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Chapitre 1

Introduction

Pourquoi un cours d’analyse numérique et a quoi cela sert-il ? Pour résumer,
on peut dire que I’analyse numérique est a la frontiere entre les mathématiques
et I'informatique. Il s’agit en quelque sorte d’un interprete qui permettra de
transposer la connaissance mathématique théorique a la pratique d’un ordi-
nateur et de pouvoir ainsi résoudre des probléemes concrets.

Les deux objectifs principaux de I’analyse numérique sont, d’une part, de
pouvoir résoudre numériquement des problemes concrets dont on connait ou
pas la solution analytique et d’autre part, d’analyser le comportement des
méthodes utilisées. Développons a présent ces deux objectifs.

1.1 Résolution numérique de problemes

La plus grande partie de ce cours consiste a développer des méthodes
pour résoudre numériquement des problemes scientifiques courants.

Exemple 1.1 Imaginons que nous disposions d'une calculatrice de poche
capable d’efectuer les opérations courantes d’addition, soustraction, multi-
plication et division. Comment pouvons-nous évaluer la constante e?

Nous savons que le développement de Taylor de la fonction e® est
2 3 4

t =1 S
R TR ’
c’est-a-dire, que nous pouvons approximer la constante e par, par exemple,

SRS R S S
€= 276 24 " 120’
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ce qui donnerait dans ce cas-ci un résultat (tres) approximatif de e = 2, 71667
ayant seulement deux décimales correctes. Il est évidemment possible d’ob-
tenir un résultat plus précis en utilisant plus de termes de la série. C’est la
que l'on voit tout l'intérét de pouvoir correctement analyser une méthode.
Ici, cela permettra de savoir combien de termes de la série sont nécessaires
afin d’obtenir le nombre de décimales correctes désiré. |

On peut considérer que la constante e est connue et que I’exemple précédent
est uniquement un moyen de transposer concretement a l'ordinateur une
théorie abstraite. Par ailleurs, la formule donnée est exacte au terme d’er-
reur de I’expansion de Taylor pres (que nous reverrons dans le Chapitre 2). Un
objectif de ce cours est également de traiter des problemes dont une solution
analytique n’est pas connue, mais que 'on peut approcher numériquement
de maniere satisfaisante. Dans la plupart des applications pratiques, une so-
lution donnant 10 décimales correctes n’est d’ailleurs pas toujours nécessaire.
Imaginons que 1’'on doive dimensionner le diametre de barres d’acier devant
soutenir un pont. Il y a peu d’utilité pratique a réclamer un diametre de
150.3429836 mm plutot que, plus humblement, et plus raisonnablement un
diametre de 150.3 mm.

Exemple 1.2 Lors du dimensionnement de poutres de résistance, un calcul
intermédiaire fréquent consiste a résoudre une équation du troisieme degré.
Bien qu’il existe une méthode analytique permettant de trouver une solu-
tion, il est souvent bien plus efficace de résoudre numériquement 1I’équation.
Considérons donc I'équation

P +r—1=0. (1.1)

La méthode numérique la plus naive pour résoudre f(z) =0, ou f est conti-
nue, est la méthode de la dichotomie (ou bisection). Elle consiste & partir de
deux valeurs zg et x; tels f(xg)f(z1) < 0, ce qui implique qu'une solution x
du probleme se trouve entre xy et x;. Il suffit ensuite de considérer x5 := %2&
et d’évaluer f(xs). En fonction du signe du résultat, on continuera sur 'in-
tervalle compris entre zy et xo ou l'intervalle compris entre x; et x5. Et ainsi
de suite. .. L’algorithme permet de réduire la taille de l'intervalle d’un fac-
teur 2 a chaque itération. Il est ainsi facile d’évaluer le nombre d’itérations
nécessaires pour obtenir une précision désirée sur x. Sur 'exemple précité, si

on pose f(x) =x®+x — 1, on voit aisément que f(0) = —1 et que f(1) = 1.
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Des lors, nous savons que f possede une racine sur lintervalle [0,1]. Nous
pouvons des lors démarrer ’algorithme avec g = 0 et xy = 1. La suite de
I’algorithme est présentée dans le tableau suivant. Remarquons que, puisque
I’on part d’un intervalle de taille 1, la taille de I'intervalle a l'itération 7 est
de % En particulier, si ’on souhaite obtenir 3 décimales correctes, nous en
déduisons que la taille de I'intervalle doit étre inférieure & 0.5 1073, Des lors
11 itérations seront suffisantes.

Itér. x y z =24 f(2)
0 | 0.000000 1.000000 | 0.500000 -0.375000
1 10.500000 1.000000 | 0.750000 0.171875
2 | 0.500000 0.750000 | 0.625000 -0.130859
3 1 0.625000 0.750000 | 0.687500 0.012451
4 10.625000 0.687500 | 0.656250 -0.061127
5 | 0.656250 0.687500 | 0.671875 -0.024830
6 | 0.671875 0.687500 | 0.679688 -0.006314
7 10.679688 0.687500 | 0.683594 0.003037
8 1 0.679688 0.683594 | 0.681641 -0.001646
9 10.681641 0.683594 | 0.682617 0.000694
10 | 0.681641 0.682617 | 0.682129 -0.000477

Nous voyons qu’au bout de 11 itérations, 3 décimales d'une solution a I’équation
sont connues avec certitude, a savoir x = 0.682. [ |

Bien qu’extrémement simple, la méthode que nous avons présentée dans
I’exemple précédent permet, assez rapidement, de trouver une solution sa-
tisfaisante a une équation dont une solution analytique n’est pas disponible
(ou peu pratique dans ce cas-ci). Nous verrons aussi qu'un grand avantage
de cette méthode est sa bonne stabilité numérique. Le Chapitre 4 présentera
les approches classiques pour résoudre f(z) = 0.

1.2 Analyse du comportement des méthodes

Nous avons vu, dans la section précédente, deux méthodes pour résoudre
des problemes avec un ordinateur. Il est tres important de décrire les algo-
rithmes qui permettent de résoudre ces problemes, mais il n’est non moins
important d’analyser le comportement de ces méthodes. En effet plusieurs
questions se posent : est-ce qu'un algorithme trouvera plus vite la solution
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qu’un autre, quelle est la quantité de travail nécessaire a un algorithme pour
obtenir une précision désirée, est-ce que ’algorithme trouvera toujours une
solution, est-ce toujours la solution souhaitée, est-ce que ’algorithme est sen-
sible aux erreurs dans les données initiales (qui peuvent provenir de mesures
par essence imprécises), est-ce que 'algorithme est sensible aux erreurs d’ar-
rondi faites durant le calcul 7 Nous montrons a présent la pertinence de ces
themes sans rentrer dans les détails (ce que nous ferons dans les chapitres)
mais en illustrant la philosophie des problemes qui se posent.

1.2.1 Complexité d’un algorithme

Une question importante, et qui releve plus de l'algorithmique que de
I’analyse numérique, est la quantité de travail nécessaire a un algorithme
pour arriver a un résultat. C’est ce que l'on appelle la complexité d’un al-
gorithme. Par quantité de travail, nous entendons le nombre d’opérations de
base (additions, soustractions, multiplications, divisions) qui sont exécutées.
On exprime la complexité d'un algorithme comme une fonction (souvent
un polynéme) dont les variables sont les paramétres du probleme. Ces pa-
rametres dépendent du type de probleme résolu. Souvent il s’agit de la taille
du probleme (nombre de lignes et de colonnes d'une matrice par exemple)
et de la taille maximale des coefficients (dans certains cas un probleme sera
plus difficile s’il concerne des grands nombres). Comme nous Iavons dit, la
fonction de complexité est fréquemment un polynome. Dans ce cas, il est
courant de considérer le degré du polynoéme comme donnant une idée de 1'ef-
ficacité de l'algorithme. Plus le degré du polynome est bas, plus ’algorithme
est rapide. Par ailleurs, un élément également important est de connaitre
la quantité de mémoire dont I’algorithme a besoin pour pouvoir s’effectuer.
De la méme facon que pour le nombre d’opérations, on exprime le nombre
d’éléments mémoire par une fonction des parametres de probleme.

1.2.2 Convergence d’un algorithme

De nombreuses méthodes numériques sont itératives et approximent la
solution a un probleme de mieux en mieux au fur et a mesure des itérations.
Dans la section précédente, on s’intéressait a la quantité de travail effectuée
a chaque itération. Une question tres importante est de savoir quelle est la
précision obtenue apres un certain nombre d’itérations. Le corollaire sera de
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pouvoir évaluer le nombre d’itérations nécessaires pour obtenir la précision
désirée.

Considérons a nouveau la résolution de ’équation donnée dans I’'Exemple
1.2. Nous avons vu que, pour la méthode de recherche dichotomique, la taille
de l'intervalle dans lequel se situe la racine recherchée diminue de moitié a
chaque itération. Mathématiquement, considerons la suite (z,) correspon-
dant au milieu de lintervalle traité a chaque itération. Nous avons que
lim, .. T, = x ou x est la racine recherchée. Par ailleurs, étant donné la
réduction de l'intervalle de recherche de moitié a chaque itération, nous en
déduisons que

ou [a, b] est I'intervalle de départ. Lorsqu’une suite (y,) tend vers y de telle
fagon que |y, —y| < coc™ avec ¢g € Ry et 0 < ¢ < 1, on parle de convergence
linéaire. Si par contre, la suite tend vers y avec |y, —y| < coc®™ avec ¢y € Ry,
0<c<letpeR,, on parle de convergence d’ordre p.

Il existe d’autres méthodes de recherche de la racine d’une équation. Nous
verrons au Chapitre 4 la méthode de Newton-Raphson. Celle-ci a un ordre de
convergence quadratique (ordre 2) dans la plupart des cas. Sans rentrer dans
les détails de la méthode, nous pouvons comparer la vitesse de convergence
de celle-ci avec la méthode de la recherche dichotomique. La tableau suivant
indique une comparaison des solutions approchées a chaque itération ainsi
que du nombre de décimales correctes.

Itér. Rech. Dichotomique Newton-Raphson
x approché Déc. corr. | x approché Déc. corr.

0 ] 0.500000 0 0.0000000000000000 0
1 | 0.750000 0 1.0000000000000000 0
2 | 0.625000 1 0.7500000000000000 0
3 1 0.687500 2 0.6860465116279070 2
4 | 0.656250 1 0.6823395825973142 4
5 | 0.671875 1 0.6823278039465127 9
6 | 0.679688 1 0.6823278038280193 16
7 | 0.683594 2

8 10.681641 2

On voit dans le tableau que l'ordre de convergence indique une performance
asymptotique. En particulier, la méthode de Newton-Raphson n’est pas meil-
leure que la dichotomie dans les premieres itérations. Mais elle est tres efficace
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au voisinage de la racine. On voit également qu'une convergence linéaire ou
quadratique n’exclut pas que la méthode régresse par moments. A nouveau,
la qualité de I'ordre de convergence est une propriété asymptotique.

Quand on parle de convergence d’un algorithme, il est aussi important
de parler de zone de convergence en fonction d’un point initial choisi. La
méthode de Newton-Raphson, par exemple, peu étre tres dépendante du
point initial. Pour certains points de départ, elle peut méme ne pas converger.
La question de zone de convergence est fréquemment une question beaucoup
plus difficile que la question de l'ordre de convergence au voisinage de la
solution.

1.2.3 Sensibilité aux erreurs des données

Cette question concerne plus souvent les problemes plutot que les algo-
rithmes. En effet, certains problemes sont, ce qu’on appelle mal conditionnés.
Dans ce cas-ci, un petit changement des données peut mener a un change-
ment radical de la solution. Lorsque 1'on utilise des méthodes numériques
pour résoudre ces problemes, la question devient cruciale car le fait de tra-
vailler en précision finie amene régulierement a devoir modifier légerement
les données réelles. La modification des données peut également provenir de
mesures concretes qui sont, par essence, imprécises. Un exemple typique de
probleme mal conditionné est le cas de systemes linéaires dont le déterminant
est proche de 0.

Exemple 1.3 Considérons le systeme Ax = b ou

A 1.2969 0.8648 b— 0.8642
~\ 02161 0.1441 )7 o\ 0.1440 )

On peut vérifier que la solution unique de ce systéme est x = (2 — 2)T.
Imaginons maintenant qu'une petite erreur dans I'introduction de la matrice
change A(2,2) en 0.144. Nous obtenons un sytéme tres proche avec

A 1.2969 0.8648 b— 0.8642
-\ 02161 0.144 )~ ~\0.1440 )

La solution du sytéme est maintenant x = (0.6663 0.0002)T qui n’a plus
aucun chiffre commun avec la solution précédente. [ ]
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1.2.4 Influence des erreurs d’arrondi

Lorsque l'on travaille sur un ordinateur, on est obligé de représenter les
nombres de maniere finie, souvent en arrondissant les décimales les moins
représentatives. Par exemple, on peut décider de travailler avec 16 chiffres si-
gnificatifs. Nous définirons précisément dans le Chapitre 2 ce que cela signifie.
Dans la plupart des cas, tronquer ainsi la signification d’un nombre n’a que
peu d’impact sur la solution finale recherchée. Il peut arriver néanmoins que
ces toutes petites erreurs s’accumulent et finissent par rendre les résultats
totalement erronés. Le cas le plus fréquent de perte de précision die aux
erreurs d’arrondis est lorsque 1'on soustrait deux nombres tres proches. Le
Chapitre 2 traitera de ce probleme et tentera de proposer quelques pistes
pour le résoudre. Mais ce n’est pas le seul probleme qui peut arriver comme
le montre I'exemple suivant.

Exemple 1.4 Nous souhaitons trouver une valeur approchée de l'intégrale
I, = fol x"e*dxr pour n = 20. En intégrant par parties, on voit que 1'on
al, =e—n fol 2" te®dr. On peut donc écrire la relation de récurrence
I, = e—nl,_ 4. Par ailleurs Iy = e—1 ce qui implique que I; = 1. Il est des lors
aisé de calculer par récurrence les différentes valeurs de I; pour ¢ = 2,. .., 20.
La Figure 1.1 reporte les valeurs ainsi calculées pour ¢« = 1,...,20 en trait
plein. Les ronds sur la Figure 1.1 reportent les valeurs réelles de I'intégrale.
Comme on peut le voir, la valeur approchée par récurrence est completement
erronée pour n > 17. Le tableau suivant reporte les valeurs calculées et réelles
pour n > 17.

n I, par récurrence I, réel
17 0.1043 0.1434
18 0.8417 0.1362
19 -13.2742 0.1297
20 268.2026 0.1238

Comment un résultat assi aberrant peut-il étre obtenu a partir d'une formule
a 'apparence aussi insignifiante ? La réponse est a trouver dans les erreurs
d’arrondis. En effet, lors du calcul de I5, si on considere que le calcul se fait
avec une précision de 16 décimales, une infime erreur est faite dans I’expres-
sion de e. Pour fixer les idées, supposons que cette erreur soit de 10717 et
supposons que cela soit la seule erreur réalisée lors de tout le calcul. Si on
note par I, la valeur calculée par récurrence, supposons donc que lon ait
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FIGURE 1.1 — Valeur réelle et approchée par récurrence de fol x"etdx

I, = I + e avec lea| = 10717, Nous avons, dés lors, Iy =e— 3, = I3 — 3e,.
Si on continue de la sorte, on voit que ’on obtient successivement fn =1I,+e,
oll |e,| = n!les| = 10717n!. Cela donne, en particulier, pour n = 20 une valeur
de 'erreur d’environ 24 et qui rend les valeurs calculées totalement dénuées
de sens. [ ]

L’exemple précédent montre a quel point il est crucial de vérifier qu'un
algorithme n’est pas trop sensible aux erreurs d’arrondis.

1.2.5 Conclusion

L’approche traditionnelle de I’analyse numérique est de se focaliser sur la
présentation des méthodes de résolution de problemes et d’analyser leur com-
portement ensuite a la lumiere de tous les phénomenes d’instabilité parfois
inattendus qui peuvent survenir. Nous ferons de méme dans ce cours. Une
telle présentation qui met en avant les méthodes peut faire penser que celles-ci
priment sur 'analyse détaillée qu’on peut en faire. Il est néanmoins impor-
tant de garder a l'esprit les différents types d’erreur qui peuvent se présenter.
La fréquence de tels problemes numériques n’étant pas extrémement élevée,
et les logiciels modernes étant écrits de maniere robuste, il est naturel d’ou-
blier petit a petit que des problemes numériques parfois aigus se présentent.
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Un bon scientifique doit donc toujours garder I'esprit critique et préter une
attention toute particuliere a la stabilité des modeles et des méthodes qu’il

écrit et utilise.



10

CHAPITRE 1. INTRODUCTION



Chapitre 2

Représentation des nombres et
erreurs

Dans ce chapitre, nous formalisons la représentation des nombres dans
un ordinateur et les erreurs qui en résultent. Tout d’abord, nous rappelons
les principales notions relatives aux séries de Taylor qui constituent 'outil
principal pour 'analyse numérique.

2.1 Rappel sur les séries de Taylor

Rappelons brievement I'expansion d’une fonction en série de Taylor.

Théoréme 2.1 Soit f, une fonction possédant ses (n+1) premiéres dérivées
continues sur un intervalle fermé [a, b, alors pour chaque ¢,z €[a,b], [ peut
s’écrire comme

),
=3 ot 1 B
k=0 '

ou le terme d’erreur E,, peut s’écrire sous la forme

FI(E)

Epi1 =
T (1)

(ZE o C)n—&—l’

et & est un point situé entre c et x.

On dit que le terme d’erreur est d’ordre n+ 1. 1l est parfois utile d’écrire
cela de maniere plus compacte sous la forme E, ;1 = O(h™"!), ou h représente

11
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x — c. La notation O(z?) permet de décrire le fait que la fonction tend au
moins aussi vite vers 0 que xP lorsque x tend vers 0.

Définition 2.1 Soit f: R — R. On dit que f = O(aP) au voisinage de 0 si
il existe C' € Ry et xg € R, tels que

|f(x)] < ClaP|  pour tout — xg < x < xy.

Cette définition sera tres souvent utilisée. En effet, le degré minimal d’un
polynome donne une idée tres précise de la vitesse de convergence vers 0. Si
on approxime une valeur V' en l'approchant itérativement par une fonction
f(h) quand h tend vers 0, une évaluation de f(h) — V' en notation O donne
une mesure de la vitesse de convergence du processus itératif. Plus le degré
de convergence est élevé, plus la convergence se fait rapidement. Le théoreme
de Taylor est un outil extrémement puissant pour pouvoir moduler 'ordre
de précision que I'on souhaite d'une fonction.

2.2 Erreur absolue et relative

Lorsqu’un nombre est stocké dans 'ordinateur, il y a tres souvent une er-
reur dont il faut tenir compte. Cette erreur peut provenir soit d’une approxi-
mation de 'algorithme, soit d’erreurs dans les données, soit enfin d’erreurs
diies aux arrondis que la machine réalise pour correspondre a sa précision
finie. Il y a donc lieu de modéliser ces erreurs. Dans la définition de I'erreur
sur un nombre, on distingue deux cas.

Définition 2.2 Soit a la valeur approchée d’une quantité dont la valeur
exacte est a. On appelle

(i) Uerreur absolue la quantité a — a,

(ii) Derreur relative la quantité “=2.

Lié a cette définition, on parle également de décimales correctes et de chiffres
significatifs. Le nombre de décimales correctes est lié a l'erreur absolue.
Lorsque la valeur absolue de ’erreur absolue ne dépasse pas %10‘2 on dit que
a a t décimales correctes. Le nombre de chiffres significatifs est, quant a lui,
lié a l'erreur relative. Le nombre de chiffres corrects de a a partir du premier
chiffre ou a partir de la premiere décimale non nulle sont appelés chiffres
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significatifs. En particulier lorsque la valeur absolue de l'erreur relative ne
dépasse pas %10_3“, on dit que a a s chiffres significatifs.

Exemple 2.1 Considérons le nombre a = 1234.5678 et son approximation
a = 1234.57. L’erreur absolue vaut @ — a = 0.0022 < 0.5 1072, donc @ a 2
décimales correctes. Si on considere 'erreur relative, on obtient % <
%10_5, c’est-a~-dire que a a 6 chiffres significatifs. [ ]

En regle générale, on préférera toujours considérer I'erreur relative étant
donné la représentation en virgule flottante des nombres. Nous parlerons
de cette représentation dans la section suivante. Par rapport a la logique
des phénomenes physiques, chimiques ou mathématiques, parler de I'erreur
relative a également plus de sens. Si on demande la distance entre deux villes,
on s’arrétera en général a préciser les kilometres, sans rentrer dans les détails
des metres et des centimetres qui ont peu de valeur pour un voyageur. On
peut dire, avec 1 chiffre significatif (voire 2), que la distance entre Bruxelles et
Liege est de 100 km, ce qui est, dans la plupart des applications, amplement
suffisant comme mesure, bien que l'erreur absolue se compte probablement
en kilometres.

2.3 Représentation des nombres en virgule
flottante

Dans la plupart des ordinateurs, les nombres réels (mais pas les nombres
définis comme entiers) sont représentés en virgule flottante. Un nombre a est
ainsi défini par deux autres nombres m et q,

a=m 107 avec 1 < |m| <10 et g € Z.

La partie m est appelée la mantisse tandis que ¢ est appelé 'exposant. En
réalité, la machine stocke la plupart des nombres en binaire, c¢’est-a-dire en
base 2 mais nous ferons, dans ce cours, I’approximation que tout se passe
réellement en base 10. Remarquons que cette approximation n’est pas tota-
lement anodine. Un nombre aussi simple que 0.1 est stocké sans erreur dans
une machine en base 10, alors qu’une erreur d’arrondi survient si on travaille
en base 2.
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Revenons maintenant a notre mantisse et a notre exposant. Ceux-ci sont
stockés sur un nombre fini de bits. Cela implique que seulement une quantité
finie de nombres réels peut étre représentée dans ce systeme. Par exemple,
si ¢ est stocké sur 8 bits, cela signifie que I'exposant se situe entre —127 et
128. Tout nombre dont l'exposant est supérieur a 128 ne pourra pas étre
représenté dans ce systeme. On parle alors d’overflow. Il s’agit en général
d’une erreur qui cause l’arrét d’un programme. Un nombre = dont I’exposant
est inférieur a —127 ne pourra pas non plus étre correctement représenté.
On parle dans ce cas d’underflow. Cette erreur est moins grave car on peut
alors remplacer x par 0 en faisant une erreur relativement faible. Mais dans
certains cas, cette approximation peut évidemment étre fatale. Imaginons
que l'on veuille ensuite diviser par x. ..

La mantisse est également stockée sur un nombre fini de bits. Cela im-
plique que la précision sur un nombre est limitée au nombre de décimales
que la mantisse peut contenir. En particulier, si un nombre x ne peut pas
étre représenté en utilisant toutes les décimales, on choisit le nombre le plus
proche a pouvoir étre représenté comme valeur de x. C’est ce qu’on appelle
I’arrondi. Nous reviendrons plus tard sur la facon d’arrondir. Mais nous pou-
vons déja définir un concept important : celui d’epsilon machine. L’epsilon
machine représente la différence entre deux mantisses consécutives. Suppo-
sons, pour simplifier, que nous travaillions en base 10 avec 5 chiffres pour la
mantisse. Supposons que 1’on parte de 1. Quel est le plus petit nombre qui
soit plus grand que 1 et qui soit représentable exactement dans I'ordinateur ?
Il s’agit de 1.0001. Tous les nombres compris entre 1 et 1.0001 ne peuvent étre
représentés exactement et doivent étre arrondis a I'un de ces deux nombres.
La différence 1.0001 — 1 = 0.0001 est appelé ’epsilon machine. On peut
également le voir comme le plus petit nombre € tel que 1 + € # 1 pour la
machine.

De maniere assez courante, on travaille avec des nombres en double précision.
Ceux-ci sont stockés en base 2 avec 52 bits pour la mantisse (plus 1 pour le
signe de la mantisse) et 11 bits pour 1’exposant. Dans ce cas, I’epsilon ma-
chine vaut 27°2 soit environ 2.2 10716, Le nombre le plus élevé est, quant a
lui, approximativement égal & 2'°%* soit environ 1.8 103%8. 11 peut étre utile
de connaitre ces nombres lorsque ’on programme pour prévoir les difficultés
qui peuvent survenir.

Comme nous venons de le dire, un nombre doit, en général, étre arrondi
pour pouvoir prendre place dans les 64 bits qui le représentent (dans le cas
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d’une double précision). Il existe une fagon standard d’arrondir un nombre
qui est décrit par le standard dit IEFE. Comme on peut s’en douter, arrondir
un nombre x consiste a trouver le nombre T qui puisse étre représenté et qui
soit le plus proche possible de x. Considérons le cas d’une représentation en
base 10 de x, et que l'on travaille avec p décimales. La mantisse de I'arrondi
Z aura les mémes p — 1 premiers chiffres que la mantisse de p. Le dernier
chiffre sera, soit le méme, soit une unité plus élevée si le le (p + 1)eme chiffre
est plus grand ou égal a 5.

Exemple 2.2 Supposons que 'on travaille avec trois chiffres décimaux dans
la mantisse. Alors nous avons que

125 est arrondi &  1.25 102
44.34  est arrondi &  4.43 10!
59052 est arrondi & 5.91 10*
0.1455 est arrondi &  1.46 107!

Pour formaliser cet arrondi, nous pouvons supposer que l'arrondi d’un
nombre x a Z consiste a effectuer 'opération £ = fl(x) = (1 + §)z et 0
est borné en valeur absolue par 'epsilon machine. Lorsqu’on effectue une
opération sur deux nombres machines, on peut en général faire I’approxima-
tion que le calcul se fait, dans un premier temps, correctement et qu’ensuite
le résultat est arrondi pour étre stocké dans une variable. On aura donc que,
sur une machine,

fllx £y) = (z £ y)(1+9),
fl(zy) = (xy)(1 +9),

fU( ):§(1+5)-

x
Y
La chose est évidemment différente si les nombres x et y sont eux-mémes déja
des arrondis obtenus par des opérations précédentes. Il faudra alors évaluer,

par exemple, fI(fI(x) + fl(y)).

Exemple 2.3 Dans cet exemple, nous montrons qu’aucune borne ne peut
étre déduite sur lerreur relative faite de la soustraction de deux nombres
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arrondis. Nous calculons en effet z = fI(fl(x) — fl(y)). Nous dénotons par
ey 'epsilon machine. Nous obtenons successivement

z= fl(fl(x) — fl(y))

=(1+853)((1+6)x — (1 +d2)y) pour |d1], [d2], |03] < €enr
=T — Y+ 012 — Oy + 03 — 03y + 01037 — 0203y
~ (r —y)+ x(01 + 03) — y(d2 + d3) puisque d1032 + 01z ~ 1z

et (52(533/ + (52y ~ (52y

Nous sommes a présent en mesure d’évaluer ’erreur relative.

(x—y)— 2| _|2(01 +03) —y(02 + 3)
T —y T —y
_ (x — y)d3 + 261 — ydy
r—=1y
— |5y 4+ Tz ¥ (2.1)
r—=1y

On peut remarquer que cette derniere expression ne peut pas étre bornée a
priori. En effet, en particulier pour des x et y proches, la présence de x — y
au dénominateur peut faire craindre le pire. Mais méme si on fixe v —y =1
par exemple, 'expression peut s’avérer extréemement élevée. Il suffit pour s’en
convaincre de prendre x et y beaucoup plus grands que i Comme |§1| < €y
et [d2| < €pr, on pourrait, par exemple, avoir d; = €37 et do = 0. Dans ce cas,
la valeur de (2.1) est de d3+ z€p,. Comme  n’est pas borné (cas de x > %),
I’expression n’est elle-méme pas bornée. [ ]

Comme le dernier exemple le suggere, la soustraction de deux nombres
proches est une opération extrémement délicate. C’est le sujet principal de
la section suivante.

2.4 Perte de précision

[llustrons tout d’abord la perte de précision qui peut résulter de la sous-
traction de deux nombres proches par un exemple.

Exemple 2.4 Considérons la fonction f(x) = sinx —x a évaluer au voisinage
de 0. Par exemple, évaluons séparément sin x et x pour z = 0.05 avec 8 chiffres
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de précision. Nous avons

= 5.0000000 1072

= 4.9979169 1072
= 0.0020831 102

= 2.0831000 107°.

fl(x

fl(sinx

fl(x) — fl(sinz
JUfU(x) = fl(sinzx)

~— —— ~—

On voit qu’a la derniere étape, pour stocker le résultat final en format stan-
dard de virgule flottante, l'ordinateur doit rajouter trois zéros aux trois
dernieres positions. Ces trois zéros n’ont évidemment aucune précision quel-
conque. En particulier, on peut dire que seuls les cinq premiers chiffres de la
mantisse sont réellement significatifs. ]

Le théoreme suivant quantifie la perte de précision résultant de la sous-
traction de deux nombres proches.

Théoréme 2.2 Soient x > y > 0 deux nombres représentés en format stan-
dard de virgule flottante. Si 1077 < 1 — £ < 1077 pour deuz entiers p et q,
alors il y a au plus p et au moins q décimales significatives qui sont perdues
lors de la soustraction x — y.

Il y a plusieurs fagons de réaliser des soustractions “dangereuses” de maniere
plus stre.

La premiere méthode consiste, pour certaines opérations, a travailler avec
plus de décimales dans la mantisse. Ce n’est malheureusement pas toujours
la panacée. Travailler avec une plus grande précision peut étre extrémement
cotteux en mémoire et en temps de calcul. On peut bien str garder une
plus grande précision pour les calculs que 1'on sait problématiques, mais on
peut ne pas alors avoir a sa disposition les décimales manquantes de nombres
calculés plus tot. Enfin, travailler avec plus de précision ne fait que reporter le
probleme. Pour des nombres proches mais plus grands, des pertes de précision
continueront a se produire.

Une deuxieme méthode consiste a tirer parti, cette fois, des formules
analytiques. Dans certains cas, on peut en effet évaluer certaines fonctions
par des formules équivalentes mais plus stables numériquement. Illustrons
cette méthode par quelques exemples.



18 CHAPITRE 2. REPRESENTATION DES NOMBRES ET ERREURS

(i)

(i)

Soit f(z) = Va2 4+ 1 — 1 a évaluer au voisinage de 0. En réécrivant, on
obtient

Vi2+rl+1) VaZsi+1

Dans la derniere expression, toute soustraction périlleuse a disparu.

o) = ( r2+1_1)<\/x2+1—|—1) x?

Soit g(x) = x—sinx & évaluer au voisinage de 0. En utilisant I’expansion
en série de Taylor de sinz, on peut écrire

g(ZE):J]—(ZE———F—‘—"'):—.——'—F"'. (2.2)

Pour x proche de 0, il peut étre plus stable d’utiliser (2.2) plutot qu’un
calcul direct. Une utilisation intelligente du Théoreme 2.2 permet de
savoir quelles sont les valeurs pour lesquelles il est plus sage d’utiliser
la formule (2.2).

Soit h(z) =Inz — 1 a évaluer au voisinage de e. A nouveau, une mani-
pulation analytique permet d’éviter de devoir effectuer la soustraction
de deux nombres proches. On aura donc

h(q:):lnx—lzlnx—lnezln<£). (2.3)
e

Le Théoreme 2.2 permet de savoir les valeurs de x pour lesquelles utiliser
(2.3) est préférable.



Chapitre 3

Interpolations et Régressions

Dans ce chapitre, nous abordons le probleme de 'approximaion d’une
fonction inconnue mais que 'on connait en nombre fini de points. C’est un
probleme fondamental d’analyse numérique car dans la plupart des méthodes
numériques, on recherche une fonction que 'on n’est capable que d’approxi-
mer en des points discrets. C’est aussi un probleme qui apparait, par exemple,
dans le cas de mesures d’un phénomene physique ou chimique. On ne sera
en général pas capable d’obtenir les mesures en temps continu, mais seule-
ment en un nombre prédéterminé de temps discrets ou l'on aura décidé de
mesurer le phénomene. Ce chapitre est donc intéressant en soi mais consiste
également a créer une base dont on pourra se servir ultérieurement.

Soit une fonction inconnue w(z) mais que l'on connait aux n points
(x1,u(xy)), (2, u(x2)), ..., (zn,u(x,)). Iy a plusieurs techniques qui existent
pour tenter d’approximer u(x). Selon le type d’application nous concernant,
nous chosirons donc une technique différente. Dans ce cours, nous nous
concentrerons uniquement sur deux techniques qui cherchent une approxi-
mation @(z) de u(x) qui satisfasse @(z;) = u(x;) pour tout i =1,...,n.

(i) La premiere approche repose sur le fait que par n points du plan, on
peut faire passer exactement un polynome de degré n — 1. Nous allons
donc élaborer une formule qui établit ce polynome de degré n — 1.
Nous verrons que cette approche, bien que trés importante pour des
petits degrés, a un tres mauvais comportement pour des degrés élevés
et approxime en général tres mal la fonction u(z).

(ii) La deuxiéme approche consiste toujours a approximer u(x) par une
autre fonction 4(x). Pour trouver @(z), nous conserverons néanmoins

19



20 CHAPITRE 3. INTERPOLATIONS ET REGRESSIONS

la contrainte que @(z;) = u(z;) pour tout i. Mais nous rajouterons des
contraintes qui imposeront un certain caractere lisse a la fonction @(z).
C’est ce qu’on appelle I'interpolation par splines.

3.1 Interpolation polynomiale

Soit v : R +— R une fonction inconnue, mais donnée en n points x1, . . ., x,.
On recherche un polynome de degré n — 1,

n—1
P(z) = Zaixi (3.1)
=0
qui satisfait P(z;) = wu(z;) pour tout ¢ = 1,...,n. Premierement, il est

utile de remarquer que ce probleme a une solution unique si tous les x; sont
différents.

Théoréme 3.1 Soit un ensemble de n paires (x;,u(z;)). Si x; # x; pour
tout i # j, alors il existe un et un seul polynome P(x) de degré au plus n — 1
qui satisfait P(x;) = u(z;) pouri=1,...,n.

Démonstration: Pour le moment, nous ne prouvons que 'unicité de la solu-
tion. L’existence sera implicitement prouvée par la forme de Lagrange que
nous verrons dans la Section 3.1.2. Supposons des lors qu’il existe deux po-
lynomes de degré au plus n — 1 P(x) et Q(x) différents qui interpolent les
mémes n points. Nous pouvons alors définir le polynome R(z) = P(z)—Q(x)
qui est donc, également, de degré au plus n — 1. Par ailleurs, nous avons que

R(z;) = 0 pour i = 1,...,n. Cela signifie en particulier que R a n racines.
Or, le seul polynome de degré au plus n — 1 ayant n racines est R(z) = 0, ce
qui prouve 'unicité de la solution. [ ]

3.1.1 Matrice de Vandermonde

La facon la plus naturelle pour trouver les coefficients a; de (3.1) est
d’écrire le systeme d’équations que l'on obtient en écrivant ce qui se passe
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aux points x;. On doit donc résoudre

1 ap - at! ag u(zy)
1 zy - 27t a u(x

? ? I S 2) (3.2)
1z, -+ ! Gy u(xy,)

Le membre de gauche de (3.2), que nous dénotons par V" (z) est également
appelée matrice de Vandermonde. On peut montrer que pour des x; différents,
cette matrice n'est jamais singuliere (voila une autre fagon de prouver le
Théoreme 3.1). En effet, on peut prouver que

det(V*(z)) = [ (zi—)

1<i<j<n

Le syteme est en réalité tres instable numériquement et il n’est pas recom-
mandé de le résoudre directement. Nous pouvons analyser det(V"™(z)) en
supposant que nous cherchons a approximer une fonction u(x) sur 'intervalle
[0, 1]. Nous supposons également que nous interpolons u(x) sur les abscisses
% pour k =1,...,n. Nous avons donc

J—1
et (V" ()| = .
1<i<j<n
(n—1)(n—2)*n—23)3...22
= n(n—1)
n- 2
nn2n3 . nn—?
S n(n—1)
n- 2
(n=2)(n—1)
2
= n(n—1)
n- 2
1
- nn—1"

La derniere expression montre que le déterminant de la matrice de Van-
dermonde, dans le cas considéré, tend rapidement vers 0. Il s’ensuit que le
systeme sera tres proche d’étre singulier et par conséquent sujet a de nom-
breuses erreurs numériques. On préferera donc, en général, utiliser des for-
mules directes pour calculer le polynome d’interpolation. Nous en dérivons
deux exemples dans les deux sections suivantes.
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3.1.2 Formule de Lagrange

La formule de Lagrange permet de calculer directement le polynome d’in-
terpolation. Pour la dériver, définissons d’abord la fonction
(z —@1)(@ — @) - (& = 2i1) (@ — @iga) -+~ (T — )
li(z) =
(zi — 1) (T — @2) -+ (15 — i1 ) (%5 — Tiga) -+ (25 — )
- [Lisi(z — 1)
[Tpsi (i — 1)
Premierement remarquons que /;(x) est un polynéme de degré n — 1. 11 suffit
de remarquer que le dénominateur n’est, en fait, rien d’autre qu’un nombre
réel non nul. Ensuite, nous voyons que [; satisfait
li(zx) =0 pour tout k # i.

Il s’ensuit que le polynome

n

P(z) =Y u(z)li(x)

i=1
est la solution unique de notre probleme. C’est ce qu’on appelle le polynome
d’interpolation de Lagrange. La formule est aisée a dériver mais requiert
néanmoins pas mal de calculs. Nous présentons dans la section suivante une
autre formule pour trouver le polynome d’interpolation qui est un peu plus
économique en temps de calcul.

3.1.3 Formule de Newton

Pour établir le polynome d’interpolation, la formule de Newton procede
en quelque sorte par induction. On va créer n polynomes pg, p1, ..., pn_1 de
degrés respectifs 0, 1,...,n— 1. L’idée est que le polynome p;, doit interpoler
les k + 1 premiers points.

On a naturellement po(z) = u(zy).
Ensuite, on construit p;(x) = po(z) + c1(x — x1). On a clairement p;(z1) =
u(z1). Afin d’obtenir le deuxieme point d’interpolation, on calcule pg(z2) +
c1(xg — 1) = u(zz). En d’autres termes, on obtient
u(zz) — u(z)

0 =—"—" (3.3)

To — X1
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Si on continue de la sorte, on construira en général
pz($) = pz‘—1(x) + ci(x - xl)(x — Ig) ... (ac _ %)

A nouveau, p;(x) satisfait, par construction, I'ordonnée aux i premieres abs-
cisses d’interpolation. Pour obtenir le coefficient ¢;, on calculera p;(x;1),
c’est-a~dire

U($7;+1) - pi—1($i+1)
(Tig1 — o1) - (Tigr — 24)
La méthode décrite précédemment permet de dériver assez rapidement le
polynome d’interpolation. Il est encore possible de simplifier le calcul en
utilisant une jolie propriété des coefficients.

C;, =

Théoreme 3.2 Le polynome d’interpolation est donné par

n

P(x) = Zu[ml, oozl —xy) - (= wimy),

i=1
ot on définit

U[x@', e ’xj] = u[xi“’l’ o 7*2];] : Z[l‘l, e ,xj_l].
J 7

On voit que le théoreme donne une valeur du coefficient en accord avec ce que
donne (3.3). Les coefficients u[z;, ..., z;] sont également appelés différences
divisées. 1ls sont tres aisément obtenus en remplissant un tableau commengant
par les u[x;] et en procédant ensuite par induction.

3.1.4 Erreur d’interpolation

Supposons que I'on interpole des données (x1, u(xy)),. .., (x,, u(x,)) par
un polynéme P(z) de degré n— 1. Il est important de savoir quelle est 'erreur
que l'on fait sur la fonction u(z) lorsque l'on utilise P(z) a sa place. En
d’autres termes, on s’intéresse a la fonction e(x) = u(xz) — P(x). Le théoreme
suivant indique 'erreur réalisée.

Théoréme 3.3 Soit u : R — R et P(x) un polynéme interpolant les points
(x1,u(xy)), ..., (Tn, u(xy,)). Si on suppose que x; € [a,b] pour tout i, et que
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u(z) est n fois continiment dérivable sur [a,b], alors pour tout x € |a,b], il
existe £ € [a,b] tel que

e(r) =u(x) — P(x) = (x —x1) - (z — ). (3.4)

Démonstration: 11 est évident que l'erreur d’interpolation sera nulle, par
définition, aux points z;. C’est bien le cas dans (3.4). Considérons main-
tenant x € [a, b] fixé avec x # x;. Définissons

w(t) = (t—z1)---(t —2n) = H(t—xi),
u(z) = P(z) _ el(x)

‘= w(x) ~ w(z)’

é(t) = u(t) — P(t) — cw(t).

Observons que w définit un polynome de degré n, que ¢ est une constante
car nous avons fixé xr et que le dénominateur de ¢ ne s’annule pas lorsque
x # x; pour tout i. Occupons-nous & présent de la fonction ¢(¢) définie sur
I'intervalle [a,b]. Remarquons tout d’abord que ¢(x;) = 0 pour tout i. En
effet, u(z;) = P(x;) et clairement w(z;) = 0. De plus, on a ¢(z) = 0 pour le
x que nous avons fixé. Le Théoreme de Rolle affirme que pour toute fonction
f continue sur [y, yo] telle que f(y1) = f(yz2), il existe y3 € [y1,y2] tel que
f'(y3) = 0. Nous pouvons des lors appliquer le Théoreme de Rolle sur les
intervalles entre les n + 1 racines de ¢ (21,2, ..., %, et z) et nous trouvons
des lors n racines de ¢'(t). Par une nouvelle application du Théoréme de
Rolle, on trouve que ¢ (t) a n — 1 racines et ainsi de suite. Finalement, on
en conclut que ¢™(¢) a une racine sur l'intervalle [a,b]. Soit ¢ € [a, b] une
racine de ¢ (t). Nous avons donc

0=0"(€) = u(g) = P(&) = ew™(9). (3:5)

Dans (3.5), P™ = 0 car P est un polynoéme de degré au plus n — 1. De plus,
comme w(t) est un polynoéme de degré n dont le coefficient de " est 1, on en
déduit que w™(¢) = n!. On peut des lors réécrire (3.5) comme

n! e(z)

(x —x) - (x—x)’

0=u" (&) —cn! = u™(€) -

ce qui est exactement I'expression désirée en (3.4). n
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La question est de savoir comment interpréter un tel théoreme. Premiere-
ment, il est aisé de voir que la borne de I'erreur aux points d’interpolation est
nulle. C’est déja rassurant ! Ensuite, on voit que pour calculer une borne sur
I’erreur, il faudra connaitre une borne sur la n® dérivée de u. Enfin, le facteur
(x—x1) - (x—x,) fait fortement osciller la borne de I'erreur lorsque x varie
sur 'intervalle. C’est une des raisons majeures pour laquelle une interpola-
tion polynomiale de haut degré est rarement une bonne approximation d’une
fonction. Mais nous analysons cela plus en détails dans les sections suivantes.

3.1.5 Choix des abscisses d’interpolation

Il n’est pas évident a priori que le choix des abscisses d’interpolation
joue un role crucial dans la qualité de I'approximation d’une fonction par
son interpolation. On peut pourtant voir dans l’expression (3.4), que lerreur
dépend du choix des abscisses par 'intermédiaire du facteur (v —zy) -+ - (v —
x,). Cette dépendance peut méme étre tres forte comme nous allons le voir
maintenant. L’exemple suivant est classique en analyse numérique.

Exemple 3.1 (Phénomene de Runge) Considérons la fonction u(z) = 1=

sur U'intervalle [—5,5]. Dans un premier temps, nous prenons l'option assez
naturelle de I'interpoler sur des abscisses équidistantes. Afin de comparer le
choix entre peu et beaucoup de points d’interpolation, nous interpolons la
fonction pour 3, 6, 11 et 21 points équidistants respectivement. Le résultat
de l'interpolation de Lagrange est reporté sur la Figure 3.1. Sur la figure, la
fonction u(z) est représentée en trait pointillé tandis que I'interpolation est
reportée en trait plein. La premiere importante constatation est que I'interpo-
lation ne converge pas vers la fonction lorsque le nombre de points augmente.
Nous avons en effet

lim max |P,(x) — u(z)| = oo,

n—oo g€[—5,5]
ou P,(z) est le polynome de degré n — 1 obtenu a partir de l'interpola-
tion de n points équidistants. Par ailleurs, on voit que l'interpolation est
particulierement mauvaise aux extrémités de 'intervalle. Si on s’éloigne de
I'intervalle, ’approximation serait évidemment encore plus mauvaise. Il est
a noter que ce phénomene n’est pas seulement di au cas pathologique de la
fonction étudiée ici. Des oscillations de plus en plus éloignées de la fonction
se produisent en général lorsque 'on interpole une fonction par un polynome
de degré tres haut.
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-5 0 5 -5 0 5

FiGURE 3.1 — Interpolation de la fonction de Runge avec des abscisses
équidistantes

Nous allons étudier dans cette section l'interpolation aux abscisses de
Chebyshev. Pour motiver cette étude, voyons ce que cela donne dans le cas
de la fonction étudiée ici. L’idée de cette interpolation est de choisir les abs-
cisses de maniere a optimiser l'erreur, en particulier I’erreur induite par le
facteur (z — x1) -+ (x — z,,). Pour ce faire, on doit choisir plus d’abscisses
aux extrémités de l'intervalle. Nous avons, a nouveau, interpolé la fonction a
partir de 3, 6, 11 et 21 points. Le résultat de I'interpolation est renseigné a la
Figure 3.2. A nouveau, la fonction est représentée en pointillé tandis que les
interpolations sont reportées en trait plein. On voit que dans ce cas-ci, 'in-
terpolation est bien meilleure sur 'intervalle considéré. Elle converge méme
lorsque n tend vers 'infini. Il est bien entendu qu’en dehors de I'intervalle,
I’approximation peut devenir tres mauvaise. Voyez a ce sujet la Figure 3.3
qui reporte les valeurs sur I'intervalle [—10, 10]. n

Comme nous 'avons suggéré dans ’Exemple 3.1, il est intéressant d’ana-
lyser une fois encore l'expression (3.4) afin de déterminer les abscisses d’in-
terpolation qui donneront lieu a ’erreur minimale. On voit que, pour n et u
fixés, la borne de l'erreur ne varie qu’en fonction de (z—x1) -+ - (x —x,,). Il est
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F1GURE 3.2 — Interpolation de la fonction de Runge avec les abscisses de

Chebyshev
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FIGURE 3.3 — Fonction de Runge et ses interpolations sur 'intervalle [—10, 10]
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FIGURE 3.4 — Polynome (z — ;) - - - (x — x,,) pour des abscisses équidistantes

aussi important de noter que cette valeur change lorsque I’on change le choix
des n abscisses. Pour le choix d’abscisses équidistantes, on peut se deman-
der pourquoi l'erreur est élevée aux bords de I'intervalle. Pour ce faire, nous
allons représenter le produit (x — x;)--- (x — x,). La Figure 3.4 représente
la valeur du produit (z — 1) --- (¢ — z,,) pour les 4 choix de n opérés dans
I’exemple. On voit que proportionnellement, I'erreur est plus élevée sur les
bords de 'intervalle qu’au centre. Ceci est en particulier vrai lorsque n aug-
mente. Les polynomes de Chebyshev sont des polynomes qui minimisent leur
valeur maximale atteinte sur I'intervalle. En particulier, le polynome de Che-
byshev de degré n a n racines sur l'intervalle [—1,1] et n — 1 minima et
maxima. Une propriété importante est que tous ces minima et maxima at-
teignent exactement la méme valeur (en valeur absolue). De cette fagon, il n’y
a aucune partie de 'intervalle ou l'interpolation est extrémement mauvaise
comparée au reste de 'intervalle. Nous introduisons a présent les polynomes

de Chebyshev.

Définition 3.1 Le polyome de Chebyshev de degré n, T, : [—1,1] — R est
défini comme
T, (z) = cos(n arccos(z)). (3.6)

Au vu de la définition, il n’est pas évident que 7),(x) est un polynéme. En
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effet, T,,(z) ne peut étre défini qu’a partir de 'intervalle [—1, 1]. Néanmoins,
les propriétés suivantes vont montrer que 7;, se ramene a un polynoéme sur
I'intervalle [—1,1].
Proposition 3.1 Sur lintervalle [—1,1], nous avons

Toi1(z) = 22T, (x) — Thoi(2), (3.7)
pour tout n = 1,2,... De plus, To(x) =1 et T1(z) = x.

Démonstration: Clairement, on a To(x) = cos(0) = 1 et T (x) = cos(arccos(z)) =
x pour x € [—1,1]. Pour prouver (3.7), nous utilisons une formule d’addition
de la trigonométrie, a savoir,

cos(a + ) = cos(a) cos(B) — sin(«) sin(3).
On obtient alors respectivement

et
8)

T +1(x) = cos(arccos(x)) cos(n arccos(z)) — sin(arccos(x)) sin(n arccos(z

)
(3.
T,—1(x) = cos(arccos(x)) cos(n arccos(zx)) + sin(arccos(x)) sin(n arccos(xgz))).

9)
En additionnant (3.8) et (3.9), on obtient
Toi1(x) + T—1(x) = 2 cos(arccos(x)) cos(n arccos(z)).

Puisque cos(arccos(z)) = z sur Uintervalle [—1, 1] et que cos(n arccos(x)) =
T, (x), on obtient (3.7). [

Proposition 3.2 Sur lintervallle [—1,1], T,,(x) est un polynome de degré
n.

Démonstration: Procédons par induction sur n.

On a clairement que Ty(z) = 1 et T1(x) = x sont des polynémes. De plus, si
T,—1(x) et T,(z) sont des polynomes, par la formule de récurrence (3.7), il
s’en suit que T),11(z) est également un polynome. [
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Nous avons déclaré plus haut qu’il existe une propriété importante des ex-
trema des polynomes de Chebyshev. Nous la précisons dans la Proposition
suivante.

Proposition 3.3 Pour n impair, T,,(x) a, sur Uintervalle [-1,1], (n+1)/2
mazima ot T,,(x) vaut 1 et (n+1)/2 minima ot la fonction vaut —1.
Pourn pair, T,(x) a, sur lintervalle [—1,1], (n+2)/2 mazima et n/2 minima
ot la valeur absolue de T, (x) vaut 1.

Démonstration: Supposons n impair. Comme 7T, (z) est de degré n, nous
savons que 77 (x) est de degré n — 1 et a, deés lors, au plus n — 1 racines. Par
conséquent, si on compte les n—1 points ou la dérivée de T),(x) s’annule et les
deux extrémités de I'intervalle, on en déduit que T,,(z) a au plus n+1 extrema.
De plus, au vu de (3.6), nous avons —1 < T,,(xz) < 1. Nous allons montrer
qu’il existe (n + 1)/2 points pour lesquels T),(x) vaut 1 et (n + 1)/2 points
pour lesquels 7, (z) vaut -1. Ces points seront par conséquent les uniques
extrema de 7T),(x). Cherchons d’abord les maxima. On recherche = € [—1, 1]
tel que
cos(n arccos(x)) = 1.

On a donc
narccos(z) = 2km, avec k =0,1,...

Des lors, les (n + 1)/2 maxima sont donnés par

2k -1
x:cos<—7r), aveck:O,...,n :
n 2

Similairement, on a que les (n + 1)/2 minima sont donnés par

2 1 -1
xzcos(M), aveck;:O,...,n :
n 2

Le cas ou n est pair est similaire. [

La Figure 3.5 représente le polynome de Chebyshev pour quatre valeurs de
n. On voit que, comparé a la Figure 3.4, 'erreur dans le cas de 'utilisation
des abscisses de Chebyshev, est répartie équitablement sur tout 'intervalle.
On peut prouver que, de cette facon, ’erreur que l'on fait est minimale. Il
est maintenant temps de déterminer quelles sont les abscisses des racines des
polynomes de Chebyshev.
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FIGURE 3.5 — Polynome de Chebyshev pour quatre valeurs de n

Proposition 3.4 Les n racines de T, (x), sur l'intervalle [—1,1] sont

2k +1
Tp = COS <(2ﬂ> k=0,...,n—1. (3.10)
n

Démonstration: Nous cherchons x € [—1, 1], tel que

narccos(x):g—i-lmr k=0,1,...

Par conséquent, on a que

2n n

k
xk:cos<l+—7r) k=0,....,n—1,

ce qui peut se réécrire comme (3.10). [

L’interpolation aux abscisses de Chebyshev consiste a utiliser les valeurs
données par (3.10) pour interpoler. Nous avons vu sur 'Exemple 3.1 que
cette maniere de faire est plus stable. Lorsque l'intervalle d’interpolation
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n’est pas [—1,1], on peut, par un simple changement de variables, se rame-
ner au cas standard. Ainsi si 'on travaille sur 'intervalle [a, b], les abscisses
de Chebyshev sont données par

b b— 2k +1
xk:a;— + Qacos<( ;)W) k=0,...,n—1.

3.2 Interpolation par splines

Le message principal a retenir de la section précédente est que 'interpola-
tion de nombreux points par un polynome de tres haut degré donne souvent
des résultats décevants. On peut néanmoins vouloir faire passer une courbe
par un certain nombre de points tout en demandant que la courbe soit suf-
fisamment lisse et ne contienne pas d’oscillations non souhaitées. C’est le
theme de cette section. Ces courbes sont appelées splines. Elles peuvent étre
utiles, par exemple, dans le design. Le designer fixe quelques points et de-
mande a 'ordinateur de déterminer une courbe “jolie” a l'oeil qui passe par
tous ces points.

3.2.1 Interpolation par splines cubiques

Dans la section précédente, nous avons cherché un unique polynome qui
passe par tous les points. Dans cette section, nous allons réaliser I'interpo-
lation par morceaux. En d’autres termes, entre chaque paire de points, nous
aurons un polynome différent. La premiere facon naturelle de faire passer
une courbe par un certain nombre de points et de considérer des fonctions
linéaires entre chaque paire de points consécutifs. Si on a initialement n
points, la fonction sera alors décrite par n — 1 fonctions linéaires différentes.
La Figure 3.6 montre 'exemple d'une interpolation linéaire par morceaux.
Ce genre d’interpolation peut étre tres pratique lorsqu’il s’agit d’approximer
la valeur d'une fonction qui est connue expérimentalement pour de nombreux
points. En effet, on peut montrer a I'aide de la formule d’erreur (3.4) de la
section précédente appliquée a des polynomes de degré 1 que si on augmente
le nombre de points, 'erreur commise va tendre vers 0. Néanmoins, la fonc-
tion est tres rudimentaire et n’est certainement pas “jolie” (bien que cela
soit 1a un critere particulierement subjectif). Une fagon simple de généraliser
la simple interpolation linéaire par morceaux est toujours de considérer un
polynome différent pour chaque intervalle de points consécutifs. Mais au lieu



3.2. INTERPOLATION PAR SPLINES 33
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FI1GURE 3.6 — Exemple d’interpolation linéaire par morceaux

de calculer un polynome de degré 1 a chaque intervalle, on peut augmen-
ter le degré du polynome et imposer des conditions de continuité sur les
dérivées successives. Le cas le plus courant en pratique est de considérer des
polynomes de degré 3 a chaque intervalle. Dénotons par p;(z) le polynéme de
degré 3 passant par les points (x;, u(x;)) et (2,41, u(x;,1)). Nous imposerons
des lors les conditions successives

pi(x;) = u(x;) pouri=1,...,n—1 (3.11)
pi(Tiy1) = u(wiy1) pouri=1,...,n—1 (3.12)
pi_q(x;) = pi(x;) pouri=2,...,n—1 (3.13)
Pl () = pl(x3) pouri=2...,n— 1. (3.14)

Les 2n — 2 conditions (3.11)-(3.12) assurent la continuité de la fonction. Les
n—2 conditions (3.13) et les n—2 conditions (3.14) assurent le caractere lisse
de la courbe en jouant sur la continuité de la dérivée et de la dérivée seconde
respectivement. On voit donc que 1'on dispose de 4n — 6 conditions. Or on
doit calculer n — 1 polynémes de degré 3 p;(x) = a,;7391:3 + ai,2x2 +a; 17+ a;p,
c’est-a-dire que 'on a 4 coefficients a calculer pour chaque polynome. Au
total, cela fait donc 4n — 4 coefficients. Il nous manque donc deux conditions
pour pouvoir déterminer une solution unique au probleme. Plusieurs choix
peuvent étre faits :
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(i) Le choix le plus typique consiste & imposer une courbure nulle au début
et a la fin de l'intervalle, a savoir

pi(z) =0,  ph_4(2z,) =0.

On appelle une spline naturelle la courbe ainsi calculée.

(ii) Un autre choix possible est d’imposer la méme courbure au début et a
la fin des premier et dernier intervalles, a savoir

pi(r) =pi(z2),  Pha(@n1) = Py ().

(iii) Dans certains cas, la pente est connue au début et a la fin de 'intervalle.
On aura alors p(z1) = u'(x1) et p,_1(x,) = v/ (xy,).

(iv) Finalement la solution choisie par matlab est d’imposer une dérivée
troisieme constante sur les deux premiers et les deux derniers intervalles
respectivement. De maniere équivalente, ceci revient a imposer le méme
coefficient de 3 sur les deux premiers et les deux derniers intervalles.

La Figure 3.7 représente la juxtaposition de I'interpolation linéaire par mor-
ceaux (en pointillés) avec une spline cubique calculée pour les mémes points
d’interpolation (en trait plein).

3.2.2 Qualité de l’interpolation par spline cubique

Dans un certain sens, on peut dire que 'interpolation par spline cubique
est l'interpolation la plus lisse que 1'on puisse trouver. Dans cette section,
nous prouvons que c’est en particulier 'inteprolation qui minimise les os-
cillations. Dans le cas de l'interpolation polynomiale, nous avons vu qu’un
grand nombre d’oscillations non désirées apparaissaient. Cela induit en par-
ticulier une valeur élevée de la dérivée seconde du polynome. La proposition
suivante quantifie la qualité de I'interpolation par spline cubique.

Proposition 3.5 Soit S la spline cubique naturelle interpolant aux points
(x1,u(x)), ..., (Tn, u(x,)) une fonction u(z) deux fois continiment dérivable.

On a
/ (8" (2))2dx < / " (2))2dz. (3.15)

1 x1
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F1GURE 3.7 — Une spline cubique

Démonstration: Nous définissons I'erreur d’interpolation comme

Comme u et S sont deux fois dérivables, nous avons u”(z) = S”"(x) + €"(x).
Des lors,

/wn (u"(2))*dx = /wn(S”(x)fd:v + /:Cn(e"(x))zdx +2 /M §"(x)e"(x)dz.

x1 x1 X X
(3.16)
Nous allons prouver que le dernier terme de cette expression est nul. En
intégrant par parties, on obtient

/%nS%xkﬂ@ﬁ¢U:[S%xk%xﬂﬁ——/mnSm@ﬁdﬁwdm

1 1

:—/%ywwww

1

puisque, pour une spline cubique naturelle, on a que la dérivée seconde s’an-
nule aux deux extrémités de l'intervalle. Si on continue de développer, on
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obtient

Tn n—1 Tit1
/ S"(x)e (x)dx = Z/ S"(x)e (x)dz.
1 i—1 YT

Remarquons que, comme S est un polynome de degré 3 sur chaque intervalle,
sa dérivée troisieme est une constante ¢; sur chaque intervalle [x;, x;41]. Nous
en déduisons finalement que

Tn LTi41
/ S"(x)e (z) = ci/ e'(z)dx
1 i—1 T;
n—1
=) cile(win) —e(xi))
=1
=0

puisque l'erreur e s’annule pour tous les points x;. Si on insere ce dernier
résultat dans (3.16), on obtient maintenant

/m”(U"(x))zdx:/”””(S/,(x))2dx+/wn(eu(x)ydx

1 T 1

> / " (5"(2)) 2

xr1

puisque l'intégrale définie du carré d’une fonction est positive. [ ]

Par conséquent, si on considere comme critere, de minimiser 'intégrale du
carré de la dérivée seconde, tout en conservant des fonctions deux fois dérivables,
la spline cubique naturelle est la meilleure interpolation possible.



Chapitre 4

Résolution d’équations non
linéaires

Dans ce chapitre, nous passons en revue les principales méthodes numé-
riques qui existent pour trouver une racine d’une équation ou d’un systeme
non linéaire. Au dela des méthodes elles-mémes, nous insisterons sur 1’étude
de leur comportement. En particulier, une question importante qui sera
abordée est la notion de convergence des méthodes. C’est cette question
cruciale qui peut étre déterminante dans le choix d’'une méthode par rapport
a une autre.

Pour mettre les idées en place, et pour commencer, nous recherchons une
racine de I'équation
f(z)=0. (4.1)
A Texception de la recherche des racines d'un polynome, il n’existe pas
de méthode capable de rechercher toutes les racines de (4.1). Toutes les
méthodes que nous développons ici sont itératives, c’est-a-dire qu’elles cons-
truisent une suite (z,,) avec la propriété que
lim z, = 7,
n—oo
ou f(z) = 0. En regle générale, il est tres difficile de prévoir vers quelle
racine x une méthode converge. Si la racine trouvée n’est pas celle souhaitée,
il faudra recommencer 'algorithme avec un autre point de départ.

Nous commengons ce chapitre par la méthode la plus simple et que
nous avons également présentée brievement dans l'introduction, a savoir la
méthode de la dichotomie ou bisection.

37
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4.1 Méthode de la bisection

Supposons que 1’on cherche a localiser une racine d’une fonction continue
f(x). Si de plus, on connait deux points ag et by tels que f(ag) < 0 et
f(bg) > 0. On suppose sans perte de généralité que ay < by. Des lors, le
théoreme des valeurs intermédiaires nous garantit qu'une racine x de f existe
sur lintervalle [ag, by]. L’algorithme de la bisection consiste a définir z; :=
a*lTer*l Si f(x;) <0, alors a; := x; et b; := b;_1. Si, en revanche, f(x;) > 0,
alors a; := a;_1 et b; := x;. Il n’est pas difficile de prouver que la méthode de
la bisection converge vers une racine x avec un taux de convergence linéaire.

Proposition 4.1 Soit & une racine (supposée unique) de f sur lintervalle
[ag, bo). Alors on a

_ (bo — ao)

|z —x,| < o
Démonstration: La taille de U'intervalle [a;, b;] est exactement divisée par 2 a
chaque itération. De plus, comme la racine z se trouve soit dans la premiere,
soit dans la deuxieme partie de l'intervalle, on en déduit que la distance entre
T et x, est inférieure ou égale a la moitié de la taille de I'intervalle a I'itération
n. Le résultat découle ensuite du fait que la taille de I'intervalle a I'itération
n est égal a bQO,f—,“lo [
La méthode de la bisection admet donc un taux de convergence linéaire. Par
souci de précision, nous rappelons ici la définition du taux de convergence

qui avait été abordé dans I'introduction.

Définition 4.1 Lorsque y, — y avec |y, — y| < coc™, pour co,p > 0 et
0 <c<1, on dit que la suite (y,) a un taur de convergence d’ordre p.

Lorsque p = 1 comme dans le cas de la méthode de la bisection, on parle
de convergence linéaire. Pour p > 1 en général, on parle de convergence
superlinéaire et pour p = 2, de convergence quadratique.

Comme dit précédemment, la méthode de la bisection est tres facile a
mettre en oeuvre et admet une bonne stabilité. Le seul point négatif est
qu’elle nécessite deux points de départ ag et by qui peuvent étre difficiles a
trouver. Dans certains cas, de tels points n’existent méme pas. Par exemple,
pour une fonction qui admet une racine double, il est impossible de mettre
la méthode de la bisection en oeuvre au voisinage de la racine. De plus, la
méthode nécessite la continuité de la fonction. Des résultats erronés peuvent
apparaitre si on néglige ce point.
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4.2 Meéthode du point fixe

La force de la méthode de la bisection est sa robustesse. Sa faiblesse est
le relatif mauvais ordre de convergence. La méthode du point fixe ne corrige
pas cette faiblesse. Il est néanmoins intéressant de ’étudier car il s’agit d'une
méthode générique. Nous verrons plus tard la méthode de Newton-Raphson
qui en est une généralisation. On peut également utiliser une généralisation
de la méthode de point fixe dans le cas de la résolution de systemes linéaires.
Supposons a nouveau que nous cherchions une solution a f(x) = 0. Par
ailleurs, imaginons que nous arrivions a réécrire 1’équation sous la forme
x = g(z). Arrétons nous quelques instants sur cette réécriture. Il s’agit en
réalité d’une opération plus simple qu’il n’y parait sauf si nous ne disposons
pas de la forme analytique de f. C’est ce que I'exemple suivant tente de
montrer.

Exemple 4.1 Supposons que nous cherchions la racine de ’équation donnée
dans le chapitre 1
P rz-1=0.
Il existe plusieurs fagons de réécrire ’équation sous la forme z = g(z). On
écrira, par exemple,
r=—2+1
r=v-z+1
r=a"+22 -1
1
2+ 1

Nous comparerons plus tard D'efficacité de ces différentes réécritures et nous
verrons qu’elles sont loin d’étre équivalentes pour les performances de la
méthode du point fixe. Le but de cet exemple est surtout de montrer qu’il
existe souvent un grand nombre de fagons d’obtenir la forme z = g(z). [ |

La méthode du point fixe est encore plus simple a mettre en oeuvre que
la méthode de la bisection. L’algorithme s’écrit en effet en une ligne

Trr1 = 9(%)

Il faut bien entendu choisir un point de départ x,. Graphiquement, on part
d’un point z;, on calcule la valeur g(z;) (trait vertical), on reporte cette
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FIGURE 4.1 — 4 itérations de la méthode du point fixe pour z = cosx

valeur sur Iabscisse (trait horizontal) et on itere. La Figure 4.1 représente
quelques itérations de la méthode du point fixe dans le cas de I’équation
x = cosx. Le tableau 4.1 indique les 8 premieres itérations. Sur la Figure et
en faisant quelques itérations, on remarque que la méthode converge vers une
solution de I’équation. Il n’en est pourtant pas toujours ainsi. Considérons a
présent la troisieme version que nous avons écrite dans I’Exemple 4.1 pour
résoudre 22 + x — 1 = 0. On va calculer des valeurs successives zj.; =
xz—l—Zxk — 1. Si on part de 1 = 1 ou de 1 = 0, on obtient le tableau 4.2 avec
les deux suites. Dans les deux cas, la méthode diverge assez rapidement. Ce
sera d’ailleurs le cas pour tout point x; choisi (sauf la racine évidemment). Ce
que 'on peut remarquer, c’est que c’est |¢’(x)| qui détermine si la méthode
converge ou pas. Pour une valeur absolue inférieure a 1 au voisinage de la
racine, la méthode peut étre convergente. Dans le cas d’une valeur abso-
lue supérieure a 1, la méthode diverge. C’est ce qu’indique intuitivement la
Figure 4.2. Le théoreme suivant formalise une condition suffisante de conver-
gence relativement générale. Nous verrons par la suite que la condition intui-
tive |¢’'(x)| < 1 en est un cas particulier.

Théoréme 4.1 Soit g(x) une fonction dont T est un point fire g(T) = Z.
Considérons Uintervalle I = {x | |v — z| < r} pour r > 0. Si g satisfait la
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TABLE 4.1 — 8 itérations de la méthode du point fixe pour z = cosz

Itération

Ty

COS T,

1

O O U i Wi

0

1
0.5403
0.8576
0.6543
0.7935
0.7014
0.7640

1
0.5403
0.8576
0.6543
0.7935
0.7014
0.7640
0.7221

Itération x) a3 + 2z — 1 ‘ Itération xp ) + 2xp — 1
1 1 2 1 0 —1
2 2 11 2 -1 —4
3 11 1352 3 —4 —73

TABLE 4.2 — 3 itérations divergentes de la méthode du point fixe

X1

X2

X3

X3

X2

X1

41

FIGURE 4.2 — La méthode converge pour |¢'(x)| < 1 et diverge pour |¢'(x)| >

1
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condition de Lipschitz
l9(x) — g(2)| < L|z — 7| pour tout x € I,

avec 0 < L < 1, alors litération xpy1 = g(xy) converge vers T pour tout
point de départ x1 € 1.
Démonstration: Nous allons prouver que
(1) tous les itérés z,, appartiennent a I,
(#7) dans I'intervalle I, la racine Z est unique,
(1ii) les itérés x,, convergent vers Z.

Nous démontrons le point (i) par récurrence. Par hypothese, 21 appartient
a I. Supposons alors que x,,_; appartient a I, on en déduit

|20 — 2| = | g(xn-1) — 9(7)]
S L’xn—l - -Tl
<,
c’est-a~dire que x,, appartient également a I.

En ce qui concerne 'unicité (point (i7)), remarquons que s'il y avait deux
points fixes T et g, on aurait

7 -yl =19(x) — 9@ < Llz — gy < |z — 7.
Cette contradiction indique que 1’on doit avoir & = 7.

Quant au point (#ii), on obtient successivement :

|2y — 7| < Llan_, — 7| (4.2)

S L2|$n,2 — .f"
S Ln_1|ZL‘1 - Zf'|
d’ou, pour n — o0, x, — I puisque L < 1. ]

Un cas particulier intéressant du Théoreme 4.1 est quand la valeur absolue
de la dérivée est inférieure a 1 sur tout intervalle.
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Proposition 4.2 Soit g une fonction dérivable qui admet un point fixe .
Considérons Uintervalle I = {z | |x — z| < r}. Si pour tout x € I, on a

lg'(x)] < C <1,

alors litération xp1 = g(xx) converge vers T pour tout point de départ x, €

I.

Démonstration: Nous allons montrer que I'hypothese du Théoreme 4.1 est
satisfaite. Nous avons en effet, pour tout x € I,

l9(x) = g(2)| = |g'(§)(z — z)| (4.3)
= 19" (Ollz — z|
S CY|‘r - j|7

ou (4.3) est obtenu en vertu du théoreme des accroissements finis pour un &
entre r et 7. |

11 est intéressant de remarquer que (4.2) implique que l'ordre de conver-
gence de la méthode est linéaire. Il est également important de voir que plus
L est petit, plus la méthode sera rapide. Nous avons également vu que la
preuve de la Proposition 4.2 implique que si |¢'(x)| < C sur l'intervalle, nous
avons C' < L. A nouveau, une borne peu élevée sur la dérivée menera a une
convergence plus rapide.

Exemple 4.2 Si on reprend les expressions trouvées dans I’Exemple 4.1, on
trouve des comportements totalement différents en fonction de g(x). Reportons-
les dans le tableau suivant.

g(x) g (z) Borne de Intervalle de
|’ (x)] sur [0, 1] convergence autour
de = ~ 0.682
—a+1 —3x? 3 0
3/ . o 1 T — 1 % — (L %
~ (0.5565,0.8075)
3420 -1 32242 ) 0
m21+1 ﬁ 1 R
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Remarquons que le Théoreme 4.1 produit une condition suffisante de
convergence. La condition n’est cependant pas toujours nécessaire. Dans
I’Exemple 4.2, on peut prouver, par exemple, que la deuxiéme forme pro-
duit une convergence pour tout point de départ dans (0,1). Il arrive, en
effet, quelquefois que dans le courant de I’agorithme, on retombe presque par
hasard dans une zone ou il y a convergence.

4.3 Meéthode de la sécante

4.3.1 Exposé de la méthode

Jusqu’a présent, toutes les méthodes que nous avons vues jouissent d'une
convergence linéaire, dans le cas ou elles convergent. Nous allons a présent
améliorer la méthode de la bisection et obtenir un processus dont 'ordre de
convergence est superlinéaire. L’idée de la méthode de la sécante est assez
similaire a celle de la bisection. A chaque itération, on conserve les deux
derniers itérés x; ; et x;. Mais cette fois, nous ne nécessitons aucune hy-
pothese sur le signe des deux itérés. A la place, nous allons approximer la
fonction f par la droite qui relie les deux points (x;_1, f(z;-1)) et (x;, f(23))
et rechercher la racine de cette droite. Cette racine sera le nouvel itéré x;;.
Mathématiquement, on calcule I'itéré par la formule

f(l”z)(ffz - %‘—1)
f@i) = fwia)

L’interprétation géométrique est indiquée sur la Figure 4.3. On voit qu’il
s’agit d’une amélioration par rapport a la bisection. En effet, dans certains
cas, la méthode de la bisection trouve par hasard de tres bons itérés. Mais a
cause de son extréme rigidité (I'obligation de toujours diviser 'intervalle par
2), elle doit parfois s’éloigner de ces bonnes approximations de la racine. La
méthode de la sécante, quant a elle, tire parti de la valeur donnée par f(z;)
et non pas uniquement de son signe.

Tit1 = T —

Exemple 4.3 Appliquons la méthode de la sécante pour trouver la racine
réelle de f(x) = 2°+x—1 = 0. Nous partons, comme dans le cas présenté dans
I’Exemple 1.2, des itérés x; = 0 et x5 = 1. Pour une meilleure comparaison
des méthodes, nous reportons les résultats de la sécante et de la bisection en
parallele dans le tableau suivant. Nous reportons 6 chiffres apres la virgule.
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FIGURE 4.3 — Interprétation géométrique de la méthode de la sécante

Itération Sécante Bisection
T f(xi) i S (i)
1 0 -1.000000 | O -1.000000
2 1 1.000000 | 1 1.000000
3 0.500000 -0.375000 | 0.500000 -0.375000
4 0.636364 -0.105935 | 0.750000 0.171875
5 0.690052 0.018636 | 0.625000 -0.130859
6 0.682020 -0.000737 | 0.687500 0.012451
7 0.682326 -0.000005 | 0.656250 -0.061127
8 0.682328 0.000000 | 0.671875 -0.024830
9 0.682328 0.000000 | 0.679688 -0.006314
10 0.682328 0.000000 | 0.683594 0.003037

4.3.2 Convergence de la méthode de la sécante

Il est clair a partir de I’exemple que la méthode converge plus rapidement
vers la racine. Nous allons maintenant analyser cet ordre de convergence.

Théoreme 4.2 La méthode de la sécante jouit d’une convergence d’ordre
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1+2 > x~ 1.618. En d’autres termes, on a

|Tns1 — 7] < Clan — 2[M7F,

pour C' > 0 et ou f(z) = 0.

La preuve de ce théoreme est extréemement technique et dépasse le cadre
de ce cours. On peut néanmoins essayer de comprendre comment un ordre
de convergence aussi bizarre peut apparaitre. L’idée est que 'on peut écrire
I’erreur comme

. 1/ f"(2)
eni1 = (Tpi1 — T) = ) <f’(f)> €nen_1
~ Ke,e,_1. (4.4)
En prenant le logarithme de la derniére expression et en notant z; = log | Ke,],
on peut écrire

Znt+1 = Zp + Zn-1-
Ceci est une relation de récurrence qui ressemble a s’y méprendre a la suite
de Fibonacci. On peut montrer que tout élément de cette récurrence peut
s’écrire comme

z, = Aa" + BA"
ou « et 3 sont les racines de I’équation quadratique provenant de la récurrence
22 =z+1
2 _ 14+v5 _ 1=V
On a par conséquent, a = =5 et § = 5. On aura donc

log|Ken|zA<1+\/g) —|—B(1_\/5>

2 2
%A<1+\/5)

2
puisque dans ce cas-ci, ¢’est le terme puissance de o qui domine. On a donc
finalement
|Ke,| ~ 104"
|Ke,_1| ~ 104"
¢’est-a-dire

el e

|€en—1]* -

Il s’agit bien entendu d’'un essai d’explication et non d’une preuve rigoureuse.
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4.3.3 Méthode de la regula falsi (fausse position)

La méthode de la sécante augmente assez sensiblement la vitesse de
convergence si on la compare a la méthode de la bisection. Cependant, elle ne
conserve pas la robustesse de celle-ci. En particulier, on ne peut rien dire sur
sa convergence globale. On ne peut savoir a priori ni si elle va converger ni
vers quelle racine elle va converger le cas échéant. La méthode présentée dans
cette section tente de réaliser un mariage équilibré entre les deux processus
décrits précédemment.

Le principe de la méthode est le suivant. Comme dans le cas de la bisec-
tion, on part de deux points xg et z1 tels que f(xo)f(x1) < 0. Pour calculer
le point suivant, nous utilisons la méthode de la sécante, nous avons donc

f(x1) (w1 — 20)
f(@1) — flxo)

Mais cette fois, au lieu de remplacer xy par xo et d’itérer, nous préférons
conserver la robustesse de la bisection en choisissant de conserver xy et le
point y € {xo, 21} tel que f(y)f(z2) < 0. Nous continuons ensuite le proces-
sus ol x5 prend le role de xy et y celui de xy. On voit que, si on connait I'exis-
tence de deux points tels que f(zo) f(x1) < 0, on aura la garantie de converger
vers une racine dans l'intervalle considéré, ce qui est une amélioration par
rapport a la méthode de la sécante.

(4.5)

To = T1 —

Lorsque 'on analyse la vitesse de convergence de la méthode de la fausse
position, on remarque malheureusement que celle-ci n’est pas superlinéaire
comme dans le cas de la sécante. Pour le comprendre, il suffit de voir que dans
le cas d’une fonction dont la convexité ne change pas au voisinage de la racine,
l'itéré obtenu par (4.5) a toujours le méme signe. Dés lors, en supposant sans
perte de généralité, que f(x3) a le méme signe que f(x;) dans (4.5), zp ne
sera jamais remplacé dans le courant de I'algorithme. Si on se réfere a (4.4),
on voit que 'erreur suivra, asymptotiquement la formule

|€n+1| ~ K|€n||€n—1|
= Kle,||tn_1 — 7|
= Klen||eol (4.6)

puisque, dans le cas de la regula falsi, comme on l’a dit, le point x,_; ne
change en réalité pas et reste zy durant tout 'algorithme. L’équation (4.6)
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exprime bien la convergence linéaire de la méthode. Pour illustrer le fait que
I'itéré x( est utilisé dans tout I'algorithme comme 1'un des deux points de la
méthode, on peut se référer a la Figure 4.4.

FIGURE 4.4 — Si la convexité est constante au voisinage de la racine, le point
xo reste fixe pendant tout l'algorithme de la regula falsi

4.3.4 Extension de la méthode de la sécante : méthode
de Muller

La méthode de la sécante se base sur I'approximation linéaire de la fonc-
tion a partir des deux itérés précédents. Rien n’empéche d’utiliser plus de
points précédemment calculés et de produire une approximation polynomiale
d’un degré plus élevé. On peut, par exemple, considérer les trois précédents
itérés (z,, f(r,)), (xn_1, f(xn_1)) et (Tp_a, f(x,_2)) pour créer un polyndéme
de degré 2 qui approxime notre fonction f. C’est ce qu’on appelle la méthode
de Miiller. Deux problemes apparaissent. Premierement, ayant un polynome
quadratique, nous aurons le choix entre 2 points (les 2 racines du polynéme)
comme nouvel itéré. Cette question est résolue en général en prenant la racine
la plus proche de z,. Le deuxieme probleme apparait lorsque le polynome
créé n’a que des racines complexes. Il ne sera alors pas possible de continuer
sur la droite réelle. Néanmoins, ce probleme peut également étre un avan-
tage. La méthode de Miiller est en effet la seule méthode qui, partant d'un
point réel, peut converger vers une racine complexe (si une telle racine est
recherchée). A nouveau, l'ordre de convergence est assez technique a analy-
ser. On peut prouver que son ordre de convergence est environ de 1.84, ce
qui améliore la méthode de la sécante, mais pas drastiquement.
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4.4 Meéthode de Newton-Raphson

4.4.1 1Idée de la méthode

Nous allons encore améliorer le taux de convergence en profitant de 'infor-
mation de la dérivée de f si celle-ci est disponible. Le principe de la méthode
est, une fois de plus, d’approximer la fonction f par une droite. Mais au
lieu de considérer la droite reliant (z,, f(z,)) & (xn—1, f(2n-1)), nous allons
considérer I'approximation linéaire donnée en x, par le développement en
série de Taylor tronqué au terme linéaire. Rappelons que nous avons
(x — x,)?

F@) = Fn) + (= w0 f () + 2 ) +

Si nous approximons f uniquement par les deux premiers termes de cette
série, nous obtenons f(z) = f(z,) + (z — x,)f(x,). Une approximation
d’une racine de cette fonction est donc

=z, — f(xn)

f(xn)

L’algorithme de Newton-Raphson consiste a considérer cette approximation
comme itéré suivant. Nous aurons donc

f(@n)

n

L’interprétation géométrique de la méthode est indiquée sur la Figure 4.5. A
partir du point (x,, f(x,)), on trace la tangente a f et recherchons I'inter-
section de cette tangente avec 1'axe des abscisses. Cela donne 'itéré suivant.

4.4.2 Convergence de la méthode de Newton-Raphson

Etudions a présent le taux de convergence de la méthode de Newton-
Raphson. Le théoreme suivant prouve que la méthode jouit d’une convergence
d’ordre quadratique.

Théoréme 4.3 Soit T, une racine de f. Si f'(z) # 0, la méthode de Newton-
Raphson converge quadratiquement vers & dans un voisinage de T, ¢’est-a-dire

|z, — 2| < Clr,—q — :I:|2,

pour C' > 0, n suffisamment grand, et x,, suffisamment proche de T.
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f(x)

Xiv1 X

FIGURE 4.5 — Interprétation géométrique de la méthode de Newton-Raphson

Démonstration: Ecrivons Uerreur réalisée & 'itération n. Nous avons

— f(xn—l)
Ty — T = |[Xpo1 — T — —=|. 4.7
0 = 8] = s — 7 = (4.7
Par le théoreme de Taylor, nous avons
f" (&) 2

0= f(Z) = f(@n1) + f(@n1)(T — 2p1) +

pour &, compris entre T et x,_1. Utilisant 'expression de f(z,_1), on peut
donc rééerire (4.7) comme

| _ f/(£n71> _ f//(gn) = 2
oo =2l =Moo =2 g, Ty ) g,y )
1
:| f,(fn) (i—xn,1)2|
2f"(wn-1)
S C|~rn—1 - j|2
car f'(z) # 0 par hypothese et des lors, on peut prouver que ff(l;:(ffz) est
borné pour &, et x,,_; dans un voisinage de 7. [ ]

Lorsque I’on se trouve proche de la racine, la méthode de Newton-Raphson
converge extréemement vite. Malheureusement, cette convergence n’est pas
globale. Pour certains points de départ, en effet, il peut arriver que la méthode
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f(x) f(x)

FIGURE 4.6 — Deux cas de non-convergence pour la méthode de Newton-
Raphson

diverge ou cycle, elle aussi. Cela peut étre aisément illustré. La Figure 4.6
indique quelques mauvais cas qui peuvent se produire. Dans le cas de plu-
sieurs racines pour f, il n’est, en général, pas évident de savoir a priori quels
points de départ convergeront vers quelles racines. C’est la raison pour la-
quelle la méthode de Newton sera souvent utilisée pour améliorer rapidement
une approximation obtenue par une autre méthode plus robuste (comme par
exemple la bisection). Enfin, il y a un cas particulier important pour lequel
la méthode n’admet pas une convergence quadratique. Nous avons vu, en ef-
fet, que la convergence quadratique n’est obtenue dans le Théoreme 4.3 que
pour f'(z) # 0. Dans le cas d’une racine multiple, et donc avec f'(z) =0, la
méthode converge néanmoins mais seulement linéairement.

Théoréme 4.4 Soit T une racine de f. Si f'(z) = 0, l'itéré de la méthode
de Newton-Raphson converge linéairement vers T dans un voisinage de T.

Démonstration: On a x, = x,_1 — J{c,(é":)). On peut donc écrire 'erreur
_ I Gy
Tp — T = |Tp1 — T — 4.8
o0 = 8] = [y — 7 = (48)

Remarquons que nous ne pouvons plus utiliser le méme développement de
Taylor d’ordre 2 qu’auparavant car cela nécessitait de borner f”/f" au voisi-
nage de z. Nous pouvons cependant utiliser un développement d’ordre 1 et
écrire

0= f(Z) = f(xn-1) + ['(€) (T = na)-
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Nous pouvons maintenant réécrire (4.8) comme

— 7 = |z —F— M T — T
|$n | | n—1 f/<$n_1)( n—1 )|
R () VR
= 10— H ) e = ) (4.9)

Cette fois, nous pouvons borner 'expression | f'(&,)/ f'(x,)| car &, est compris
entre T et ,,. Dans un voisinage de z, on a des lors que |f'(Z)| < [ f'(&)] <
|f'(x,)]. On peut donc déduire de (4.9) que

|z, —z| < Cl,—1 — T,
avec C' > 0. [ |
Si on sait a I'avance que 'on cherche une racine double, il est possible de re-

trouver un ordre quadratique de convergence. Pour une racine de multiplicité
m, les itérations

f(zn)

produisent a nouveau une convergence quadratique.

Tptl = Tp —M

4.4.3 Lien avec d’autres méthodes

La méthode du point fixe Lorsque nous avons étudié les méthodes de
point fixe pour résoudre un probleme f(x) = 0, nous avons dit qu’il existe
une multitude de facons de réécrire ’équation afin de résoudre le probleme
x = g(x). Une maniére simple de faire est de remarquer que 1’on peut toujours
écrire g comme g(x) = = — af(z) ol a est une constante. Il s’agit d’une
expression tres similaire a celle de la méthode de Newton-Raphson. En réalité,
c’est comme si la méthode de Newton-Raphson était une méthode de point
fixe ou 'on a choisi a = m En revanche la méthode de Newton-Raphson
utilise une valeur a différente a chaque itération. Ce détail permet de passer

d’un ordre de convergence linéaire a quadratique.

La méthode de la sécante Que se passe-t-il si nous ne disposons pas
d’une expression analytique de la dérivée de f? Nous ne pourrons alors pas
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utiliser la méthode de Newton-Raphson telle quelle. Nous pouvons cepen-
dant appliquer la définition et considérer f'(z,) ~ W En utilisant
cette approximation numérique de la dérivée, on retombe en réalité sur la
méthode de la sécante. Il est intéressant de remarquer que le fait d’utiliser

cette approximation ramene 1’ordre de convergence de 2 a 1.618.

Optimisation La méthode de Newton-Raphson est souvent utilisée pour
maximiser ou minimiser une fonction f deux fois dérivable. On parle alors de
méthode de Newton. Dans ce cas, on se base sur le fait que ’on recherche un
point Z ou la dérivée f'(z) = 0. Le principe de la méthode est exactement le
méme. On part d’un point x1, et on itéere

f'(zn)

Dans ce cas, il conviendra bien entendu ensuite de vérifier si I’'on obtient un
minimum ou un maximum. Dans le cas d’optimisation de fonctions convexes
ou concaves, la question ne se pose plus puisqu’elles admettent un extre-
mum unique qui est soit un mimumum (cas d’une fonction convexe) soit un
maximum (cas d’une fonction concave).
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Chapitre 5

Résolution numérique
d’équations différentielles
ordinaires

De nombreux problemes réels font intervenir la résolution d’équations
différentielles. 11 est des lors naturel d’étudier la résolution numérique de
celles-ci.

Essayons tout d’abord de comprendre ce qu’est une équation différentielle.
11 s’agit d’un probléme ot 'on doit trouver une fonction x(t) dont on connait
la, dérivée en fonction de ¢ et de z(t) elle-méme

2(t) = fla(t), ). (5.1)

Si la fonction f(z(t),t) ne dépend que de t, on a alors affaire a un probleme
d’intégration. Comme pour un probleme d’intégration, I’ensemble des so-
lutions d’un probleme de type (5.1) est défini & une constante pres. Pour
déterminer une solution unique a (5.1), une condition nécessaire (et pas
nécessairement toujours suffisante) est de fixer la valeur de z(¢) pour un
to donné. Un probleme de ce type est appelé probleme aux valeurs initiales.

Définition 5.1 Un probléme aux valeurs initiales est un probléeme déterminé
par une équation différentielle et une condition initiale

2'(t) = f(x(t), t) (5.2)

x(tg) = wo.

95
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X'(t)=cos(x—0.5*t)

F1GURE 5.1 — La Figure représente le champ de vecteurs correspondant a
I'équation différentielle 2’/(t) = cos(x(t) — t/2) et des solutions pour quatre
conditions initiales différentes

Pour mieux comprendre le principe d'une équation différentielle, et pour
donner une bonne introduction aux techniques de résolution, nous allons
en faire une représentation graphique. Dessinons pour ce faire le champ de
vecteurs (t,z(t), f(x(t),t)), c’est-a-dire, que pour chaque paire (¢, z(t)) choi-
sis sur une grille, on représente f(z(t),t) par une fleche de pente égale a
f(x(t),t). Le probleme de ’équation différentielle consiste alors a trouver
une fonction x(t) qui soit tangente en tous points a ces fleches. Un exemple
est donné a la Figure 5.1 ou l'on résout le probleme aux valeurs initiales

2'(t) = cos(x(t) — %)
.l’(t()) = Xop-

Le probleme est résolu pour quatre conditions initiales différentes et donne
quatre solutions clairement identifiables. Dans la suite, pour comprendre au
mieux les techniques de résolution des problemes aux valeurs initiales, il
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sera assez intuitif de se rapporter a la représentation de la Figure 5.1. Nous
verrons plus tard qu’il y a de multiples facons de résoudre numériquement un
probleme aux valeurs initiales. Mais avant de passer a I’exposé des méthodes,
il est important de s’attarder sur quelques propriétés d’un probleme aux
valeurs initiales.

5.1 Stabilité d’une équation différentielle or-
dinaire

Une question importante lors de la résolution numérique d’une équation
différentielle est la stabilité de 1’équation. La stabilité détermine si une mé-
thode numérique peut étre appliquée, ou le cas échéant, impose une borne
sur la taille du pas afin d’obtenir une solution fiable.

Afin de comprendre ce qu’est la stabilité d’une équation différentielle,

nous allons tout d’abord étudier une équation différentielle instable.

Exemple 5.1 Equation différentielle ordinaire instable
Soit le probleme aux valeurs initiales

i

Le champ de vecteurs et la solution pour C' = 1 sont représentés sur la Figure
5.2. Pour le probleme (5.3), la solution analytique peut étre trouvée. En effet

z(t) = Cé'

est la solution unique a (5.3). Considérons a présent une technique de résolution
numérique de (5.3). Le principe de toutes les méthodes numériques est d’ap-
proximer z(t) pour des temps discrétisés to, to + h, to + 2h,tg + 3h, ... Inévi-
tablement une erreur par rapport a la solution analytique sera introduite a
chaque itération. Pour voir 'effet qu’a une erreur sur la suite du calcul, nous
allons modéliser ’erreur € faite lors du calcul, par une différence € sur la condi-
tion initiale. Si 'on résout donc un probleme perturbé z'(t) = x(t),z(0) =
C — ¢, la solution obtenue est z. = (C' — €)e'. Comparant x(t) & z.(t), on
obtient

e(t) == x(t) — x(t) = ec’. (5.4)
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FIGURE 5.2 — La solution du probleme 2'(¢) = z(t), x(0) = 1.

On voit que l'erreur introduite grandit exponentiellement lorsque ¢ augmente.
En d’autres termes, une erreur introduite au départ du calcul va étre amplifiée
exponentiellement en cours de calcul. Cela explique pourquoi on parle d’une
équation différentielle instable. On comprend des lors, pourquoi il sera plus
difficile de résoudre une telle équation. A titre d’illustration, la Figure 5.3
représente la différence entre la solution pour z(0) = 1 et pour z(0) = 0.9. m

Nous passons tout naturellement a ’exemple d’une équation différentielle
stable.

Exemple 5.2 Similairement a I’exemple précédent, nous considérons a présent
le probleme

(5.5)

dont la solution analytique est x(t) = Ce™*. Une petite perturbation dans
la condition initiale z(0) = C' — € nous donne cette fois comme solution
z(t) = (C — e)e™" et comme erreur e(t) = z(t) — z.(t) = ee”'. Cette fois,
I’erreur décroit exponentiellement. En d’autres termes, une erreur commise en
début de calcul ne se répercutera pratiquement pas sur la suite du calcul. La
Figure 5.4 représente les deux solutions pour les conditions initiales z(0) = 1
et (0) = 0.9. Cette fois, il est difficile de distinguer les deux solutions au-dela
de t = 2. |
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Dans certains cas, la stabilité d’une équation ne peut pas étre déterminée
pour toute la zone de caclul. L’équation sera stable dans certaines zones
et instable dans d’autres. Dans ce genre de cas, il faudra choisir le pas
d’intégration en s’adaptant a la circonstance.

Exemple 5.3 Considérons le probleme

' (t) = —2tx(t) (5.6)

dont la solution analytique est z(t) = Ce . Cette fois, des solutions de
conditions initiales proches s’écartent losrque t est négatif et se rapprochent
lorsque t est positif. Le phénomene est illustré a la Figure 5.5. [ ]

X(0)=-2tx(t)
60 -

50

40

x 30

e e

e

20

10

NN e e T e e

|
Ll SENEENEANEN
L A

T R

SO

FIGURE 5.5 — La solution aux problemes 2'(t) = —2tx(t),z(—2) = 1 et
2(—2) = 0.9

Les problemes (5.3) et (5.5) sont les exemples typiques d’équations différentielles
stables et instables. En fait, nous allons voir que chaque équation différentielle
peut se ramener localement a ces deux cas canoniques.

Définition 5.2 Une équation différentielle

2'(t) = flz(t),1)

Qf(to) = 29
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est dite stable en (z(t),t) si son Jacobien J(z(t),t) = W(x(t),t) <0

et instable si son Jacobien J(x(t),t) = W(w(t), t) > 0.

La définition précédente se justifie car '’erreur commise en modifiant légerement
la condition initiale s’amplifie dans le cas instable et s’amenuise dans le cas
stable comme la Proposition suivante nous l'indique.

Proposition 5.1 Soient les deux problémes aux valeurs initiales

'(t) = f(x(t), 1) '(t) = f(x(t),1)

x(tg) = o (%) x(tg) = o — € (%)

dont les solutions sont x*(t) et x*™*(t) respectivement. Si on définit e(t) :=
T (t) — x*(t), on a

et des lors

Démonstration: On a
e'(t) = 2™ (t) — x¥ ()
= f(@™(t),t) — f(z"(1), 1)
~ f(a(t),t) + J(@"(t), ) (@™ (t) — 2" (1)) — f(27(2), 1)
= J(z*(t),t)e(t),
ou l'approximation de ’avant-derniere ligne est obtenue grace a un déve-

loppement de Taylor tronqué a l'ordre 1. Finalement, 'expression (5.7) est
obtenue en résolvant ’équation différentielle. [ ]

On déduit de la Proposition 5.1 que I'erreur va croitre exponentiellement
pour une équation différentielle instable et décroitre exponentiellement pour
une équation différentielle stable.

Nous reviendrons plus tard sur I'importance de ces notions dans le cadre
de la résolution numérique d’équations différentielles ordinaires. Il est, par
exemple, assez intuitif qu'une équation instable est tres difficile a résoudre
numériquement. Il faut utiliser des méthodes tres particulieres pour ce faire.
La situation des équations stables n’en est pas toute rose pour autant. Nous
verrons que dans le cas de certains systemes tres stables, la situation peut
également étre problématique.
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5.2 Meéthodes de Taylor

Nous commencons notre tour parmi les différentes méthodes numériques
pour résoudre les équations différentielles ordinaires par les plus intuitives de
toutes. Tout d’abord, il est utile de remarquer, et c’est le cas pour toutes les
méthodes que nous exposons dans ce cours, que pour trouver la fonction x(t)
recherchée, nous allons en réalité approximer z(t) en tg,tg + h,to + 2h,tg +
3h, ... La notation que nous adoptons dans tout le reste de ce chapitre est
présentée ci-dessous.

Notation 5.1
— Les temps pour lesquels une approzimation de xz(t) est calculée sont
notés par to, t1,ts, ...
— Les approzimations de x(t) calculées aux temps to, ty,ts, ... sont notées
respectivement Tg, T1,Ta, - . .

La premiere méthode que nous considérons ici consiste a écrire le dévelop-
pement de Taylor de la fonction recherchée z(t) autour de t afin d’approximer
au mieux la valeur de x en t+h. La longueur du développement choisie indique
le degré de la méthode considérée.

5.2.1 Meéthode d’Euler explicite

La méthode d’Euler explicite considere un développement de Taylor tron-
qué a l'ordre 1. Cela implique que I'on doit connaitre la premiere dérivée de
x en t. Cette dérivée est toutefois connue, puisqu’elle nous est donnée par
I'intermédiaire de f. Rappelons-nous en effet que 2/(t) = f(x(t),t). Si on
procede de la sorte, on obtient

x(t + h) =~ z(t) + ha'(t)
=x(t) + hf(z(t),t).

Le processus z(t + h) = x(t) + hf(x(t),t) est mieux connu sous le nom
de méthode d’Euler explicite.

Méthode 5.1 (Méthode d’Euler explicite) Les itérés sont calculés suc-
cessiwvement par

Tip1 = Zi + hf(Z,t;).
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Exemple 5.4 Soit le probleme aux valeurs initiales

() = —2(t) +t
z(0) = 2.

Nous allons appliquer la méthode d’Euler explicite. Les valeurs obtenues par
la méthode sont notées Z;. Prenons un pas de h = 0.3. On a 7o = 2, et
71 = 2+ hf(2,0) = 2+ 0.3(—4) = 0.8. Ensuite 7o = 0+ hf(0.8,0.3) =
0+ 0.3(—0.64 + 0.3) = 0.698. La Figure 5.6 présente le résultat du calcul

18 \ \ \ \ \ \ AN
16
N ~ =~
14 \ \ N
12K N ~ ~ - -
Al Solution
- — — — - e
0.8F Euler Explicite
0.6~ — - - - 7 /
041
L _ — - e / /
02t
0 = Z /

FIGURE 5.6 — L’algorithme d’Euler explicite avec un pas de h = 0.3 comparé
a la solution réelle pour le probleme 2/(t) = t — 2%(t), z(0) = 2.

avec la méthode d’Euler explicite et la vraie solution du probléeme. On voit
que 'approximation du le ordre est assez mauvaise au début du calcul et
bien meilleure sur la fin. De plus, les erreurs commises en début de calcul
s’amenuisent au fur et a mesure que ’algorithme progresse. Ce comportement
n’est bien entendu pas général et dépend de plusieurs parametres que nous
discuterons plus tard. [ ]

Nous allons a présent analyser ’erreur commise lorsque l'on résout un
probleme aux valeurs initiales en utilisant la méthode d’Euler explicite. On
se doute qu’a chaque pas dit d’intégration, une erreur va s’introduire dans
le calcul. Mais il faut se rendre compte que l'erreur introduite va impliquer
que l'approximation calculée a l'étape suivante le sera pour un probléeme
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légerement différent résultant en une nouvelle erreur. On va donc voir dans
la Proposition suivante que l'erreur peut éetre décomposée en une erreur
commise localement et une erreur globale résultant de ’accumulation des
différentes erreurs locales et menant a la résolution d’un probleme légerement
modifié.

Proposition 5.2 Soit le probleme aux valeurs initiales

() = fx(t),t)
5.8
I(to) = 29 ( )
et sa solution x*(t). On définit également par To,Ti,To,... les différentes

approzimations de x*(t) obtenues en utilisant la méthde d’Euler explicite avec
un pas h. L'erreur EG; commise en t; = tg+ ih peut s’exprimer comme

ou EG signifie erreur globale et E'L erreur locale et ou J; = %(Q,ti) et

EL, = —%2:1:”(&), ot (; est compris entre T;_q et x*(t;_1) et ou & € [t;_1, 1]

Démonstration: Ecrivons 'erreur commise au pas 7. On a

=Ti1 + hf(Tio1,tio1) — 2*(t;) (5.9)

= 4 A, i) — (@ () R (). f) + o (5°)(6)
(5.10)

= EGi—1 + h(f(@i1,tim1) = f(@"(tio1), tica)) — h;(fff*)"(&)

=EG;_1 + h(Ti-1 — x*(ti_l))%(g, ti1) + EL; (5.11)

= EG;_1(1+ hJ;) + EL;,

ou (5.9) est obtenue en exprimant comment Z; est obtenu en utilisant la
méthode d’Euler explicite, (5.10) est obtenue en développant x*(t) en série
de Taylor autour de ¢;_1, et (5.11) est obtenue en appliquant le théoréeme des
accroissements finis a la premiere composante de f. [ ]
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Il est important de comprendre ce que signifie exactement la Proposition
5.2. L’exemple suivant tente de clarifier la situation.

Exemple 5.5 Soit le probleme

2 (t) = —a?(t) + ¢
x(0) =2

que nous avons déja considéré dans I’exemple précédent. Lors de la premiere
itération, on obtient

Z1=2+403f(2,0)=08

L’erreur obtenue ici est uniquement locale, ¢’est-a-dire qu’elle peut étre exclu-
sivement interprétée par l'intermédiaire du développement de Taylor. Dans
ce cas, erreur peut étre approximée par 0.48. A la deuxieme itération, la
méthode d’Euler calcule

Ta03 = 0.8+ 0.3£(0.8,0.3) = 0.698.

Dans ce cas-ci, une erreur s’est introduite par rapport a la résolution du
probleme z/(t) = —2%(t) + t,2(0.3) = 0.8. En effet, la solution en 0.6 de
ce probleme est 0.76, ce qui implique qu'une erreur de 0.04 a été introduite
en plus a la deuxieme étape. Mais le point important a remarquer est que
nous avons résolu 'équation diférentielle pour la condition initiale x(0.3) =
0.8 au lieu de z(0.3) = 1.28. En d’autres termes, nous avons utilisé, dans
I'approximation de Taylor, une pente de f(0.8,0.3) au lieu de f(1.28,0.3),
ce qui fait une erreur approximative de 1 dans la pente utilisée. Cette erreur
implique une accumulation d’erreurs venant des itérations précédentes. Tout
ceci est illustré a la Figure 5.7. Dans la Figure 5.7, ’erreur commise a la
premiere itération est indiquée par FL; = EG;. A la deuxieme itération,
lerreur peut étre décomposée en un trait plein (ELy) et un trait pointillé
venant de l'itération précédente et multipliée par le facteur (1 + h.J;). Dans
ce cas-ci, on voit que le facteur multiplicatif a rendu I'erreur plus petite par
rapport a l'itération précédente. En réalité, la différence de 1 dans la valeur
de f a fait se rapprocher I'itéré suivant de la solution réelle. [ |

Nous venons de voir dans I’exemple précédent qu’'une partie importante de
I’erreur commise en utilisant la méthode d’Euler explicite provient des erreurs
commises lors des itérations précédentes. On en vient a présent au choix du
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FIGURE 5.7 — Description de l'erreur locale et globale lors de la méthode
d’Euler explicite

pas de la méthode. Dans ce cas-ci, on choisira donc un pas de fagon a ce que
Ierreur qui se propage d’une itération a 'autre s’amenuise (comme dans le
cas de I'exemple) au lieu de croitre. Dans le cas o les erreurs propagées d’'une
itération a ’autre restent sous controle, on dit que la méthode est stable. Si,
au contraire, les erreurs provenant des itérations précédentes croissent, on dit
que la méthode est instable.

Proposition 5.3 La méthode d’FEuler explicite est stable si on a
—2 < hJ; <0 pour tout 1.

Démonstration: L’erreur globale a l'itération ¢ est EG; et est donnée par
EG; = (1+ hJ;)EG;_1 + EL;. On aura en particulier

EG; = (14 hJ)(1+hJi1) - (1+hJ)EL + ...+ (1+ hJ)EL;_y + ELL.

Pour que tous les termes tendent vers 0, il faut donc |1 + hJ;| < 1 ce qui est
équivalent au résultat annoncé. [ ]

On voit donc que la méthode d’Euler explicite n’est jamais stable lorsque
I’équation différentielle n’est elle-méme pas stable. Par contre, et c’est plus
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surprenant, il faut choisir un pas extrémement petit lorsque I’équation diffé-
rentielle est fortement stable, ¢’est-a-dire lorsque J; << 0. Les équations tres
stables sont donc également des problemes particulierement ardus pour les
méthodes numériques traditionnelles.

5.2.2 Méthodes d’ordre supérieur

Rien n’empéche de construire un développement de Taylor comportant
plus de termes afin d’obtenir une approximation plus précise de l'itéré ;.
en fonction de z;. Nous allons voir que ceci implique une connaissance ap-
profondie de la fonction f et que ce n’est pas toujours tres praticable. En
effet, si on écrit le développement de Taylor de x(t + h) autour du point ¢,
on obtient

z(t + h) = x(t) + ha'(t) + h;x”(t) + Z—Tm”’(t) -
—2(t) + hf(a(),f) + %2%@;@), 0+ Z—T%(m(t),t) .
= a(t) + falt). ) + w000 + D w0.0) +
(5.12)
= a(t) + ). )+ @070, + D w0
L NN K B B A B O o

L’expression (5.12) donne la méthode de Taylor d’ordre 2. L’expression (5.13)
donne I'expression d’ordre 3.

Méthode 5.2 (Méthode de Taylor d’ordre 2) Aprés calcul préalable de
% et de %, on calcule successivement les itérés

%(g(gw ) f (T, t;) + g(futz))

Méthode 5.3 (Méthode de Taylor d’ordre 3) Apreés calcul préalable des
différentes dérivées partielles premieres et secondes, on calcule successive-



68 CHAPITRE 5. EQUATIONS DIFFERENTIELLES ORDINAIRES

ment les itérés

h* 0 0
Tip1 =T + hf(Zi, t;) + 7(%(@, ti) f(Zi, t;) + a_{(a_fi;ti»‘i‘
WO g P Pf OfOf Of o
+ o (Gl 2o S+ 5o T (50 D@ t).

On le voit, la complexité de ces formules croit tres rapidement. Pour pouvoir
appliquer ces méthodes, il faudra donc passer au préalable par une étape
de dérivation symbolique. Dans la pratique, les méthodes de Taylor d’ordre
supérieur a 1 sont tres peu utilisées. Ceci dit, avec la venue de logiciels de cal-
cul symbolique, il n’est pas inintéressant de considérer ces méthodes dans cer-
taines applications ou la dérivation symbolique est possible. Finalement, il est
également possible d’analyser les conditions de stabilité de telles méthodes.
Au fur et & mesure que l'ordre du développement de Taylor considéré aug-
mente, la région de stabilité augmente également. Il n’y a pas, ceci dit, de
différence drastique avec la méthode d’Euler explicite.

5.2.3 La méthode d’Euler implicite

On peut adapter la méthode d’Euler dite explicite de facon a ce qu’elle
adopte un comportement beaucoup plus stable. Nous verrons plus tard qu’il
y a malheureusement un lourd cotit a payer au niveau du temps de calcul a
effectuer a chaque itération. Souvenons-nous que pour déterminer la méthode
d’Euler explicite, nous avons simplement écrit un développement de Taylor
autout du point ¢, pour en déduire une expression de z(t 4+ h). L’idée de la
méthode d’Euler implicite est d’écrire le développement en ¢+ h plutot qu’en
t. On a donc x(t) = z(t + h) — ha'(t + h) + - - - et des lors

2(t+ h) ~ x(t) + hf (@t + h), ¢+ h). (5.14)

Le probleme dans (5.14) est évidemment que 'on ne connait pas f(z(t +
h),t+ h) si on ne connait pas encore z(t+ h). C’est la raison pour laquelle la
méthode est qualifiée d’implicite puisqu’il faudra résoudre une équation non
linéaire a chaque pas de temps.

Méthode 5.4 (Méthode d’Euler implicite) L’itéré z;,, est obtenu comme
étant une solution de l’équation

Tiv1 = T + hf(Tig1, tipr).
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Exemple 5.6 Soit a nouveau le probleme

2 (t) = —2(t) +t
z(0) = 2.

On considere une itération de l'algorithme d’Euler implicite. On part de
Zo = 2 et on recherche z; tel que

To =1 — 0.3(—=z% 4+ 0.3).

Dans ce cas-ci, on voit qu’il suffit de résoudre I’équation non linéaire 0.3z% +
Z1 — 2.09 = 0. Deux solutions sont possibles, z; = 1.254 ou r; = —2.254.
En choisissant la solution la plus proche de Z(, on obtient donc z; = 1.254.
Cette fois, 'erreur n’est plus que de 0.03. [ |

La méthode semble donc étre une bonne alternative. Malheureusement, la
résolution d’une équation non linéaire a chaque pas rend son utilisation im-
praticable. On peut malgré tout analyser la stabilité de la méthode. Une
analyse similaire au cas de la méthode d’Euler explicite nous mene a la Pro-
position suivante que nous énongons sans démonstration.

Proposition 5.4 La méthode d’Euler implicite est stable si

1
’ <1 pour tout 1.

1 —hdJ;

On voit, en particulier, que lorsque 1’équation est stable (J; < 0), la méthode
est stable pour tout choix de pas h. La méthode d’Euler implicite admet donc
des conditions de stabilité tres robustes. Pour des valeurs tres positives de
J;, c’est-a-dire pour un probleme tres instable, il semblerait que la méthode
d’Euler implicite soit également stable. Ceci n’a évidemment aucune valeur
car la stabilité apparente de la méthode numérique n’aura rien a voir avec la
solution analytique.

5.3 Meéthodes de Runge-Kutta

Les méthodes de Runge-Kutta sont aux méthodes de Taylor ce que la
méthode de la sécante est a la méthode de Newton dans le cadre de la
résolution d’équations non linéaires. On se souvient que la méthode de la
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sécante approxime numériquement la dérivée nécessaire a la méthode de New-
ton. Dans le cadre d’équations différentielles ordinaires, nous avons vu que
les méthodes de Taylor requierent une lourde phase de différentiation anay-
tique. Les méthodes de Runge-Kutta vont remplacer cette partie par une
approximation numérique des différentes dérivées partielles.

Méthode 5.5 (Runge-Kutta d’ordre 2) Les différents itérés de la méthode
de Runge-Kutta d’ordre 2 sont obtenus par le processus

h h
Tit1 = T; + if(j:“ ti) + §f(5?z +hf(zi,t;), tiv1) (5.15)

FExplication: 1’idée de la méthode est que 1'on va copier le plus possible
de termes du développement de Taylor de z(t + h) en utilisant le calcul
de f en deux points seulement, a savoir Fy; = f(x(t),t) et Fy = f(z(t) +
Bhf(z(t),t),t + ah) ot a et 5 sont inconnus. Ces deux points sont utilisés
en écrivant

ol wy et wy sont également inconnus. La suite de cette “explication” est
donc de montrer qu’on peut déterminer «, (3, wy, wy de maniere a ce que la
formule (5.16) se rapproche le plus possible du développement de Taylor de
x(t + h). Pour ce faire, nous allons tout d’abord faire un développement de
Taylor tronqué a l'ordre 1 de F5. On a

Fy = f(a(t) + Bhf(x(t),t),t + ah) (5.17)

S Sl 1)+ hF (0,0 9 (20, 0) + 0h T (w(t), 1), (519

Si on utilise (5.18) dans (5.15), on trouve l'approximation
z(t+ h) = z(t) + (w; + we)hf(x(t),1)
owsh? 2 (o(0) 1) + W (w(0),1) 0 (w(0), ). (519

Par aileurs, nous avons vu lors de I'exposition des méthodes de Taylor, qu’une
expression d’ordre 2 de z(t + h) est (5.12) a savoir

of

x(t+h) = x(t)+ hf(x(t),t) + —(f(x(t), )8:15( x(t),t) + E) (5.20)
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Si on compare (5.19) a (5.20), on voit qu'il faut avoir

1 1
wy +wy =1, awy = 3 Bwy = 3" (5.21)
Une solution possible et pratique a (5.21) est de choisir a = f =1 et w; =
1
Wy = 5. |

2

Remarquons que la méthode proposée n’est pas la seule qui pourrait don-
ner un ordre 2. On pourrait par exemple choisir pour satisfaire (5.21) o = 3
etwlzl—ietwgzi.

Dans la pratique, les méthodes de Runge-Kutta d’ordre 2, bien que tres
simples a mettre en oeuvre sont assez peu utilisées car leur erreur n’est
que de O(h?). La méthode de Runge-Kutta la plus utilisée est celle d’ordre
4. Déterminer une telle formule est un travail tres fastidieux que nous ne
détaillerons pas ici. Nous présentons la formule de la méthode sans 1'expli-

quer.

Méthode 5.6 (Runge-Kutta d’ordre 4) Les différents itérés de la méthode
de Runge-Kutta d’ordre 4 sont obtenus par le processus

1
Tit1 = T; + 6(K1 + Ko + K3 + Ky)

o

K1 - hf(ffz, tl)

1 1
1 1
Ky = hf (@i + 5K, ti + D)

Comme son nom l'indique, la méthode de Runge-Kutta d’ordre 4 copie le
développement de Taylor jusqu’aux termes d’ordre 4. Le terme d’erreur est

donc en O(h?).

5.4 Méthodes adaptatives

Comme on l'a vu précédemment, il est souvent difficile de déterminer
le pas a choisir pour assurer une stabilité de la méthode numérique tout
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en conservant une quantité limitée de calculs. En général, on aimerait que
I'utilisateur puisse déterminer une tolérance endéans laquelle la solution doit
se trouver. Mais méme en ayant acces a l'erreur locale commise par une
méthode, il est souvent difficile de déterminer le pas a utiliser. Il se pourrait
qu’il soit nécessaire de choisir un pas tres petit sur certaines portions du
probleme alors que 1’on pourrait se contenter de pas plus grands sur d’autres
portions. Pour cette raison, plusieurs méthodes de choix automatiques du
pas ont été imaginées.

Pour comprendre le principe des méthodes adaptatives parfois aussi ap-
pelées de Runge-Kutta-Fehlberg, imaginons tout d’abord le principe suivant.
On considere la méthode de Runge-Kutta d’ordre 4 avec un pas h. On peut
aussi considérer la méme méthode avec un double pas de h/2. Si le pas h
est satisfaisant, la différence entre ’approximation obtenue avec un pas h ou
deux pas de h/2 sera tres faible. Dans ce cas, le pas h est suffisant. Dans
le cas contraire, il faudra réduire le pas. Le probleme de cette méthode est
qu’elle nécessite quatre appels a la fonction f pour le pas h et 7 autres appels
pour le double pas de h/2. Cela fait un total de 11 appels a la fonction f
par itération, ce qui peut s’avérer cotiteux en temps de calcul dans certaines
applications. Or, nous avons vu dans la section précédente qu’il y a une cer-
taine flexibilité dans le choix des coefficients des méthodes de Runge-Kutta.
L’idée est de chosir une méthode de Runge-Kutta d’ordre 5 et une méthode
d’ordre 4 qui partagent le plus possible d’évaluations communes de f de fagon
a minimiser la quantité de travail a chaque itération. L’avantage est de dis-
poser de deuz évaluations de x(t + h). En comparant les deux évaluations,
nous pouvons ainsi décider si le pas h est adapté ou pas. La méthode suivante
est un exemple courant de paire de méthodes de Runge-Kutta donnant lieu
a une méthode adaptative.
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Méthode 5.7 (Runge-Kutta-Fehlberg d’ordres 4 et 5)
K1 = hf((z’“tz)
_ 1 1
Kg = hf(fﬁl + —Kl,ti + Zh)

4
K3 =hf(z;, + %Kl + ?)%K%ti + gh)
Ky=hf(z; + %Kl — %ggfﬁ + %ﬁ 3, b + %h)
Ks=hf(z;, + %Kl — 8Ky + 3561830K3 — 4814054}(4,@ + h)
K¢ = hf(z: — Q%Kl oK, — %Kg n %5)21(4 - i—éf(g,,ti n %h)
On obtient deux approzimations de x(t + h), a savoir
e B B DL
£ = at) + %Kl N 162685265 s+ izigé Ke— %Kf’ * %Kﬁ

qui sont respectivement une approzimation d’ordre 4 et d’ordre 5 obtenues
a latde de 6 évaluations de fonction. La différence |:I:£5+]1 - fgﬂﬂ est une
estimation de l'erreur en t;y1.

La fonction ode45 de matlab est une méthode de cette famille mais uti-
lisant une autre paire de méthodes de Runge-Kutta d’ordre 4 et 5 : la paire
de Dormand-Prince. La fonction ode23 utilise la paire de Bogacki-Shampine
qui est une paire de méthodes de Runge-Kutta d’ordre 2 et 3 respectivement,
mais partageant un certain nombre de points ou la fonction est évaluée.

5.5 Méthodes a pas liés

Jusqua présent, nous avons uniquement analysé des méthodes a pas séparés.
Une méthode est a pas séparés lorsque I'on se sert uniquement de 'intervalle
[t,t + h] et de I'expression de f dans celui-ci pour calculer la nouvelle va-
leur z(t + h). L’idée d’une méthode a pas liés est que I'on peut se servir de
la connaissance des points précédemment calculés afin d’avoir une meilleure
perception de la maniere dont f se comporte et ceci sans devoir procéder a
une différentiation analytique qui s’avérerait trop lourde. La forme générique
d’une méthode a pas liés peut étre formulée comme suit.
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Méthode 5.8 (Méthode a pas liés) Si on dénote par z; les différentes
approzimations obtenues par la méthode aux points t;, on calcule successive-
ment

Tip1 =T +h Z Bif(Zi-j,tij)- (5.22)

j=1

Dans (5.22), on remarque que j peut prendre la valeur —1 ce qui correspond
a considérer que pour obtenir la valeur z;,1, on se sert de la valeur ;1. On
reconnait la le principe d’'une méthode implicite. Si 5_; = 0, on ne se sert que
de points connus pour calculer la nouvelle valeur Z;,q, il s’agit alors d’une
méthode explicite.

Pour calculer les coefficients d’une formule de type (5.22), on doit évaluer
I'intégrale

tit1
Tip1 =T+ f(z(s),s)ds.
t;

En particulier, pour obtenir les coefficients de (5.22) dans le cas d’'une méthode
explicite, on peut écrire le polynome qui interpole les n+1 points obtenus lors
des itérations précédentes (T;_n, f(Ti—n,ti—n)), ..., (ZTi, f(Ti, 1)) et Uintégrer
sur lintervalle [t;,t;41]. Nous donnons les méthodes explicites et implicites
d’ordre 2 et 3 a titre informatif. Remarquons que les méthodes explicites a
pas liés sont appelées méthodes d’Adams-Bashforth et les méthodes implicites
méthodes d’Adams-Moulton.

Méthode 5.9 (Adams-Bashforth d’ordre 2)
_ . h _ _
Tivr = T+ (= f (@1, tima) + 3/ (20, 11))
Méthode 5.10 (Adams-Bashforth d’ordre 3)
_ . h _ _ _
Tipn =2 + E(5f($z‘—2; tioo) = 16f(Zi1,ti1) +23f(Zi, 1))
Méthode 5.11 (Adams-Moulton d’ordre 2)

h
Tip1 = T; + E(f(fi,ti) + f(ZTit1, tiv1))
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Méthode 5.12 (Adams-Moulton d’ordre 3)

ZTip1 = 2; + g(_f(fz'—h tic1) +8f(Tits) + 5f(Tigr, tiy1))

L’intérét des méthodes a pas liés est qu’elles n’utilisent qu'une seule évaluation
de la fonction f a chaque pas d’intégration. Cela peut s’avérer un gain
de temps conséquent par rapport a une méthode de Runge-Kutta d’ordre
élevé qui requiert un grand nombre d’évaluations a chaque pas, et ce, sur-
tout lorsque I’évaluation de la fonction est assez couteuse. Dans le cadre des
méthodes de Runge-Kutta, nous avons vu 'amélioration adaptative proposée
par Fehlberg. Les méthodes a pas liés se prétent également tres bien a une
version adaptative ou prédicteur-correcteur.

La méthode prédicteur-correcteur consiste a utiliser une méthode explicite
et implicite conjointement. On va ainsi se servir de I’approximation donnée
par la méthode explicite comme Z;,; dans la formule implicite. On évitera
ainsi la cotiteuse phase de résolution d'une équation non linéaire. La version
adaptative consiste a utiliser la différence entre la sortie de la formule explicite
et de la formule implicite pour savoir s’il faut considérer un changement de
la taille du pas.

Exemple 5.7 Soit le probleme

' (t) = —2%(t) + t
z(0) = 2.

On peut remarquer que les méthodes d’Euler implicite et explicite sont en
réalité les méthodes a pas liés d’ordre 1. Nous allons ici uniquement montrer
comment on peut, pour 'ordre 1, mettre en pratique la méthode prédicteur-
correcteur. Rappelons les formules d’Euler explicite Z;11 = z; + hf(x;,t;)
et implicite Z;11 = Z; + hf(Zi41,ti11). Dans notre cas, et pour un pas de
0.3, on obtient le prédicteur donné par Euler explicite z;,; := 2 — 1.2 =
0.8. Le correcteur est ensuite donné en utilisant la premiere approximation
comme Z;.1 = 2+ 0.3f(0.8,0.3) = 2 — 0.102 = 1.898. Remarquons qu’ici, vu
la différence entre les deux approximations obtenues, il serait judicieux de
réduire le pas. [ |

Remarquons qu’il est possible d’itérer plusieurs fois le processus prédicteur-
correcteur afin d’obtenir une approximation plus précise. La pratique montre
cependant qu’une seule itération suffit a donner de tres bonnes approxima-
tions de la valeur réelle.
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5.6 Systemes d’équations différentielles ordi-
naires
Un systeme d’équations dfférentielles est tres similaire a une équation

différentielle scalaire. Dans ce cas, on cherche une fonction z(t) : R — R”
telle que

dx
g(t) = f(x(t),) (5.23)
z(to) = o,

ou f:R" xR~ R" et z, € R".

5.6.1 Systemes d’ordre supérieur a un

Les systemes d’équations différentielles sont évidemment les plus cou-
rants dans la pratique. Ils sont également importants dans le cas scalaire car
ils permettent de résoudre également les équations d’ordre supérieur a un.
Supposons en effet que 1'on veuille résoudre 1’équation

zMl(t) = g(x(t), 2/ (t),. .., z"70(1), 1), (5.24)

avec des conditions initiales appropriées et ou g : R” x R — R. On peut
résoudre ce probleme en passant a un systeme d’équations du premier ordre.
En effet, on peut écrire yo(t) := z(t), y1(t) := 2'(t), y2(t) := 2" (t), ... De cette
fagon, on peut maintenant réécrire (5.24) de maniere équivalente comme

Yo Y1
Y1 Y2
d
el : = : ) 5.25
A . (52
Yn—1 Un
Un g(yo:yla"'aynfbt)

Il s’agit cette fois d’un systeme vectoriel du premier ordre ot on peut voir
la fonction f : R"™™ x R +— R""! de (5.23) comme étant f(yo, ..., Yn,t) =
(Y1, Y25+ s Yn> 9(W0, Y15 - - - Yn_1,1))T. On peut également appliquer cette as-
tuce dans le cas de systemes d’équations d’ordre supérieur a un. On voit
donc que le systeme de premier ordre est le modele completement général
qui englobe les autres.
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5.6.2 Résolution de systemes d’équations différentielles

La résolution numérique de systemes vectoriels d’équations différentielles
ne comporte pas de différence majeure par rapport au cas scalaire, a condition
de considérer toutes les méthodes vues précédemment vectoriellement. A titre
d’exemple, nous passons en revue quatre méthodes vues en début de chapitre
pour le cas scalaire. Il est aisé de les adapter au cas vectoriel.

Méthode 5.13 (Euler explicite)
Ty =Z; + hf(Z i)

Méthode 5.14 (Runge-Kutta vectoriel d’ordre 4)

1
Tip1 = Z; + 6(K1 + K, +K3 +K4)

ol
K, =hf(z;1)
K, = hf(E;+ 5Ky t+ 5h)
Ky =hf(z; + %Kz,t + %h)

K4 = hf(zi‘i‘K?,at"’h)'

Méthode 5.15 (Adams-Bashforth-Moulton vectoriel d’ordre 2) Les
méthodes vectorielles d’Adams-Bashforth et d’Adams-Moulton sont respecti-
vement

(= f(@i_1,tic1) + 3f(24, 1))
(f(@ ti) + f(Zip1, tivn)-

5.6.3 Stabilité et équations différentielles raides

Lors de I’étude de la stabilité de la méthode d’Euler, nous avons vu que le
choix du pas doit étre choisi de maniere judicieuse pour éviter les problemes
d’instabilité. C’est évidemment le cas pour la plupart des méthodes que
nous avons considérées dans ce chapitre. Nous avons également vu que la
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stabilité est essentiellement régie par la valeur de J; = %' Il est possible
d’étendre cette analyse au cas d’'un systeme z’ = f(x,t). Dans ce cas-ci, ce
qui détermine la stabilité du systeme est le rayon spectral de sa matrice Jaco-
bienne J = (a%f) Si toutes les valeurs propres sont telles que leur partie réelle
Re(Aj(J)) < 0, on dit que le systeme est stable. Similairement, les valeurs
propres de J en tout point vont permettre de déterminer la taille requise
du pas de fagon a avoir une méthode numérique stable. Un cas pathologique
notoire arrive lorsque les différentes valeurs propres de la matrice Jacobienne
sont de modules tres différents. On parle dans ce cas d’un systeme raide. Ce
genre de systemes s’avere particulierement délicat a résoudre. L’étude de la
résolution de problemes raides est un sujet en soi. On a déja vu néanmoins que
certaines méthodes, telle la méthode d’Euler implicite, sont assez adaptées
du fait de leur tres grande région de stabilité. Pour cloturer cette discussion
sur les problemes raides, nous allons l'illustrer par un exemple.

Exemple 5.8 Soit le systeme

' = =20z — 19y z(0) =

2
Yy = —19x — 20y y(0) = 0.

On peut résoudre analytiquement ce probleme et voir que la solution peut
s’exprimer comme z(t) = e 3% + e et y(t) = €3 — e'. Quand ¢ aug-
mente, la partie correspondant & e~3% devient rapidement négligeable et la
solution se rapproche de z(t) = —y(t) = e~*. Si on regarde la matrice Ja-
—-20 —-19
—-19 -20
obtient naturellement les valeurs propres —39 et —1, correspondant aux deux
fonctions reconnues dans la forme analytique. Prenons a présent le cas de la
méthode d’Euler explicite. Cette méthode requiert que |hJ;| < 2 pour garan-
tir sa stabilité. Dans ce cas, on obtient donc respectivement que h < 2/39
ou h < 2. On en déduit que c’est la partie la plus négligeable du probleme
(correspondant & e3%) qui impose que le pas choisi soit tres petit. n

cobienne du probleme qui est obtenue aisément comme , on

L’exemple illustre que dans des cas pathologiques, on peut étre forcé de
devoir choisir un pas d’intégration ridiculement petit a cause d’une valeur
propre de la Jacobienne trop négative. Ceci peut ne pas étre en adéquation
avec la “physique” naturelle du phénomene.



