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Control of phase shifting transformers by multiple
transmission system operators

A. Marinakis M. Glavic Senior Member, IEEE T. Van Cutsem, Fellow, IEEE

Abstract—A general framework is proposed for the control of
phase shifting transformers owned by several TSOs, taking into
account their interactions. The proposed solution is the Nash
equilibrium of a sequence of optimizations performed by the
various TSOs, each of them taking into account the other TSOs’
control settings as well as operating constraints relative to the
whole system. The method is applied to a linearized network
model and illustrated on the IEEE 118-bus system.

Index Terms—Phase shifting transformers, multi-objective op-
timization, constrained optimization, Nash equilibrium.

I. INTRODUCTION

The Phase Shifting Transformer (PST) offers the oppor-
tunity to partially control the flows in a power system. It
is one of the principal control devices used to direct power
flows in specific parts of the transmission network. Although
the operation of PSTs incurs maintenance costs and losses, it
remains less costly than generation rescheduling and definitely
preferred to load shedding [1].

Coordinated control of multiple phase shifters in a grid
may alleviate congestions due to line overloads and, in a
market-based system operation, improve the economic follow-
up for the market players [2]. Finally, it is one of the controls,
together with topology changes, that fully remain in the hands
of Transmission System Operators (TSOs).

Within this perspective, several TSOs, in Europe noticeably,
equip their networks with more and more PSTs. Most of them
are located to remove congestions on important lines, typically
tie-lines between countries, which are usual “bottlenecks” [3].

However, in a large meshed interconnection, PSTs can
impact active power flows in far-away distances. As a result,
PST control actions taken by one TSO will generally affect the
operation of the other TSOs’ systems. In some future, these
interactions might lead to dangerous conflicting situations, for
instance if one TSO prevents parallel power flows from passing
through its system. Such “fights” are obviously undesirable,
not only from market viewpoint [4], but above all for security
of operation.

The optimal solution from a technical viewpoint would
probably be a central “entity” coordinating the various PSTs
so as to reach a global objective. However, TSOs may not be
open to such a solution in which they would partly lose control
on equipments that they acquired to improve their own system.
Thus, the viewpoint adopted here is more to allow each TSO
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to have its own objective, while avoiding conflicts that would
endanger security.

To this purpose, this paper first outlines a general framework
in which multiple objectives, each relative to a particular TSO,
are optimized under a set of common security constraints.
While it is assumed that information is shared by the partners
in order to avoid violating those constraints, each TSO is
supposed to keep its objective undisclosed. The formulation
leads to solutions that altogether constitute Nash equilibria
of the overall procedure [6]. This general formulation is then
particularized to the problem of PST control, for which linear
programming is used by each TSO.

II. MULTI-OBJECTIVE OPTIMIZATION FRAMEWORK

We consider an environment in which each TSO uses its
own controls to optimize an individual objective, all of them
operating the same interconnected system. For simplicity, we
refer to a case with two TSOs, named TSO1 and TSO2. Let
us denote by ϕ1 and ϕ2, their respective vectors of control
variables. The operation of the whole interconnection has to
obey a set of inequality constraints:

g(ϕ1, ϕ2) ≤ 0 (1)

which is decomposed according to the involved TSOs, into:

g1(ϕ1, ϕ2) ≤ 0 (2)

g2(ϕ1, ϕ2) ≤ 0 (3)

Each TSO has its own objective function to be minimized.
We denote them by f1(ϕ1, ϕ2) and f2(ϕ1, ϕ2), respectively.
These objectives may be quite different but we assume that
each function is influenced by the whole set of controls, which
is the expression of the already mentioned TSO interactions.
Note that the decision-making procedure may be more com-
plex than just solving a mathematical programming problem: it
could be heuristic, or it could involve additional computations,
dealing for instance with post-contingency security constraints.

In the worst case, each TSO solves a problem including
its own control variables only, the rest being explicitly or
implicitly set to some constant value, and focusing on its
own operating constraints only. In this perspective, TSO1
computes:

ϕ
∗

1 = arg min
ϕ

1

f1

(
ϕ1, ϕ

0
2

)
(4)

subject to g1

(
ϕ1, ϕ

0
2

)
≤ 0 (5)

where ϕ
0
2 is the value of ϕ2 assumed by TSO1. A similar

set of equations holds for TSO2, which ends up with a
solution ϕ

∗

2. Since each TSO ignores the other TSO’s control
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actions, the operating point resulting from these uncoordinated
changes is likely to differ from what each TSO model predicts.
More importantly, the solution may not be feasible, since
g(ϕ∗

1, ϕ
∗

2) ≤ 0 does not necessarily hold true.
The more “responsible and coordinated” scheme considered

in this paper relies on the following principle:

1) each TSO communicates its current preferred control
settings, which are taken into account by the other TSOs;

2) each TSO provides information on its operating con-
straints;

3) each TSO takes into account the whole set of operating
constraints;

4) they iterate until an equilibrium is reached.

Note that the second item may raise confidentiality issues.
If this is the case, a consensus has to be reached about the
minimal amount of data to be communicated, withholding
sensitive pieces of information, so as to render it commercially
neutral for instance. On the other hand, a TSO should be able
to justify the security constraints it announced (if requested to
do so by a regulatory body, for instance).

Thus, at the k-th iteration of the procedure, TSO1 knows
the current preferred value ϕ

k
2 of TSO2 controls. Using this

information, it now computes the updated preferred solution:

ϕ
k+1

1 = argmin
ϕ

1

f1

(
ϕ1, ϕ

k
2

)
(6)

subject to g1

(
ϕ1, ϕ

k
2

)
≤ 0

g2

(
ϕ1, ϕ

k
2

)
≤ 0

TSO2 carries out a similar computation, ending up with the
updated solution ϕ

k+1

2
. Both values are used at the next

iteration.
If convergence is achieved, the final solution reached is:

for TSO1: ϕ
∗

1 = arg min
ϕ

1

f1 (ϕ1, ϕ
∗

2) (7)

subject to g1 (ϕ1, ϕ
∗

2) ≤ 0

g2 (ϕ1, ϕ
∗

2) ≤ 0

and for TSO1: ϕ
∗

2 = argmin
ϕ

2

f2 (ϕ∗

1, ϕ2) (8)

subject to g1 (ϕ∗

1, ϕ2) ≤ 0

g2 (ϕ∗

1, ϕ2) ≤ 0

where all security constraints are satisfied.
The solution (ϕ∗

1, ϕ
∗

2) is a Nash equilibrium of the multi-
objective problem. From Game Theory viewpoint, the deci-
sions taken by several players make up altogether a Nash
equilibrium if, for each player, there is no advantage in
changing his decision, given the decisions taken by the other
players [5], [6]. In other words, at a Nash equilibrium, each
player chooses a strategy that is the best response to the
other players’ strategies. In the context of the above problem,
each TSO may be viewed as a self-interested player acting
in a rational way towards the control actions that optimize
its objective, all of them obeying the whole set of operating
constraints.

Of course, the convergence of the above procedure and the
existence of several Nash equilibria are questions of interest.

Another well-known concept in multi-objective optimization
is the one of Pareto optimum. A solution ϕ

∗ is Pareto optimal,
if it is feasible and is not dominated by any other feasible
solution. A solution ϕ

′ dominates ϕ
∗ if fj(ϕ

′) ≤ fj(ϕ
∗) for

all j, and fj(ϕ
′) < fj(ϕ

∗) for at least one j. The set of
all Pareto optimal solutions is called the Pareto set. By being
non-dominated, the members of the Pareto set represent the
possible tradeoffs among the various objectives fj [7].

A Nash equilibrium does not necessarily belong to the
Pareto set and, vice versa, the members of the Pareto set do not
in general constitute equilibria of the above iterative procedure.
The Nash equilibrium not being Pareto optimal means that
there exist more interesting solutions, yielding better values
for all objective functions than the Nash equilibrium [8].

In the two-TSO case, a Pareto optimum can be reached by
minimizing with respect to both ϕ1 and ϕ2 the composite
function wf1 + (1 − w)f2, where 0 ≤ w ≤ 1. However,
this procedure has two drawbacks for the problem of concern.
First, there must be an agreement on the value of w. This
problem is even more complex when there are more than two
TSOs. Second, it forces TSOs to disclose their objectives and
formulate them so that it enters the composite objective, which
is not the case in the approach proposed here.

Anyway, it is an interesting challenge to find a way to move
from the Nash equilibrium closer to (ideally on) the Pareto
set, especially when the objective functions deal with market
aspects, while keeping the objectives undisclosed [8].

III. APPLICATION TO PST CONTROL PROBLEM

We consider an environment in which each TSO uses its
PSTs to optimize an individual objective. We adopt the DC
approximation, which is acceptable for the problem of concern
and leads to an insightful linear problem. Future efforts should
be directed towards updating the operating constraints when
large PST angle excursions take place as well as adjusting the
PST impedances with the tap position.

Under the DC approximation, the active power flows in
transmission lines can be linearized around a base case op-
erating point, according to:

P = P0 + S
(
ϕ − ϕ

0
)

(9)

where P0 is the base case value of active power flows P,
and similarly for ϕ

0 with respect to ϕ. The sensitivity matrix
S can be easily derived from the DC (or even AC) load flow
equations using a well-known general sensitivity formula. The
limits on line power flows take on the form:

−Pmax
≤ S

(
ϕ − ϕ

0
)

+ P0
≤ Pmax (10)

where Pmax is a vector of maximum branch power flow.
Proceeding with the two-TSO example, these inequalities

can be decomposed into:

−Pmax
1 − P0

1 ≤ S11

(
ϕ1 − ϕ

0
1

)
+ S12

(
ϕ2 − ϕ

0
2

)

≤ Pmax
1 − P0

1 (11)

−Pmax
2 − P0

2 ≤ S21

(
ϕ1 − ϕ

0
1

)
+ S22

(
ϕ2 − ϕ

0
2

)

≤ Pmax
2 − P0

2 (12)

where the notation is self-explanatory.
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According to what was presented in Section II, the two
TSOs will compute a sequence of PST settings according to
(k = 1, 2, . . .):

for TSO1: ϕ
k+1

1 = argminϕ
1
f1

(
ϕ1, ϕ

k
2

)
(13)

s.t. − Pmax
1 − P0

1 ≤ S11

(
ϕ1 − ϕ

0
1

)
+ S12

(
ϕ

k
2 − ϕ

0
2

)

≤ Pmax
1 − P0

1

−Pmax
2 − P0

2 ≤ S21

(
ϕ1 − ϕ

0
1

)
+ S22

(
ϕ

k
2 − ϕ

0
2

)

≤ Pmax
2 − P0

2

ϕ
min
1 ≤ ϕ1 ≤ ϕ

max
1

and for TSO2: ϕ
k+1

2 = arg minϕ
2
f2

(
ϕ

k
1 , ϕ2

)
(14)

s.t. − Pmax
1 − P0

1 ≤ S11

(
ϕ

k
1 − ϕ

0
1

)
+ S12

(
ϕ2 − ϕ

0
2

)

≤ Pmax
1 − P0

1

−Pmax
2 − P0

2 ≤ S21

(
ϕ

k
1 − ϕ

0
1

)
+ S22

(
ϕ2 − ϕ

0
2

)

≤ Pmax
2 − P0

2

ϕ
min
2 ≤ ϕ2 ≤ ϕ

max
2

where bounds on control variables have been added to line
flow constraints.

Several objective functions may be thought of, such as min-
imum deviation of controls from base case values, minimum
active power losses (using an extension of the above DC
model), minimum deviation from a desired value of power
flowing through a set of lines, etc. Let us repeat that the
optimization procedure may be more complex than shown
above, the point being that each TSO takes into account
the other TSO’s controls and the whole set of operating
constraints.

To implement the above ideas, information should be
exchanged through a network of TSO computers, first to
build the model, then to exchange PST setting values until
convergence is reached. Before starting the iterations, the load
flow Jacobian matrices of each system have to be sent to
a central computer, in order to be assembled into a single
Jacobian J, subsequently factorized. The S matrix can be
computed column by column; each column requires solving
a sparse linear system with J as matrix of coefficients, and an
independent term stemming from the individual TSO systems.
Each TSO must also provide the value of its base case and
maximum power flows. From there on, optimizations of the
type (13,14) are performed independently by the TSOs, with
an exchange of the ϕ

k
1 , ϕk

2 PST settings in between iterations.

IV. THE PATH TO NASH EQUILIBRIUM

The iterative procedure suggested in the previous sections
may take on the form of:

• either a (computer to computer) negotiation, in which the
iterations are performed until reaching an equilibrium, to
be the control settings subsequently implemented on the
system;

• or an actual step-by-step implementation of the control
changes in the course of iterating.

The communication between computers can be synchronous
or asynchronous, as sketched in Fig. 1 for a three-TSO case.

In asynchronous operation, each TSO announces its control
settings whenever it is ready for, while in a synchronous op-
eration, each TSO is obliged to announce its settings at specific
times. Clearly, the synchronous mode yields more ordered
operation, in which each TSO calculation remain consistent
with the present state of the system. On the contrary, in the
asynchronous mode, each TSO performs its calculations based
on data referring to different points in time, depending on the
moments at which the other TSOs announced their settings.
In synchronous operation, if the solution targeted by one TSO
is not fully implemented at the time of communicating the
settings, the part of it already implemented is communicated.

0 time

time

TSO 1
TSO 2
TSO 3

synchronous operation

asynchronous operation

TSO 1
TSO 2
TSO 3

0

Fig. 1. Asynchronous versus synchronous iterations

Let us further consider the synchronous approach. With
reference to the two-TSO case illustrated in Fig. 2, the iterative
procedure can be run:

• in a parallel way: TSO1 computes its new settings ϕ
k+1

1

based on the previous setting ϕ
k
2 of TSO2, while in the

same time interval TSO2 computes ϕ
k+1

2 based on ϕ
k
1 ;

• in a sequential way: each TSO waits for the other TSO
to communicate its updated settings before performing its
own optimization.

time

TSO 2
TSO 1

TSO 1
TSO 2

sequential approach

parallel approach

k+1

k+1

kk−1

kk−1

time

Fig. 2. Parallel versus sequential iterations

The sequential approach has the disadvantage of being
slower than the parallel one. This becomes even more impor-
tant when more than two TSOs are involved, which could be
the case in practice. On the other hand, the parallel approach,
if applied strictly, may not keep the system inside its feasi-
ble region at every moment. Indeed, although the solutions
(ϕk+1

1 , ϕk
2) and (ϕk

1 , ϕ
k+1

2 ) are both feasible, there is no
guarantee that this holds true for the solution (ϕk+1

1 , ϕk+1

2 )
to be implemented at the next time step. An additional level
of coordination is needed to bring the solution back inside
the feasible region. This must be designed to avoid oscillating
from one side to the other of the feasible region boundary.
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V. ILLUSTRATIVE EXAMPLE

A. The System

We illustrate the proposed method on the well-known IEEE
118-bus test system [9]. The latter has been decomposed
into two systems, named respectively “West” and “East” and
assumed to be operated by two different TSOs. The overall
structure of the so-decomposed system is shown in Fig. 3.
Furthermore, a transaction of approximately 240 MW has been
added from the Southern part of the East system (where most
of its production is located) to the Northern part of the West
sytem (where most of its load is located). The largest part
of this transaction flows through the Northern part of the
East system, thus passing in the so-called “south-north cut”
and “north interconnection” (see Fig. 3). This makes the East
system operate closer to its limits and with higher losses.

PST W

cut
south−north

SOUTH interconnection

NORTH interconnection

W
E

S
T

 s
ys

te
m

E
A

S
T

  s
ys

te
m

L2

L1

L4

L3

PST E

Fig. 3. Overall structure of the decomposed IEEE 118-bus system

Under this perspective, we suppose that TSO East installed a
PST in series with tie-lines L1 and L2 of the south interconnec-
tion. This allows East to control, up to a certain point dictated
by the PST limits, the share of the total power flow between
north and south interconnections. However, when more power
flows in the south interconnection, line L3 (one of the links
between Southern and Northern parts of West system) tends
to be overloaded, due to its assumed low thermal capability.
Therefore, we assume that TSO West placed a PST in series
with that line to protect it.

B. The objectives

For the above mentioned reasons, the objective of TSO East
is to keep below a certain limit the power flowing in the south-
north cut, which is equivalent to keeping above some value
the flow in the south interconnection. On the other hand, TSO
West wants to keep below a certain limit the power flow in
line L3. These two objectives, though not directly connected
to each other, turn out to be somewhat in contradiction, in the
sense that improving one of them deteriorates the other. This
will be shown graphically in the sequel.

C. Examples in the context of step-by-step control implemen-
tation

We first present results obtained in the context of a step-
by-step implementation of controls by the two TSOs (see
beginning of Section IV). Furthermore, we consider the syn-
chronous and sequential schemes. As already discussed, this
preserves feasibility of the solution during the iterations. Thus,
we assume that each TSO has some time to calculate its next
target PST setting, implement a part of it and communicate
the resulting new setting to the other TSO.

Figure 4 presents the evolution of the operating point in
the control variables space. “phiE” denotes the phase angle of
the PST in East and “phiW” the one in West. The two solid
lines correspond to the thermal limits of lines L3 and L4. The
shaded part of the diagram is the infeasible region. The two
dashed dotted lines represent the TSO targets. East has the
objective of keeping the active power flow in the south-north
cut (see Fig. 3) at 210 MW. Points located to the right of that
line correspond to higher (undesired) power flows. Similarly,
West tries to keep the power flow in line L3 at 30 MW. Clearly,
the target line is parallel to the constraint line corresponding
to the thermal limit of L3, which has been set to 50 MW.

phiE (deg)

ph
iW

 (
de

g)

−30 −25 −20 −15 −10 −5 0 5 10 15
−16

−14

−12

−10

−8

−6

−4

−2

0

2

unique Nash equilibrium

East target

constraints corresponding
to line thermal limits

feasible region

West target

movement of operating point

Fig. 4. Convergence to a unique Nash equilibrium

The two trajectories in Fig. 4 correspond to different rates of
change of the two PSTs. For the trajectory shown with solid
line, it was assumed that, inside the time interval given to
announce its new settings, East can change its phase angle by
at most 5 degrees, and West by at most 1 degree. The dashed
line, on the contrary, corresponds to faster moves by West.

As long as the system operates far enough from constraints,
there is a single Nash equilibrium, at the intersection of the
target lines in Fig. 4. There, each TSO is satisfied with the
solution so it has no motivation to proceed to any change. If
the Nash equilibrium point lies inside the feasible region and
if this region is convex, the procedure always converges to that
point. Changing the relative speeds of the two PSTs does not
influence the final point reached.
Remark. Lower limits on PST angle changes must be consid-
ered, to avoid moving by less than one step. This has been
neglected in Fig. 4 and in subsequent ones, in order not to
disturb the discussion with questions regarding discretization.

122

Authorized licensed use limited to: Thierry Van Cutsem. Downloaded on January 5, 2009 at 04:58 from IEEE Xplore.  Restrictions apply.



5

Of course, in reality, the procedure will settle down somewhere
very close to the aforementioned equilibrium.

In Fig. 5 the target power of East has been decreased to
190 MW. Due to the linearity of the model, this amounts
to shifting the target line parallel to itself. As a result, the
intersection point of the two target lines does no longer fall in
the feasible region. Now the operating point moves along the
East target line until it meets the constraint line corresponding
to L4 overload. The point cannot move any further since this
would either violate the constraint or increase the objective of
East TSO. This final point is a Nash equilibrium. Furthermore,
all points of the feasibility boundary pointed out in Fig. 5 have
the same property and are all Nash equilibria.

phiE (deg)

ph
iW

 (
de

g)

−30 −25 −20 −15 −10 −5 0 5 10 15
−16

−14

−12

−10

−8

−6

−4

−2

0

2

set of Nash
equilibria

Fig. 5. Target of East decreased to 190 MW; multiple Nash equilibria

A similar situation is shown in Fig. 6 corresponding to a
170 MW target power for East. The set of Nash equilibria is
larger than in the previous case.

phiE (deg)

ph
iW

 (
de

g)

−30 −25 −20 −15 −10 −5 0 5 10 15
−16

−14

−12

−10

−8

−6

−4

−2

0

2

set of
Nash
equilibria

Fig. 6. Target of East decreased to 170 MW; multiple Nash equilibria

The final Nash equilibrium reached now depends on the
system trajectory, and hence on the starting point and the
relative speeds of action of TSOs. As an illustration, consider
Fig. 7 which differs from Fig. 6 only by the speeds at which
the TSOs change their PST angles (East five times faster than
West in Fig. 6, both speeds identical in Fig. 7). A different
Nash equilibrium is reached. Moreover, the faster the PST, the

better the final value of the corresponding TSO objective.

phiE (deg)

ph
iW

 (
de

g)

−30 −25 −20 −15 −10 −5 0 5 10 15
−16

−14

−12

−10

−8

−6

−4

−2

0

2

set of Nash
equilibria

Fig. 7. Same case as in Fig. 6 with different speeds of control changes

Next, we consider in Fig. 8 a simulation starting from an
infeasible point, which could result from a disturbance, for
instance. According to the algorithm (13,14), the first priority
of TSOs is to restore feasibility. Hence, both start taking
actions to remove the violation. Note that for TSO East, this
action is in a direction opposite to the one dictated by its
objective, while there is no such contradiction for TSO West.

phiE (deg)

ph
iW

 (
de

g)

−30 −25 −20 −15 −10 −5 0 5 10 15
−16

−14

−12

−10

−8

−6

−4

−2

0

2

set of
Nash
equilibria

Fig. 8. Sequence starting from an infeasible point

Another view of the same simulation is presented in Fig. 9,
showing the successive values of both objective functions. It
is easily seen that TSO East has its objective deteriorated
until feasibility is restored. From there on, at each iteration,
one TSO ameliorates its objective while the other objective is
deteriorated. Of course, this deterioration is just a side effect,
since a TSO does even not know the other TSO’s objective;
it only knows its constraints.

It is interesting to note that, in our specific example with
linear objective functions, all Nash equilibrium points happen
to be Pareto optimal. Indeed, it can be seen from the figures
that at those points no combination of PST angle changes can
ameliorate both objectives. This would not be the case for
another kind of objective functions though.

The sequential scheme considered in the previous examples
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Fig. 9. Case of Fig. 8 seen in the space of objective functions

guarantees that, once inside the feasible region the operating
point will always remain inside. Furthermore, Fig. 8 has shown
how the procedure can bring the system back inside its feasible
region. However, the procedure may not succeed doing so
in all cases. An example of difficult situation is depicted in
Fig. 10, in which any individual change of the control variables
fails bringing the operating point inside the feasible region. In
this case, an upper level of coordination is needed, otherwise
both TSOs will remain inactive, each one in turn observing
its inability to restore feasibility.
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initial operating point
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region

Fig. 10. Initial infeasible point from which the procedure cannot start

D. Example in the context of negotiation

Finally, an example of (computer to computer) negotiation
(see beginning of Section IV) is given in Fig. 11. Here, the
intermediate points do not represent actual operating points,
but are rather values announced by each TSO during the
iterative procedure. What is sought is the Nash equilibrium,
the real PST adjustment taking place later. The scheme is
still synchronous and sequential. The control changes are not
restricted as in the previous figures, although in the example
of Fig. 11, a maximum deviation of 25 degrees has still been
imposed. As expected, the convergence to a Nash equilibrium
is much faster. Due to the larger steps allowed, the order in
which TSOs announce their settings makes a difference on the
final equilibrium.
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West making the first move

East making the first move

Fig. 11. Example of negotiation

VI. CONCLUSION

A multi-objective optimisation framework has been pro-
posed to deal with the operation of a system by multiple
interacting TSOs. The essence of the algorithm is an iterative
approach where TSOs successively compute control actions,
taking into account the last actions of other TSOs and obey-
ing the whole set of constraints. This involves information
exchange between TSOs, although their individual objectives
are kept undisclosed. This framework has been applied to the
PST control problem with linearized constraints, and several
schemes of potential implementation have been outlined.

Examples relative to a two-PST, two-TSO case have been
presented. Several features of the procedure have been illus-
trated graphically: existence of one or multiple Nash equilibria,
sensitivity to relative speeds of action, etc.

Future research should address, among others, the questions
of existence and convergence to Nash equilibria, as well as
relationships with centralized control and Pareto optimum. In
this respect, extensions to controls having a cost and, hence,
to market-type objectives are also considered.
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