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Müller . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
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5.6.3 Stabilité et équations différentielles raides . . . . . . . 77



Chapitre 1

Introduction

Pourquoi un cours d’analyse numérique et à quoi cela sert-il ? Pour résumer,
on peut dire que l’analyse numérique est à la frontière entre les mathématiques
et l’informatique. Il s’agit en quelque sorte d’un interprète qui permettra de
transposer la connaissance mathématique théorique à la pratique d’un ordi-
nateur et de pouvoir ainsi résoudre des problèmes concrets.

Les deux objectifs principaux de l’analyse numérique sont, d’une part, de
pouvoir résoudre numériquement des problèmes concrets dont on connâıt ou
pas la solution analytique et d’autre part, d’analyser le comportement des
méthodes utilisées. Développons à présent ces deux objectifs.

1.1 Résolution numérique de problèmes

La plus grande partie de ce cours consiste à développer des méthodes
pour résoudre numériquement des problèmes scientifiques courants.

Exemple 1.1 Imaginons que nous disposions d’une calculatrice de poche
capable d’efectuer les opérations courantes d’addition, soustraction, multi-
plication et division. Comment pouvons-nous évaluer la constante e ?

Nous savons que le développement de Taylor de la fonction ex est

ex = 1 + x+
x2

2
+
x3

3!
+
x4

4!
+ · · · ,

c’est-à-dire, que nous pouvons approximer la constante e par, par exemple,

e = 1 + 1 +
1

2
+

1

6
+

1

24
+

1

120
,

1
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ce qui donnerait dans ce cas-ci un résultat (très) approximatif de e = 2, 71667
ayant seulement deux décimales correctes. Il est évidemment possible d’ob-
tenir un résultat plus précis en utilisant plus de termes de la série. C’est là
que l’on voit tout l’intérêt de pouvoir correctement analyser une méthode.
Ici, cela permettra de savoir combien de termes de la série sont nécessaires
afin d’obtenir le nombre de décimales correctes désiré.

On peut considérer que la constante e est connue et que l’exemple précédent
est uniquement un moyen de transposer concrètement à l’ordinateur une
théorie abstraite. Par ailleurs, la formule donnée est exacte au terme d’er-
reur de l’expansion de Taylor près (que nous reverrons dans le Chapitre 2). Un
objectif de ce cours est également de traiter des problèmes dont une solution
analytique n’est pas connue, mais que l’on peut approcher numériquement
de manière satisfaisante. Dans la plupart des applications pratiques, une so-
lution donnant 10 décimales correctes n’est d’ailleurs pas toujours nécessaire.
Imaginons que l’on doive dimensionner le diamètre de barres d’acier devant
soutenir un pont. Il y a peu d’utilité pratique à réclamer un diamètre de
150.3429836 mm plutôt que, plus humblement, et plus raisonnablement un
diamètre de 150.3 mm.

Exemple 1.2 Lors du dimensionnement de poutres de résistance, un calcul
intermédiaire fréquent consiste à résoudre une équation du troisième degré.
Bien qu’il existe une méthode analytique permettant de trouver une solu-
tion, il est souvent bien plus efficace de résoudre numériquement l’équation.
Considérons donc l’équation

x3 + x− 1 = 0. (1.1)

La méthode numérique la plus näıve pour résoudre f(x) = 0, où f est conti-
nue, est la méthode de la dichotomie (ou bisection). Elle consiste à partir de
deux valeurs x0 et x1 tels f(x0)f(x1) < 0, ce qui implique qu’une solution x
du problème se trouve entre x0 et x1. Il suffit ensuite de considérer x2 := x0+x1

2

et d’évaluer f(x2). En fonction du signe du résultat, on continuera sur l’in-
tervalle compris entre x0 et x2 ou l’intervalle compris entre x1 et x2. Et ainsi
de suite. . . L’algorithme permet de réduire la taille de l’intervalle d’un fac-
teur 2 à chaque itération. Il est ainsi facile d’évaluer le nombre d’itérations
nécessaires pour obtenir une précision désirée sur x. Sur l’exemple précité, si
on pose f(x) = x3 + x− 1, on voit aisément que f(0) = −1 et que f(1) = 1.
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Dès lors, nous savons que f possède une racine sur l’intervalle [0,1]. Nous
pouvons dès lors démarrer l’algorithme avec x0 = 0 et x1 = 1. La suite de
l’algorithme est présentée dans le tableau suivant. Remarquons que, puisque
l’on part d’un intervalle de taille 1, la taille de l’intervalle à l’itération i est
de 1

2i . En particulier, si l’on souhaite obtenir 3 décimales correctes, nous en
déduisons que la taille de l’intervalle doit être inférieure à 0.5 10−3. Dès lors
11 itérations seront suffisantes.

Itér. x y z := x+y
2

f(z)
0 0.000000 1.000000 0.500000 -0.375000
1 0.500000 1.000000 0.750000 0.171875
2 0.500000 0.750000 0.625000 -0.130859
3 0.625000 0.750000 0.687500 0.012451
4 0.625000 0.687500 0.656250 -0.061127
5 0.656250 0.687500 0.671875 -0.024830
6 0.671875 0.687500 0.679688 -0.006314
7 0.679688 0.687500 0.683594 0.003037
8 0.679688 0.683594 0.681641 -0.001646
9 0.681641 0.683594 0.682617 0.000694
10 0.681641 0.682617 0.682129 -0.000477

Nous voyons qu’au bout de 11 itérations, 3 décimales d’une solution à l’équation
sont connues avec certitude, à savoir x = 0.682.

Bien qu’extrêmement simple, la méthode que nous avons présentée dans
l’exemple précédent permet, assez rapidement, de trouver une solution sa-
tisfaisante à une équation dont une solution analytique n’est pas disponible
(ou peu pratique dans ce cas-ci). Nous verrons aussi qu’un grand avantage
de cette méthode est sa bonne stabilité numérique. Le Chapitre 4 présentera
les approches classiques pour résoudre f(x) = 0.

1.2 Analyse du comportement des méthodes

Nous avons vu, dans la section précédente, deux méthodes pour résoudre
des problèmes avec un ordinateur. Il est très important de décrire les algo-
rithmes qui permettent de résoudre ces problèmes, mais il n’est non moins
important d’analyser le comportement de ces méthodes. En effet plusieurs
questions se posent : est-ce qu’un algorithme trouvera plus vite la solution
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qu’un autre, quelle est la quantité de travail nécessaire à un algorithme pour
obtenir une précision désirée, est-ce que l’algorithme trouvera toujours une
solution, est-ce toujours la solution souhaitée, est-ce que l’algorithme est sen-
sible aux erreurs dans les données initiales (qui peuvent provenir de mesures
par essence imprécises), est-ce que l’algorithme est sensible aux erreurs d’ar-
rondi faites durant le calcul ? Nous montrons à présent la pertinence de ces
thèmes sans rentrer dans les détails (ce que nous ferons dans les chapitres)
mais en illustrant la philosophie des problèmes qui se posent.

1.2.1 Complexité d’un algorithme

Une question importante, et qui relève plus de l’algorithmique que de
l’analyse numérique, est la quantité de travail nécessaire à un algorithme
pour arriver à un résultat. C’est ce que l’on appelle la complexité d’un al-
gorithme. Par quantité de travail, nous entendons le nombre d’opérations de
base (additions, soustractions, multiplications, divisions) qui sont exécutées.
On exprime la complexité d’un algorithme comme une fonction (souvent
un polynôme) dont les variables sont les paramètres du problème. Ces pa-
ramètres dépendent du type de problème résolu. Souvent il s’agit de la taille
du problème (nombre de lignes et de colonnes d’une matrice par exemple)
et de la taille maximale des coefficients (dans certains cas un problème sera
plus difficile s’il concerne des grands nombres). Comme nous l’avons dit, la
fonction de complexité est fréquemment un polynôme. Dans ce cas, il est
courant de considérer le degré du polynôme comme donnant une idée de l’ef-
ficacité de l’algorithme. Plus le degré du polynôme est bas, plus l’algorithme
est rapide. Par ailleurs, un élément également important est de connâıtre
la quantité de mémoire dont l’algorithme a besoin pour pouvoir s’effectuer.
De la même façon que pour le nombre d’opérations, on exprime le nombre
d’éléments mémoire par une fonction des paramètres de problème.

1.2.2 Convergence d’un algorithme

De nombreuses méthodes numériques sont itératives et approximent la
solution à un problème de mieux en mieux au fur et à mesure des itérations.
Dans la section précédente, on s’intéressait à la quantité de travail effectuée
à chaque itération. Une question très importante est de savoir quelle est la
précision obtenue après un certain nombre d’itérations. Le corollaire sera de
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pouvoir évaluer le nombre d’itérations nécessaires pour obtenir la précision
désirée.

Considérons à nouveau la résolution de l’équation donnée dans l’Exemple
1.2. Nous avons vu que, pour la méthode de recherche dichotomique, la taille
de l’intervalle dans lequel se situe la racine recherchée diminue de moitié à
chaque itération. Mathématiquement, considèrons la suite (xn) correspon-
dant au milieu de l’intervalle traité à chaque itération. Nous avons que
limn→∞ xn = x où x est la racine recherchée. Par ailleurs, étant donné la
réduction de l’intervalle de recherche de moitié à chaque itération, nous en
déduisons que

|xn − x| ≤
|b− a|

2n
,

où [a, b] est l’intervalle de départ. Lorsqu’une suite (yn) tend vers y de telle
façon que |yn− y| ≤ c0c

n avec c0 ∈ R+ et 0 < c < 1, on parle de convergence
linéaire. Si par contre, la suite tend vers y avec |yn−y| ≤ c0c

pn avec c0 ∈ R+,
0 < c < 1 et p ∈ R+, on parle de convergence d’ordre p.

Il existe d’autres méthodes de recherche de la racine d’une équation. Nous
verrons au Chapitre 4 la méthode de Newton-Raphson. Celle-ci a un ordre de
convergence quadratique (ordre 2) dans la plupart des cas. Sans rentrer dans
les détails de la méthode, nous pouvons comparer la vitesse de convergence
de celle-ci avec la méthode de la recherche dichotomique. La tableau suivant
indique une comparaison des solutions approchées à chaque itération ainsi
que du nombre de décimales correctes.

Itér. Rech. Dichotomique Newton-Raphson
x approché Déc. corr. x approché Déc. corr.

0 0.500000 0 0.0000000000000000 0
1 0.750000 0 1.0000000000000000 0
2 0.625000 1 0.7500000000000000 0
3 0.687500 2 0.6860465116279070 2
4 0.656250 1 0.6823395825973142 4
5 0.671875 1 0.6823278039465127 9
6 0.679688 1 0.6823278038280193 16
7 0.683594 2
8 0.681641 2

On voit dans le tableau que l’ordre de convergence indique une performance
asymptotique. En particulier, la méthode de Newton-Raphson n’est pas meil-
leure que la dichotomie dans les premières itérations. Mais elle est très efficace
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au voisinage de la racine. On voit également qu’une convergence linéaire ou
quadratique n’exclut pas que la méthode régresse par moments. A nouveau,
la qualité de l’ordre de convergence est une propriété asymptotique.

Quand on parle de convergence d’un algorithme, il est aussi important
de parler de zone de convergence en fonction d’un point initial choisi. La
méthode de Newton-Raphson, par exemple, peu être très dépendante du
point initial. Pour certains points de départ, elle peut même ne pas converger.
La question de zone de convergence est fréquemment une question beaucoup
plus difficile que la question de l’ordre de convergence au voisinage de la
solution.

1.2.3 Sensibilité aux erreurs des données

Cette question concerne plus souvent les problèmes plutôt que les algo-
rithmes. En effet, certains problèmes sont, ce qu’on appelle mal conditionnés.
Dans ce cas-ci, un petit changement des données peut mener à un change-
ment radical de la solution. Lorsque l’on utilise des méthodes numériques
pour résoudre ces problèmes, la question devient cruciale car le fait de tra-
vailler en précision finie amène régulièrement à devoir modifier légèrement
les données réelles. La modification des données peut également provenir de
mesures concrètes qui sont, par essence, imprécises. Un exemple typique de
problème mal conditionné est le cas de systèmes linéaires dont le déterminant
est proche de 0.

Exemple 1.3 Considérons le système Ax = b où

A =

(
1.2969 0.8648
0.2161 0.1441

)
, b =

(
0.8642
0.1440

)
.

On peut vérifier que la solution unique de ce système est x = (2 − 2)T .
Imaginons maintenant qu’une petite erreur dans l’introduction de la matrice
change A(2, 2) en 0.144. Nous obtenons un sytème très proche avec

A =

(
1.2969 0.8648
0.2161 0.144

)
, b =

(
0.8642
0.1440

)
.

La solution du sytème est maintenant x = (0.6663 0.0002)T qui n’a plus
aucun chiffre commun avec la solution précédente.



1.2. ANALYSE DU COMPORTEMENT DES MÉTHODES 7

1.2.4 Influence des erreurs d’arrondi

Lorsque l’on travaille sur un ordinateur, on est obligé de représenter les
nombres de manière finie, souvent en arrondissant les décimales les moins
représentatives. Par exemple, on peut décider de travailler avec 16 chiffres si-
gnificatifs. Nous définirons précisément dans le Chapitre 2 ce que cela signifie.
Dans la plupart des cas, tronquer ainsi la signification d’un nombre n’a que
peu d’impact sur la solution finale recherchée. Il peut arriver néanmoins que
ces toutes petites erreurs s’accumulent et finissent par rendre les résultats
totalement erronés. Le cas le plus fréquent de perte de précision dûe aux
erreurs d’arrondis est lorsque l’on soustrait deux nombres très proches. Le
Chapitre 2 traitera de ce problème et tentera de proposer quelques pistes
pour le résoudre. Mais ce n’est pas le seul problème qui peut arriver comme
le montre l’exemple suivant.

Exemple 1.4 Nous souhaitons trouver une valeur approchée de l’intégrale
In =

∫ 1

0
xnexdx pour n = 20. En intégrant par parties, on voit que l’on

a In = e − n
∫ 1

0
xn−1exdx. On peut donc écrire la relation de récurrence

In = e−nIn−1. Par ailleurs I0 = e−1 ce qui implique que I1 = 1. Il est dès lors
aisé de calculer par récurrence les différentes valeurs de Ii pour i = 2, . . . , 20.
La Figure 1.1 reporte les valeurs ainsi calculées pour i = 1, . . . , 20 en trait
plein. Les ronds sur la Figure 1.1 reportent les valeurs réelles de l’intégrale.

Comme on peut le voir, la valeur approchée par récurrence est complètement
erronée pour n ≥ 17. Le tableau suivant reporte les valeurs calculées et réelles
pour n ≥ 17.

n In par récurrence In réel
17 0.1043 0.1434
18 0.8417 0.1362
19 -13.2742 0.1297
20 268.2026 0.1238

Comment un résultat assi aberrant peut-il être obtenu à partir d’une formule
à l’apparence aussi insignifiante ? La réponse est à trouver dans les erreurs
d’arrondis. En effet, lors du calcul de I2, si on considère que le calcul se fait
avec une précision de 16 décimales, une infime erreur est faite dans l’expres-
sion de e. Pour fixer les idées, supposons que cette erreur soit de 10−17 et
supposons que cela soit la seule erreur réalisée lors de tout le calcul. Si on
note par Ĩ2 la valeur calculée par récurrence, supposons donc que l’on ait
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Figure 1.1 – Valeur réelle et approchée par récurrence de
∫ 1

0
xnexdx

Ĩ2 = I2 + e2 avec |e2| = 10−17. Nous avons, dès lors, Ĩ3 = e− 3Ĩ2 = I3 − 3e2.
Si on continue de la sorte, on voit que l’on obtient successivement Ĩn = In+en
où |en| = n!|e2| = 10−17n!. Cela donne, en particulier, pour n = 20 une valeur
de l’erreur d’environ 24 et qui rend les valeurs calculées totalement dénuées
de sens.

L’exemple précédent montre à quel point il est crucial de vérifier qu’un
algorithme n’est pas trop sensible aux erreurs d’arrondis.

1.2.5 Conclusion

L’approche traditionnelle de l’analyse numérique est de se focaliser sur la
présentation des méthodes de résolution de problèmes et d’analyser leur com-
portement ensuite à la lumière de tous les phénomènes d’instabilité parfois
inattendus qui peuvent survenir. Nous ferons de même dans ce cours. Une
telle présentation qui met en avant les méthodes peut faire penser que celles-ci
priment sur l’analyse détaillée qu’on peut en faire. Il est néanmoins impor-
tant de garder à l’esprit les différents types d’erreur qui peuvent se présenter.
La fréquence de tels problèmes numériques n’étant pas extrêmement élevée,
et les logiciels modernes étant écrits de manière robuste, il est naturel d’ou-
blier petit à petit que des problèmes numériques parfois aigus se présentent.
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Un bon scientifique doit donc toujours garder l’esprit critique et prêter une
attention toute particulière à la stabilité des modèles et des méthodes qu’il
écrit et utilise.
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Chapitre 2

Représentation des nombres et
erreurs

Dans ce chapitre, nous formalisons la représentation des nombres dans
un ordinateur et les erreurs qui en résultent. Tout d’abord, nous rappelons
les principales notions relatives aux séries de Taylor qui constituent l’outil
principal pour l’analyse numérique.

2.1 Rappel sur les séries de Taylor

Rappelons brièvement l’expansion d’une fonction en série de Taylor.

Théorème 2.1 Soit f , une fonction possédant ses (n+1) premières dérivées
continues sur un intervalle fermé [a, b], alors pour chaque c, x ∈[a, b], f peut
s’écrire comme

f(x) =
n∑
k=0

f (k)(c)

k!
(x− c)k + En+1

où le terme d’erreur En+1 peut s’écrire sous la forme

En+1 =
f (n+1)(ξ)

(n+ 1)!
(x− c)n+1,

et ξ est un point situé entre c et x.

On dit que le terme d’erreur est d’ordre n+ 1. Il est parfois utile d’écrire
cela de manière plus compacte sous la forme En+1 = O(hn+1), où h représente

11
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x − c. La notation O(xp) permet de décrire le fait que la fonction tend au
moins aussi vite vers 0 que xp lorsque x tend vers 0.

Définition 2.1 Soit f : R 7→ R. On dit que f = O(xp) au voisinage de 0 si
il existe C ∈ R+ et x0 ∈ R+ tels que

|f(x)| ≤ C|xp| pour tout − x0 ≤ x ≤ x0.

Cette définition sera tres souvent utilisée. En effet, le degré minimal d’un
polynôme donne une idée très précise de la vitesse de convergence vers 0. Si
on approxime une valeur V en l’approchant itérativement par une fonction
f(h) quand h tend vers 0, une évaluation de f(h)− V en notation O donne
une mesure de la vitesse de convergence du processus itératif. Plus le degré
de convergence est élevé, plus la convergence se fait rapidement. Le théorème
de Taylor est un outil extrêmement puissant pour pouvoir moduler l’ordre
de précision que l’on souhaite d’une fonction.

2.2 Erreur absolue et relative

Lorsqu’un nombre est stocké dans l’ordinateur, il y a très souvent une er-
reur dont il faut tenir compte. Cette erreur peut provenir soit d’une approxi-
mation de l’algorithme, soit d’erreurs dans les données, soit enfin d’erreurs
dûes aux arrondis que la machine réalise pour correspondre à sa précision
finie. Il y a donc lieu de modéliser ces erreurs. Dans la définition de l’erreur
sur un nombre, on distingue deux cas.

Définition 2.2 Soit ã la valeur approchée d’une quantité dont la valeur
exacte est a. On appelle

(i) l’erreur absolue la quantité ã− a,

(ii) l’erreur relative la quantité ã−a
a
.

Lié à cette définition, on parle également de décimales correctes et de chiffres
significatifs. Le nombre de décimales correctes est lié à l’erreur absolue.
Lorsque la valeur absolue de l’erreur absolue ne dépasse pas 1

2
10−t, on dit que

ã a t décimales correctes. Le nombre de chiffres significatifs est, quant à lui,
lié à l’erreur relative. Le nombre de chiffres corrects de ã à partir du premier
chiffre ou à partir de la première décimale non nulle sont appelés chiffres
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significatifs. En particulier lorsque la valeur absolue de l’erreur relative ne
dépasse pas 1

2
10−s+1, on dit que ã a s chiffres significatifs.

Exemple 2.1 Considérons le nombre a = 1234.5678 et son approximation
ã = 1234.57. L’erreur absolue vaut ã − a = 0.0022 ≤ 0.5 10−2, donc ã a 2
décimales correctes. Si on considère l’erreur relative, on obtient 0.0022

1234.5678
≤

1
2
10−5, c’est-à-dire que ã a 6 chiffres significatifs.

En règle générale, on préférera toujours considérer l’erreur relative étant
donné la représentation en virgule flottante des nombres. Nous parlerons
de cette représentation dans la section suivante. Par rapport à la logique
des phénomènes physiques, chimiques ou mathématiques, parler de l’erreur
relative a également plus de sens. Si on demande la distance entre deux villes,
on s’arrêtera en général à préciser les kilomètres, sans rentrer dans les détails
des mètres et des centimètres qui ont peu de valeur pour un voyageur. On
peut dire, avec 1 chiffre significatif (voire 2), que la distance entre Bruxelles et
Liège est de 100 km, ce qui est, dans la plupart des applications, amplement
suffisant comme mesure, bien que l’erreur absolue se compte probablement
en kilomètres.

2.3 Représentation des nombres en virgule

flottante

Dans la plupart des ordinateurs, les nombres réels (mais pas les nombres
définis comme entiers) sont représentés en virgule flottante. Un nombre a est
ainsi défini par deux autres nombres m et q,

a = m 10q, avec 1 ≤ |m| < 10 et q ∈ Z.

La partie m est appelée la mantisse tandis que q est appelé l’exposant. En
réalité, la machine stocke la plupart des nombres en binaire, c’est-à-dire en
base 2 mais nous ferons, dans ce cours, l’approximation que tout se passe
réellement en base 10. Remarquons que cette approximation n’est pas tota-
lement anodine. Un nombre aussi simple que 0.1 est stocké sans erreur dans
une machine en base 10, alors qu’une erreur d’arrondi survient si on travaille
en base 2.
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Revenons maintenant à notre mantisse et à notre exposant. Ceux-ci sont
stockés sur un nombre fini de bits. Cela implique que seulement une quantité
finie de nombres réels peut être représentée dans ce système. Par exemple,
si q est stocké sur 8 bits, cela signifie que l’exposant se situe entre −127 et
128. Tout nombre dont l’exposant est supérieur à 128 ne pourra pas être
représenté dans ce système. On parle alors d’overflow. Il s’agit en général
d’une erreur qui cause l’arrêt d’un programme. Un nombre x dont l’exposant
est inférieur à −127 ne pourra pas non plus être correctement représenté.
On parle dans ce cas d’underflow. Cette erreur est moins grave car on peut
alors remplacer x par 0 en faisant une erreur relativement faible. Mais dans
certains cas, cette approximation peut évidemment être fatale. Imaginons
que l’on veuille ensuite diviser par x. . .

La mantisse est également stockée sur un nombre fini de bits. Cela im-
plique que la précision sur un nombre est limitée au nombre de décimales
que la mantisse peut contenir. En particulier, si un nombre x ne peut pas
être représenté en utilisant toutes les décimales, on choisit le nombre le plus
proche à pouvoir être représenté comme valeur de x. C’est ce qu’on appelle
l’arrondi. Nous reviendrons plus tard sur la façon d’arrondir. Mais nous pou-
vons déjà définir un concept important : celui d’epsilon machine. L’epsilon
machine représente la différence entre deux mantisses consécutives. Suppo-
sons, pour simplifier, que nous travaillions en base 10 avec 5 chiffres pour la
mantisse. Supposons que l’on parte de 1. Quel est le plus petit nombre qui
soit plus grand que 1 et qui soit représentable exactement dans l’ordinateur ?
Il s’agit de 1.0001. Tous les nombres compris entre 1 et 1.0001 ne peuvent être
représentés exactement et doivent être arrondis à l’un de ces deux nombres.
La différence 1.0001 − 1 = 0.0001 est appelé l’epsilon machine. On peut
également le voir comme le plus petit nombre ε tel que 1 + ε 6= 1 pour la
machine.

De manière assez courante, on travaille avec des nombres en double précision.
Ceux-ci sont stockés en base 2 avec 52 bits pour la mantisse (plus 1 pour le
signe de la mantisse) et 11 bits pour l’exposant. Dans ce cas, l’epsilon ma-
chine vaut 2−52 soit environ 2.2 10−16. Le nombre le plus élevé est, quant à
lui, approximativement égal à 21024 soit environ 1.8 10308. Il peut être utile
de connâıtre ces nombres lorsque l’on programme pour prévoir les difficultés
qui peuvent survenir.

Comme nous venons de le dire, un nombre doit, en général, être arrondi
pour pouvoir prendre place dans les 64 bits qui le représentent (dans le cas
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d’une double précision). Il existe une façon standard d’arrondir un nombre
qui est décrit par le standard dit IEEE. Comme on peut s’en douter, arrondir
un nombre x consiste à trouver le nombre x̃ qui puisse être représenté et qui
soit le plus proche possible de x. Considérons le cas d’une représentation en
base 10 de x, et que l’on travaille avec p décimales. La mantisse de l’arrondi
x̃ aura les mêmes p − 1 premiers chiffres que la mantisse de p. Le dernier
chiffre sera, soit le même, soit une unité plus élevée si le le (p+ 1)ème chiffre
est plus grand ou égal à 5.

Exemple 2.2 Supposons que l’on travaille avec trois chiffres décimaux dans
la mantisse. Alors nous avons que

125 est arrondi à 1.25 102

44.34 est arrondi à 4.43 101

59052 est arrondi à 5.91 104

0.1455 est arrondi à 1.46 10−1

Pour formaliser cet arrondi, nous pouvons supposer que l’arrondi d’un
nombre x à x̃ consiste à effectuer l’opération x̃ = fl(x) = (1 + δ)x et δ
est borné en valeur absolue par l’epsilon machine. Lorsqu’on effectue une
opération sur deux nombres machines, on peut en général faire l’approxima-
tion que le calcul se fait, dans un premier temps, correctement et qu’ensuite
le résultat est arrondi pour être stocké dans une variable. On aura donc que,
sur une machine,

fl(x± y) = (x± y)(1 + δ),

f l(xy) = (xy)(1 + δ),

f l(
x

y
) =

x

y
(1 + δ).

La chose est évidemment différente si les nombres x et y sont eux-mêmes déjà
des arrondis obtenus par des opérations précédentes. Il faudra alors évaluer,
par exemple, fl(fl(x) + fl(y)).

Exemple 2.3 Dans cet exemple, nous montrons qu’aucune borne ne peut
être déduite sur l’erreur relative faite de la soustraction de deux nombres
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arrondis. Nous calculons en effet z = fl(fl(x) − fl(y)). Nous dénotons par
εM l’epsilon machine. Nous obtenons successivement

z = fl(fl(x)− fl(y))

= (1 + δ3)((1 + δ1)x− (1 + δ2)y) pour |δ1|, |δ2|, |δ3| ≤ εM

= x− y + δ1x− δ2y + δ3x− δ3y + δ1δ3x− δ2δ3y
≈ (x− y) + x(δ1 + δ3)− y(δ2 + δ3) puisque δ1δ3x+ δ1x ≈ δ1x

et δ2δ3y + δ2y ≈ δ2y

Nous sommes à présent en mesure d’évaluer l’erreur relative.∣∣∣∣(x− y)− z
x− y

∣∣∣∣ ≈ ∣∣∣∣x(δ1 + δ3)− y(δ2 + δ3)

x− y

∣∣∣∣
=

∣∣∣∣(x− y)δ3 + xδ1 − yδ2
x− y

∣∣∣∣
=

∣∣∣∣δ3 +
xδ1 − yδ2
x− y

∣∣∣∣ . (2.1)

On peut remarquer que cette dernière expression ne peut pas être bornée a
priori. En effet, en particulier pour des x et y proches, la présence de x − y
au dénominateur peut faire craindre le pire. Mais même si on fixe x− y = 1
par exemple, l’expression peut s’avérer extrêmement élevée. Il suffit pour s’en
convaincre de prendre x et y beaucoup plus grands que 1

εM
. Comme |δ1| ≤ εM

et |δ2| ≤ εM , on pourrait, par exemple, avoir δ1 = εM et δ2 = 0. Dans ce cas,
la valeur de (2.1) est de δ3 +xεM . Comme x n’est pas borné (cas de x� 1

εM
),

l’expression n’est elle-même pas bornée.

Comme le dernier exemple le suggère, la soustraction de deux nombres
proches est une opération extrêmement délicate. C’est le sujet principal de
la section suivante.

2.4 Perte de précision

Illustrons tout d’abord la perte de précision qui peut résulter de la sous-
traction de deux nombres proches par un exemple.

Exemple 2.4 Considérons la fonction f(x) = sin x−x à évaluer au voisinage
de 0. Par exemple, évaluons séparément sinx et x pour x = 0.05 avec 8 chiffres
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de précision. Nous avons

fl(x) = 5.0000000 10−2

fl(sinx) = 4.9979169 10−2

fl(x)− fl(sinx) = 0.0020831 10−2

fl(fl(x)− fl(sinx)) = 2.0831000 10−5.

On voit qu’à la dernière étape, pour stocker le résultat final en format stan-
dard de virgule flottante, l’ordinateur doit rajouter trois zéros aux trois
dernières positions. Ces trois zéros n’ont évidemment aucune précision quel-
conque. En particulier, on peut dire que seuls les cinq premiers chiffres de la
mantisse sont réellement significatifs.

Le théorème suivant quantifie la perte de précision résultant de la sous-
traction de deux nombres proches.

Théorème 2.2 Soient x > y > 0 deux nombres représentés en format stan-
dard de virgule flottante. Si 10−p ≤ 1 − y

x
≤ 10−q pour deux entiers p et q,

alors il y a au plus p et au moins q décimales significatives qui sont perdues
lors de la soustraction x− y.

Il y a plusieurs façons de réaliser des soustractions “dangereuses” de manière
plus sûre.

La première méthode consiste, pour certaines opérations, à travailler avec
plus de décimales dans la mantisse. Ce n’est malheureusement pas toujours
la panacée. Travailler avec une plus grande précision peut être extrêmement
coûteux en mémoire et en temps de calcul. On peut bien sûr garder une
plus grande précision pour les calculs que l’on sait problématiques, mais on
peut ne pas alors avoir à sa disposition les décimales manquantes de nombres
calculés plus tôt. Enfin, travailler avec plus de précision ne fait que reporter le
problème. Pour des nombres proches mais plus grands, des pertes de précision
continueront à se produire.

Une deuxième méthode consiste à tirer parti, cette fois, des formules
analytiques. Dans certains cas, on peut en effet évaluer certaines fonctions
par des formules équivalentes mais plus stables numériquement. Illustrons
cette méthode par quelques exemples.
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(i) Soit f(x) =
√
x2 + 1− 1 à évaluer au voisinage de 0. En réécrivant, on

obtient

f(x) = (
√
x2 + 1− 1)

(√
x2 + 1 + 1√
x2 + 1 + 1

)
=

x2

√
x2 + 1 + 1

.

Dans la dernière expression, toute soustraction périlleuse a disparu.

(ii) Soit g(x) = x−sinx à évaluer au voisinage de 0. En utilisant l’expansion
en série de Taylor de sinx, on peut écrire

g(x) = x− (x− x3

3!
+
x5

5!
− · · · ) =

x3

3!
− x5

5!
+ · · · . (2.2)

Pour x proche de 0, il peut être plus stable d’utiliser (2.2) plutôt qu’un
calcul direct. Une utilisation intelligente du Théorème 2.2 permet de
savoir quelles sont les valeurs pour lesquelles il est plus sage d’utiliser
la formule (2.2).

(iii) Soit h(x) = lnx− 1 à évaluer au voisinage de e. A nouveau, une mani-
pulation analytique permet d’éviter de devoir effectuer la soustraction
de deux nombres proches. On aura donc

h(x) = ln x− 1 = ln x− ln e = ln
(x
e

)
. (2.3)

Le Théorème 2.2 permet de savoir les valeurs de x pour lesquelles utiliser
(2.3) est préférable.



Chapitre 3

Interpolations et Régressions

Dans ce chapitre, nous abordons le problème de l’approximaion d’une
fonction inconnue mais que l’on connâıt en nombre fini de points. C’est un
problème fondamental d’analyse numérique car dans la plupart des méthodes
numériques, on recherche une fonction que l’on n’est capable que d’approxi-
mer en des points discrets. C’est aussi un problème qui apparâıt, par exemple,
dans le cas de mesures d’un phénomène physique ou chimique. On ne sera
en général pas capable d’obtenir les mesures en temps continu, mais seule-
ment en un nombre prédéterminé de temps discrets où l’on aura décidé de
mesurer le phénomène. Ce chapitre est donc intéressant en soi mais consiste
également à créer une base dont on pourra se servir ultérieurement.

Soit une fonction inconnue u(x) mais que l’on connâıt aux n points
(x1, u(x1)), (x2, u(x2)), . . . , (xn, u(xn)). Il y a plusieurs techniques qui existent
pour tenter d’approximer u(x). Selon le type d’application nous concernant,
nous chosirons donc une technique différente. Dans ce cours, nous nous
concentrerons uniquement sur deux techniques qui cherchent une approxi-
mation ũ(x) de u(x) qui satisfasse ũ(xi) = u(xi) pour tout i = 1, . . . , n.

(i) La première approche repose sur le fait que par n points du plan, on
peut faire passer exactement un polynôme de degré n− 1. Nous allons
donc élaborer une formule qui établit ce polynôme de degré n − 1.
Nous verrons que cette approche, bien que très importante pour des
petits degrés, a un très mauvais comportement pour des degrés élevés
et approxime en général très mal la fonction u(x).

(ii) La deuxième approche consiste toujours à approximer u(x) par une
autre fonction ũ(x). Pour trouver ũ(x), nous conserverons néanmoins
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la contrainte que ũ(xi) = u(xi) pour tout i. Mais nous rajouterons des
contraintes qui imposeront un certain caractère lisse à la fonction ũ(x).
C’est ce qu’on appelle l’interpolation par splines.

3.1 Interpolation polynomiale

Soit u : R 7→ R une fonction inconnue, mais donnée en n points x1, . . . , xn.
On recherche un polynôme de degré n− 1,

P (x) =
n−1∑
i=0

aix
i (3.1)

qui satisfait P (xi) = u(xi) pour tout i = 1, . . . , n. Premièrement, il est
utile de remarquer que ce problème a une solution unique si tous les xi sont
différents.

Théorème 3.1 Soit un ensemble de n paires (xi, u(xi)). Si xi 6= xj pour
tout i 6= j, alors il existe un et un seul polynôme P (x) de degré au plus n− 1
qui satisfait P (xi) = u(xi) pour i = 1, . . . , n.

Démonstration: Pour le moment, nous ne prouvons que l’unicité de la solu-
tion. L’existence sera implicitement prouvée par la forme de Lagrange que
nous verrons dans la Section 3.1.2. Supposons dès lors qu’il existe deux po-
lynômes de degré au plus n − 1 P (x) et Q(x) différents qui interpolent les
mêmes n points. Nous pouvons alors définir le polynôme R(x) = P (x)−Q(x)
qui est donc, également, de degré au plus n− 1. Par ailleurs, nous avons que
R(xi) = 0 pour i = 1, . . . , n. Cela signifie en particulier que R a n racines.
Or, le seul polynôme de degré au plus n− 1 ayant n racines est R(x) = 0, ce
qui prouve l’unicité de la solution.

3.1.1 Matrice de Vandermonde

La façon la plus naturelle pour trouver les coefficients ai de (3.1) est
d’écrire le système d’équations que l’on obtient en écrivant ce qui se passe



3.1. INTERPOLATION POLYNOMIALE 21

aux points xi. On doit donc résoudre
1 x1 · · · xn−1

1

1 x2 · · · xn−1
2

...
. . .

...
1 xn · · · xn−1

n




a0

a1
...

an−1

 =


u(x1)
u(x2)

...
u(xn)

.

 (3.2)

Le membre de gauche de (3.2), que nous dénotons par V n(x) est également
appelée matrice de Vandermonde. On peut montrer que pour des xi différents,
cette matrice n’est jamais singulière (voilà une autre façon de prouver le
Théorème 3.1). En effet, on peut prouver que

det(V n(x)) =
∏

1≤i<j≤n

(xi − xj).

Le sytème est en réalité très instable numériquement et il n’est pas recom-
mandé de le résoudre directement. Nous pouvons analyser det(V n(x)) en
supposant que nous cherchons à approximer une fonction u(x) sur l’intervalle
[0, 1]. Nous supposons également que nous interpolons u(x) sur les abscisses
k
n

pour k = 1, . . . , n. Nous avons donc

| det(V n(x))| =
∏

1≤i<j≤n

j − i
n

=
(n− 1)(n− 2)2(n− 3)3 · · · 2n−2

n
n(n−1)

2

≤ nn2n3 · · ·nn−2

n
n(n−1)

2

=
n

(n−2)(n−1)
2

n
n(n−1)

2

=
1

nn−1
.

La dernière expression montre que le déterminant de la matrice de Van-
dermonde, dans le cas considéré, tend rapidement vers 0. Il s’ensuit que le
système sera très proche d’être singulier et par conséquent sujet à de nom-
breuses erreurs numériques. On préfèrera donc, en général, utiliser des for-
mules directes pour calculer le polynôme d’interpolation. Nous en dérivons
deux exemples dans les deux sections suivantes.
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3.1.2 Formule de Lagrange

La formule de Lagrange permet de calculer directement le polynôme d’in-
terpolation. Pour la dériver, définissons d’abord la fonction

li(x) =
(x− x1)(x− x2) · · · (x− xi−1)(x− xi+1) · · · (x− xn)

(xi − x1)(xi − x2) · · · (xi − xi−1)(xi − xi+1) · · · (xi − xn)

=

∏
k 6=i(x− xk)∏
k 6=i(xi − xk)

.

Premièrement remarquons que li(x) est un polynôme de degré n− 1. Il suffit
de remarquer que le dénominateur n’est, en fait, rien d’autre qu’un nombre
réel non nul. Ensuite, nous voyons que li satisfait

li(xi) = 1

li(xk) = 0 pour tout k 6= i.

Il s’ensuit que le polynôme

P (x) =
n∑
i=1

u(xi)li(x)

est la solution unique de notre problème. C’est ce qu’on appelle le polynôme
d’interpolation de Lagrange. La formule est aisée à dériver mais requiert
néanmoins pas mal de calculs. Nous présentons dans la section suivante une
autre formule pour trouver le polynôme d’interpolation qui est un peu plus
économique en temps de calcul.

3.1.3 Formule de Newton

Pour établir le polynôme d’interpolation, la formule de Newton procède
en quelque sorte par induction. On va créer n polynômes p0, p1, . . . , pn−1 de
degrés respectifs 0, 1, . . . , n− 1. L’idée est que le polynôme pk doit interpoler
les k + 1 premiers points.

On a naturellement p0(x) = u(x1).
Ensuite, on construit p1(x) = p0(x) + c1(x − x1). On a clairement p1(x1) =
u(x1). Afin d’obtenir le deuxième point d’interpolation, on calcule p0(x2) +
c1(x2 − x1) = u(x2). En d’autres termes, on obtient

c1 =
u(x2)− u(x1)

x2 − x1

. (3.3)
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Si on continue de la sorte, on construira en général

pi(x) = pi−1(x) + ci(x− x1)(x− x2) · · · (x− xi).

A nouveau, pi(x) satisfait, par construction, l’ordonnée aux i premières abs-
cisses d’interpolation. Pour obtenir le coefficient ci, on calculera pi(xi+1),
c’est-à-dire

ci =
u(xi+1)− pi−1(xi+1)

(xi+1 − x1) · · · (xi+1 − xi)
.

La méthode décrite précédemment permet de dériver assez rapidement le
polynôme d’interpolation. Il est encore possible de simplifier le calcul en
utilisant une jolie propriété des coefficients.

Théorème 3.2 Le polynôme d’interpolation est donné par

P (x) =
n∑
i=1

u[x1, . . . , xi](x− x1) · · · (x− xi−1),

où on définit

u[xi] = u(xi)

u[xi, . . . , xj] =
u[xi+1, . . . , xj]− u[xi, . . . , xj−1]

xj − xi
.

On voit que le théorème donne une valeur du coefficient en accord avec ce que
donne (3.3). Les coefficients u[xi, . . . , xj] sont également appelés différences
divisées. Ils sont très aisément obtenus en remplissant un tableau commençant
par les u[xi] et en procédant ensuite par induction.

3.1.4 Erreur d’interpolation

Supposons que l’on interpole des données (x1, u(x1)), . . . , (xn, u(xn)) par
un polynôme P (x) de degré n−1. Il est important de savoir quelle est l’erreur
que l’on fait sur la fonction u(x) lorsque l’on utilise P (x) à sa place. En
d’autres termes, on s’intéresse à la fonction e(x) = u(x)−P (x). Le théorème
suivant indique l’erreur réalisée.

Théorème 3.3 Soit u : R 7→ R et P (x) un polynôme interpolant les points
(x1, u(x1)), . . . , (xn, u(xn)). Si on suppose que xi ∈ [a, b] pour tout i, et que
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u(x) est n fois continûment dérivable sur [a, b], alors pour tout x ∈ [a, b], il
existe ξ ∈ [a, b] tel que

e(x) = u(x)− P (x) =
u(n)(ξ)

n!
(x− x1) · · · (x− xn). (3.4)

Démonstration: Il est évident que l’erreur d’interpolation sera nulle, par
définition, aux points xi. C’est bien le cas dans (3.4). Considérons main-
tenant x ∈ [a, b] fixé avec x 6= xi. Définissons

w(t) = (t− x1) · · · (t− xn) =
n∏
i=1

(t− xi),

c =
u(x)− P (x)

w(x)
=

e(x)

w(x)
,

φ(t) = u(t)− P (t)− cw(t).

Observons que w définit un polynôme de degré n, que c est une constante
car nous avons fixé x et que le dénominateur de c ne s’annule pas lorsque
x 6= xi pour tout i. Occupons-nous à présent de la fonction φ(t) définie sur
l’intervalle [a, b]. Remarquons tout d’abord que φ(xi) = 0 pour tout i. En
effet, u(xi) = P (xi) et clairement w(xi) = 0. De plus, on a φ(x) = 0 pour le
x que nous avons fixé. Le Théorème de Rolle affirme que pour toute fonction
f continue sur [y1, y2] telle que f(y1) = f(y2), il existe y3 ∈ [y1, y2] tel que
f ′(y3) = 0. Nous pouvons dès lors appliquer le Théorème de Rolle sur les
intervalles entre les n+ 1 racines de φ (x1, x2, . . . , xn et x) et nous trouvons
dès lors n racines de φ′(t). Par une nouvelle application du Théorème de
Rolle, on trouve que φ(2)(t) a n− 1 racines et ainsi de suite. Finalement, on
en conclut que φ(n)(t) a une racine sur l’intervalle [a, b]. Soit ξ ∈ [a, b] une
racine de φ(n)(t). Nous avons donc

0 = φ(n)(ξ) = u(n)(ξ)− P (n)(ξ)− cw(n)(ξ). (3.5)

Dans (3.5), P (n) = 0 car P est un polynôme de degré au plus n− 1. De plus,
comme w(t) est un polynôme de degré n dont le coefficient de tn est 1, on en
déduit que w(n)(t) = n!. On peut dès lors réécrire (3.5) comme

0 = u(n)(ξ)− cn! = u(n)(ξ)− n! e(x)

(x− x1) · · · (x− xn)
,

ce qui est exactement l’expression désirée en (3.4).
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La question est de savoir comment interpréter un tel théorème. Première-
ment, il est aisé de voir que la borne de l’erreur aux points d’interpolation est
nulle. C’est déjà rassurant ! Ensuite, on voit que pour calculer une borne sur
l’erreur, il faudra connâıtre une borne sur la ne dérivée de u. Enfin, le facteur
(x−x1) · · · (x−xn) fait fortement osciller la borne de l’erreur lorsque x varie
sur l’intervalle. C’est une des raisons majeures pour laquelle une interpola-
tion polynomiale de haut degré est rarement une bonne approximation d’une
fonction. Mais nous analysons cela plus en détails dans les sections suivantes.

3.1.5 Choix des abscisses d’interpolation

Il n’est pas évident a priori que le choix des abscisses d’interpolation
joue un rôle crucial dans la qualité de l’approximation d’une fonction par
son interpolation. On peut pourtant voir dans l’expression (3.4), que l’erreur
dépend du choix des abscisses par l’intermédiaire du facteur (x−x1) · · · (x−
xn). Cette dépendance peut même être très forte comme nous allons le voir
maintenant. L’exemple suivant est classique en analyse numérique.

Exemple 3.1 (Phénomène de Runge) Considérons la fonction u(x) = 1
1+x2

sur l’intervalle [−5, 5]. Dans un premier temps, nous prenons l’option assez
naturelle de l’interpoler sur des abscisses équidistantes. Afin de comparer le
choix entre peu et beaucoup de points d’interpolation, nous interpolons la
fonction pour 3, 6, 11 et 21 points équidistants respectivement. Le résultat
de l’interpolation de Lagrange est reporté sur la Figure 3.1. Sur la figure, la
fonction u(x) est représentée en trait pointillé tandis que l’interpolation est
reportée en trait plein. La première importante constatation est que l’interpo-
lation ne converge pas vers la fonction lorsque le nombre de points augmente.
Nous avons en effet

lim
n→∞

max
x∈[−5,5]

|Pn(x)− u(x)| =∞,

où Pn(x) est le polynôme de degré n − 1 obtenu à partir de l’interpola-
tion de n points équidistants. Par ailleurs, on voit que l’interpolation est
particulièrement mauvaise aux extrémités de l’intervalle. Si on s’éloigne de
l’intervalle, l’approximation serait évidemment encore plus mauvaise. Il est
à noter que ce phénomène n’est pas seulement dû au cas pathologique de la
fonction étudiée ici. Des oscillations de plus en plus éloignées de la fonction
se produisent en général lorsque l’on interpole une fonction par un polynôme
de degré très haut.
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Figure 3.1 – Interpolation de la fonction de Runge avec des abscisses
équidistantes

Nous allons étudier dans cette section l’interpolation aux abscisses de
Chebyshev. Pour motiver cette étude, voyons ce que cela donne dans le cas
de la fonction étudiée ici. L’idée de cette interpolation est de choisir les abs-
cisses de manière à optimiser l’erreur, en particulier l’erreur induite par le
facteur (x − x1) · · · (x − xn). Pour ce faire, on doit choisir plus d’abscisses
aux extrémités de l’intervalle. Nous avons, à nouveau, interpolé la fonction à
partir de 3, 6, 11 et 21 points. Le résultat de l’interpolation est renseigné à la
Figure 3.2. A nouveau, la fonction est représentée en pointillé tandis que les
interpolations sont reportées en trait plein. On voit que dans ce cas-ci, l’in-
terpolation est bien meilleure sur l’intervalle considéré. Elle converge même
lorsque n tend vers l’infini. Il est bien entendu qu’en dehors de l’intervalle,
l’approximation peut devenir très mauvaise. Voyez à ce sujet la Figure 3.3
qui reporte les valeurs sur l’intervalle [−10, 10].

Comme nous l’avons suggéré dans l’Exemple 3.1, il est intéressant d’ana-
lyser une fois encore l’expression (3.4) afin de déterminer les abscisses d’in-
terpolation qui donneront lieu à l’erreur minimale. On voit que, pour n et u
fixés, la borne de l’erreur ne varie qu’en fonction de (x−x1) · · · (x−xn). Il est
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Figure 3.2 – Interpolation de la fonction de Runge avec les abscisses de
Chebyshev
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Figure 3.3 – Fonction de Runge et ses interpolations sur l’intervalle [−10, 10]
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Figure 3.4 – Polynôme (x−x1) · · · (x−xn) pour des abscisses équidistantes

aussi important de noter que cette valeur change lorsque l’on change le choix
des n abscisses. Pour le choix d’abscisses équidistantes, on peut se deman-
der pourquoi l’erreur est élevée aux bords de l’intervalle. Pour ce faire, nous
allons représenter le produit (x − x1) · · · (x − xn). La Figure 3.4 représente
la valeur du produit (x − x1) · · · (x − xn) pour les 4 choix de n opérés dans
l’exemple. On voit que proportionnellement, l’erreur est plus élevée sur les
bords de l’intervalle qu’au centre. Ceci est en particulier vrai lorsque n aug-
mente. Les polynômes de Chebyshev sont des polynômes qui minimisent leur
valeur maximale atteinte sur l’intervalle. En particulier, le polynôme de Che-
byshev de degré n a n racines sur l’intervalle [−1, 1] et n − 1 minima et
maxima. Une propriété importante est que tous ces minima et maxima at-
teignent exactement la même valeur (en valeur absolue). De cette façon, il n’y
a aucune partie de l’intervalle où l’interpolation est extrêmement mauvaise
comparée au reste de l’intervalle. Nous introduisons à présent les polynômes
de Chebyshev.

Définition 3.1 Le polyôme de Chebyshev de degré n, Tn : [−1, 1] 7→ R est
défini comme

Tn(x) = cos(n arccos(x)). (3.6)

Au vu de la définition, il n’est pas évident que Tn(x) est un polynôme. En
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effet, Tn(x) ne peut être défini qu’à partir de l’intervalle [−1, 1]. Néanmoins,
les propriétés suivantes vont montrer que Tn se ramène à un polynôme sur
l’intervalle [−1, 1].

Proposition 3.1 Sur l’intervalle [−1, 1], nous avons

Tn+1(x) = 2xTn(x)− Tn−1(x), (3.7)

pour tout n = 1, 2, . . . De plus, T0(x) = 1 et T1(x) = x.

Démonstration: Clairement, on a T0(x) = cos(0) = 1 et T1(x) = cos(arccos(x)) =
x pour x ∈ [−1, 1]. Pour prouver (3.7), nous utilisons une formule d’addition
de la trigonométrie, à savoir,

cos(α + β) = cos(α) cos(β)− sin(α) sin(β).

On obtient alors respectivement

Tn+1(x) = cos(arccos(x)) cos(n arccos(x))− sin(arccos(x)) sin(n arccos(x)) et
(3.8)

Tn−1(x) = cos(arccos(x)) cos(n arccos(x)) + sin(arccos(x)) sin(n arccos(x)).
(3.9)

En additionnant (3.8) et (3.9), on obtient

Tn+1(x) + Tn−1(x) = 2 cos(arccos(x)) cos(n arccos(x)).

Puisque cos(arccos(x)) = x sur l’intervalle [−1, 1] et que cos(n arccos(x)) =
Tn(x), on obtient (3.7).

Proposition 3.2 Sur l’intervallle [−1, 1], Tn(x) est un polynôme de degré
n.

Démonstration: Procédons par induction sur n.
On a clairement que T0(x) = 1 et T1(x) = x sont des polynômes. De plus, si
Tn−1(x) et Tn(x) sont des polynômes, par la formule de récurrence (3.7), il
s’en suit que Tn+1(x) est également un polynôme.
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Nous avons déclaré plus haut qu’il existe une propriété importante des ex-
trema des polynômes de Chebyshev. Nous la précisons dans la Proposition
suivante.

Proposition 3.3 Pour n impair, Tn(x) a, sur l’intervalle [−1, 1], (n+ 1)/2
maxima où Tn(x) vaut 1 et (n+ 1)/2 minima où la fonction vaut −1.
Pour n pair, Tn(x) a, sur l’intervalle [−1, 1], (n+2)/2 maxima et n/2 minima
où la valeur absolue de Tn(x) vaut 1.

Démonstration: Supposons n impair. Comme Tn(x) est de degré n, nous
savons que T ′n(x) est de degré n− 1 et a, dès lors, au plus n− 1 racines. Par
conséquent, si on compte les n−1 points où la dérivée de Tn(x) s’annule et les
deux extrémités de l’intervalle, on en déduit que Tn(x) a au plus n+1 extrema.
De plus, au vu de (3.6), nous avons −1 ≤ Tn(x) ≤ 1. Nous allons montrer
qu’il existe (n + 1)/2 points pour lesquels Tn(x) vaut 1 et (n + 1)/2 points
pour lesquels Tn(x) vaut -1. Ces points seront par conséquent les uniques
extrema de Tn(x). Cherchons d’abord les maxima. On recherche x ∈ [−1, 1]
tel que

cos(n arccos(x)) = 1.

On a donc
n arccos(x) = 2kπ, avec k = 0, 1, . . .

Dès lors, les (n+ 1)/2 maxima sont donnés par

x = cos

(
2kπ

n

)
, avec k = 0, . . . ,

n− 1

2
.

Similairement, on a que les (n+ 1)/2 minima sont donnés par

x = cos

(
(2k + 1)π

n

)
, avec k = 0, . . . ,

n− 1

2
.

Le cas où n est pair est similaire.

La Figure 3.5 représente le polynôme de Chebyshev pour quatre valeurs de
n. On voit que, comparé à la Figure 3.4, l’erreur dans le cas de l’utilisation
des abscisses de Chebyshev, est répartie équitablement sur tout l’intervalle.
On peut prouver que, de cette façon, l’erreur que l’on fait est minimale. Il
est maintenant temps de déterminer quelles sont les abscisses des racines des
polynômes de Chebyshev.
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Figure 3.5 – Polynôme de Chebyshev pour quatre valeurs de n

Proposition 3.4 Les n racines de Tn(x), sur l’intervalle [−1, 1] sont

xk = cos

(
(2k + 1)π

2n

)
k = 0, . . . , n− 1. (3.10)

Démonstration: Nous cherchons x ∈ [−1, 1], tel que

n arccos(x) =
π

2
+ kπ k = 0, 1, . . .

Par conséquent, on a que

xk = cos

(
π

2n
+
kπ

n

)
k = 0, . . . , n− 1,

ce qui peut se réécrire comme (3.10).

L’interpolation aux abscisses de Chebyshev consiste à utiliser les valeurs
données par (3.10) pour interpoler. Nous avons vu sur l’Exemple 3.1 que
cette manière de faire est plus stable. Lorsque l’intervalle d’interpolation
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n’est pas [−1, 1], on peut, par un simple changement de variables, se rame-
ner au cas standard. Ainsi si l’on travaille sur l’intervalle [a, b], les abscisses
de Chebyshev sont données par

xk =
a+ b

2
+
b− a

2
cos

(
(2k + 1)π

2n

)
k = 0, . . . , n− 1.

3.2 Interpolation par splines

Le message principal à retenir de la section précédente est que l’interpola-
tion de nombreux points par un polynôme de très haut degré donne souvent
des résultats décevants. On peut néanmoins vouloir faire passer une courbe
par un certain nombre de points tout en demandant que la courbe soit suf-
fisamment lisse et ne contienne pas d’oscillations non souhaitées. C’est le
thème de cette section. Ces courbes sont appelées splines. Elles peuvent être
utiles, par exemple, dans le design. Le designer fixe quelques points et de-
mande à l’ordinateur de déterminer une courbe “jolie” à l’oeil qui passe par
tous ces points.

3.2.1 Interpolation par splines cubiques

Dans la section précédente, nous avons cherché un unique polynôme qui
passe par tous les points. Dans cette section, nous allons réaliser l’interpo-
lation par morceaux. En d’autres termes, entre chaque paire de points, nous
aurons un polynôme différent. La première façon naturelle de faire passer
une courbe par un certain nombre de points et de considérer des fonctions
linéaires entre chaque paire de points consécutifs. Si on a initialement n
points, la fonction sera alors décrite par n− 1 fonctions linéaires différentes.
La Figure 3.6 montre l’exemple d’une interpolation linéaire par morceaux.
Ce genre d’interpolation peut être très pratique lorsqu’il s’agit d’approximer
la valeur d’une fonction qui est connue expérimentalement pour de nombreux
points. En effet, on peut montrer à l’aide de la formule d’erreur (3.4) de la
section précédente appliquée à des polynômes de degré 1 que si on augmente
le nombre de points, l’erreur commise va tendre vers 0. Néanmoins, la fonc-
tion est très rudimentaire et n’est certainement pas “jolie” (bien que cela
soit là un critère particulièrement subjectif). Une façon simple de généraliser
la simple interpolation linéaire par morceaux est toujours de considérer un
polynôme différent pour chaque intervalle de points consécutifs. Mais au lieu
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Figure 3.6 – Exemple d’interpolation linéaire par morceaux

de calculer un polynôme de degré 1 à chaque intervalle, on peut augmen-
ter le degré du polynôme et imposer des conditions de continuité sur les
dérivées successives. Le cas le plus courant en pratique est de considérer des
polynômes de degré 3 à chaque intervalle. Dénotons par pi(x) le polynôme de
degré 3 passant par les points (xi, u(xi)) et (xi+1, u(xi+1)). Nous imposerons
dès lors les conditions successives

pi(xi) = u(xi) pour i = 1, . . . , n− 1 (3.11)

pi(xi+1) = u(xi+1) pour i = 1, . . . , n− 1 (3.12)

p′i−1(xi) = p′i(xi) pour i = 2, . . . , n− 1 (3.13)

p′′i−1(xi) = p′′i (xi) pour i = 2, . . . , n− 1. (3.14)

Les 2n− 2 conditions (3.11)-(3.12) assurent la continuité de la fonction. Les
n−2 conditions (3.13) et les n−2 conditions (3.14) assurent le caractère lisse
de la courbe en jouant sur la continuité de la dérivée et de la dérivée seconde
respectivement. On voit donc que l’on dispose de 4n − 6 conditions. Or on
doit calculer n− 1 polynômes de degré 3 pi(x) = ai,3x

3 + ai,2x
2 + ai,1x+ ai,0,

c’est-à-dire que l’on a 4 coefficients à calculer pour chaque polynôme. Au
total, cela fait donc 4n− 4 coefficients. Il nous manque donc deux conditions
pour pouvoir déterminer une solution unique au problème. Plusieurs choix
peuvent être faits :
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(i) Le choix le plus typique consiste à imposer une courbure nulle au début
et à la fin de l’intervalle, à savoir

p′′1(x1) = 0, p′′n−1(xn) = 0.

On appelle une spline naturelle la courbe ainsi calculée.

(ii) Un autre choix possible est d’imposer la même courbure au début et à
la fin des premier et dernier intervalles, à savoir

p′′1(x1) = p′′1(x2), p′′n−1(xn−1) = p′′n−1(xn).

(iii) Dans certains cas, la pente est connue au début et à la fin de l’intervalle.
On aura alors p′1(x1) = u′(x1) et p′n−1(xn) = u′(xn).

(iv) Finalement la solution choisie par matlab est d’imposer une dérivée
troisième constante sur les deux premiers et les deux derniers intervalles
respectivement. De manière équivalente, ceci revient à imposer le même
coefficient de x3 sur les deux premiers et les deux derniers intervalles.

La Figure 3.7 représente la juxtaposition de l’interpolation linéaire par mor-
ceaux (en pointillés) avec une spline cubique calculée pour les mêmes points
d’interpolation (en trait plein).

3.2.2 Qualité de l’interpolation par spline cubique

Dans un certain sens, on peut dire que l’interpolation par spline cubique
est l’interpolation la plus lisse que l’on puisse trouver. Dans cette section,
nous prouvons que c’est en particulier l’inteprolation qui minimise les os-
cillations. Dans le cas de l’interpolation polynomiale, nous avons vu qu’un
grand nombre d’oscillations non désirées apparaissaient. Cela induit en par-
ticulier une valeur élevée de la dérivée seconde du polynôme. La proposition
suivante quantifie la qualité de l’interpolation par spline cubique.

Proposition 3.5 Soit S la spline cubique naturelle interpolant aux points
(x1, u(x1)), . . . , (xn, u(xn)) une fonction u(x) deux fois continûment dérivable.
On a ∫ xn

x1

(S ′′(x))2dx ≤
∫ xn

x1

(u′′(x))2dx. (3.15)
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Figure 3.7 – Une spline cubique

Démonstration: Nous définissons l’erreur d’interpolation comme

e(x) = u(x)− S(x).

Comme u et S sont deux fois dérivables, nous avons u′′(x) = S ′′(x) + e′′(x).
Dès lors,∫ xn

x1

(u′′(x))2dx =

∫ xn

x1

(S ′′(x))2dx+

∫ xn

x1

(e′′(x))2dx+ 2

∫ xn

x1

S ′′(x)e′′(x)dx.

(3.16)
Nous allons prouver que le dernier terme de cette expression est nul. En
intégrant par parties, on obtient∫ xn

x1

S ′′(x)e′′(x)dx = [S ′′(x)e′(x)]xn
x1
−
∫ xn

x1

S ′′′(x)e′(x)dx

= −
∫ xn

x1

S ′′′(x)e′(x)dx

puisque, pour une spline cubique naturelle, on a que la dérivée seconde s’an-
nule aux deux extrémités de l’intervalle. Si on continue de développer, on



36 CHAPITRE 3. INTERPOLATIONS ET RÉGRESSIONS

obtient ∫ xn

x1

S ′′′(x)e′(x)dx =
n−1∑
i=1

∫ xi+1

xi

S ′′′(x)e′(x)dx.

Remarquons que, comme S est un polynôme de degré 3 sur chaque intervalle,
sa dérivée troisième est une constante ci sur chaque intervalle [xi, xi+1]. Nous
en déduisons finalement que∫ xn

x1

S ′′′(x)e′(x) =
n−1∑
i=1

ci

∫ xi+1

xi

e′(x)dx

=
n−1∑
i=1

ci(e(xi+1)− e(xi))

= 0

puisque l’erreur e s’annule pour tous les points xi. Si on insère ce dernier
résultat dans (3.16), on obtient maintenant∫ xn

x1

(u′′(x))2dx =

∫ xn

x1

(S ′′(x))2dx+

∫ xn

x1

(e′′(x))2dx

≥
∫ xn

x1

(S ′′(x))2dx

puisque l’intégrale définie du carré d’une fonction est positive.

Par conséquent, si on considère comme critère, de minimiser l’intégrale du
carré de la dérivée seconde, tout en conservant des fonctions deux fois dérivables,
la spline cubique naturelle est la meilleure interpolation possible.



Chapitre 4

Résolution d’équations non
linéaires

Dans ce chapitre, nous passons en revue les principales méthodes numé-
riques qui existent pour trouver une racine d’une équation ou d’un système
non linéaire. Au delà des méthodes elles-mêmes, nous insisterons sur l’étude
de leur comportement. En particulier, une question importante qui sera
abordée est la notion de convergence des méthodes. C’est cette question
cruciale qui peut être déterminante dans le choix d’une méthode par rapport
à une autre.

Pour mettre les idées en place, et pour commencer, nous recherchons une
racine de l’équation

f(x) = 0. (4.1)

A l’exception de la recherche des racines d’un polynôme, il n’existe pas
de méthode capable de rechercher toutes les racines de (4.1). Toutes les
méthodes que nous développons ici sont itératives, c’est-à-dire qu’elles cons-
truisent une suite (xn) avec la propriété que

lim
n→∞

xn = x̄,

où f(x̄) = 0. En règle générale, il est très difficile de prévoir vers quelle
racine x une méthode converge. Si la racine trouvée n’est pas celle souhaitée,
il faudra recommencer l’algorithme avec un autre point de départ.

Nous commençons ce chapitre par la méthode la plus simple et que
nous avons également présentée brièvement dans l’introduction, à savoir la
méthode de la dichotomie ou bisection.

37
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4.1 Méthode de la bisection

Supposons que l’on cherche à localiser une racine d’une fonction continue
f(x). Si de plus, on connâıt deux points a0 et b0 tels que f(a0) < 0 et
f(b0) > 0. On suppose sans perte de généralité que a0 < b0. Dès lors, le
théorème des valeurs intermédiaires nous garantit qu’une racine x de f existe
sur l’intervalle [a0, b0]. L’algorithme de la bisection consiste à définir xi :=
ai−1+bi−1

2
. Si f(xi) < 0, alors ai := xi et bi := bi−1. Si, en revanche, f(xi) > 0,

alors ai := ai−1 et bi := xi. Il n’est pas difficile de prouver que la méthode de
la bisection converge vers une racine x avec un taux de convergence linéaire.

Proposition 4.1 Soit x̄ une racine (supposée unique) de f sur l’intervalle
[a0, b0]. Alors on a

|x̄− xn| ≤
(b0 − a0)

2n
.

Démonstration: La taille de l’intervalle [ai, bi] est exactement divisée par 2 à
chaque itération. De plus, comme la racine x̄ se trouve soit dans la première,
soit dans la deuxième partie de l’intervalle, on en déduit que la distance entre
x̄ et xn est inférieure ou égale à la moitié de la taille de l’intervalle à l’itération
n. Le résultat découle ensuite du fait que la taille de l’intervalle à l’itération
n est égal à b0−a0

2n−1 .

La méthode de la bisection admet donc un taux de convergence linéaire. Par
souci de précision, nous rappelons ici la définition du taux de convergence
qui avait été abordé dans l’introduction.

Définition 4.1 Lorsque yn → y avec |yn − y| ≤ c0c
pn, pour c0, p > 0 et

0 < c < 1, on dit que la suite (yn) a un taux de convergence d’ordre p.

Lorsque p = 1 comme dans le cas de la méthode de la bisection, on parle
de convergence linéaire. Pour p > 1 en général, on parle de convergence
superlinéaire et pour p = 2, de convergence quadratique.

Comme dit précédemment, la méthode de la bisection est très facile à
mettre en oeuvre et admet une bonne stabilité. Le seul point négatif est
qu’elle nécessite deux points de départ a0 et b0 qui peuvent être difficiles à
trouver. Dans certains cas, de tels points n’existent même pas. Par exemple,
pour une fonction qui admet une racine double, il est impossible de mettre
la méthode de la bisection en oeuvre au voisinage de la racine. De plus, la
méthode nécessite la continuité de la fonction. Des résultats erronés peuvent
apparâıtre si on néglige ce point.
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4.2 Méthode du point fixe

La force de la méthode de la bisection est sa robustesse. Sa faiblesse est
le relatif mauvais ordre de convergence. La méthode du point fixe ne corrige
pas cette faiblesse. Il est néanmoins intéressant de l’étudier car il s’agit d’une
méthode générique. Nous verrons plus tard la méthode de Newton-Raphson
qui en est une généralisation. On peut également utiliser une généralisation
de la méthode de point fixe dans le cas de la résolution de systèmes linéaires.
Supposons à nouveau que nous cherchions une solution à f(x) = 0. Par
ailleurs, imaginons que nous arrivions à réécrire l’équation sous la forme
x = g(x). Arrêtons nous quelques instants sur cette réécriture. Il s’agit en
réalité d’une opération plus simple qu’il n’y parâıt sauf si nous ne disposons
pas de la forme analytique de f . C’est ce que l’exemple suivant tente de
montrer.

Exemple 4.1 Supposons que nous cherchions la racine de l’équation donnée
dans le chapitre 1

x3 + x− 1 = 0.

Il existe plusieurs façons de réécrire l’équation sous la forme x = g(x). On
écrira, par exemple,

x = −x3 + 1

x = 3
√
−x+ 1

x = x3 + 2x− 1

x =
1

x2 + 1
.

Nous comparerons plus tard l’efficacité de ces différentes réécritures et nous
verrons qu’elles sont loin d’être équivalentes pour les performances de la
méthode du point fixe. Le but de cet exemple est surtout de montrer qu’il
existe souvent un grand nombre de façons d’obtenir la forme x = g(x).

La méthode du point fixe est encore plus simple à mettre en oeuvre que
la méthode de la bisection. L’algorithme s’écrit en effet en une ligne

xk+1 = g(xk).

Il faut bien entendu choisir un point de départ x1. Graphiquement, on part
d’un point x1, on calcule la valeur g(x1) (trait vertical), on reporte cette
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Figure 4.1 – 4 itérations de la méthode du point fixe pour x = cosx

valeur sur l’abscisse (trait horizontal) et on itère. La Figure 4.1 représente
quelques itérations de la méthode du point fixe dans le cas de l’équation
x = cosx. Le tableau 4.1 indique les 8 premières itérations. Sur la Figure et
en faisant quelques itérations, on remarque que la méthode converge vers une
solution de l’équation. Il n’en est pourtant pas toujours ainsi. Considérons à
présent la troisième version que nous avons écrite dans l’Exemple 4.1 pour
résoudre x3 + x − 1 = 0. On va calculer des valeurs successives xk+1 =
x3
k+2xk−1. Si on part de x1 = 1 ou de x1 = 0, on obtient le tableau 4.2 avec

les deux suites. Dans les deux cas, la méthode diverge assez rapidement. Ce
sera d’ailleurs le cas pour tout point x1 choisi (sauf la racine évidemment). Ce
que l’on peut remarquer, c’est que c’est |g′(x)| qui détermine si la méthode
converge ou pas. Pour une valeur absolue inférieure à 1 au voisinage de la
racine, la méthode peut être convergente. Dans le cas d’une valeur abso-
lue supérieure à 1, la méthode diverge. C’est ce qu’indique intuitivement la
Figure 4.2. Le théorème suivant formalise une condition suffisante de conver-
gence relativement générale. Nous verrons par la suite que la condition intui-
tive |g′(x)| < 1 en est un cas particulier.

Théorème 4.1 Soit g(x) une fonction dont x̄ est un point fixe g(x̄) = x̄.
Considérons l’intervalle I = {x | |x − x̄| ≤ r} pour r > 0. Si g satisfait la
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Itération xk cosxk
1 0 1
2 1 0.5403
3 0.5403 0.8576
4 0.8576 0.6543
5 0.6543 0.7935
6 0.7935 0.7014
7 0.7014 0.7640
8 0.7640 0.7221

Table 4.1 – 8 itérations de la méthode du point fixe pour x = cosx

Itération xk x3
k + 2xk − 1 Itération xk x3

k + 2xk − 1
1 1 2 1 0 −1
2 2 11 2 −1 −4
3 11 1352 3 −4 −73

Table 4.2 – 3 itérations divergentes de la méthode du point fixe

3

1

x1

x2

x
x2

x3

x

Figure 4.2 – La méthode converge pour |g′(x)| < 1 et diverge pour |g′(x)| >
1
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condition de Lipschitz

|g(x)− g(x̄)| ≤ L|x− x̄| pour tout x ∈ I,

avec 0 < L < 1, alors l’itération xk+1 = g(xk) converge vers x̄ pour tout
point de départ x1 ∈ I.

Démonstration: Nous allons prouver que

(i) tous les itérés xn appartiennent à I,

(ii) dans l’intervalle I, la racine x̄ est unique,

(iii) les itérés xn convergent vers x̄.

Nous démontrons le point (i) par récurrence. Par hypothèse, x1 appartient
à I. Supposons alors que xn−1 appartient à I, on en déduit

|xn − x̄| = | g(xn−1)− g(x̄)|
≤ L|xn−1 − x̄|
≤ r,

c’est-à-dire que xn appartient également à I.

En ce qui concerne l’unicité (point (ii)), remarquons que s’il y avait deux
points fixes x̄ et ȳ, on aurait

|x̄− ȳ| = |g(x̄)− g(ȳ)| ≤ L|x̄− ȳ| < |x̄− ȳ|.

Cette contradiction indique que l’on doit avoir x̄ = ȳ.

Quant au point (iii), on obtient successivement :

|xn − x̄| ≤ L|xn−1 − x̄| (4.2)

≤ L2|xn−2 − x̄|
...

≤ Ln−1|x1 − x̄|

d’où, pour n → ∞, xn → x̄ puisque L < 1.

Un cas particulier intéressant du Théorème 4.1 est quand la valeur absolue
de la dérivée est inférieure à 1 sur tout l’intervalle.
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Proposition 4.2 Soit g une fonction dérivable qui admet un point fixe x̄.
Considérons l’intervalle I = {x | |x− x̄| ≤ r}. Si pour tout x ∈ I, on a

|g′(x)| ≤ C < 1,

alors l’itération xk+1 = g(xk) converge vers x̄ pour tout point de départ x1 ∈
I.

Démonstration: Nous allons montrer que l’hypothèse du Théorème 4.1 est
satisfaite. Nous avons en effet, pour tout x ∈ I,

|g(x)− g(x̄)| = |g′(ξ)(x− x̄)| (4.3)

= |g′(ξ)||x− x̄|
≤ C|x− x̄|,

où (4.3) est obtenu en vertu du théorème des accroissements finis pour un ξ
entre x et x̄.

Il est intéressant de remarquer que (4.2) implique que l’ordre de conver-
gence de la méthode est linéaire. Il est également important de voir que plus
L est petit, plus la méthode sera rapide. Nous avons également vu que la
preuve de la Proposition 4.2 implique que si |g′(x)| ≤ C sur l’intervalle, nous
avons C ≤ L. A nouveau, une borne peu élevée sur la dérivée mènera à une
convergence plus rapide.

Exemple 4.2 Si on reprend les expressions trouvées dans l’Exemple 4.1, on
trouve des comportements totalement différents en fonction de g(x). Reportons-
les dans le tableau suivant.

g(x) g′(x) Borne de Intervalle de
|g′(x)| sur [0, 1] convergence autour

de x̄ ≈ 0.682
−x3 + 1 −3x2 3 ∅
3
√
−x+ 1 − 1

3(−x+1)
2
3

+∞ (2x̄− 1 +
(

1
3

) 3
2 , 1− (1

3
)

3
2 )

≈ (0.5565, 0.8075)
x3 + 2x− 1 3x2 + 2 5 ∅

1
x2+1

−2x
(x2+1)2

1 R
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Remarquons que le Théorème 4.1 produit une condition suffisante de
convergence. La condition n’est cependant pas toujours nécessaire. Dans
l’Exemple 4.2, on peut prouver, par exemple, que la deuxième forme pro-
duit une convergence pour tout point de départ dans (0, 1). Il arrive, en
effet, quelquefois que dans le courant de l’agorithme, on retombe presque par
hasard dans une zone où il y a convergence.

4.3 Méthode de la sécante

4.3.1 Exposé de la méthode

Jusqu’à présent, toutes les méthodes que nous avons vues jouissent d’une
convergence linéaire, dans le cas où elles convergent. Nous allons à présent
améliorer la méthode de la bisection et obtenir un processus dont l’ordre de
convergence est superlinéaire. L’idée de la méthode de la sécante est assez
similaire à celle de la bisection. A chaque itération, on conserve les deux
derniers itérés xi−1 et xi. Mais cette fois, nous ne nécessitons aucune hy-
pothèse sur le signe des deux itérés. A la place, nous allons approximer la
fonction f par la droite qui relie les deux points (xi−1, f(xi−1)) et (xi, f(xi))
et rechercher la racine de cette droite. Cette racine sera le nouvel itéré xi+1.
Mathématiquement, on calcule l’itéré par la formule

xi+1 = xi −
f(xi)(xi − xi−1)

f(xi)− f(xi−1)
.

L’interprétation géométrique est indiquée sur la Figure 4.3. On voit qu’il
s’agit d’une amélioration par rapport à la bisection. En effet, dans certains
cas, la méthode de la bisection trouve par hasard de très bons itérés. Mais à
cause de son extrême rigidité (l’obligation de toujours diviser l’intervalle par
2), elle doit parfois s’éloigner de ces bonnes approximations de la racine. La
méthode de la sécante, quant à elle, tire parti de la valeur donnée par f(xi)
et non pas uniquement de son signe.

Exemple 4.3 Appliquons la méthode de la sécante pour trouver la racine
réelle de f(x) = x3+x−1 = 0. Nous partons, comme dans le cas présenté dans
l’Exemple 1.2, des itérés x1 = 0 et x2 = 1. Pour une meilleure comparaison
des méthodes, nous reportons les résultats de la sécante et de la bisection en
parallèle dans le tableau suivant. Nous reportons 6 chiffres après la virgule.
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f(x)

ii+1 x x i−1x

Figure 4.3 – Interprétation géométrique de la méthode de la sécante

Itération Sécante Bisection
xi f(xi) xi f(xi)

1 0 -1.000000 0 -1.000000
2 1 1.000000 1 1.000000
3 0.500000 -0.375000 0.500000 -0.375000
4 0.636364 -0.105935 0.750000 0.171875
5 0.690052 0.018636 0.625000 -0.130859
6 0.682020 -0.000737 0.687500 0.012451
7 0.682326 -0.000005 0.656250 -0.061127
8 0.682328 0.000000 0.671875 -0.024830
9 0.682328 0.000000 0.679688 -0.006314
10 0.682328 0.000000 0.683594 0.003037

4.3.2 Convergence de la méthode de la sécante

Il est clair à partir de l’exemple que la méthode converge plus rapidement
vers la racine. Nous allons maintenant analyser cet ordre de convergence.

Théorème 4.2 La méthode de la sécante jouit d’une convergence d’ordre
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1+
√

5
2
≈ 1.618. En d’autres termes, on a

|xn+1 − x̄| ≤ C|xn − x̄|1.618,

pour C > 0 et où f(x̄) = 0.

La preuve de ce théorème est extrêmement technique et dépasse le cadre
de ce cours. On peut néanmoins essayer de comprendre comment un ordre
de convergence aussi bizarre peut apparâıtre. L’idée est que l’on peut écrire
l’erreur comme

en+1 := (xn+1 − x̄) ≈ −1

2

(
f ′′(x̄)

f ′(x̄)

)
enen−1

≈ Kenen−1. (4.4)

En prenant le logarithme de la dernière expression et en notant zi = log |Kei|,
on peut écrire

zn+1 ≈ zn + zn−1.

Ceci est une relation de récurrence qui ressemble à s’y méprendre à la suite
de Fibonacci. On peut montrer que tout élément de cette récurrence peut
s’écrire comme

zn = Aαn +Bβn

où α et β sont les racines de l’équation quadratique provenant de la récurrence

z2 = z + 1.

On a par conséquent, α = 1+
√

5
2

et β = 1−
√

5
2
. On aura donc

log |Ken| ≈ A

(
1 +
√

5

2

)n

+B

(
1−
√

5

2

)n

≈ A

(
1 +
√

5

2

)n

puisque dans ce cas-ci, c’est le terme puissance de α qui domine. On a donc
finalement

|Ken| ≈ 10Aα
n

|Ken−1| ≈ 10Aα
n−1

,

c’est-à-dire
|en|
|en−1|α

≈ C.

Il s’agit bien entendu d’un essai d’explication et non d’une preuve rigoureuse.
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4.3.3 Méthode de la regula falsi (fausse position)

La méthode de la sécante augmente assez sensiblement la vitesse de
convergence si on la compare à la méthode de la bisection. Cependant, elle ne
conserve pas la robustesse de celle-ci. En particulier, on ne peut rien dire sur
sa convergence globale. On ne peut savoir a priori ni si elle va converger ni
vers quelle racine elle va converger le cas échéant. La méthode présentée dans
cette section tente de réaliser un mariage équilibré entre les deux processus
décrits précédemment.

Le principe de la méthode est le suivant. Comme dans le cas de la bisec-
tion, on part de deux points x0 et x1 tels que f(x0)f(x1) < 0. Pour calculer
le point suivant, nous utilisons la méthode de la sécante, nous avons donc

x2 = x1 −
f(x1)(x1 − x0)

f(x1)− f(x0)
. (4.5)

Mais cette fois, au lieu de remplacer x0 par x2 et d’itérer, nous préférons
conserver la robustesse de la bisection en choisissant de conserver x2 et le
point y ∈ {x0, x1} tel que f(y)f(x2) < 0. Nous continuons ensuite le proces-
sus où x2 prend le rôle de x1 et y celui de x0. On voit que, si on connâıt l’exis-
tence de deux points tels que f(x0)f(x1) < 0, on aura la garantie de converger
vers une racine dans l’intervalle considéré, ce qui est une amélioration par
rapport à la méthode de la sécante.

Lorsque l’on analyse la vitesse de convergence de la méthode de la fausse
position, on remarque malheureusement que celle-ci n’est pas superlinéaire
comme dans le cas de la sécante. Pour le comprendre, il suffit de voir que dans
le cas d’une fonction dont la convexité ne change pas au voisinage de la racine,
l’itéré obtenu par (4.5) a toujours le même signe. Dès lors, en supposant sans
perte de généralité, que f(x2) a le même signe que f(x1) dans (4.5), x0 ne
sera jamais remplacé dans le courant de l’algorithme. Si on se réfère à (4.4),
on voit que l’erreur suivra, asymptotiquement la formule

|en+1| ≈ K|en||en−1|
= K|en||xn−1 − x̄|
= K|en||e0| (4.6)

puisque, dans le cas de la regula falsi, comme on l’a dit, le point xn−1 ne
change en réalité pas et reste x0 durant tout l’algorithme. L’équation (4.6)
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exprime bien la convergence linéaire de la méthode. Pour illustrer le fait que
l’itéré x0 est utilisé dans tout l’algorithme comme l’un des deux points de la
méthode, on peut se référer à la Figure 4.4.

x1 x2

x

x

3

0

Figure 4.4 – Si la convexité est constante au voisinage de la racine, le point
x0 reste fixe pendant tout l’algorithme de la regula falsi

4.3.4 Extension de la méthode de la sécante : méthode
de Müller

La méthode de la sécante se base sur l’approximation linéaire de la fonc-
tion à partir des deux itérés précédents. Rien n’empêche d’utiliser plus de
points précédemment calculés et de produire une approximation polynomiale
d’un degré plus élevé. On peut, par exemple, considérer les trois précédents
itérés (xn, f(xn)), (xn−1, f(xn−1)) et (xn−2, f(xn−2)) pour créer un polynôme
de degré 2 qui approxime notre fonction f . C’est ce qu’on appelle la méthode
de Müller. Deux problèmes apparaissent. Premièrement, ayant un polynôme
quadratique, nous aurons le choix entre 2 points (les 2 racines du polynôme)
comme nouvel itéré. Cette question est résolue en général en prenant la racine
la plus proche de xn. Le deuxième problème apparâıt lorsque le polynôme
créé n’a que des racines complexes. Il ne sera alors pas possible de continuer
sur la droite réelle. Néanmoins, ce problème peut également être un avan-
tage. La méthode de Müller est en effet la seule méthode qui, partant d’un
point réel, peut converger vers une racine complexe (si une telle racine est
recherchée). A nouveau, l’ordre de convergence est assez technique à analy-
ser. On peut prouver que son ordre de convergence est environ de 1.84, ce
qui améliore la méthode de la sécante, mais pas drastiquement.
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4.4 Méthode de Newton-Raphson

4.4.1 Idée de la méthode

Nous allons encore améliorer le taux de convergence en profitant de l’infor-
mation de la dérivée de f si celle-ci est disponible. Le principe de la méthode
est, une fois de plus, d’approximer la fonction f par une droite. Mais au
lieu de considérer la droite reliant (xn, f(xn)) à (xn−1, f(xn−1)), nous allons
considérer l’approximation linéaire donnée en xn par le développement en
série de Taylor tronqué au terme linéaire. Rappelons que nous avons

f(x) = f(xn) + (x− xn)f ′(xn) +
(x− xn)2

2
f ′′(xn) + · · ·

Si nous approximons f uniquement par les deux premiers termes de cette
série, nous obtenons f(x) = f(xn) + (x − xn)f ′(xn). Une approximation
d’une racine de cette fonction est donc

x = xn −
f(xn)

f ′(xn)
.

L’algorithme de Newton-Raphson consiste à considérer cette approximation
comme itéré suivant. Nous aurons donc

xn+1 = xn −
f(xn)

f ′(xn)
.

L’interprétation géométrique de la méthode est indiquée sur la Figure 4.5. A
partir du point (xn, f(xn)), on trace la tangente à f et recherchons l’inter-
section de cette tangente avec l’axe des abscisses. Cela donne l’itéré suivant.

4.4.2 Convergence de la méthode de Newton-Raphson

Etudions à présent le taux de convergence de la méthode de Newton-
Raphson. Le théorème suivant prouve que la méthode jouit d’une convergence
d’ordre quadratique.

Théorème 4.3 Soit x̄, une racine de f . Si f ′(x̄) 6= 0, la méthode de Newton-
Raphson converge quadratiquement vers x̄ dans un voisinage de x̄, c’est-à-dire

|xn − x̄| ≤ C|xn−1 − x̄|2,

pour C > 0, n suffisamment grand, et xn suffisamment proche de x̄.
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f(x)

x

Figure 4.5 – Interprétation géométrique de la méthode de Newton-Raphson

Démonstration: Ecrivons l’erreur réalisée à l’itération n. Nous avons

|xn − x̄| = |xn−1 − x̄−
f(xn−1)

f ′(xn−1)
|. (4.7)

Par le théorème de Taylor, nous avons

0 = f(x̄) = f(xn−1) + f ′(xn−1)(x̄− xn−1) +
f ′′(ξn)

2!
(x̄− xn−1)

2,

pour ξn compris entre x̄ et xn−1. Utilisant l’expression de f(xn−1), on peut
donc réécrire (4.7) comme

|xn − x̄| = |(xn−1 − x̄) +
f ′(xn−1)

f ′(xn−1)
(x̄− xn−1) +

f ′′(ξn)

2f ′(xn−1)
(x̄− xn−1)

2|

= | f
′′(ξn)

2f ′(xn−1)
(x̄− xn−1)

2|

≤ C|xn−1 − x̄|2

car f ′(x̄) 6= 0 par hypothèse et dès lors, on peut prouver que f ′′(ξn)
f ′(xn−1)

est
borné pour ξn et xn−1 dans un voisinage de x̄.

Lorsque l’on se trouve proche de la racine, la méthode de Newton-Raphson
converge extrêmement vite. Malheureusement, cette convergence n’est pas
globale. Pour certains points de départ, en effet, il peut arriver que la méthode
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Figure 4.6 – Deux cas de non-convergence pour la méthode de Newton-
Raphson

diverge ou cycle, elle aussi. Cela peut être aisément illustré. La Figure 4.6
indique quelques mauvais cas qui peuvent se produire. Dans le cas de plu-
sieurs racines pour f , il n’est, en général, pas évident de savoir a priori quels
points de départ convergeront vers quelles racines. C’est la raison pour la-
quelle la méthode de Newton sera souvent utilisée pour améliorer rapidement
une approximation obtenue par une autre méthode plus robuste (comme par
exemple la bisection). Enfin, il y a un cas particulier important pour lequel
la méthode n’admet pas une convergence quadratique. Nous avons vu, en ef-
fet, que la convergence quadratique n’est obtenue dans le Théorème 4.3 que
pour f ′(x̄) 6= 0. Dans le cas d’une racine multiple, et donc avec f ′(x̄) = 0, la
méthode converge néanmoins mais seulement linéairement.

Théorème 4.4 Soit x̄ une racine de f . Si f ′(x̄) = 0, l’itéré de la méthode
de Newton-Raphson converge linéairement vers x̄ dans un voisinage de x̄.

Démonstration: On a xn = xn−1 − f(xn−1)
f ′(xn−1)

. On peut donc écrire l’erreur

|xn − x̄| =
∣∣∣∣xn−1 − x̄−

f(xn−1)

f ′(xn−1)

∣∣∣∣ . (4.8)

Remarquons que nous ne pouvons plus utiliser le même développement de
Taylor d’ordre 2 qu’auparavant car cela nécessitait de borner f ′′/f ′ au voisi-
nage de x̄. Nous pouvons cependant utiliser un développement d’ordre 1 et
écrire

0 = f(x̄) = f(xn−1) + f ′(ξn)(x̄− xn−1).
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Nous pouvons maintenant réécrire (4.8) comme

|xn − x̄| = |xn−1 − x̄−
f ′(ξn)

f ′(xn−1)
(xn−1 − x̄)|

= |(1− f ′(ξn)

f ′(xn−1)
)(xn−1 − x̄)|. (4.9)

Cette fois, nous pouvons borner l’expression |f ′(ξn)/f ′(xn)| car ξn est compris
entre x̄ et xn. Dans un voisinage de x̄, on a dès lors que |f ′(x̄)| ≤ |f ′(ξn)| ≤
|f ′(xn)|. On peut donc déduire de (4.9) que

|xn − x̄| ≤ C|xn−1 − x̄|,

avec C > 0.

Si on sait à l’avance que l’on cherche une racine double, il est possible de re-
trouver un ordre quadratique de convergence. Pour une racine de multiplicité
m, les itérations

xn+1 = xn −m
f(xn)

f ′(xn)

produisent à nouveau une convergence quadratique.

4.4.3 Lien avec d’autres méthodes

La méthode du point fixe Lorsque nous avons étudié les méthodes de
point fixe pour résoudre un problème f(x) = 0, nous avons dit qu’il existe
une multitude de façons de réécrire l’équation afin de résoudre le problème
x = g(x). Une manière simple de faire est de remarquer que l’on peut toujours
écrire g comme g(x) = x − af(x) où a est une constante. Il s’agit d’une
expression très similaire à celle de la méthode de Newton-Raphson. En réalité,
c’est comme si la méthode de Newton-Raphson était une méthode de point
fixe où l’on a choisi a = 1

f ′(xn)
. En revanche la méthode de Newton-Raphson

utilise une valeur a différente à chaque itération. Ce détail permet de passer
d’un ordre de convergence linéaire à quadratique.

La méthode de la sécante Que se passe-t-il si nous ne disposons pas
d’une expression analytique de la dérivée de f ? Nous ne pourrons alors pas
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utiliser la méthode de Newton-Raphson telle quelle. Nous pouvons cepen-
dant appliquer la définition et considérer f ′(xn) ≈ f(xn−1)−f(xn)

xn−1−xn
. En utilisant

cette approximation numérique de la dérivée, on retombe en réalité sur la
méthode de la sécante. Il est intéressant de remarquer que le fait d’utiliser
cette approximation ramène l’ordre de convergence de 2 à 1.618.

Optimisation La méthode de Newton-Raphson est souvent utilisée pour
maximiser ou minimiser une fonction f deux fois dérivable. On parle alors de
méthode de Newton. Dans ce cas, on se base sur le fait que l’on recherche un
point x̄ où la dérivée f ′(x̄) = 0. Le principe de la méthode est exactement le
même. On part d’un point x1, et on itère

xn+1 = xn −
f ′(xn)

f ′′(xn)
.

Dans ce cas, il conviendra bien entendu ensuite de vérifier si l’on obtient un
minimum ou un maximum. Dans le cas d’optimisation de fonctions convexes
ou concaves, la question ne se pose plus puisqu’elles admettent un extre-
mum unique qui est soit un mimumum (cas d’une fonction convexe) soit un
maximum (cas d’une fonction concave).
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Chapitre 5

Résolution numérique
d’équations différentielles
ordinaires

De nombreux problèmes réels font intervenir la résolution d’équations
différentielles. Il est dès lors naturel d’étudier la résolution numérique de
celles-ci.

Essayons tout d’abord de comprendre ce qu’est une équation différentielle.
Il s’agit d’un problème où l’on doit trouver une fonction x(t) dont on connâıt
la dérivée en fonction de t et de x(t) elle-même

x′(t) = f(x(t), t). (5.1)

Si la fonction f(x(t), t) ne dépend que de t, on a alors affaire à un problème
d’intégration. Comme pour un problème d’intégration, l’ensemble des so-
lutions d’un problème de type (5.1) est défini à une constante près. Pour
déterminer une solution unique à (5.1), une condition nécessaire (et pas
nécessairement toujours suffisante) est de fixer la valeur de x(t) pour un
t0 donné. Un problème de ce type est appelé problème aux valeurs initiales.

Définition 5.1 Un problème aux valeurs initiales est un problème déterminé
par une équation différentielle et une condition initiale

x′(t) = f(x(t), t)
x(t0) = x0.

(5.2)

55
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Figure 5.1 – La Figure représente le champ de vecteurs correspondant à
l’équation différentielle x′(t) = cos(x(t) − t/2) et des solutions pour quatre
conditions initiales différentes

Pour mieux comprendre le principe d’une équation différentielle, et pour
donner une bonne introduction aux techniques de résolution, nous allons
en faire une représentation graphique. Dessinons pour ce faire le champ de
vecteurs (t, x(t), f(x(t), t)), c’est-à-dire, que pour chaque paire (t, x(t)) choi-
sis sur une grille, on représente f(x(t), t) par une flèche de pente égale à
f(x(t), t). Le problème de l’équation différentielle consiste alors à trouver
une fonction x(t) qui soit tangente en tous points à ces flèches. Un exemple
est donné à la Figure 5.1 où l’on résout le problème aux valeurs initiales

x′(t) = cos(x(t)− t
2
)

x(t0) = x0.

Le problème est résolu pour quatre conditions initiales différentes et donne
quatre solutions clairement identifiables. Dans la suite, pour comprendre au
mieux les techniques de résolution des problèmes aux valeurs initiales, il
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sera assez intuitif de se rapporter à la représentation de la Figure 5.1. Nous
verrons plus tard qu’il y a de multiples façons de résoudre numériquement un
problème aux valeurs initiales. Mais avant de passer à l’exposé des méthodes,
il est important de s’attarder sur quelques propriétés d’un problème aux
valeurs initiales.

5.1 Stabilité d’une équation différentielle or-

dinaire

Une question importante lors de la résolution numérique d’une équation
différentielle est la stabilité de l’équation. La stabilité détermine si une mé-
thode numérique peut être appliquée, ou le cas échéant, impose une borne
sur la taille du pas afin d’obtenir une solution fiable.

Afin de comprendre ce qu’est la stabilité d’une équation différentielle,
nous allons tout d’abord étudier une équation différentielle instable.

Exemple 5.1 Equation différentielle ordinaire instable
Soit le problème aux valeurs initiales

x′(t) = x(t)
x(0) = C.

(5.3)

Le champ de vecteurs et la solution pour C = 1 sont représentés sur la Figure
5.2. Pour le problème (5.3), la solution analytique peut être trouvée. En effet

x(t) = Cet

est la solution unique à (5.3). Considérons à présent une technique de résolution
numérique de (5.3). Le principe de toutes les méthodes numériques est d’ap-
proximer x(t) pour des temps discrétisés t0, t0 + h, t0 + 2h, t0 + 3h, . . . Inévi-
tablement une erreur par rapport à la solution analytique sera introduite à
chaque itération. Pour voir l’effet qu’a une erreur sur la suite du calcul, nous
allons modéliser l’erreur ε faite lors du calcul, par une différence ε sur la condi-
tion initiale. Si l’on résout donc un problème perturbé x′(t) = x(t), x(0) =
C − ε, la solution obtenue est xε = (C − ε)et. Comparant x(t) à xε(t), on
obtient

e(t) := x(t)− xε(t) = εet. (5.4)



58 CHAPITRE 5. EQUATIONS DIFFÉRENTIELLES ORDINAIRES
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Figure 5.2 – La solution du problème x′(t) = x(t), x(0) = 1.

On voit que l’erreur introduite grandit exponentiellement lorsque t augmente.
En d’autres termes, une erreur introduite au départ du calcul va être amplifiée
exponentiellement en cours de calcul. Cela explique pourquoi on parle d’une
équation différentielle instable. On comprend dès lors, pourquoi il sera plus
difficile de résoudre une telle équation. A titre d’illustration, la Figure 5.3
représente la différence entre la solution pour x(0) = 1 et pour x(0) = 0.9.

Nous passons tout naturellement à l’exemple d’une équation différentielle
stable.

Exemple 5.2 Similairement à l’exemple précédent, nous considérons à présent
le problème

x′(t) = −x(t)
x(0) = C,

(5.5)

dont la solution analytique est x(t) = Ce−t. Une petite perturbation dans
la condition initiale x(0) = C − ε nous donne cette fois comme solution
xε(t) = (C − ε)e−t et comme erreur e(t) = x(t) − xε(t) = εe−t. Cette fois,
l’erreur décrôıt exponentiellement. En d’autres termes, une erreur commise en
début de calcul ne se répercutera pratiquement pas sur la suite du calcul. La
Figure 5.4 représente les deux solutions pour les conditions initiales x(0) = 1
et x(0) = 0.9. Cette fois, il est difficile de distinguer les deux solutions au-delà
de t = 2.
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Figure 5.3 – La solution aux problèmes x′(t) = x(t), x(0) = 1 et x′(t) =
x(t), x(0) = 0.9.
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Figure 5.4 – La solution aux problèmes x′(t) = −x(t), x(0) = 1 et x′(t) =
−x(t), x(0) = 0.9.
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Dans certains cas, la stabilité d’une équation ne peut pas être déterminée
pour toute la zone de caclul. L’équation sera stable dans certaines zones
et instable dans d’autres. Dans ce genre de cas, il faudra choisir le pas
d’intégration en s’adaptant à la circonstance.

Exemple 5.3 Considérons le problème

x′(t) = −2tx(t)
x(0) = C,

(5.6)

dont la solution analytique est x(t) = Ce−t
2
. Cette fois, des solutions de

conditions initiales proches s’écartent losrque t est négatif et se rapprochent
lorsque t est positif. Le phénomène est illustré à la Figure 5.5.
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Figure 5.5 – La solution aux problèmes x′(t) = −2tx(t), x(−2) = 1 et
x(−2) = 0.9

Les problèmes (5.3) et (5.5) sont les exemples typiques d’équations différentielles
stables et instables. En fait, nous allons voir que chaque équation différentielle
peut se ramener localement à ces deux cas canoniques.

Définition 5.2 Une équation différentielle

x′(t) = f(x(t), t)
x(t0) = x0
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est dite stable en (x(t), t) si son Jacobien J(x(t), t) = ∂f(x(t),t)
∂x

(x(t), t) < 0

et instable si son Jacobien J(x(t), t) = ∂f(x(t),t)
∂x

(x(t), t) > 0.

La définition précédente se justifie car l’erreur commise en modifiant légèrement
la condition initiale s’amplifie dans le cas instable et s’amenuise dans le cas
stable comme la Proposition suivante nous l’indique.

Proposition 5.1 Soient les deux problèmes aux valeurs initiales

x′(t) = f(x(t), t) x′(t) = f(x(t), t)
x(t0) = x0 (∗) x(t0) = x0 − ε (∗∗)

dont les solutions sont x∗(t) et x∗∗(t) respectivement. Si on définit e(t) :=
x∗∗(t)− x∗(t), on a

e′(t) ≈ J(x(t), t)e(t),

et dès lors

e(t) ≈ εexp

(∫ t

t0

J(x(s), s)ds

)
. (5.7)

Démonstration: On a

e′(t) = x∗∗
′
(t)− x∗′(t)

= f(x∗∗(t), t)− f(x∗(t), t)

≈ f(x∗(t), t) + J(x∗(t), t)(x∗∗(t)− x∗(t))− f(x∗(t), t)

= J(x∗(t), t)e(t),

où l’approximation de l’avant-dernière ligne est obtenue grâce à un déve-
loppement de Taylor tronqué à l’ordre 1. Finalement, l’expression (5.7) est
obtenue en résolvant l’équation différentielle.

On déduit de la Proposition 5.1 que l’erreur va crôıtre exponentiellement
pour une équation différentielle instable et décrôıtre exponentiellement pour
une équation différentielle stable.

Nous reviendrons plus tard sur l’importance de ces notions dans le cadre
de la résolution numérique d’équations différentielles ordinaires. Il est, par
exemple, assez intuitif qu’une équation instable est très difficile à résoudre
numériquement. Il faut utiliser des méthodes très particulières pour ce faire.
La situation des équations stables n’en est pas toute rose pour autant. Nous
verrons que dans le cas de certains systèmes très stables, la situation peut
également être problématique.
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5.2 Méthodes de Taylor

Nous commençons notre tour parmi les différentes méthodes numériques
pour résoudre les équations différentielles ordinaires par les plus intuitives de
toutes. Tout d’abord, il est utile de remarquer, et c’est le cas pour toutes les
méthodes que nous exposons dans ce cours, que pour trouver la fonction x(t)
recherchée, nous allons en réalité approximer x(t) en t0, t0 + h, t0 + 2h, t0 +
3h, . . . La notation que nous adoptons dans tout le reste de ce chapitre est
présentée ci-dessous.

Notation 5.1
– Les temps pour lesquels une approximation de x(t) est calculée sont

notés par t0, t1, t2, . . .
– Les approximations de x(t) calculées aux temps t0, t1, t2, . . . sont notées

respectivement x̄0, x̄1, x̄2, . . .

La première méthode que nous considérons ici consiste à écrire le dévelop-
pement de Taylor de la fonction recherchée x(t) autour de t afin d’approximer
au mieux la valeur de x en t+h. La longueur du développement choisie indique
le degré de la méthode considérée.

5.2.1 Méthode d’Euler explicite

La méthode d’Euler explicite considère un développement de Taylor tron-
qué à l’ordre 1. Cela implique que l’on doit connâıtre la première dérivée de
x en t. Cette dérivée est toutefois connue, puisqu’elle nous est donnée par
l’intermédiaire de f . Rappelons-nous en effet que x′(t) = f(x(t), t). Si on
procède de la sorte, on obtient

x(t+ h) ≈ x(t) + hx′(t)

= x(t) + hf(x(t), t).

Le processus x(t + h) = x(t) + hf(x(t), t) est mieux connu sous le nom
de méthode d’Euler explicite.

Méthode 5.1 (Méthode d’Euler explicite) Les itérés sont calculés suc-
cessivement par

x̄i+1 = x̄i + hf(x̄i, ti).
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Exemple 5.4 Soit le problème aux valeurs initiales

x′(t) = −x2(t) + t

x(0) = 2.

Nous allons appliquer la méthode d’Euler explicite. Les valeurs obtenues par
la méthode sont notées x̄i. Prenons un pas de h = 0.3. On a x̄0 = 2, et
x̄1 = 2 + hf(2, 0) = 2 + 0.3(−4) = 0.8. Ensuite x̄2 = 0 + hf(0.8, 0.3) =
0 + 0.3(−0.64 + 0.3) = 0.698. La Figure 5.6 présente le résultat du calcul
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Figure 5.6 – L’algorithme d’Euler explicite avec un pas de h = 0.3 comparé
à la solution réelle pour le problème x′(t) = t− x2(t), x(0) = 2.

avec la méthode d’Euler explicite et la vraie solution du problème. On voit
que l’approximation du 1e ordre est assez mauvaise au début du calcul et
bien meilleure sur la fin. De plus, les erreurs commises en début de calcul
s’amenuisent au fur et à mesure que l’algorithme progresse. Ce comportement
n’est bien entendu pas général et dépend de plusieurs paramètres que nous
discuterons plus tard.

Nous allons à présent analyser l’erreur commise lorsque l’on résout un
problème aux valeurs initiales en utilisant la méthode d’Euler explicite. On
se doute qu’à chaque pas dit d’intégration, une erreur va s’introduire dans
le calcul. Mais il faut se rendre compte que l’erreur introduite va impliquer
que l’approximation calculée à l’étape suivante le sera pour un problème
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légèrement différent résultant en une nouvelle erreur. On va donc voir dans
la Proposition suivante que l’erreur peut être décomposée en une erreur
commise localement et une erreur globale résultant de l’accumulation des
différentes erreurs locales et menant à la résolution d’un problème légèrement
modifié.

Proposition 5.2 Soit le problème aux valeurs initiales

x′(t) = f(x(t), t)
x(t0) = x0

(5.8)

et sa solution x∗(t). On définit également par x̄0, x̄1, x̄2, . . . les différentes
approximations de x∗(t) obtenues en utilisant la méthde d’Euler explicite avec
un pas h. L’erreur EGi commise en ti = t0 + ih peut s’exprimer comme

EGi = (1 + hJi)EGi−1 + ELi,

où EG signifie erreur globale et EL erreur locale et où Ji = ∂f
∂x

(ζi, ti) et

ELi = −h2

2
x′′(ξi), où ζi est compris entre x̄i−1 et x∗(ti−1) et où ξi ∈ [ti−1, ti].

Démonstration: Ecrivons l’erreur commise au pas i. On a

EGi = x̄i − x∗(ti)
= x̄i−1 + hf(x̄i−1, ti−1)− x∗(ti) (5.9)

= x̄i−1 + hf(x̄i−1, ti−1)− (x∗(ti−1) + hf(x∗(ti−1), ti−1) +
h2

2
(x∗)′′(ξi))

(5.10)

= EGi−1 + h(f(x̄i−1, ti−1)− f(x∗(ti−1), ti−1))−
h2

2
(x∗)′′(ξi)

= EGi−1 + h(x̄i−1 − x∗(ti−1))
∂f

∂x
(ζi, ti−1) + ELi (5.11)

= EGi−1(1 + hJi) + ELi,

où (5.9) est obtenue en exprimant comment x̄i est obtenu en utilisant la
méthode d’Euler explicite, (5.10) est obtenue en développant x∗(t) en série
de Taylor autour de ti−1, et (5.11) est obtenue en appliquant le théorème des
accroissements finis à la première composante de f.
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Il est important de comprendre ce que signifie exactement la Proposition
5.2. L’exemple suivant tente de clarifier la situation.

Exemple 5.5 Soit le problème

x′(t) = −x2(t) + t
x(0) = 2

que nous avons déjà considéré dans l’exemple précédent. Lors de la première
itération, on obtient

x̄1 = 2 + 0.3f(2, 0) = 0.8

L’erreur obtenue ici est uniquement locale, c’est-à-dire qu’elle peut être exclu-
sivement interprétée par l’intermédiaire du développement de Taylor. Dans
ce cas, l’erreur peut être approximée par 0.48. A la deuxième itération, la
méthode d’Euler calcule

x̄2,0.3 = 0.8 + 0.3f(0.8, 0.3) = 0.698.

Dans ce cas-ci, une erreur s’est introduite par rapport à la résolution du
problème x′(t) = −x2(t) + t, x(0.3) = 0.8. En effet, la solution en 0.6 de
ce problème est 0.76, ce qui implique qu’une erreur de 0.04 a été introduite
en plus à la deuxième étape. Mais le point important à remarquer est que
nous avons résolu l’équation diférentielle pour la condition initiale x(0.3) =
0.8 au lieu de x(0.3) = 1.28. En d’autres termes, nous avons utilisé, dans
l’approximation de Taylor, une pente de f(0.8, 0.3) au lieu de f(1.28, 0.3),
ce qui fait une erreur approximative de 1 dans la pente utilisée. Cette erreur
implique une accumulation d’erreurs venant des itérations précédentes. Tout
ceci est illustré à la Figure 5.7. Dans la Figure 5.7, l’erreur commise à la
première itération est indiquée par EL1 = EG1. A la deuxième itération,
l’erreur peut être décomposée en un trait plein (EL2) et un trait pointillé
venant de l’itération précédente et multipliée par le facteur (1 + hJi). Dans
ce cas-ci, on voit que le facteur multiplicatif a rendu l’erreur plus petite par
rapport à l’itération précédente. En réalité, la différence de 1 dans la valeur
de f a fait se rapprocher l’itéré suivant de la solution réelle.

Nous venons de voir dans l’exemple précédent qu’une partie importante de
l’erreur commise en utilisant la méthode d’Euler explicite provient des erreurs
commises lors des itérations précédentes. On en vient à présent au choix du
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Figure 5.7 – Description de l’erreur locale et globale lors de la méthode
d’Euler explicite

pas de la méthode. Dans ce cas-ci, on choisira donc un pas de façon à ce que
l’erreur qui se propage d’une itération à l’autre s’amenuise (comme dans le
cas de l’exemple) au lieu de crôıtre. Dans le cas où les erreurs propagées d’une
itération à l’autre restent sous contrôle, on dit que la méthode est stable. Si,
au contraire, les erreurs provenant des itérations précédentes croissent, on dit
que la méthode est instable.

Proposition 5.3 La méthode d’Euler explicite est stable si on a

−2 < hJi < 0 pour tout i.

Démonstration: L’erreur globale à l’itération i est EGi et est donnée par
EGi = (1 + hJi)EGi−1 + ELi. On aura en particulier

EGi = (1 + hJi)(1 + hJi−1) · · · (1 + hJ2)EL1 + . . .+ (1 + hJi)ELi−1 + ELi.

Pour que tous les termes tendent vers 0, il faut donc |1 + hJi| < 1 ce qui est
équivalent au résultat annoncé.

On voit donc que la méthode d’Euler explicite n’est jamais stable lorsque
l’équation différentielle n’est elle-même pas stable. Par contre, et c’est plus
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surprenant, il faut choisir un pas extrêmement petit lorsque l’équation diffé-
rentielle est fortement stable, c’est-à-dire lorsque Ji << 0. Les équations très
stables sont donc également des problèmes particulièrement ardus pour les
méthodes numériques traditionnelles.

5.2.2 Méthodes d’ordre supérieur

Rien n’empêche de construire un développement de Taylor comportant
plus de termes afin d’obtenir une approximation plus précise de l’itéré x̄i+1

en fonction de x̄i. Nous allons voir que ceci implique une connaissance ap-
profondie de la fonction f et que ce n’est pas toujours très praticable. En
effet, si on écrit le développement de Taylor de x(t + h) autour du point t,
on obtient

x(t+ h) = x(t) + hx′(t) +
h2

2
x′′(t) +

h3

3!
x′′′(t) + · · ·

= x(t) + hf(x(t), t) +
h2

2

df

dt
(x(t), t) +

h3

3!

d2f

dt2
(x(t), t) + · · ·

= x(t) + hf(x(t), t) +
h2

2
(
∂f

∂x
(x(t), t)f(x(t), t) +

∂f

∂t
(x(t), t)) + · · ·

(5.12)

= x(t) + hf(x(t), t) +
h2

2
(
∂f

∂x
(x(t), t)f(x(t), t) +

∂f

∂t
(x(t), t))+

+
h3

3!
(
∂2f

∂x2
f 2 + 2

∂2f

∂x∂t
f +

∂2f

∂t2
+
∂f

∂x

∂f

∂t
+ (

∂f

∂x
)2f)(x(t), t) + · · ·

(5.13)

L’expression (5.12) donne la méthode de Taylor d’ordre 2. L’expression (5.13)
donne l’expression d’ordre 3.

Méthode 5.2 (Méthode de Taylor d’ordre 2) Après calcul préalable de
∂f
∂x

et de ∂f
∂t

, on calcule successivement les itérés

x̄i+1 = x̄i + hf(x̄i, ti) +
h2

2
(
∂f

∂x
(x̄i, ti)f(x̄i, ti) +

∂f

∂t
(x̄i, ti))

Méthode 5.3 (Méthode de Taylor d’ordre 3) Après calcul préalable des
différentes dérivées partielles premières et secondes, on calcule successive-
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ment les itérés

x̄i+1 =x̄i + hf(x̄i, ti) +
h2

2
(
∂f

∂x
(x̄i, ti)f(x̄i, ti) +

∂f

∂t
(x̄i, ti))+

+
h3

3!
(
∂2f

∂x2
f 2 + 2

∂2f

∂x∂t
f +

∂2f

∂t2
+
∂f

∂x

∂f

∂t
+ (

∂f

∂x
)2f)(x̄i, ti).

On le voit, la complexité de ces formules crôıt très rapidement. Pour pouvoir
appliquer ces méthodes, il faudra donc passer au préalable par une étape
de dérivation symbolique. Dans la pratique, les méthodes de Taylor d’ordre
supérieur à 1 sont très peu utilisées. Ceci dit, avec la venue de logiciels de cal-
cul symbolique, il n’est pas inintéressant de considérer ces méthodes dans cer-
taines applications où la dérivation symbolique est possible. Finalement, il est
également possible d’analyser les conditions de stabilité de telles méthodes.
Au fur et à mesure que l’ordre du développement de Taylor considéré aug-
mente, la région de stabilité augmente également. Il n’y a pas, ceci dit, de
différence drastique avec la méthode d’Euler explicite.

5.2.3 La méthode d’Euler implicite

On peut adapter la méthode d’Euler dite explicite de façon à ce qu’elle
adopte un comportement beaucoup plus stable. Nous verrons plus tard qu’il
y a malheureusement un lourd coût à payer au niveau du temps de calcul à
effectuer à chaque itération. Souvenons-nous que pour déterminer la méthode
d’Euler explicite, nous avons simplement écrit un développement de Taylor
autout du point t, pour en déduire une expression de x(t + h). L’idée de la
méthode d’Euler implicite est d’écrire le développement en t+h plutôt qu’en
t. On a donc x(t) = x(t+ h)− hx′(t+ h) + · · · et dès lors

x(t+ h) ≈ x(t) + hf(x(t+ h), t+ h). (5.14)

Le problème dans (5.14) est évidemment que l’on ne connâıt pas f(x(t +
h), t+h) si on ne connâıt pas encore x(t+h). C’est la raison pour laquelle la
méthode est qualifiée d’implicite puisqu’il faudra résoudre une équation non
linéaire à chaque pas de temps.

Méthode 5.4 (Méthode d’Euler implicite) L’itéré x̄i+1 est obtenu comme
étant une solution de l’équation

x̄i+1 = x̄i + hf(x̄i+1, ti+1).
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Exemple 5.6 Soit à nouveau le problème

x′(t) = −x2(t) + t
x(0) = 2.

On considère une itération de l’algorithme d’Euler implicite. On part de
x̄0 = 2 et on recherche x̄1 tel que

x̄0 = x̄1 − 0.3(−x̄2
1 + 0.3).

Dans ce cas-ci, on voit qu’il suffit de résoudre l’équation non linéaire 0.3x̄2
1 +

x̄1 − 2.09 = 0. Deux solutions sont possibles, x̄1 = 1.254 ou x̄1 = −2.254.
En choisissant la solution la plus proche de x̄0, on obtient donc x̄1 = 1.254.
Cette fois, l’erreur n’est plus que de 0.03.

La méthode semble donc être une bonne alternative. Malheureusement, la
résolution d’une équation non linéaire à chaque pas rend son utilisation im-
praticable. On peut malgré tout analyser la stabilité de la méthode. Une
analyse similaire au cas de la méthode d’Euler explicite nous mène à la Pro-
position suivante que nous énonçons sans démonstration.

Proposition 5.4 La méthode d’Euler implicite est stable si∣∣∣∣ 1

1− hJi

∣∣∣∣ < 1 pour tout i.

On voit, en particulier, que lorsque l’équation est stable (Ji < 0), la méthode
est stable pour tout choix de pas h. La méthode d’Euler implicite admet donc
des conditions de stabilité très robustes. Pour des valeurs très positives de
Ji, c’est-à-dire pour un problème très instable, il semblerait que la méthode
d’Euler implicite soit également stable. Ceci n’a évidemment aucune valeur
car la stabilité apparente de la méthode numérique n’aura rien à voir avec la
solution analytique.

5.3 Méthodes de Runge-Kutta

Les méthodes de Runge-Kutta sont aux méthodes de Taylor ce que la
méthode de la sécante est à la méthode de Newton dans le cadre de la
résolution d’équations non linéaires. On se souvient que la méthode de la
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sécante approxime numériquement la dérivée nécessaire à la méthode de New-
ton. Dans le cadre d’équations différentielles ordinaires, nous avons vu que
les méthodes de Taylor requièrent une lourde phase de différentiation anay-
tique. Les méthodes de Runge-Kutta vont remplacer cette partie par une
approximation numérique des différentes dérivées partielles.

Méthode 5.5 (Runge-Kutta d’ordre 2) Les différents itérés de la méthode
de Runge-Kutta d’ordre 2 sont obtenus par le processus

x̄i+1 = x̄i +
h

2
f(x̄i, ti) +

h

2
f(x̄i + hf(x̄i, ti), ti+1) (5.15)

Explication: L’idée de la méthode est que l’on va copier le plus possible
de termes du développement de Taylor de x(t + h) en utilisant le calcul
de f en deux points seulement, à savoir F1 = f(x(t), t) et F2 = f(x(t) +
βhf(x(t), t), t + αh) où α et β sont inconnus. Ces deux points sont utilisés
en écrivant

x(t+ h) ≈ x(t) + w1hF1 + w2hF2 (5.16)

où w1 et w2 sont également inconnus. La suite de cette “explication” est
donc de montrer qu’on peut déterminer α, β, w1, w2 de manière à ce que la
formule (5.16) se rapproche le plus possible du développement de Taylor de
x(t + h). Pour ce faire, nous allons tout d’abord faire un développement de
Taylor tronqué à l’ordre 1 de F2. On a

F2 = f(x(t) + βhf(x(t), t), t+ αh) (5.17)

≈ f(x(t), t) + βhf(x(t), t)
∂f

∂x
(x(t), t) + αh

∂f

∂t
(x(t), t). (5.18)

Si on utilise (5.18) dans (5.15), on trouve l’approximation

x(t+ h) ≈ x(t) + (w1 + w2)hf(x(t), t)

+ αw2h
2∂f

∂t
(x(t), t) + βh2w2f(x(t), t)

∂f

∂x
(x(t), t). (5.19)

Par aileurs, nous avons vu lors de l’exposition des méthodes de Taylor, qu’une
expression d’ordre 2 de x(t+ h) est (5.12) à savoir

x(t+ h) ≈ x(t) + hf(x(t), t) +
h2

2
(f(x(t), t)

∂f

∂x
(x(t), t) +

∂f

∂t
). (5.20)
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Si on compare (5.19) à (5.20), on voit qu’il faut avoir

w1 + w2 = 1, αw2 =
1

2
, βw2 =

1

2
. (5.21)

Une solution possible et pratique à (5.21) est de choisir α = β = 1 et w1 =
w2 = 1

2
.

Remarquons que la méthode proposée n’est pas la seule qui pourrait don-
ner un ordre 2. On pourrait par exemple choisir pour satisfaire (5.21) α = β
et w1 = 1− 1

2α
et w2 = 1

2α
.

Dans la pratique, les méthodes de Runge-Kutta d’ordre 2, bien que très
simples à mettre en oeuvre sont assez peu utilisées car leur erreur n’est
que de O(h3). La méthode de Runge-Kutta la plus utilisée est celle d’ordre
4. Déterminer une telle formule est un travail très fastidieux que nous ne
détaillerons pas ici. Nous présentons la formule de la méthode sans l’expli-
quer.

Méthode 5.6 (Runge-Kutta d’ordre 4) Les différents itérés de la méthode
de Runge-Kutta d’ordre 4 sont obtenus par le processus

x̄i+1 = x̄i +
1

6
(K1 +K2 +K3 +K4)

où

K1 = hf(x̄i, ti)

K2 = hf(x̄i +
1

2
K1, ti +

1

2
h)

K3 = hf(x̄i +
1

2
K2, ti +

1

2
h)

K4 = hf(x̄i +K3, ti + h).

Comme son nom l’indique, la méthode de Runge-Kutta d’ordre 4 copie le
développement de Taylor jusqu’aux termes d’ordre 4. Le terme d’erreur est
donc en O(h5).

5.4 Méthodes adaptatives

Comme on l’a vu précédemment, il est souvent difficile de déterminer
le pas à choisir pour assurer une stabilité de la méthode numérique tout
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en conservant une quantité limitée de calculs. En général, on aimerait que
l’utilisateur puisse déterminer une tolérance endéans laquelle la solution doit
se trouver. Mais même en ayant accès à l’erreur locale commise par une
méthode, il est souvent difficile de déterminer le pas à utiliser. Il se pourrait
qu’il soit nécessaire de choisir un pas très petit sur certaines portions du
problème alors que l’on pourrait se contenter de pas plus grands sur d’autres
portions. Pour cette raison, plusieurs méthodes de choix automatiques du
pas ont été imaginées.

Pour comprendre le principe des méthodes adaptatives parfois aussi ap-
pelées de Runge-Kutta-Fehlberg, imaginons tout d’abord le principe suivant.
On considère la méthode de Runge-Kutta d’ordre 4 avec un pas h. On peut
aussi considérer la même méthode avec un double pas de h/2. Si le pas h
est satisfaisant, la différence entre l’approximation obtenue avec un pas h ou
deux pas de h/2 sera très faible. Dans ce cas, le pas h est suffisant. Dans
le cas contraire, il faudra réduire le pas. Le problème de cette méthode est
qu’elle nécessite quatre appels à la fonction f pour le pas h et 7 autres appels
pour le double pas de h/2. Cela fait un total de 11 appels à la fonction f
par itération, ce qui peut s’avérer coûteux en temps de calcul dans certaines
applications. Or, nous avons vu dans la section précédente qu’il y a une cer-
taine flexibilité dans le choix des coefficients des méthodes de Runge-Kutta.
L’idée est de chosir une méthode de Runge-Kutta d’ordre 5 et une méthode
d’ordre 4 qui partagent le plus possible d’évaluations communes de f de façon
à minimiser la quantité de travail à chaque itération. L’avantage est de dis-
poser de deux évaluations de x(t + h). En comparant les deux évaluations,
nous pouvons ainsi décider si le pas h est adapté ou pas. La méthode suivante
est un exemple courant de paire de méthodes de Runge-Kutta donnant lieu
à une méthode adaptative.
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Méthode 5.7 (Runge-Kutta-Fehlberg d’ordres 4 et 5)

K1 = hf(x̄i, ti)

K2 = hf(x̄i +
1

4
K1, ti +

1

4
h)

K3 = hf(x̄i +
3

32
K1 +

9

32
K2, ti +

3

8
h)

K4 = hf(x̄i +
1932

2197
K1 −

7200

2197
K2 +

7296

2197
K3, ti +

12

13
h)

K5 = hf(x̄i +
439

216
K1 − 8K2 +

3680

513
K3 −

845

4104
K4, ti + h)

K6 = hf(x̄i −
8

27
K1 + 2K2 −

3544

2565
K3 +

1859

4104
K4 −

11

40
K5, ti +

1

2
h)

On obtient deux approximations de x(t+ h), à savoir

x̄
[4]
i+1 = x(t) +

25

216
K1 +

1408

2565
K3 +

2197

4104
K4 −

1

5
K5

x̄
[5]
i+1 = x(t) +

16

135
K1 +

6656

12825
K3 +

28561

56430
K4 −

9

50
K5 +

2

55
K6

qui sont respectivement une approximation d’ordre 4 et d’ordre 5 obtenues
à l’aide de 6 évaluations de fonction. La différence |x̄[5]

i+1 − x̄
[4]
i+1| est une

estimation de l’erreur en ti+1.

La fonction ode45 de matlab est une méthode de cette famille mais uti-
lisant une autre paire de méthodes de Runge-Kutta d’ordre 4 et 5 : la paire
de Dormand-Prince. La fonction ode23 utilise la paire de Bogacki-Shampine
qui est une paire de méthodes de Runge-Kutta d’ordre 2 et 3 respectivement,
mais partageant un certain nombre de points où la fonction est évaluée.

5.5 Méthodes à pas liés

Jusquà présent, nous avons uniquement analysé des méthodes à pas séparés.
Une méthode est à pas séparés lorsque l’on se sert uniquement de l’intervalle
[t, t + h] et de l’expression de f dans celui-ci pour calculer la nouvelle va-
leur x(t + h). L’idée d’une méthode à pas liés est que l’on peut se servir de
la connaissance des points précédemment calculés afin d’avoir une meilleure
perception de la manière dont f se comporte et ceci sans devoir procéder à
une différentiation analytique qui s’avérerait trop lourde. La forme générique
d’une méthode à pas liés peut être formulée comme suit.
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Méthode 5.8 (Méthode à pas liés) Si on dénote par x̄i les différentes
approximations obtenues par la méthode aux points ti, on calcule successive-
ment

x̄i+1 = x̄i + h
n∑

j=−1

βjf(x̄i−j, ti−j). (5.22)

Dans (5.22), on remarque que j peut prendre la valeur −1 ce qui correspond
à considérer que pour obtenir la valeur x̄i+1, on se sert de la valeur x̄i+1. On
reconnâıt là le principe d’une méthode implicite. Si β−1 = 0, on ne se sert que
de points connus pour calculer la nouvelle valeur x̄i+1, il s’agit alors d’une
méthode explicite.

Pour calculer les coefficients d’une formule de type (5.22), on doit évaluer
l’intégrale

x̄i+1 = x̄i +

∫ ti+1

ti

f(x(s), s)ds.

En particulier, pour obtenir les coefficients de (5.22) dans le cas d’une méthode
explicite, on peut écrire le polynôme qui interpole les n+1 points obtenus lors
des itérations précédentes (x̄i−n, f(x̄i−n, ti−n)), . . . , (x̄i, f(x̄i, ti)) et l’intégrer
sur l’intervalle [ti, ti+1]. Nous donnons les méthodes explicites et implicites
d’ordre 2 et 3 à titre informatif. Remarquons que les méthodes explicites à
pas liés sont appelées méthodes d’Adams-Bashforth et les méthodes implicites
méthodes d’Adams-Moulton.

Méthode 5.9 (Adams-Bashforth d’ordre 2)

x̄i+1 = x̄i +
h

2
(−f(x̄i−1, ti−1) + 3f(x̄i, ti))

Méthode 5.10 (Adams-Bashforth d’ordre 3)

x̄i+1 = x̄i +
h

12
(5f(x̄i−2, ti−2)− 16f(x̄i−1, ti−1) + 23f(x̄i, ti))

Méthode 5.11 (Adams-Moulton d’ordre 2)

x̄i+1 = x̄i +
h

2
(f(x̄i, ti) + f(x̄i+1, ti+1))
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Méthode 5.12 (Adams-Moulton d’ordre 3)

x̄i+1 = x̄i +
h

2
(−f(x̄i−1, ti−1) + 8f(x̄i, ti) + 5f(x̄i+1, ti+1))

L’intérêt des méthodes à pas liés est qu’elles n’utilisent qu’une seule évaluation
de la fonction f à chaque pas d’intégration. Cela peut s’avérer un gain
de temps conséquent par rapport à une méthode de Runge-Kutta d’ordre
élevé qui requiert un grand nombre d’évaluations à chaque pas, et ce, sur-
tout lorsque l’évaluation de la fonction est assez coûteuse. Dans le cadre des
méthodes de Runge-Kutta, nous avons vu l’amélioration adaptative proposée
par Fehlberg. Les méthodes à pas liés se prêtent également très bien à une
version adaptative ou prédicteur-correcteur.

La méthode prédicteur-correcteur consiste à utiliser une méthode explicite
et implicite conjointement. On va ainsi se servir de l’approximation donnée
par la méthode explicite comme x̄i+1 dans la formule implicite. On évitera
ainsi la coûteuse phase de résolution d’une équation non linéaire. La version
adaptative consiste à utiliser la différence entre la sortie de la formule explicite
et de la formule implicite pour savoir s’il faut considérer un changement de
la taille du pas.

Exemple 5.7 Soit le problème

x′(t) = −x2(t) + t
x(0) = 2.

On peut remarquer que les méthodes d’Euler implicite et explicite sont en
réalité les méthodes à pas liés d’ordre 1. Nous allons ici uniquement montrer
comment on peut, pour l’ordre 1, mettre en pratique la méthode prédicteur-
correcteur. Rappelons les formules d’Euler explicite x̄i+1 = x̄i + hf(xi, ti)
et implicite x̄i+1 = x̄i + hf(x̄i+1, ti+1). Dans notre cas, et pour un pas de
0.3, on obtient le prédicteur donné par Euler explicite x̄i+1 := 2 − 1.2 =
0.8. Le correcteur est ensuite donné en utilisant la première approximation
comme x̄i+1 = 2 + 0.3f(0.8, 0.3) = 2− 0.102 = 1.898. Remarquons qu’ici, vu
la différence entre les deux approximations obtenues, il serait judicieux de
réduire le pas.

Remarquons qu’il est possible d’itérer plusieurs fois le processus prédicteur-
correcteur afin d’obtenir une approximation plus précise. La pratique montre
cependant qu’une seule itération suffit à donner de très bonnes approxima-
tions de la valeur réelle.
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5.6 Systèmes d’équations différentielles ordi-

naires

Un système d’équations dfférentielles est très similaire à une équation
différentielle scalaire. Dans ce cas, on cherche une fonction x(t) : R 7→ Rn

telle que

dx

dt
(t) = f(x(t), t) (5.23)

x(t0) = x0,

où f : Rn × R 7→ Rn et x0 ∈ Rn.

5.6.1 Systèmes d’ordre supérieur à un

Les systèmes d’équations différentielles sont évidemment les plus cou-
rants dans la pratique. Ils sont également importants dans le cas scalaire car
ils permettent de résoudre également les équations d’ordre supérieur à un.
Supposons en effet que l’on veuille résoudre l’équation

x[n](t) = g(x(t), x′(t), . . . , x[n−1](t), t), (5.24)

avec des conditions initiales appropriées et où g : Rn × R 7→ R. On peut
résoudre ce problème en passant à un système d’équations du premier ordre.
En effet, on peut écrire y0(t) := x(t), y1(t) := x′(t), y2(t) := x′′(t), . . . De cette
façon, on peut maintenant réécrire (5.24) de manière équivalente comme

d

dt


y0

y1
...

yn−1

yn

 =


y1

y2
...
yn

g(y0, y1, . . . , yn−1, t)

 . (5.25)

Il s’agit cette fois d’un système vectoriel du premier ordre où on peut voir
la fonction f : Rn+1 × R 7→ Rn+1 de (5.23) comme étant f(y0, . . . , yn, t) =
(y1, y2, . . . , yn, g(y0, y1, . . . , yn−1, t))

T . On peut également appliquer cette as-
tuce dans le cas de systèmes d’équations d’ordre supérieur à un. On voit
donc que le système de premier ordre est le modèle complètement général
qui englobe les autres.
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5.6.2 Résolution de systèmes d’équations différentielles

La résolution numérique de systèmes vectoriels d’équations différentielles
ne comporte pas de différence majeure par rapport au cas scalaire, à condition
de considérer toutes les méthodes vues précédemment vectoriellement. A titre
d’exemple, nous passons en revue quatre méthodes vues en début de chapitre
pour le cas scalaire. Il est aisé de les adapter au cas vectoriel.

Méthode 5.13 (Euler explicite)

x̄i+1 = x̄i + hf(x̄i, ti)

Méthode 5.14 (Runge-Kutta vectoriel d’ordre 4)

x̄i+1 = x̄i +
1

6
(K1 +K2 +K3 +K4)

où

K1 = hf(x̄i, t)

K2 = hf(x̄i +
1

2
K1, t+

1

2
h)

K3 = hf(x̄i +
1

2
K2, t+

1

2
h)

K4 = hf(x̄i +K3, t+ h).

Méthode 5.15 (Adams-Bashforth-Moulton vectoriel d’ordre 2) Les
méthodes vectorielles d’Adams-Bashforth et d’Adams-Moulton sont respecti-
vement

x̄i+1 = x̄i +
h

2
(−f(x̄i−1, ti−1) + 3f(x̄i, ti))

x̄i+1 = x̄i +
h

2
(f(x̄i, ti) + f(x̄i+1, ti+1)).

5.6.3 Stabilité et équations différentielles raides

Lors de l’étude de la stabilité de la méthode d’Euler, nous avons vu que le
choix du pas doit être choisi de manière judicieuse pour éviter les problèmes
d’instabilité. C’est évidemment le cas pour la plupart des méthodes que
nous avons considérées dans ce chapitre. Nous avons également vu que la
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stabilité est essentiellement régie par la valeur de Ji = ∂f
∂x
. Il est possible

d’étendre cette analyse au cas d’un système x′ = f(x, t). Dans ce cas-ci, ce
qui détermine la stabilité du système est le rayon spectral de sa matrice Jaco-
bienne J = ( ∂f

∂xi
). Si toutes les valeurs propres sont telles que leur partie réelle

Re(λj(J)) < 0, on dit que le système est stable. Similairement, les valeurs
propres de J en tout point vont permettre de déterminer la taille requise
du pas de façon à avoir une méthode numérique stable. Un cas pathologique
notoire arrive lorsque les différentes valeurs propres de la matrice Jacobienne
sont de modules très différents. On parle dans ce cas d’un système raide. Ce
genre de systèmes s’avère particulièrement délicat à résoudre. L’étude de la
résolution de problèmes raides est un sujet en soi. On a déjà vu néanmoins que
certaines méthodes, telle la méthode d’Euler implicite, sont assez adaptées
du fait de leur très grande région de stabilité. Pour clôturer cette discussion
sur les problèmes raides, nous allons l’illustrer par un exemple.

Exemple 5.8 Soit le système

x′ = −20x− 19y x(0) = 2

y′ = −19x− 20y y(0) = 0.

On peut résoudre analytiquement ce problème et voir que la solution peut
s’exprimer comme x(t) = e−39t + e−t et y(t) = e−39t − e−t. Quand t aug-
mente, la partie correspondant à e−39t devient rapidement négligeable et la
solution se rapproche de x(t) = −y(t) = e−t. Si on regarde la matrice Ja-

cobienne du problème qui est obtenue aisément comme

(
−20 −19
−19 −20

)
, on

obtient naturellement les valeurs propres −39 et −1, correspondant aux deux
fonctions reconnues dans la forme analytique. Prenons à présent le cas de la
méthode d’Euler explicite. Cette méthode requiert que |hJi| < 2 pour garan-
tir sa stabilité. Dans ce cas, on obtient donc respectivement que h < 2/39
ou h < 2. On en déduit que c’est la partie la plus négligeable du problème
(correspondant à e−39t) qui impose que le pas choisi soit très petit.

L’exemple illustre que dans des cas pathologiques, on peut être forcé de
devoir choisir un pas d’intégration ridiculement petit à cause d’une valeur
propre de la Jacobienne trop négative. Ceci peut ne pas être en adéquation
avec la “physique” naturelle du phénomène.


