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The initial wave packets of H,O" and D,0" in their ﬁsz /A states are expanded in the frozen gaussian basis set
proposed by Heller. The gaussian functions are propagated on the adiabatic and diabatic potential energy surfaces resulting
from the conical intersection with the A?A, /%A’ state. Autocorrelation functions are calculated separately for the adiabatic
and diabatic motions of the nuclei. These autocorrelation functions are compared with their experimental counterparts. The

agreement is qualitatively good and the isotope effects are well accounted for.

1. Introduction

The autocorrelation function provides an inter-
esting piece of information on the nuclear motion
on the potential energy surface of the electronic
state under consideration and has already proven
its usefulness [1-3] for the understanding of the
intramolecular dynamics. In this paper, we use the
method of frozen gaussians proposed by Heller [4]
to calculate the autocorrelation function C(#) cor-
responding to the B2A’ state of H,0" and D,0".
Such a semiclassical treatment already provided
good results for a diatomic system [5] and can also
be used for polyatomic systems [6].

The purpose of this work is to explain the
isotope effect observed in the experimental auto-
correlation functions of H,O* and D,O" in their
B2B,/?A’ state, particularly in the region corre-
sponding to the second recurrence (800 < ¢ < 1100
au for H,0" and 1100 < ¢ <1600 au for D,0%)
(fig. 1, solid line). The case of the B2A’ state of
H,0" (D,07) is particularly exemplary since this
state is connected with the A?A’ state via a conical
intersection [7-9]. Whether the calculated and ex-
perimental autocorrelation functions (the latter
being obtained by Fourier transforming the band
profile of the photoelectron spectrum [10]) have
similar shapes and present the same important

features will be indicative of the validity of the
model used to describe the dynamical behavior of
the system. In section 2, we present the adiabatic
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Fig. 1. Solid line: experimental autocorrelation functions;
dashed line: calculated adiabatic autocorrelation functions. (a)
H,0" (B?A’ state). (b) D,0™ (B2A’ state).
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and diabatic potential energy surfaces used for the
trajectory calculation of the gaussians’ motion and
we briefly indicate how we calculate the transition
probability. Section 3 deals with the choice of the
initial conditions for the trajectories and the de-
termination of the initial wavefunction. In section
4, the gaussian basis set is presented and the
expression for C(t) is derived. This analytical
expression can only be obtained in the case where
the determinant of the metric tensor g for the
chosen coordinates is constant. If this is not the
case, one has to look for more appropriate coordi-
nates. This transformation is carried out in section
5. Section 6 deals with the choice of the width of
the gaussian functions of the basis set. This width
must be determined so as to minimize the error
due to the frozen character of the gaussians. In
section 7, we present the results, discuss the agree-
ment with the experimental autocorrelation func-
tion and we comment on the isotope effect ob-
served. Section 8 provides a more general discus-
sion and interpretation of the results.

2. Potential energy surfaces and transition
probability

_ The conical intersection between the A and
B2A’ states of X,0" (X=H or D) is schemati-
cally presented in fig. 2. The coordinates (R, r, a)
are defined as follows. Let the bond lengths be
R, =0X,, R,=X,X,, R, =0X,,

R= %(Rl + Rz)’

r=R;—R,,

a is the angle between R, and R,.

($

r

Fig. 2. Perspective drawing of the B?A’ and A’A’ adiabatic
potential energy surfaces.

In a previous study the adiabatic potential energy
surfaces were calculated ab initio and a dynamical
study of the relaxation process from the B to the
A state was presented [8,9]. This study was based
on classical trajectory calculations on the upper
adiabatic surface interpolated by the 3D spline
method [11]. For each trajectory, a non-adiabatic
transition probability was calculated by the Niki-
tin two-dimensional formula [12] every time the
trajectory passes through a “seam” a, = f(R). This
seam is a line within the region of strong coupling
between the two adiabatic states and is taken as
being the locus of the apex of the double cone.
The final transition probability was obtained by
averaging over the ensemble of trajectories. This
led to a rate constant for the depopulation of the
B state of the order of 10* s~ 1.

In order to obtain the autocorrelation function,
we must also consider the evolution of the part of
the wavefunction that does not remain on the
upper adiabatic surface. In the region of non-
adiabatic interaction, the wave packet breaks into
two parts (fig. 3). Beyond the coupling zone, the
first one (WP1) has remained on the upper adia-
batic surface while the second (WP2) has dropped
down on the lower one. The potential which
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Fig. 3. Schematic views of the adiabatic and diabatic trajectory
flows, before and after the turning point time trp. Solid line:
calculated flux; dashed line: neglected flux. (a) and (b): calcu-
lation on the upper adiabatic potential energy surface; (c) and
(d): calculation on the diabatic potential energy surface.
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governs the motion of WP1 is already known [8,9]
and results from a 3D spline interpolation. The
potential in which WP2 moves is taken as the
diabatic energy surface which coincides with the
upper adiabatic surface in the Franck—Condon
region and with the lower one after the passage
through the coupling zone. As discussed by several
authors [13], true diabatic states do not in general
exist. However, under certain conditions [14],
satisfactory approximate diabatic states can be
derived. It seems that the conical intersection un-
der study can be classified in the favourable cases
and diabatic potential energies have already been
calculated [8,9]. The surface obtained corresponds
to H,, in fig. 4.

We preferred to consider a model in which the
motion of WP2 is continuous on an approximate
diabatic potential than to use a surface hopping
model in which the velocities have to be corrected
at each hop to the lower adiabatic surface. This
approximate diabatic state is known at few points
only (120-150). These points are introduced as
input data in the program POT3 *. The expres-
sion for the derived potential was originally sug-
gested by Sorbie and Murrell [16] and later ex-
tended by Murrell et al. [17], based on the many-
body expansion:

V(Ry. Ry, Ry) = LV0+ L VA(R,)
,- ‘

1
+VO(Ry, Ry, Ry). 1)

V(R,, R,, R;) is the required total energy of the
triatom relative to the combined ground state
energies of the atoms 1, 2 and 3. V() are atomic
energies relative to the ground states, V,?(R,) are
two-body interaction terms relative to dissociated
atoms and V@ (R, R,, R;) is a three-body inter-
action term. ¥ and V,?(R,) have to be intro-
duced as input data and the program POT3 de-
termines V®(R,, R,, R;) with the help of ab
initio energies and the requirement that the
minimum of the surface be exactly reproduced.

* Program POT3 [15] is a standard FORTRAN IV computer
program developed at the University of Reading for the
purpose of deriving analytical triatomic potential functions
which reproduce spectroscopic, thermochemical, ab initio or
kinetic data.

(4

r

Fig. 4. Perspective drawing of the B and A states in the
diabatic representation. The seam is represented by a dotted
line.

In the study of the diabatic motion of the wave
packet, each trajectory moves on this potential
energy surface and every time it crosses the locus
ac=f(R) the probability of switching is calcu-
lated [8,9] from the Nikitin formula [12]. Thus, the
dynamical behavior on the diabatic potential en-
ergy surface is treated at the same level as that on
the adiabatic one; the probabilities p; are calcu-
lated by the same formula, except that p, in one
picture becomes (1 — p,) in the other. Thus, the
motions of WP1 and WP2 are confined to single
potential energy surfaces but the loss of flux is
accounted for.

3. Initial conditions and initial state

The initial conditions are denoted {R®, r™,
al, ¢, 07, X PR. PN PEh Py Pib Pob
where {R'", 1", o;"} represents the initial values
of the internal coordinates for the ith trajectory,
(¢, 8/n, xI"} represents the initial values of the
Euler angles for the ith trajectory, and the pi®
represent the initial values of the conjugate
momenta for the ith trajectory. The choice of the
initial conditions { R, ™, of*, pR, p°, p} is
based on the value of their statistical weights.
These are taken as the values of the Wigner func-
tion [18] at the corresponding values of the normal
coordinates and conjugate momenta {Qj7, Q3

3, P, P?, P;?} whose relationship with the
internal coordinates is given in refs. [8,9]. As the
number of trajectories which can be run is limited,
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we choose among a set of randomly generated
initial conditions those with the highest statistical
weight. The signs of the conjugate momenta were
randomly chosen.

The initial orientation of the molecule in space
does not matter and the initial values of the Euler
angles are taken the same for all the trajectories.
The initial values of the conjugate momenta { péfl‘,
Pa» Py} are randomly generated for a given rota-
tional quantum number J [8,9].

The initial nuclear wavefunction corresponds to
the potential of the H,O(X'A") molecule in the
harmonic approximation:

3
F=Nexp| - — ¥ 0,02 |, )
2h e

where w; is the pulsation of the ith normal mode.
They are derived from the valence force field of
Bartlett et al. [19].

‘As the internal coordinates used (R, r, a) are

4. Gaussian basis set and expression for C(¢)

not cartesian, relation (2) becomes

¥,=Nexp| —(1/2h)(g—q.) *Alg—q.)], (3)
with

R—R,
q9—49.= r=r. |,
a—a,

R., r., a, are the equilibrium values for the mole-
cule. The elements of matrix A are obtained from
the «;, and the relations between (R—R,, r—
r., « —a.) and (Q,, 0,, Q5) [8,9]. The normaliza-

tion factor N is given by

3 1/4
N-= ( I w,-/w)
i=1

= (det A/m*i%g)"", (4)

if the determinant g of the metric tensor g is
constant.

The method used in this work has been proposed by Heller [4] and consists in the expansion of the
nuclear wavefunction ¥(g, ) in a basis of frozen gaussian functions G;(q, t) [6]:

N
¥(g, )= % CjGj(qs 1),

Jj=1

(5)

Gy(g, 1) =N"exp{~(1/2h)[qg = q,(1)] "+ Blg —q;(1)] + (i/h)p,(1)" +[a = q,(1)] + (i/h), (1)},

(6)

where (¢,(7), p;(7)) are the vectors of the internal coordinates and conjugate momenta that obey the
classical equations of motion. The phase v;(?) is given by

v(0=["[p() i) - E] ar,

(7)

where E; is the classical total energy of the jth trajectory.

N’=(det B/gn*h%)"*,

if the determinant g is constant. The matrix B is held constant and its choice is discussed in section 6.
For the determination of the values of the ¢, coefficients in relation (5), one has to remember that the
gaussian functions as given by eq. (6) are not orthogonal. Diagonalization of the overlap matrix [20]

s,=[[[” (£ dq) G#(4.0) G,(4.0),

(8)
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leads to a new basis set of orthogonal functions F(g, 0)

p
F(q,0)= ZfijGj(qv 0). 9)
j=1
The wavefunction ¥(q, 1) is expanded in the P < N linearly independent basis functions F;(q, ¢) [20]
P N
¥lg, )= 2L u,Flg,t)= } ¢G(q, 1), (10)
i=1 Jj=1
P
6= v‘;lu"f’f' (11)

u, = [ Z i [f]” (57 da) Grla. 0) % [ [I]” (57 dq) 1 E(a. 0) 2 (12)

These integrals are of the same type as S;; [eq. (8)]. The general expression for S, , 18 given in the appendix.
As pointed out there, a general analytical expression for S, exists only when g'/? is constant and can be
moved out of the integration symbol. Otherwise, the three-dimensional integrals must be calculated
numerically. The autocorrelation function takes the form

C(r) =’fff;(gl/2 dg)¥*(q,0)¥(q, t)}

Z ZCiC/*Pil/z(t) exP{—(1/4h)[qi(t) - qj(O)]T. B[qi(t) - qj(O)]

—(1/40)[ p,(1) = p;(0)] "+ B[ p,(1) — p,(0)]

/), (0) 4,0 =2 (1) 4,() + [p.(1) =, 0] @, + (1)} +K ||, (13)

where P,(7) is the probability for the ith trajectory (q,(¢), p;(¢)) of remaining on the potential energy
surface on which the wave packet moves. The probability amplitude of remaining on the potential energy
surface associated with the trajectory (g,(¢), p,(t)) is characterized by its absolute value and its phase. In
the model adopted here, we choose to neglect the phase and we take P!/?(¢) as the probability amplitude
associated with the gaussian G,(q, 7). Q;; and K are given in the appendix.

The reason why we do not consider any interference between the adiabatic and diabatic wave packets is
the following. According to the results of refs. [8,9], that part of the wave packet which remains on the
upper adiabatic potential energy surface is small (= 10% or less). We made the assumption that the part of
the autocorrelation function due to interference effects should be still lower than the adiabatic function
and could be neglected. The results obtained seem to indicate that this assumption is acceptable. In the
case where the wave packet breaks into two similar wave packets on each surface, this assumption is
probably no longer valid.

5. Coordinate transformation +1r2 [1 — 2y cos?*(a /2)] } , (14)

For the coordinates (R, r, a), the determinant where

of the metric tensor has the following expression y=my/(my+2my) (X=Hor D).

g=131(1- 2Y){ R? [1 -2y Sinz(’-"/z)] As mentioned above, if one wants to calculate
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C(1) by relation (13), one has to choose a coordi-
nate system for which g is constant. This is the
case for the system given in fig. 5. The new axis y
passes through the center of mass G of the triatom
and the center of mass M of the diatom X,-X,. G
is the origin of the new body-fixed frame. The new
coordinates are defined as follows (fig. 5):

Ry=yx, ~Yo»
Ro=ym~Yos
Ry=xy . (15)

In this coordinate system, the vibrational kinetic
energy T,.. [21] and the determinant g are given
by

Tinge ™ [2my(mo+my)/(mo+2my)| R
+my(R3+RZ) —2myR,R,, (16)
g=8mymy/(2my +mg). (17)

The transformation of the coordinates leads to
the new matrix A, instead of A, in eq. (3). If S is
the transformation matrix between the infinitesi-
mal displacements around the equilibrium posi-
tion

SR 3R,
o | =s| o, |, (18)
da dR,

Fig. 5. Definition of the internal coordinates (Rg, R4, Rs) for
which g!/? is constant.

the A’ matrix takes the form

A = STAS. (19)

6. Choice of matrix B

As stated in section 4, the matrix B [eq. (6)] is
kept constant during the motion of the gaussians.
This model is valid if, at any time, the potential
energy can be truncated to a good approximation
after the quadratic terms in the region covered by
every gaussian. The easiest way to make this ap-
proximation valid is to consider thinner and
thinner gaussian functions, i.e. to increase the
value of B. Three values have been tested for the
derivation of the autocorrelation function corre-
sponding to the motion of the wavepacket on the
adiabatic upper surface: B=2A’, B=3A" and B
= 4A’. The result is not very sensitive to the value
of B. Moreover, it has to be kept in mind that the
quality of the basis set decreases when B increases.
As a matter of fact, making the gaussians thinner
worsens the expansion of ¥(gq, 0) in this basis set
[eq. (3)], because it becomes incomplete. The over-
lap integral [[[>*_g"/* dg ¥,(g) ¥(g, 0) is given
in table 1 for three values of B. As a consequence,
the size N [eq. (5)] of the basis set has to be
increased, as illustrated by table 2. One can see
that the basis set should contain at least sixty-six
gaussian functions. However, since we intended to
generate a whole set of autocorrelation functions
with different conditions on the rotational quan-
tum number J and on the diabatic potential, we
restricted ourselves to N = 30 trajectories.

Table 1
Values of I=[[[®_g"/*dg ¥(q) ¥(g,0) for H,0" calcu-
lated with thirty trajectories for three values of B = n A’

n I

2 0.9556
3 0.9154
4 0.8717
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Table 2
Values of I=[[[®_g'/?dq ¥y(g) ¥(g,0) for H,O" calcu-
lated with N trajectories, with B = 2A

N I

20 0.9080
30 0.9556
66 0.9950
7. Results

7.1. The adiabatic correlation function

7.1.1. Influence of J

As the upper adiabatic potential energy surface
is already well known [8,9], we first study the
influence of the quantum rotational number J on
the autocorrelation function resulting from the
motion of the wave packet on this surface, for
both H,O™ and D,0". Figs. 6 and 7 show the
autocorrelation functions in the case where J =0
[parts (a)] and J =10 [parts (b)]. In both cases,
the increase of J leads to a splitting of the first
and second recurrences. As far as the first recur-
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Fig. 6. Adiabatic calculated autocorrelation functions of H,0*
for two values of J: (a) J =0 and (b) J=10.
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Fig. 7. Adiabatic calculated autocorrelation functions of D,O™
for two values of J: (a) J =0 and (b) J =10.

rence is concerned, this splitting is more im-
portant in the case of H,O" than for D,07, but
one has to remember that at a given J the rota-
tional energy is greater for H,O than for D,O.
Thus one can conclude that the rotational excita-
tion leads to qualitatively similar results in the
adiabatic autocorrelation functions of H,0" and
D,0* (B2A' /2B, state).

7.1.2. Isotope effect on the recurrence times

As far as the isotope effect is concerned, the
comparison between parts (a) and (b) of fig. 1, or
between fig. 6 and fig. 7 shows that it results in a
displacement of the recurrences corresponding to
the expected changes of the frequencies

Tlstrec (D20+)/Tlstrec (H20+) =1.5.

7.1.3. Isotope effect on the transition probability and
the correlation function

The heights of the first recurrences are slightly
different (0.059 for H,0*, J=0 and 0.075 for
D,0", J=0). However, the probabilities of re-
maining on the adiabatic upper surface are equal
to 0.101 and 0.066 respectively, i.e. H,O" behaves
more adiabatically than D,O*. This is in con-
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tradistinction with the simple intuitive thinking
based on the nuclear velocities in the coupling
zone. As a matter of fact, as D,O" is heavier, it
moves then more slowly and, on this basis alone,
its behavior is more adiabatic. However, the
nuclear velocities are not the only variables in the
expression of the Nikitin transition probability
[12]. The impact parameter r, [the value of the
coordinate » when one passes through the seam
a = a (R)] influences the value of p too. It has
been shown [9] that this variable is in fact the
factor which determines the value of p. In D,O",
the initial kinetic energy, i.e. the zero point energy,
is lower than in H,O™, in particular that part in
the antisymmetric mode r. As r is not excited in
the photoexcitation process, the only possibility to
increase its variation domain, i.e. the mean value
of r,, is the coupling with the other modes. This
effect is expected to be more important after a
rather long propagation time. However, as far as
the motion on the adiabatic upper surface is con-
cerned, this is not the case for the first passage in
the coupling zone and one can consider (for the
second passage too because the conditions have
not changed very much [8,9]) that the coupling
between the nuclear modes has no time to in-
fluence strongly the variation domain of r. Thus,
the trajectories will pass nearer to the apex of the
cone in D,O™ than in H,0%, inducing a stronger
non-adiabatic transition to the lower adiabatic
state, i.e. a more diabatic behavior.

The opposite isotope effect on the heights of
the first recurrences and the probabilities gives
evidence of the fact that the shape of the autocor-
relation function is not only determined by the
transition probability but depends also on the
nuclear motion on the potential energy surface
studied.

Fig. 1 (solid line) presents the experimental
autocorrelation function, i.e. that obtained by
Fourier transforming the third band of the photo-
electron spectra of H,O (fig. 1a) [22] and D,O
(fig. 1b) [23], compared with the calculated adia-
batic autocorrelation function (dashed line) which
is a weighted average of the autocorrelation func-
tions obtained for J =0, 2, 5 for H,O* and J =0,
3, 5 for D,O*. These values of J were chosen on
the basis of the rotational distribution functions.

7.2. The diabatic correlation function

The existence of additional peaks, other than
those coming from the adiabatic function, indi-
cates that one part of the wave packet moves on a
non-adiabatic potential energy surface and comes
back to the Franck—Condon zone.

7.2.1. Influence of the shape of the diabatic potential
and influence of J

Several diabatic potential energy surfaces have
been tested. They all were obtained as explained
in section 2. The first attempt results from 141
points calculated ab initio with the basis set and
the CI matrix described in refs. [8,9]. The diabatic
correlation functions (DCF) are presented in fig.
8. One an see that
T

lstrec(D20+)/Tlslrec(H20+)
=1575/1125=14.
The isotope shift of the recurrence is somewhat

smaller than in the adiabatic case, but this effect
can still be considered as a normal isotope effect.
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Fig. 8. Diabatic autocorrelation functions calculated with 141
ab initio points introduced in POT3: (a) H,0 ", (b) D,O™.

(J=5)
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However, the recurrences do not appear in the
expected time domain. Therefore, several attempts
were made to study the influence of the curvature
and the anharmonicity of the diabatic potential
energy surface as well as the position of its mini-
mum. This was done as follows. Let E,; be the
diabatic energies derived from ab initio calcula-
tions, E_ the diabatic energies resulting from a
change in anharmonicity, curvature and position
of the minimum (R.,. 0, «,,), and (ds)* the inter-
val:

(dS Zzguq qj’ QI (R Req’ ? —aEq)’

where g, are the elements of the metric tensor.

2 3
E.=E, +a(ds) +b(ds)".
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Fig. 9. Diabatic autocorrelation functions of H ,O" obtained
with three different sets of parameters of V& (Ry, Ry, R;) for
J=2.
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Fig. 10. Diabatic autocorrelation functions of D,0™ obtained
with three different sets of parameters of ¥*(R;, R,, R;) for
J=3.

The variation of a and b leads to different sets of
energies E_. The new values of E_ are then intro-
duced as parameters in POT3 and a new expres-
sion for V(R, r, a) results. The best correlation
functions obtained, as far as the positions of the
diabatic recurrences are concerned, are shown in
figs. 9 and 10 for the values of J corresponding to
the maximum of the rotational distribution func-
tions. In all the other calculated cases, the recur-
rence times were worse and the heights varied very
much depending on the potential used. An in-
crease in J results in a decrease in the first recur-
rence in the DCF of H,O™ and a change in the
shape of the second one. The latter is composite
and the variation of J has different influences on
the components of the recurrence. This is also the
case for the two components of the first recur-
rence of D,0*. The weighted average on J of the

DCFs is presented in fig. 11.

7.2.2. Comparison with experiments and isotope

effects

Let us compare fig. 11 with fig. 1. In the case of
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Fig. 11. Weighted average on J of the diabatic autocorrelation
functions corresponding to case (b) of figs. 9 and 10: (a)
H,0", (b) D,O".

H,0", (fig. 11a) one obtains a calculated DCF
with two recurrences, the first one at 1 =975 au
(DCF = 0.163) and the second one for 1300 <t <
1700 (. = 1550 au, DCF = 0.118). The first one
is a single peak while the second one is composite.
If one considers the experimental function in fig.
1a, the first non-adiabatic recurrence takes place
at t=900 au with a height of 0.083. A small
secondary peak is observed at = 1000 au which
can be reproduced in only few of the calculated
correlation functions (fig. 9). The second non-
adiabatic recurrence is very weak (= 0.02). It oc-
curs at 1225 < <1500 au and is composite. The
relative errors on the recurrence times are respec-
tively 8% (first recurrence) and 14% (second one).
However, the most important discrepancies con-
cern the heights of the recurrences, particularly
the second one. In the experimental autocorrela-
tion function, it is very weak but this cannot be
accounted for in any of the diabatic correlation
functions calculated here. However, one has to
keep in mind that one neglected the interference
term between the adiabatic and diabatic wave
packets. This term contains the square root of the
corresponding populations multiplied by the over-

lap integral between the two wave packets. In the
very improbable case where they nearly coincide,
the interference term is of the order of 0.2-0.3.
These high values are weighted by the overlap
integral which lowers them down. However, the
interference term may be sufficiently important to
cancel a part of the autocorrelation function out
as well as to increase it.

In the case of D,0™, only the first recurrence
appears in the time domain considered. It has two
components, in the calculated function as well as
in the experimental one. The time values corre-
sponding to the two maxima are f; =1350 au,
t, = 1500 au for the calculated curve and ¢, = 1220
au, t,=1500 au for the experimental one, i.e.
relative errors of 10% and less than 2% respec-
tively. As far as the heights are concerned, one
obtains h; =0.039, h,=0.049 in fig. 11b and
h,=0.055, h,=0.049 in fig. 1b. The agreement
between the calculated and experimental correla-
tion functions is somewhat better in the case of
D,0" than in the case of H,O".

Quantitatively, the DCF is not well reproduced
in the case of H,O™ as far as the heights of the
function are concerned. However, qualitatively,
one can consider that the results are not too bad if
one takes into account firstly that the nuclear
motion on the diabatic surface involves very dis-
torted geometries and will be very sensitive to the
shape of the surface at these geometries, and
secondly that the neglected interference term may
be important. As a matter of fact, we emphasize
that the isotope effect is rather well accounted for
in the calculated DCF: the first recurrence is a
single peak in the case of H,O" whereas it has
two components in the case of D,0™. In the case
of H,O%, all of the trajectories which come back
near the Franck—Condon zone do so at ¢ =975
au, whereas for D,O", some of them come back
around ¢ = 1350 au and some others around =
1500 au.

8. Discussion

8.1. Isotope effect on the shape of the first diabatic
recurrence

In the case of D,0%, a detailed analysis of the
trajectories reveals that those for which the recur-
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rence time is = 1500 au are all characterized by a
great percentage of internal energy in the antisym-
metric mode r. Our explanation of such different
behavior in D,O™ and H,O™ rests on the dif-
ference in the variation of the coefficients in the
expression for the kinetic energy. In order to
simplify somewhat the discussion, we consider
only the expression for the vibrational kinetic
energy. T, [21]. For the general nuclear frame-
work XOX represented by the coordinates
(R. r. a). one has

stape = ’"xz Ztué:q.}

J
= mx(tn}é2 + 1P+ 133&2
+21,,6R + 21,,67). (20)

If the coefficients 7, , are not functions of my,
then (20) can be replaced by

Tsh.a;e = Z ZI.'_/‘il.Mq.j.M’ (21)

where the coordinates g, ,, are mass weighted

q:..\f=m%\':q:‘ qi=R’ r, .

The expression for T, is invariant in my. Thus,
a variation of my will change all the velocities g,
by the same factor. However, if the coefficients 7,
are distinct functions of my, expression (21) is no
longer invariant in the mass my. Then, isotopic
substitution will not only speed up (or slow down)
the trajectories. but can also completely modify
them. The expressions for the 7, are:

1, =1-2ycos’(a/2),

1, =31[1 -2y sin*(a/2)],

1 =3{R?[1 -2y sin*(a/2)]
+1r3[1-2ycos?(a/2)] },

I,;=3YR sin a,

I,,= —+yr sin a,

y=my/(mgy+2my).

The variation of the dynamical couplings (i # ) as
a function of my (+7y) is stronger than that of the
diagonal terms (+[1 —2y...]). This may explain
the differences in the behavior of H,0* and D,O™.

8.2. Isotope effect on the probabilities of remaining
on the potential energy surface

The populations of being still on the diabatic
surface at the first recurrence times are presented
in table 3. These results apparently suggest that
the behavior of D,0" is less diabatic than that of
H,O™. This seems to disagree with the calculated
probabilities of remaining on the adiabatic surface
(section 7.1.3). In a first step, one has calculated
the population on the adiabatic upper state. This
population is represented in fig. 3 by contribu-
tions 1 and 3. As (1 + 3) is greater for H,O" than
for D,O*, contributions 2 and 4 are more im-
portant for the deuterated system. Then, one ex-
pects contributions (5 + 7) to be greater for the
heavier ion. However, one obtains the inverse
result. Our explanation is as follows. The flux of
trajectories nr. 2 is identical with the flux nr. 5, i.e.
flux 5 is more important in D,0* than in H,O™.
The trajectories that make up this flux follow a
very anharmonic potential energy surface which
allows very important distortions of the nuclear
framework. Furthermore, the dynamical couplings
are stronger for D,O™ than for H,0". When the
trajectories of the D,0O™ system come back (flux
7) in the coupling zone, the impact parameter r
will take larger values, inducing a more adiabatic
behavior, i.e. flux 7 is much less important than
flux 5.

8.3. Relation between P(t) and C(t)

As far as the heights of the peaks are con-
cerned, they are calculated to be lower for D,O*
than for H,O", in agreement with the experimen-
tal results. This is at first sight rather surprising if
one considers the population P which is still on
the diabatic surface (which coincides with the

Table 3
Population P on the diabatic surface for the values of ¢
corresponding to the first recurrence

Isotope species t (au) P

H,0" 975 0.85
D,0" 1350 0.83
D,0* 1500 0.80
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upper adiabatic one in the Franck—Condon zone)
for the recurrence times (cf table 3). The great
differences between the values of the remaining
population and the DCF prove that the motion of
the nuclei on the surface is the leading factor
determining the heights of the peaks in the auto-
correlation function, rather than the transition
probability. This has already beeen pointed out by
Koppel [3] in the case of C,H . Therefore, it is
somewhat dangerous to derive a rate constant for
a non-adiabatic transition process from an auto-
correlation function [24].

8.4. Coupling with rotation

The motion on the diabatic potential energy
surface leads to very strong distortions of the
nuclear framework so that a rather small per-
centage of the wave packet comes back in the
Franck-Condon zone. Furthermore, these large
deformations are subject to coupling with the ro-
tation. The importance of this coupling depends
on the shape of the diabatic surface for small
values of the coordinate «. If the surface is not
very steep along this coordinate when the mole-
cule is highly distorted (in the sense R, > R;) the
bending motion can transform into internal rota-
tion of the fragment OX, (cf fig. 12a). If the
potential is very steep for small values of «, the
bending motion cannot transform into internal
rotation (fig. 12b). This explains why the influence
of rotation on the vibrational motion of the nuclei,
1.e. the shape of the correlation function versus J,
can vary according to the characteristics of the
potential energy surface.

Finally, we note that this influence of J in the
correlation function has nothing to do with the
rotational correlation function due to the overall
rotation of the body-fixed reference frame. The
experimental functions have already been cor-
rected for this rotational part [1]. The expressions
for the initial wavefunction [egs. (2) and (3)] and
the gaussians [eq. (6)] involve only the three vibra-
tional coordinates. Their variations as a function
of time are influenced more or less strongly by the
rotation of the system. Therefore, what has been
studied here is the importance of Coriolis interac-
tion on the vibrational correlation function.

(a) (b)

Er v \ET /

v

Fig. 12. The distorted molecule and the possible (a) or impossi-
ble (b) internal rotation motion of OX,, according to the
shape of the potential V' and the total energy E.

9. Conclusions

The purpose of this work is to study the isotope
effect observed in the autocorrelation function of
H,0" and D,O" in their B?B,/?A’ state. This
state is coupled to the A%A /A’ state via a coni-
cal intersection [7-9]. The method used in this
work consists in splitting the set of trajectories
into two parts: one moving on the adiabatic surface
associated with the upper cone (fig. 2), and a
second part associated with the trajectories mov-
ing on the diabatic surface H,, (fig. 4). Both parts
were assumed to give rise to independent corre-
lation functions which were simply added, i.e.
interference effects were disregarded.

The adiabatic correlation functions agree
qualitatively with the experimental ones (fig. 1). If
one compares fig. 11 with fig. 1, one sees that the
agreement between the diabatic autocorrelation
functions and the experimental ones is qualita-
tively good as far as the recurrence times are
concerned, but not very satisfactory for the calcu-
lated heights which are too large, which can be
due to the neglect of the interference term. How-
ever, the isotope effect is satisfactorily reproduced.
The first diabatic recurrence in H,O" is calcu-
lated to be single peaked whereas that in D,O* is
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composite. In the case of H,O™, all trajectories
that come back near the Franck—Condon zone do
so at a time = 975 au. In the case of D20+, the
trajectories which come back near the Franck-
Condon zone are divided into two sets. The first
set of trajectories comes back at = 1350 au, the
other does so at = 1500 au. Our explanation of
such different behavior in D,0* and H,O" rests
on the fact that the coefficients of the velocity
products in T, . are distinct functions of my
and that the dynamical couplings are greater for
the heavier system.

The nuclear motion is also seen to be responsi-
ble for the great difference between the probabil-
ity of being still on the diabatic potential energy
surface at the recurrence times (= 0.8) and the
heights of the first recurrences. A somewhat simi-
lar situation has already been encountered by
Koppel [3] in the C,H; system. As a matter of
fact, the nuclear framework can distort very
strongly when the motion takes place on the di-
abatic potential energy surface and only a small
number of trajectories do come back in the
Franck—-Condon zone. Thus, the rate constant
which we calculated for the depopulation of the
upper adiabatic *A’ state of H,O" via the conical
intersection only reflects the evanescence of WP1
but tells us nothing about WP2, which comes back
on the upper adiabatic potential surface with a
probability of 0.8 after one period. Therefore, the
large calculated value of 10 s~! for the rate
constant [8,9] characterizing the depopulation of
the upper adiabatic state of H,O" has to be

reinterpreted and corrected by taking into account
that part of the diabatic wave packet WP2 which
comes back on the upper adiabatic surface. This
high calculated value of 10 s~! [8,9] gives evi-
dence that fluxes 2 and 4 (see fig. 3) are im-
portant. However, flux nr. 2 (= nr. 5) comes back
on the upper adiabatic state (flux 7). If the prob-
ability that WP2 returns to the upper adiabatic
surface (flux 7) after one period ranges from 0.8 to
0.85 (to which 5% has to be added coming from
WP1: flux 3), one can estimate the relaxation rate
constant (corresponding to fluxes 4 and 8) to be of
the order of 5 X 10'2 s71, i.e. the population of the
upper adiabatic state has dropped down to 50%
after five or six vibrational periods. Thus, this
correction coming from WP2 cannot be neglected
since it lowers considerably the order of the re-
laxation rate constant.
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Appendix: Overlap integral between two gaussian functions in a three-dimensional case

Let us consider the three coordinates u, v, w, components of the vector

(i)

and the two gaussian functions G,(g), G,(q):

(A1)

G,(q) =N, exp| ~(1/2h) (g~ q,)" *Alg—gq,) + (i/h)pF (4 —a,)],

G,(q) =N, exp| = (1/2h)(q— 4,)" - B(g—q,) + (i/h)p] (4 —q,)].

(A2)

where the superscript T denotes the transposed vector and A and B are two distinct real matrices.
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The overlap integral between G, and G, is
= fff g'/* du dv dw G*(¢q) G,(q), (A.3)

where g is the determinant of the metric tensor g corresponding to the coordinates ¢, and (g'/% du dv dw)
is the invariant elementary volume. In the following, the symbol [[/*_ will be simplified into [ and the
product du dv dw will be represented by dg. A part of the integrand of (A.3) can be taken out of the
symbol [:

S, = NN, exp| = (1/h)(¢,~ 4,)"*D(g,— q,) + K+ (i/n)(p} - q,— pT+4,)] L. (A4)
where

1,= [ (8> dg) exp| - (1/h) (- @,)" - Cla - @,) + (i/h)(p,—p,) 4],

(D)ap=D,z= AaﬁBaB/z( o8+ Bag) (A.5)

C,p=3(A,5+B,g). (A.6)
bl

Q,=Cb=C'|b|, (A7)
b3

bi=CyXy+ CY,+ G, Z,, (A8)

X,p=(Anpu,+ Bgu;)/(Aup+ B,g), (A.9a)

Yop=(Aop0;+ Bogt;)/(Aug + Bog), (A.9Db)

ZaB=(Aan‘+BaBW')/(A + B, ) (A.9¢c)

K=Cy X} + CuYR + CyZl +2C, Xy Yy, + 2013 X3 Zyy + 2C Yy, Z,, — Q1+ €O, (A.10)

If one performs a transition of the coordinates
— jS ,

then

L= [(g* %) exp| — (1/R) AT -CR + (i/h)(p,—p,)" (2 + Q,,)]. (A.11)
Let us diagonalize C by a unitary transformation S:

T=SCS L (A12)
The new coordinates and momenta are given by

V=S#, p,=S'p. (A.13)

for which the new metric tensor @’ has the same determinant as g since the matrix transformation is
unitary, i.e. the elementary volume (g'/? d#) becomes (g'/? dV).

Iji= f(gl/z dV) exp[—(l/h)VT-TV+ (i/h)(PV,_PVJ)T'(V"' V;,)] (A.14)
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As the T matrix is diagonal, if g is a constant, the three-dimensional integral becomes a product of three
one-dimensional integrals that have well-known expressions [25]. One finally obtains

1,=g"*(w* 1 /det 1) exp| = (1/40)(py, ~ 1) - TPy, = py) + (i/0)(py,—py) V] (A15

If one comes back to the initial coordinates ¢, one has

I,=g"*(w*h/det €)'/ exp| —(1/4h)(p,— p
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