“Innovations in Navigation Lock Design”

PIANC Report n°106

Ph. Rigo
Chairman of INCOM WG29

and

E. Pechtold; P. Hunter; J. Bödefeld

PIANC WORKSHOP
– Innovation in Navigation Lock Design –

15th & 17th October 2009
in Brussels
(25th Anniversary of PIANC Belgian Section)
LOCK INNOVATIONS

The PIANC report n°106 (2009):

• Complement to PIANC 1986 report.

• **Targets:** innovations and changes occurring since 1986

NEW LOCK INNOVATIVE TOPICS

• Hydraulics (filling and emptying),
• Operations and Maintenance,
• Environmental,
• Design (concrete, foundation, gate,…),
• Construction Modes,
• Equipments,
•
• Design concept : Cost-Effective, Reliable,....
WG29 – Navigation Locks

- Locks are key structures for the development of commercial and leisure navigation in rivers and canals.
- Locks are also strategic infrastructure for port development.
- In low-lying countries, locks have an important function in flood defence.

Innovation applies to the big and fast...

GERMANY

PANAMA

New, Cost-Effective, Reliable...
... and the small and slow...

WG29 - LOCK INNOVATIONS

Major changes in design since 1986 concern:
• Maintenance and Operation aspects,
• New goals at the conceptual design stages of a lock
 ➔ RELIABILITY, LIVE CYCLE COST, ...
• Renovation and rehabilitation of existing locks are also key issues for the future.
DESIGN AND OPTIMIZATION GOALS

Main design objectives governing the design of a lock are:

- **Reliability** - system, structures and operations,
- Reduced duration of a lock cycle times,
- Reduced water motions and mooring forces
- Avoid water resource problems (minimise water use) ➔ Water Saving Basins
- Saltwater intrusion
- **Reduced life cycle cost**
- Minimizing energy use
- Avoid negative environmental impact
- Minimize impacts to navigation and local community
- Safety and Security

Early design stage

Key points at Early Design Stage are:

- Lock layout & Lock dimensions,
- Life cycle of a lock,
- Construction Modes or Methods,
- Layout of the hydraulic system,
- Lock structure concepts,
- Salt water intrusion, Ice Control, Communication, Security and Safety, ...
DESIGN PRINCIPLES

1. “Risk based design” versus “Deterministic approach”

2. “Life cycle cost optimisation” versus “Least construction cost”

3. Use of “Numerical Modelling” as design tool (combined with physical model)

LAYOUT OF HYDRAULIC SYSTEM

Hydraulic systems for filling and emptying locks can be divided into two types:

- Through the heads
- Through longitudinal culverts

Typical layouts of Longitudinal culvert system:

- Wall culvert side port system
- Wall culvert bottom lateral system
- In-Chamber longitudinal culvert system (ILCS)
- Longitudinal culverts under the lock floor
- Dynamically balanced lock filling system
- Pressure chamber
Lock with Water saving basins located on the side of the lock - Standard concept

NEW LAYOUTS OF HYDRAULIC SYSTEM

Connection of pressure chamber to WSBs basins (upper) and to main chamber (lower) ➔ Germany
Water Saving Basins (WSBs)

Various types of Water Saving Basins.

Locks with separated WSBs (located on one side or both sides of the lock, on a series of steps)
Water Saving Basins (WSBs)

Cross-sections in a lock with 5 standard laterally located Water saving basins (filling through the pressure chamber in the lock floor)

Integrated WSBs

The integrated system which integrates the WSBs in the two side walls, and makes the lock structure more stiff, compact and less land consuming.
Monolith LOCK

Standard Concept
With dilatation joints

No internal longitudinal stresses

Monolith Concept
Without dilatation joints

Internal longitudinal stresses

Step 1: Definition of the problem
Identification of the essential acting forces

Step 2: Formulation of similarity requirements
Formulation of sets of equations

Step 3: Formulation of boundary conditions

Step 4: Construction of a model
Development of a numerical solution scheme

Step 5: Calibration of the model
Variation of roughness
Variation of coefficients

Step 6: Measurements & solution
Calculation and solution

Step 7: Optimization of the solution according to problem formulation
Model geometry variations
Variation of input data

Step 8: Transfer of results from model to prototype
and examination by field measurements
Mechanical devices

Actuator:

Sluice: Sliding vertical lift gate

UHMWPE: Ultra-high molecular weight polyethylene

Construction Modes

The lock chamber is constructed on the ground surface.

When complete the soil is removed beneath the lock chamber and it is lowered into its final position.

Prefabrication

Workshop 15-17 Oct 2009, Brussels
InCom WG 29 CONCLUSIONS

Current Trade off problems in Lock Design:

- "HIGH RELIABILITY" is often associated with "PROVEN TECHNOLOGIES" (in Lock Design)
 If true ➔ Is it a the place for innovation in lock?
 WG29 ➔ Yes. Innovation is required to reach highly reliable infrastructures, to reduce cost (construction mode), fulfil new requirements (fast locking), non standard dimension,…
 Do not be afraid by innovation. ➔ Promote innovation.

- "RELIABILITY" versus "COST" (in lock design)
 Lock design is highly “Project Dependant”.
 Ex: “Panama Canal” versus the “Renovation of a small pleasure lock in Finland”

INNOVATIONS IN LOCK DESIGN

➔ FEW EXAMPLES
Magnetic Mooring System at KaiserLock Germany (Cavotec Ltd)

INNOVATION IN LOCK DESIGN

Locks Floating Pontoon (Fin)

INNOVATION IN LOCK DESIGN
Dream to Reality?

Falkirk Wheel
UK

Diagonal Lock
UK

UHMPE sliding Gate/ Valves

INNOVATION IN LOCK GATE
Kaiser lifting and sliding lock gate

Self-Propelled Floating Lock Gate (up to 70 m long)

INNOVATION IN LOCK GATE

ANAST
ULG (Belgium)
INNOVATION IN LOCK GATE

Workshop 15-17 Oct 2009, Brussels

INNOVATIVE LOCK STRUCTURE

Workshop 15-17 Oct 2009, Brussels
Third lane of locks - Panama Canal

INNOVATION IN LOCK DESIGN
Workshop 15-17 Oct 2009, Brussels

PIANC Workshop 15-17th Oct 2009

PIANC REPORT N° 106
INLAND NAVIGATION COMMISSION

INNOVATIONS IN NAVIGATION LOCK DESIGN

Workshop 15-17 Oct 2009, Brussels
WG29: Lock Innovations

BODEFELD Jorg (DE) MILLER Dale (USA)
BOS Jan (NL) PECHTOLD Erwin (NL, YP)
CLARKSON John (USA) POLIGOT-PITSCH S. YP
DALY Fabrice (Fr) PICHON N. (Fr) YP
FERNANDEZ (Spain) RIGO Philippe (BE), Chair
HIJDRA Arjan (NL) SARGHIUTA Radu (RO)
HIVER Jean-Michel (BE) TARPEY Michael (USA, YP)
HOLM Olli (Fin) THORENZ Carsten (DE)
HUNTER Peter (UK) WONG Juan (Panama)

Support Groups: WU Peng (China)
US, NL, BE, Fr, Brazil

Corresponding members:
China, France, Panama, UK

Workshop 15-17 Oct 2009, Brussels