zm, (C.22)

If the solution exists and is uniquely defined, the solution of the equations is
Bmtl — (X'wm X)L x'W ™ Z(m), (C.23)

The vector Z™ represents, in that expression, a linearized form of the link func-
tion in p evaluated at y.

9i) ~ g(ps) + (yi — pa)g (1)
~ it (Y — m)?Zf %. (C.24)

It is important to remark that Fisher scoring method does not always converge. In
practice, we consider € > 0 and a maximal number of iterations M. The iterative
procedure stops if

-
180" H

VjE{l, 7p} ‘ <€

orifm= M.
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C.6 Logistic regression

C.6.1 Binary logistic regression

Many categorical variables only possess two categories. Each observation on each
item may be a success (value 1) or a failure (value 0). For binary random variables,
the Bernoulli distribution specifies the probabilities P(Y = 1) = n, P(Y =0) =
1 — 7. It results that E(Y) = 7 and var(Y) = n(1 — w). When Y; has a Bernoulli
distribution with parameter 7;, the density distribution is

Flyi,m) = exp {yi In ( : i ) +in(l - m)} (C.25)

for y; = 0 and y; = 1. This distribution takes place in the generalized exponen-
). This term is called

tial distribution. The canonical parameter, 6;, is In(

logit(m;). Z
C.6.1.1 Linear regression

For a binary response and one covariate, the linear regression model is
E(Y) =n(z) = fo + fa. (C.26)

When the observations y are independent, this model corresponds to the genera-
lized linear model with identity link.

The major default of the model is the following. While proportions 7(z) have to be
between 0 and 1, the linear function permits values on all the real line, i.e., values
of m smaller than 0 or greater than 1. It is then proposed to take a non-linear
relation between m(z) and z. The appropriate model is introduced in the next
Section.

C.6.1.2 Logistic regression for a single covariate

For one covariate, the proposed model is the following:

() = exp(fo + (1)

= Tt exp(o 1 i) (C.27)

called the logistic regression function.

When x — oo, w(z)]0if 5 <0;
m(x) T 1if g1 > 0.
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The model is represented by a sigmoidal curve and possesses the properties of a
continuous repartition function. The link function for which the logistic regression
model is a generalized linear model is the logit link

ln(li(—:()x)) = [o + B (C.28)

Suppose they are g groups of n; observations (i = 1,---,g). Let y; be the ith
observation of the study binomial random variable.

In (ny_ y,-) (C.29)

is not defined when y; = 0 or y; = n;. Therefore, the empirical logit, which is a

biased estimator of the real logit, is sometimes used instead:

In (M) . (C.30)

n; —y; +1/2

The generalization of the logit function to several covariates is simple. Let =

(21, ,x,)" be the values of p covariates. The logistic regression model is:
In (7@ Bo+ Py + -+ 3 (C.31)
n|l———| = Ti+ - T .
1 —7(x) 0P Pty

C.6.1.3 Likelihood estimators

Let (y1,---,yn) be the values of N binary variables. We suppose that those
random variables are independent and possess a Bernoulli distribution.

Let @; = (240, , i) be the ith set of p covariates, i = 1,--- ,I and x;0 = 1.
When covariates are continuous, a different set of covariates may exist for each
subject and [ = N.

The logistic regression model is:

(@) = — (i) | (C.32)

1 + exp (Z?:O Bjxij)

Let n; be the number of observations for a fixed value of ; = (20, ,2p). Vi

is a random variable counting number of successes. The random variables Y;,
(¢ =1---,1) are independent binomial random variables where E(Y;) = n;m(x;)
and n; +---+ny=N.

The probability density is

m(x;)

f(yi, m) = exp {%’ In <m

) +n;In(1 —w(x;))] - (C.33)
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Thus, we have
ni =0 i =mnm(@);  0(0;) = —n;In(1 — 7(x;));
var(Y;) = nim(x;) (1 — n(x;)) et a(o) = 1.

06, 1 1 1

O (@) (@) (@)l — (@)
So, the maximum likelihood equations are

I
> (yi—mimi)wi; =0, j=0,--,p (C.34)

=1

or, under matricial form, if X is the I x (p+1) matrix composed by {z;;}, Equation
(C.34 has the form

X'y=X'n (C.35)
Information matrix can then be written as
I
Hy; = Z Tipxivar(Y;) (C.36)
i=1
or
H = X'diag(var(Y;))X. (C.37)

For the logistic regression, the maximum likelihood estimators exist and are uni-
quely defined except under limit cases (see Wedderburn (1976), Albert and An-
derson (1984) and Lesaffre and Albert (1989) for more detail). The maximum
likelihood equations are non linear functions of the maximum likelihood estima-
tions B Resolution of those equations can be done using the Newton-Raphson
iterative method.

C.6.2 Ordinal logistic regression

Different models exist for ordinal data. Only the most popular in the modelisation
of agreement data will be exposed here (see Hosmer and Lemeshow (2000) for the
other models).

Let Y be an ordinal random variable, which may take K +1 values, noted 0, --- | K
and © = (x1,--- ,1,)" a vector of p covariates.

Let
PY = k|x] = ¢r(x). (C.38)



C. Generalized linear models 183

Suppose we may to compare the probabilities P[Y < k|x] and P[Y > k|x].

We define
B [PlY < k|x]
) = |
[ po(x) + -+ + () }

= @t k@)

. n_ ’Yk(w)
= _1—%(%)}
= Tk—wlﬁ (039)

for k=0,---, K — 1, where v, = ¢o(x) + - - - + ¢ () and 7 is the intercept.

That model is called the linear cumulative logistic model and possess the following

property
In (%) i (%) — B — ) (C.40)

i.e., the difference between the two logistic is independent of the category k.

Mec Cullagh (1980) has defined the maximum likelihood equations and the iterative
Newton-Raphson procedure for the ordinal logistic regression.

C.7 Goodness of fit

C.7.1 The goodness of fit statistic

A quality criterion of the fitting of a logistic (ordinal) regression is given by

G* = —QZ[lz’(ﬂi) — 1i(yi)] (C.41)

where [; are defined by Equation C.11) This statistic G* is called the likelihood
ratio. It can be shown that G? follows asymptotically a chi-square distribution on
N — p degrees of freedom where p is the number of estimated parameters.

Consider two hierarchical models

My : In( T ) = By and M, : ln(l

1—7'('1' — T

Uy

>:60+Z$¢jﬂj (7,:1,,N>
j=1

Let G*(M,) and G*(M,) be the likelihood ratios relative to the models M, and
M, respectively.
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It can be shown that
G*(My| Mo) = G*(My) — G*(M,,) (C.42)

is asymptotically distributed as a chi-square statistic with p degrees of freedom.
G*(M,|M,) appreciates the goodness of fit of the regression involving p covariates.

C.7.2 Standard error of the parameters

It is well known that the standard error of the estimator Bj, j=0,---,pis given
by
SE(B;)=(H "), (i=1,---,p) (C.43)
where H ™! is the inverse of the information matrix and that
s Bi—B
Z(B;) = =F——= C.44

is approximately normally distributed with mean 0 and standard deviation 1.

It is then possible to test hypotheses
H()Z /GjIOVS Hli 6]%0 (]ZO,,]))

at the « significance level by comparing \Z(B])| to Qz(1 — %)

Several authors test Hy with the Wald statistic defined by

X5, = Z2°(5;) (C.45)
Hy is rejected at « significance level if X%j > Q\2(1 — a; 1) otherwise Hy is not
rejected.

C.8 Generalized estimating equations

Aim of this Section is to extend the generalized linear models to the case of paired
data. Approach of Liang and Zeger (1986) will be developed. They defined gene-
ralized estimating equations (GEE) based on a mean population model.

Consider I blocs of paired data mutually independent.

Note
Yy = (yn,"' yYing, = Y, 0 7y1n[) = (yla"' 7yI)
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the vector of observations,

M= (Mllu"' sy Mingy ** 0 5y M1, 7,uIn1>:(/J/1;"' 7/1’1)

the mean vector and

Tiir o Ty
Xi -
Lin;1 " mimp
the matrix n; X p of covariates relative to the ith item (i = 1,---,1) where
x;j = (i1, -+, Tijp) is the vector of covariates corresponding to the jth observa-

tion of the 7th item.

Suppose that the vector y is extracted from a generalized exponential population
and that the following linear model exists:

nz:Xlﬁa Z:L?[

where 1, = (1, -+ ,Min;)’ 1s & vector of linear predictors and 3 = (fy,---,5,)" is
a vector of unknown parameters. Moreover,

is the link function.

Liang and Zeger (1986) approach needs hypotheses on the correlation nature bet-
ween the paired data.

For example, a n; x n; correlation matrix proposed by Liang and Zeger (1986),
noted R;(«), has the form

1 « «Q

Ria)=| "
o
o a 1

where the unknown constant correlation between the paired data is noted a.

Let A; = diag(t" (0im)a(¢)) (i =1,--- ,I) be the n; x n; matrix corresponding to
the variances under the generalized exponential model and V; = A} / ’Ri(a)A] 2

By analogy with Equation C.15, Liang and Zeger (1986) proposed the generalized
estimating equations

I
ZX;AiAiV;l(yi — ;) =0. (C.46)

=1
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These equations do not possess an analytical solution. If the solution exists and
is uniquely defined, the equations can be solved by the iterative Newton-Raphson
procedure. Moreover, Liang and Zeger (1986) showed that

Theorem C.8.1. Under mild reqularity conditions and given that:
(i) é is Iz -consistent given 3 and a(®),
(ii) a(®) is 12 -consistent given f3,

(i1i) 0a(B,a(P))/0a(®) < H(Y,B) which is O,(1)

then I %(B — ) is asymptotically multivariate geussian with zero mean and cova-
riance matriz 'V g given by

I “lr I -1
V= lim I [Z D;V;lDi] [Z D;V—lcov(Yi)VfDi] [Z D;V;lDi]
=1 i=1

=1



APPENDIX D

Weighted least-squares approach

Weighted least-squares approach is an alternative to the maximum likelihood ap-
proach. Let ¢ = 1,--- G index the GG conditions under which measurements on
the same basic response with K categories are observed. Let j = 1,---,r index
the set of categories corresponding to the K" response profiles associated with the
simultaneous classification for the G responses of interest. Let i = 1,--- | s index a
set of categories corresponding to distinct sub-populations defined in terms of in-
dependent variables. If samples of size n; (i = 1,--- ,s) are independently selected
from the respective sub-populations, the resulting data can be summarized in an
s x r contingency table (Table D.1) where n;; denotes the frequency of profile j in
the sample from the ¢th sub-population.

Table D.1. Observed contingency table

Response profile categories

Sub-population 1 ... r Total

1 nyy o .- nir ni

S Ngl Ngr Ns
The vector n, = (n;1, -+ ,n;) is assumed to follow a multinomial distribution with
parameters n; and 7, = (m;, - -+ , T, ), where m;; represents the probability that a

randomly selected element from the ¢¢th population is classified in the jth profile
(z:zlﬂ-zj = 1 fOI' Z = 1’ ,8).
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Let p;, = m;/n; be the r x 1 vector of observed proportions associated with the
sample from the ith sub-population and let p’ = (p),---,p}). A consistent esti-
mator for the covariance matrix of p is given by the sr x sr block diagonal matrix
V (p) with the matrices

Vip) = [Dy —ppl] (i=1,.9) (D.1)

i
on the main diagonal, where D,, is an r X r matrix with elements of the vector p;
on the main diagonal.

Let Fi(p),---,F.(p) be a set of u functions of p. FEach of these functions is
assumed to have continuous partial derivatives up to second order with respect to
the elements of p within an open region containing = = F(p). If

F'=[F(p)| = [F(p), -, Fu(p)] (D.2)

then a consistent estimator of the covariance matrix of F' is the u x u matrix (Delta
method)

Vie=HI[V(p)H (D.3)
where OF ()
H = S |w:p. (D.4)

It is assumed that the functions comprising F' are chosen so that V g is asympto-
tically nonsingular. The function F is a consistent estimator of F'(7). We assume
that the functions Fi(7),--- , F, () are jointly independent of one another. The
variation among elements of F'(7) can be investigated by fitting linear regression
models by the method of weighted least-squares. Assume that

EA[F(p) = F(x) = X8 (D.5)

where X is a prespecified u x p design matrix of known coefficients with full rank
p < u, 3is an unknown p x 1 vector of parameters and FE 4 denotes the "asymptotic
expectation’.

An appropriate test statistic for the goodness of fit of the model D.5 is
Q=Q(X,F)=(RF)[RVyR] ' RF (D.6)

where R is any full rank (v — p) X v matrix orthogonal to X. @ is approximately
distributed according to the chi-square distribution with (u—p) degrees of freedom
if the sample sizes n; are sufficiently ’large’ such that the elements of the vector F
have an approximately multivariate Normal distribution (Central Limit theorem).
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These test statistics, (D.6), are obtained by using weighted least-squares on the
basis of the fact that @) is identically equal to

Q= (F - Xb/V.'(F—Xb) (D.7)

where b = (X'V ' X) "' X'V ' F is a BAN estimator for 3. Both @ and b are re-
garded as having reasonable statistical properties in samples which are sufficiently
large for applying CLT to the functions F'. As a result, a consistent estimator for
the covariance matrix of b is given by

V= (X'ViX) (D.8)

If the model D.5 does adequately characterize the vector F'(7r), tests of linear
hypotheses pertaining of the parameters 3 can be undertaken by standard multiple
regression procedures. In particular, for a general hypothesis of the form

Hy: CB=0 versus Hi: CB#0 (D.9)

where C' is a known ¢ X p matrix of full rank ¢ < p and 0 is a ¢ x 1 vector of (s,
a suitable test statistic is

Qc = (Cb) [C(X'VEX)'C'| Cb (D.10)

which has approximately a chi-square distribution with ¢ degrees of freedom in
large samples under Hy in D.9.

Predicted values for F'(m) based on the model D.5 can be calculated from
F=Xb=X(X'V;'X)'X'V;'F. (D.11)

Thus, consistent estimators for the variances of the elements of F can be obtained
from the diagonal elements of

V=X XV5X)'X (D.12)

A wide range of problems in categorical data analysis can be expressed in terms
of repeated applications of any sequences of the following matrix operations:

1. linear transformations of the type
Fi(p)=Ap=a
2. logarithmic transformations of the type
Fy(p) = In(p) = ay
3. exponential transformations of the type
F3(p) = exp(p) = as

Then the linearized Taylor-series based estimate of the covariance matrix of F)
for [ = 1,2,3 is given by D.3, where the corresponding H; matrix operator is
H1 = A17 H2 = D;l and H3 = Da3.
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