MODEL REDUCTION TECHNIQUES IN NONLINEAR DYNAMICS

USING PROPER ORTHOGONAL DECOMPOSITION

Hoffait Sébastien – FNRS Research Fellow Kerschen Gaetan Brüls Olivier University of Liège - LTAS (Belgium)

Finite element simulations are increasingly large

[D'Otreppe,2009]

Accurate and detailed modelling

High number of DOFs

High computational time

The size of the model and the computational time have to be reduced

From the detailed mathematical model, the goal is to create a reduced model which

- represents well the dynamics
- is robust w.r.t. parameter changes
- reduces the computational time

- 1 Galerkin projection
- 2 Non-linear beam formulation
- 3 Proper orthogonal decomposition

- 1 Galerkin projection
- 2 Non-linear beam formulation
- 3 Proper orthogonal decomposition

The accuracy is closely related to the choice of the projection basis

Full Space \mathbb{R}^N

$$\mathbf{R}\left(\dot{\mathbf{x}},\mathbf{x},t\right)=0$$

$$\mathbf{x}\left(t=0\right) = \mathbf{x}^0$$

Reduced Space \mathbb{V}^k

$$\tilde{\mathbf{x}} = \Phi \mathbf{x}_r$$

Reduced Transform

$$\mathbf{x} \approx \tilde{\mathbf{x}} = \Phi \mathbf{x}_r$$

Reduced Problem

$$\Phi^T \mathbf{R} \left(\Phi \dot{\mathbf{x}_r}, \Phi \mathbf{x}_r, t \right) = 0$$

$$\mathbf{x}_r (t=0) = \Phi^T \mathbf{x}^0$$

The computational time is not reduced as much as expected in non-linear dynamics

Computational complexity of non-linear term still depends on N

- 1 Galerkin projection
- 2 Non-linear beam formulation
- 3 Proper orthogonal decomposition

The beam formulation takes into account the large displacements

Kinematic assumptions

[Cardona & Lens, 2008]

- Initially straight
- Beam cross-sections remain plane
- Deformation of the neutral axis allowed
- Rotational kinetic energy of cross-sections

Non-linear beam discretization

$$\mathbf{q} = egin{bmatrix} oldsymbol{x}_1 \ oldsymbol{\psi}_1 \ oldsymbol{x}_2 \ oldsymbol{\psi}_2 \end{bmatrix}$$
 $\mathbf{x}(s) = N_1(s) \mathbf{x}_1 + N_2(s) \mathbf{x}_2$
 $oldsymbol{\psi}(s) = N_1(s) oldsymbol{\psi}_1 + N_2(s) oldsymbol{\psi}_2$

$$\mathbf{M}(\mathbf{q}) \ddot{\mathbf{q}} + \mathbf{C}(\mathbf{q}, \dot{\mathbf{q}}) \dot{\mathbf{q}} + \mathbf{g}^{int}(\mathbf{q}) = \mathbf{g}^{e}$$

The home-made Matlab results agree with Oofelie results

- 1 Galerkin projection
- 2 Non-linear beam formulation
- 3 Proper orthogonal decomposition

The Proper Orthogonal Decomposition provides optimal projection basis

$$\min_{\Phi}\sum_{i}\left\|\mathbf{x}\left(t=t_{i}
ight)- ilde{\mathbf{x}}\left(t=t_{i}
ight)
ight\|_{\mathcal{K}}^{2}$$
 subject to $(\Phi,\Phi)_{\mathcal{K}}=\mathbb{I}_{k imes k}$

with the
$$\,\mathcal{K}_{\text{-inner product}}\,\,\,(u,v)_{\mathcal{K}}=\vec{u}^T\mathcal{K}\vec{v}$$

Properties

- data-driven method
- minimization of the error between x and \tilde{x}

The quality of the basis depends on the snaphots matrix

Simulation
$$\downarrow$$
Pre-process
$$\mathbf{x}\left(t_{i}\right) = \mathbf{x}\left(t_{i}\right) - \bar{x} \quad i = 1, \dots, T$$

$$\downarrow$$
Eigenvalue problem
$$\frac{1}{T}\mathbf{X}^{T} \, \mathcal{K} \, \mathbf{X} \, \Psi = \lambda \, \Psi$$

$$\downarrow$$
Orthonormalization

$$\Psi o \Phi : \Phi^T \Phi = \mathbb{I}, span(\Phi) = span(\Psi)$$
 $\tilde{\mathbf{x}} = \bar{\mathbf{x}} + \Phi \mathbf{x}_r$

The Proper Orthogonal values give information about the size of the basis

Truncation error connected with the eigenvalues and the amount of « energy » included in the basis span

The weighted POD improves the reduced model

Cartesian : $\mathcal{K} = \mathbb{I}$

Stiffness: $\mathcal{K} = \mathbf{K}_{tg} (t = t_0)$

« Energy » related to the linear potential energy $\mathcal{V}=rac{1}{2}\mathbf{x}^T\mathbf{K}_{tq}\mathbf{x}$

The POD-based reduced model is not robust w.r.t parameter changes

Parameter: geometry, excitation, initial conditions,...

Range of validity of POD-based reduced model is small

The robustness can be increased by interpolation or extrapolation/expansion

[Amsallem & Farhat 2008, Hay et al 2009]

Interpolation: differential geometry principle, interpolation in the tangent space of the Grassmann manifold

Extrapolation/expansion: use of the POD basis sensitivities

- 1 Galerkin projection
- 2 Non-linear beam formulation
- 3 Proper orthogonal decomposition

Conclusions and further work

Reduction of non-linear problems by Galerkin projection

Non-linear beams benchmark

Projection basis computed by proper orthogonal decomposition

Influence of the metric: cartesian/stiffness

Increase of the robustness by interpolation/expansion

Efficient discretization of the parameter space

Reduction of the complexity of non-linear terms

Further research is still needed

Reduction in the complexity of the non-linear term:

Empirical Interpolation method

Discretization of the parameter space :

Greedy method

Error estimator without the full response:

Dual-Weigthed-Residual