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ABSTRACT

The numerical resolution of fluid dynamic equations expressed in a quasi two-
dimensional form is a major component for a better understanding of most
hydrodynamic processes. Two computational programs were developed,
handling unsteady flow problems in networks of branches with complex
geometries. The first one uses a fixed grid method of characteristics. The second
one resorts to a Petrov-Galerkin finite element method with special test functions
and prediction-correction.

The results of both codes are compared in examples of tidal waves and
computational river hydraulics with a sudden variation of limit conditions. The
article first compares the recurring feature of the unsteady phenomena. The
influence of different numerical parameters on the numerical dissipation is
studied, as well as the presence of parasitic waves with high frequencies.
Advantages and shortcomings of both methods and their ideal context of

application are deduced from the study, as also the cautions aimed to ensure the
best numerical efficiency.

INTRODUCTION

The efficient resolution of fluid dynamic equations is commonly admitted as a
fundamental concern in the modern hydraulic engineering. An efficient software
based on Saint-Venant equations should be able to modelize most of the physical
processes involved in the flow field.

The constant renewal of interest for several years in searching new
numerical schemes can be explained by the merit of each of them only in
particular situations. The setting up of objective criteria of comparison seems
unrealistic, seeing that each code finds its suitable range of application. The
numerical resolution of this set of differential equations expressed in a section
averaged form gives useful indications in such various topics as hydraulic
resources management, dam-break flood wave propagation or blood circulation :




- Inriver networks, simulations of transient flows allow to predict the results
of very disturbed situations with sharp floods or very low water levels, for
the working out of an optimal multi-objective management.

- In the strategy of protection of population, the disastrous consequences
produced by a sudden dam-break lead the searchers to take interest into the
difficult modelization of discontinuous flows in networks of rivers.

- In haemodynamics, simulations of generation, propagation and distortion of
blood waves in highly complex networks of distensible arteries allow the
understanding of fluid dynamics phenomena involved in normal and
pathological situations.

Two softwares were developed, covering together all these three subjects.
The first one uses a fixed grid method of characteristics. The second one resorts
to a Petrov-Galerkin finite element method with special test functions and
prediction-correction,

The general improvement in computational techniques and the advances in
computer technology often leads the authors to submit results of applications
whose complex character hides the intrinsic behaviour of their numerical
method. The aim of this article is to highlight the effects of numerical parameters
on both softwares, applied in revealing simulations. The comparison of the
temporal evolution of tidal waves or of the unsteady consequences of a sudden
variation of limit conditions in a single branch of river points out the practical
rules to follow for a fit solution, free of any spurious numerical effect.

THEORETICAL MODEL

The equations used in this study to compute flows in open channels are derived
from the Navier-Stokes equations and the continuity equation. The assumptions
that are used were chosen in respect of the phenomena to reproduce. The two
main ones are as follows :

- the squares of the ratios between the speeds in the directions perpendicular to
the main flow and the axial speed are insignificant. This implies a hydrostatic
diagram of pressure, changes the system in a quasi two-dimensional one and
allows the integration of the equations in the section,

- the no-slip condition is considered along the walls.

They lead to the following system of fully non-linear one-dimensional
equations (in reality, quasi two-dimensional) :
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We use the following notations :

X, t the time and space variables

h(x,t)  the height of water

(x,h) the wet cross-section, defined as a function of the space and the height
of water

Q(x,t) the flow

U(x,t) the average speed in the section (axial speed)

g the gravity acceleration

Z(x,t) the elevation of free surface

F the friction term

Moreover, the parameter ¢ characterizes the unequal distribution of the
axial speed in the section. It is defined by the ratio between the average value
over the section of the square of the speed and the square of the mean velocity.

In practice, this term is evaluated considering a given distribution of the speed in
the section.

NUMERICAL RESOLUTION

Introduction

As suggested above, we developed in another study (Pochet [1]) a model of
waves propagation in very distensible tubes applied to a network of arteries. The
method of characteristics was used to solve the equations. In the same way, we
set up a model based on the finite element method for the simulation of
discontinuous flows and in particular for a dam-break flood wave propagation.
In the first study, we demonstrated the existence of an analogy between the
equations that were used and equations (1) and (2).

Resolution by the method of characteristics

The method of characteristics is founded on the description of waves
propagation. To facilitate integrations, it consists of transforming the system of
equations so that the partial derivates disappear thanks to the total derivates.
However, this can only be done by restricting the domain of validity of the
equations.

Let us define the following notation :
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and the factor A as follows : A=+ A¥ or A =- A* (5)

After usual manipulations, the system of equations (1) and (2) can be
transformed into an equivalent system of two pairs of equations, each one



defined by one value of A and composed of the following equation :
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and of the equation of the curves family of the abscissa-time plane along which
it is valid (these curves are called characteristics) :
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In equation (6), h' represents the level of the bottom of the river.

Compared to ¢, A* clearly appears to be the generalization of the waves
celerity when we take into account the unequal speed distribution. Let us point
out that A* is the waves celerity, not in relation to the speed average, but in
relation to its product with ¢. On the other hand, the factor ¢ is algebraically
always greater than one, which ensures the existence of a real celerity defined by
equation (3) whatever U and c are.

The unsteadiness of the studied phenomena implies a high spatial and
temporal variability of the celerities and the speeds, and consequently of the
slopes of the characteristic curves. So, the resolution of the equations cannot be
based on a simple process. The chosen method is the fixed grid pattern method,
which is the most qualified for the treatment of junctions and the control of
numerical accuracy. Inside of a channel, it relies on the figure 1 diagram.
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Figure 1. Fundamental diagram of resolution
inside a channel with the fixed grid method

When the unknowns have previously been determined at the nodes of the
grid corresponding to the preceding time step, their calculation at a point M is
carried out as follows. The integration of the characteristics families equations
(7) allows to position the piercing points L and R at the preceding time step of
the two characteristics that join M. The unknowns at these points are estimated
by linear interpolation. Finally, the unknowns at M are deduced from the
integration of the equations (6) on the characteristics.

The dependance of the shape of the characteristics on the unknowns at
points L, R and M, as also the integration with trapezia of the equations terms
that do not correspond to total derivates, make an iterative calculation procedure




indispensible.

The resolution of the equations at a limit of a channel or at a junction of
several channels is either a simplification or a generalization of the procedure
described above. The numerical techniques are detailed in Pochet [1].

Resolution by finite element method

In contrast to the method of characteristics wherein the domain of interest is
replaced by a set of discrete points, the finite element method divides the domain
D into subdomains. In each of these finite elements, every variable is
represented as a polynominal function of its values at the nodes of the element.
The unknowns are then conventionally written:

n n
Q*= 3 N, a* and Q*= X N, q* (8)
i=1 i=1
with
* the indication of approximate values
n the number of discretization points
a;*, q;* the nodal values of the unknown quantities
N; the shape functions

Equations (8) can be transformed into a general vectorial expression :
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The Euler equations (1) and (2) can be expressed in the following form :
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The application of the Petrov-Galerkin technique to the basic equations,
along with the use of the approximation (9), leads to the following discretization
of the problem :
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The usual finite element formulation consists of an orthogonal projection
of the residual error due to discretization approximation to a set of linearly
independant complete functions included in a vector P equal to N.
Nevertheless, due to the wide range of applications (management simulations,
dam-break flood wave propagation...), the weighting function P is written here
in accordance with the works of Katopodes [2] :

N
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with € the parameter setting the degree of dissipation.

The parameter €, introduced in the particular weighting functions, is used
to control undesirable oscillations arising in the simulations with significant
convective terms or propagation of sharp fronts (Pirotton [3]). Raymond and
Garder [4] have studied its very selective action on wavelengths.

Applied to a regular discretization for a simplified case, this method shows
that differences centered on the calculation nodes still appear while introducing
dissipation terms. Moreover, these applications show that it reproduces and
generalizes some finite difference schemes known for their ability to modelize
discontinuous phenomena.

The temporal discretization of the equations is obtained by a variable-
weighted implicit approximation on two time steps, as follows :

r=(1-0)rt+ort+At (15)

while the temporal derivatives are obtained by difference on two time steps.
Written in this form, it is apparent that spatial operator is located at t+6At. For
6=0.5, that discretization reduces to the second order-correct-in-time approxi-
mation of Crank-Nicholson.

Applied to linearized equations on a net of regular finite elements with
linear basis functions, a decomposition of the solution in Fourier series shows
an unconditional stability of the scheme for 6 > 0.5 with a stabilizing effect by
friction.

Moreover, the well-known method of the Lagrange multipliers allows to
take into account any junctions of networks.

For a fast resolution of this system of 2n equations with 2n unknows, the
code proceeds with splitting up the equations and using an iterative method of
prediction-correction. During one iteration, the first system of n discretized
continuity equations evaluates a new approximation of the nodal sections. The
unknown flows are replaced either by the values at the previous iteration, or by
predicted values when it is the first time step. The second system composed
with n discretized momentum equations gives the new values of the nodal
flows. The non-linear terms are estimated either by a linear interpolation from
the previous intervals at the first iteration, or, afterwards, by the values at the
iteration that precedes.




RESULTS AND DISCUSSION

Both softwares have been developed to study flows in networks (Pirotton and
Pochet [5]). Nevertheless, in this paper, they are compared in draconian exam-
ples of single branches, especially able to point out their numerical efficiency.

Tidal waves

The first one simulates tidal waves in a horizontal flume, shut at both
extremities. At the beginning, the free surface has the shape of an half period of
cosinusoid. We leave the system evoluate freely in the time without any friction.

If the initial distorted surface has an amplitude sufficiently low to justify
the equations linearization, we can theoretically show that the level will then
oscillate freely and indefinitely between the initial cosinusoid and the
symmetrical curve in relation to the mean horizontal level. A progressive
decrease of the calculated amplitude would reveal a simulation process naturally
dissipative. On the other hand, if the amplitude increases, the method tends to
inject an excess of energy in the system.

The channel is 100 m long and 1 m large. The mean water height is of I m
and the amplitude of the initial distorted surface of 0.05 m. For the first
simulation realized with the method of characteristics, the space interval is S m
long and the time interval is of 1 s. In this problem, the current number
constantly changes in the time and space, but the variations are rather limited.
The mean current number (MCN) is 0.63.

Figure 2 shows the temporal evolution of the water level at each end of the
channel. It reveals a highly dissipative character.
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Figure 2. Study of the dissipation introduced by the
method of characteristics in the tidal waves problem.
MCN = mean current number Ref. discr. = refined discretizations




The refinement of the spatial and temporal meshes with constant current
numbers, for example as shown on figure 2, by dividing by two the time and
space intervals, appears to improve the energetical behaviour.

On the other hand, when the current numbers are approached near the unit,
for instance by keeping the space interval constant and increasing the time
interval, the dissipation is also reduced. In the example presented on figure 2,
with a mean current number equal to one, it completely disappears. This second
way to improve the energetical behaviour is surely less expensive in calculation
time and appears to be more efficient.

In Pochet [1], we demonstrated that the origin of the non-neutral
energetical behaviour of the method of characteristics is located in the linear
interpolations used to estimate the unknowns at points L and R (figure 1) during
the numerical process. If the mean current number exceeds the unit, the trend
reverses : the method injects an excess of energy.

However, from a certain moment, as soon as the mean current number is
high, the computed values start to vary without any order, and rapidly the
program aborts by non-convergence of the iterative procedure in one point.
Furthermore, when extended in the time, the simulation with a mean current
number equal to one ends by not converging any more. This suggests that in
practice, we are most often not able to reach the unit.

Sensitivity to current number is not a feature of the finite element code.
Furthermore, the presence of this diffusive character would be worrying in
numerical modelling of dam-break wave propagation where time steps are taken
small enough in order to accurately simulate the physical reality.
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Figure 3. Study of the dissipation introduced by the
temporal discretization in the finite element method




However, the success of many numerical schemes, especially in the
representation of discontinuous phenomena, lies on a suitable dissipative
character which captures the sharp transitions without numerical noise. The
numerical dissipation in the classical finite element method of Galerkin can be
found in the temporal discretization.

So, care must be taken about the stability of the temporal diagram. It can
lead to a significant damping effect on the oscillations as shown in figure 3.
Decentring towards the calculated step (8 > 0.5) appears to make the system
much more dissipative. For 8 = 0.5, on the other hand, the system is perfectly
conservative.

However, it seems undesirable in practice to keep the neutral value of 6 =
0.5 in this method due to the non-dissipative character of the spatial
discretization. Current values situated between 6 = 0.6 and 6 = 0.8 are usually
mentioned in the literature. This will be illustrated in the second example.

The effect of the second dissipative parameter introduced in the special
weighting functions cannot be highlighted here because of the lack of a large
wavelengths spectrum. For this application, its value is fixed to zero.

The central oscillating curve of figure 4 illustrates the temporal evolution of
the water level at the middle point of the canal. According to the theoretical
solution of the linearized equations, it should not move in the time. However, it
starts to oscillate with the double fundamental frequency of the phenomenom
and the amplitude progressively increases. The perturbation propagates when
going away from the centre, but decreases gradually, and up to both extremities,
the curves are not perfectly symmetrical. These observations are independent of
the numerical method.
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Figure 4. Temporal evolution of the water level at each end and
in the middle of the canal with the non-linear and linearized equations.




Yet, when the equations are linearized (in practice, by neglecting the
convective term using zero for the parameter of unequal speed distribution,
instead of one until now, and by considering the coefficient of the water level
term in the dynamic equation (2) independent from the unknowns), the
oscillations completely vanish (figure 4).

So, though the amplitude of the initial distorted surface could appear to be
small, it induces significant non-linear effects. This justifies the efforts to keep
the equations in their complete expression.

Sudden variation of the upstream level in a single channel
The second studied case considers a 100 m long flume, with a rectangular

section and whose width is 2.8 m. The channel has a slope of 10 cm over the
100 m. At the beginning of the simulation, it has a uniform flow, the water level
being 0.767 m and the flow 3.4 m3/s.

Suddenly (in one time interval), the upstream level drops by 20 cm and is
maintained. The downstream level stays at 0.767 m. We let the system evoluate
freely and analyse the new equilibrium it will aim to and the way it will follow.

The law of losses by friction used in this example is linear. Such a choice is
not ideal for a canal but does not alter the validity of the analysis. The space
interval is 10 m long and the time interval is of 3.45 s.

Figures 5 and 6 allow the comparison, 30 m downstream of the upstream
extremity, of the temporal evolution of the water height and the flow.
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Figure 5. Temporal evolution of the water height
30 m downstream of the upstream extremity




The classical finite element solution based on the Galerkin formulation
shows unrealistic results without any physical agreement. The centered Crank-
Nicholson temporal discretization coupled with a centered spatial diagram
should provide an energetically neutral reference. On the contrary, high
frequency waves affecting the flow variables introduce overmeaning oscillations

which make any comparison impossible. This spurious behaviour shows the
need for a suitable treatment.

A slight temporal decentering (8 = 0.60) strongly improves the simulations
and the parasitic oscillations that disrupt simulations are here completely wiped
out by the introduction of the upstream-wheighted functions.

In this example, the current numbers oscillate between 0.80 and 0.95 to
stay as much as possible in the appropriate range of the method of
characteristics. However, when calculated with the influence of velocity, they
temporarily exceed 1.5.

Figures 5 and 6 illustrate the very similar behaviours of the modified finite
element method and the method of characteristics. The amplitudes and the
temporal positions of the waves are adequately coherent. These results,
compared to the original finite element method ones, demonstrate that the
dissipation is maintained at an acceptable level.

Besides, they show the validity of the numerical adjustment introduced in
the finite element scheme and point out the stringent numerical stability of
recurring applications as tidal waves,
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Figure 6. Temporal evolution of the flow
30 m downstream of the upstream extremity



CONCLUSIONS

The two applications we have developed in this article back the hydraulicians'
opinion that using a hydraulic software as a "black box" tool is dangerous. The
good behaviour of a code must be sustained by a clear understanding of the
interpolations and limitations of the numerical resolutions. Gaining a deep
knowledge of factors affecting the numerical accuracy and overcoming
difficulties to generate a software with good stability features, seems to be the
most appropriate solution to produce rational and trustworthy results.

The method of characteristics can have a trend to a behaviour energetically
non-neutral. The practical rule to avoid the dissipation is to choose correctly the
relation between time and space intervals by approaching the current numbers to
the unit, rather than to refine the spatial and temporal meshes to the upmost.

The finite element technique is not influenced by current numbers but its
non-dissipative character has restricted for a long time the field of application of
the method. The well-known temporal decentering, widely used in the literature,
induces a controlled dissipation necessary to make the solution free of most
oscillations. In the case of discontinuous flows and sudden variations of limit
conditions, the classic formulation where the weighting function is equal to the
interpolation function can be advantageously altered. The alternative method
shows a very selective damping of the high-frequency waves.

Thus, a discerning choice of simulation parameters leads to results that
highlight the good quality of both methods.

The general character of the mathematical formulation allows the use of the
codes without any restriction to any geometry and network, making each code a
powerful software package within a wide range of applications.
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