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Stromelysin-3 (ST3) is a matrix metalloproteinase (MMP) which

has been implicated in cancer progression and in a number of

conditions involving tissue remodelling. In contrast to other

MMPs which are secreted as zymogens requiring extracellular

activation, ST3 is found in the extracellular space as a potentially

active mature form, suggesting that the activation of the ST3

proform differs from that of other MMPs. We show in the

present study that the ST3 proform is not autocatalytically

processed in the presence of 4-aminophenylmercuric acetate

(APMA). By using ST3}ST2 chimeras, we demonstrate that

resistance to APMA is due to properties associated with both the

ST3 pro- and catalytic domains. In agreement with the ob-

servation made by Pei and Weiss [Pei and Weiss (1995) Nature

(London) 375, 244–247], we find that the requirement for

activation of the ST3 proform by the furin convertase is entirely

contained within a stretch of 10 amino acids located at the

INTRODUCTION

Stromelysin-3 (ST3) [1] belongs to the matrix metalloproteinase

(MMP) family, enzymes which are believed to be mediators of

physiological and pathological tissue remodelling processes [2–5].

ST3 is expressed in most invasive human carcinomas ([6] and

references therein), in some precursor lesions [6,7], and in a

number of other conditions including wound healing [8], mam-

mary gland involution [9], cycling endometrium [10], embryonic

development [11] and metamorphosis [12]. As for the other

stromelysins, ST3 has four protein domains, these being an N-

terminal signal peptide followed by a propeptide, a catalytic

domain containing the zinc-binding site, and a C-terminal

haemopexin-like domain [1,13]. However, ST3 differs from the

other stromelysins in that mature forms of human ST3 cannot

cleave any of the major components of the extracellular matrix

[14,15].

With the exception of the recently described membrane-type

MMPs (MT-MMPs) [16,17], all known MMPs are secreted as

soluble zymogens and require activation in the extracellular

space [18,19]. In �itro, zymogen activation can be achieved

Abbreviations used: APMA, 4-aminophenylmercuric acetate ; ST3, stromelysin-3 ; h, human; m, mouse; hproST3-hEST2, chimera composed of
the hST3 prodomain in front of the hST2 mature form; hproST3(∆10)-hEST2, chimera composed of the hST3 prodomain minus its 10 C-terminal amino
acids in front of the hST2 mature form; (N)ST3-ST2(C), either of these two chimeras ; hproST2-hEST3, chimera composed of the hST2 prodomain in
front of the hST3 mature form; hproST2-(10)hEST3, chimera composed of the hST2 prodomain in front of the hST3 mature form N-terminally extended
with the 10 C-terminal amino acids of the hST3 prodomain; (N)ST2-ST3(C), either of these two chimeras ; MAb, monoclonal antibody; MCF7hST3/9,
a clone of MCF7 cells stably transfected to express a full-length hST3 cDNA; MMP, matrix metalloproteinase ; TGN, trans-Golgi network ; PMA, phorbol
12-myristate 13-acetate ; lmwPE, low-molecular-mass ST3 proform; hmwPE, high-molecular-mass ST3 proform.
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junction between the ST3 pro- and catalytic domains. Furin

cleaves human and mouse ST3 equally well. However, PACE-4,

a furin-like convertase, is much more efficient on the mouse

enzyme, suggesting that ST3 protein determinants other than the

conserved Ala-Arg-Asn-Arg-Gln-Lys-Arg sequence preceding

the furin cleavage site are implicated in PACE-4 action. Finally,

we show that processing of the ST3 proform is inhibited by a

furin inhibitor in human MCF7 breast cancer cells stably

transfected to constitutively express a full-length human ST3

cDNA. Using brefeldin A, we demonstrate that, in these MCF7

cells, the 56 kDa precursor form of ST3 is post-translationally

modified in the cis- or media-Golgi into a 62 kDa proform.

Thereafter, its processing into the 47 kDa mature form occurs in

the trans-Golgi network and is followed by secretion into the

extracellular space.

without prodomain cleavage by agents such as SDS, or by

autocatalytic cleavage of the prodomain in the presence of

organomercurial compounds such as 4-aminophenylmercuric

acetate (APMA). In �i�o, zymogen activation is believed to be

initiated by serine proteinases such as plasmin, or by cell-surface

binding as demonstrated for gelatinase A, both leading to

prodomain removal. However, the predominant human ST3

form detected in culture media conditioned by cells expressing

either recombinant [14] or the endogenous [20] enzyme corres-

ponds to a mature form which has lost the prodomain.

These observations, suggesting that activation of the ST3

proform differs from that of other MMPs, prompted us to

characterize the molecular mechanism implicated in this ac-

tivation. We found that the ST3 proform is not autocatalytically

processed in the presence of APMA. By using ST3}ST2 chimeras,

we demonstrated that the resistance to APMA is due to properties

associated with both the ST3 pro- and catalytic domains. In

agreement with the observation made by Pei and Weiss [21], we

found that the requirement for activation of the ST3 proform by

the furin convertase was entirely contained within a stretch of 10

amino acids located at the junction between the ST3 pro- and
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catalytic domains. Finally, by using human MCF7 breast cancer

cells stably transfected to express a full-length human ST3

cDNA, we showed that intracellular processing of the ST3

zymogen is prevented in the presence of a furin inhibitor. These

findings add support to the concept that ST3 is an MMP with

unique functional properties, and that the intracellular processing

of ST3 by furin is biologically relevant.

EXPERIMENTAL

cDNA constructions

Full-length cDNAs for human (h) [1] and mouse (m) [9] ST3, and

for hST2 [13] were cloned into the pSG5 expression vector [22].

Human furin [23] and PACE-4 [24] cDNAs were cloned into the

pcDNA3 vector (Invitrogen). To generate chimeric proteins in

which the hST2 prodomain was swapped with that of hST3

[(N)ST3-ST2(C)], or in which the hST3 prodomain was swapped

with that of hST2 [(N)ST2-ST3(C)], site-directed mutagenesis

was performed on hST3 and hST2 cDNAs in order to introduce

an XbaI cleavage site at nucleotide positions 256–261 or 286–291

of hST3 cDNA, and 289–294 of hST2 cDNA (nucleotides

numbered from the initiation codon). Since the pSG5 vector

contains an unique XbaI site 5« to the cloning site, XbaI restriction

fragments were generated and exchanged between the two

plasmids containing either the hST3 or the hST2 cDNA. Thus,

the cDNA fragments encoding the 87 [hproST3∆(10)] or 97

(hproST3) N-terminal amino acids of hST3 were ligated 5« to the

portion of the cDNA encoding the hST2 mature form (hEST2,

amino acids 99–476), to generate the hproST3(∆10)-hEST2 and

hproST3-hEST2 chimeras respectively. Conversely, the cDNA

fragment encoding the 98 N-terminal amino acids of hST2

(hproST2) was ligated 5« to the cDNA portion encoding the

hST3 mature form (hEST3, amino acids 98–488) or an N-

terminally extended hEST3 form [(10)hEST3] (amino acids

88–488), to generate the hproST2-hEST3 and hproST2-

(10)hEST3 chimeras respectively. The introduction of XbaI

cloning sites in the ST3 and ST2 cDNAs having led to modifica-

tions of amino acid sequences, these were corrected by performing

a second site-directed mutagenesis to restore the correct sequence.

Thus, Ser-Arg residues (TCTAGA corresponding to the XbaI

restriction site) were replaced by Ser-Asp (residues 86–87 of

hST3) or Lys-Arg (residues 96–97 of hST3) and Gly-His (residues

97–98 of hST2).

Conditioned media and cell extracts

All cells were maintained in Dulbecco’s modified Eagle’s medium

supplemented with 10% (v}v) fetal-calf serum. COS-1 cells

(A.T.C.C. CRL1650) were transiently transfected using the

calcium phosphate precipitation procedure, with 5 µg of each

expression vector (completed to 20 µg with pBluescript DNA)

per dish (10-cm-diam., Falcon) [25]. Conditioned media were

collected after 48 h of incubation in serum-free conditions and

centrifuged at 100000 g for 1 h, in order to eliminate cell debris.

Cleared media were concentrated 100-fold by 80% ammonium

sulphate precipitation and then dialysed against 20 mM

Tris}HCl, pH 7.4, 100 mM NaCl, 5 mM CaCl
#
, 1 µM ZnCl

#
,

0.005% BrijS
$&

prior to analyses. MCF7hST3}9 cells corre-

sponding to human MCF7 breast cancer cells stably transfected

with a pCMV expression vector containing a full-length hST3

cDNA (A. Noe$ l, unpublished work) were cultured to subcon-

fluence in 1-cm-diam. dishes (Falcon) in the presence of 10%

(v}v) fetal-calf serum. Cells were then cultured in serum-free

medium supplemented with the furin inhibitor Dec-Arg-Val-

Lys-Arg-CH
#
Cl [26] at concentrations varying from 0 to 100 µM.

After 24 h, conditioned media were centrifuged at 10000 g for

30 min to eliminate cell debris and used directly for subsequent

analyses. Cells were washed with cold PBS and then lysed in

100 µl of the same buffer supplemented with 1% Nonidet P40

and 10 mM EDTA. For brefeldin A (Sigma, B-7651) treatment,

subconfluent MCF7 cells were preincubated with 0.5 µg}ml

brefeldin A for 1 h in serum-free medium, washed with serum-

free medium and then incubated in fresh serum-free medium

with 0.5 µg}ml brefeldin A for 0 to 24 h, before harvesting cells

as described above.

Protein analyses

Proteins in conditioned media and cell extracts were separated by

SDS}12%-PAGE under reducing conditions. After Western

blotting, proteins were detected by using three distinct antibodies :

monoclonal antibody (MAb) 5ST-4C10 directed against the

hST3 catalytic domain [27] ; MAb 6ST-1E11 against the ST3

prodomain was obtained by immunizing mice with a synthetic

peptide corresponding to amino acids 41–60 of hST3; R654

polyclonal antibody directed against the mature form of hST2

was obtained by immunizing rabbits with recombinant hEST2

expressed in Escherichia coli as an N-terminal six-histidine fusion

protein and recovered from bacterial inclusion bodies, according

to the procedure described by Santavicca et al. [27]. Western

blots were revealed by enhanced chemiluminescence (ECL,

Amersham) using peroxidase-coupled anti-(mouse IgG) or anti-

(rabbit IgG) (Jackson).

RNA analyses

Subconfluent human diploid HFL1 fibroblasts (A.T.C.C.

CCL153) were cultured in serum-free medium supplemented or

not with 10 ng}ml of phorbol 12-myristate 13-acetate (PMA).

After 24 h of culture, RNAs extracted according to the protocol

ofChomczynski and Sacchi [28] were separated on formaldehyde-

containing 1% agarose gels prior to transfer on to Hybond N

membranes (Amersham). Filter hybridizations were performed

using a hST3 cDNA probe [7], and a 420 bp human furin cDNA

fragment (nucleotides 170–590) generated by the PCR. Both

probes were labelled with [$#P]dCTP by random-primed syn-

thesis. Filters were reprobed with the $#P-labelled 36B4 cDNA

[29] to check for loading and transfer.

RESULTS

APMA-induced processing of ST2, ST3 and (N)ST3-ST2(C)
chimeras

Media conditioned by COS-1 cells transiently transfected with

pSG5 plasmids encoding hST3 or hST2 were incubated in the

presence of 1 mM APMA. After incubation at 37 °C for 0 to

16 h, conditioned media were analysed by Western blotting using

MAb 5ST-4C10 directed against the hST3 catalytic domain, and

using polyclonal antibody R654 directed against the mature

form of hST2. In the absence of APMA treatment, two major

protein species were detected both for hST3 and hST2, at the

expected molecular masses for zymogens and mature forms

(Figures 1A and 1B, lanes 1). After 16 h of APMA incubation,

the hST3 pattern remained unchanged (Figure 1A, lane 2), while

the hST2 proform was entirely converted into lower-molecular-

mass forms (Figure 1B, lane 3).

Since molecular perturbation of the zymogen has been shown

to initiate the activation of MMP proforms by APMA [30], we

tested whether the unusual structure of the ST3 prodomain

played a role in the inability of the ST3 proform to be processed



955Activation of stromelysin-3 proform

Figure 1 Western blot analysis of ST3 and ST2 proforms, and (N)ST3-
ST2(C) chimeras treated with APMA

(A) Media conditioned by COS-1 cells transiently transfected with an expression vector encoding

the hST3 proform were concentrated by ammonium sulphate precipitation and aliquots

containing 20 µg of protein were incubated at 37 °C with 1 mM APMA for the indicated times.

After SDS/PAGE and Western blotting, hST3 was detected using MAb 5ST-4C10 directed

against the hST3 catalytic domain. (B) Media conditioned by COS-1 cells transiently transfected

with appropriate expression vectors encoding the hST2 proform or (N)ST3-ST2(C) chimeras

were collected as described in (A), and incubated at 37 °C with 1 mM APMA for the indicated

times, before analysis by Western blotting using polyclonal antibody R654 directed against the

hST2 mature form. In the (N)ST3-ST2(C) chimeras, the prodomain of hST2 was swapped with

that of hST3 without [hproST3(∆10)-hEST2] or with (hproST3-hEST2) its 10 C-terminal amino

acids (see also the Experimental section). In (A) and (B), PE and E indicate zymogens and

mature forms respectively.

Figure 2 Comparison of ST3 and ST2 amino acid sequences at the
junctions of pro- and catalytic domains

Amino acids are represented using the one-letter code. The conserved amino acids surrounding

the conserved MMP prodomain cysteine residue, and the 10 extra amino acids characteristic

of the ST3 prodomain, are boxed. The conserved cysteine and the residues corresponding to

the furin recognition site [32] within these 10 amino acids are in bold letters, and the

corresponding cleavage site is marked by an arrow.

in the presence of APMA. Apart from the characteristic

‘Pro}Leu-Arg-Cys-Gly-Val-Pro-Asp’ sequence, the ST3 pro-

domain does not exhibit significant amino acid sequence simi-

larities with other MMPs [1], and it is further characterized by

the presence of 10 extra amino acids located at its junction with

the catalytic domain (Figure 2). (N)ST3-ST2(C) chimeras,

having the hST3 prodomain with (hproST3-hEST2) or without

[hproST3(∆10)-hEST2] the 10 extra amino acids characteristic of

ST3 in front of the mature hST2 form, were transiently expressed

in COS-1 cells and tested for autoactivation in the presence of

APMA for 0–16 h. While the hST2 zymogen was completely

converted into the corresponding mature form within 3 h of

APMA treatment (Figure 1B, lane 2), full processing of the

hproST3(∆10)-hEST2 chimera required 16 h (Figure 1B, lanes

4–6) and processing of the hproST3-hEST2 chimera was in-

complete even after 16 h of APMA incubation (Figure 1B, lanes

7–9). Importantly, these (N)ST3-ST2(C) chimeras were found to

have retained enzymic activities against casein as tested by

zymography (results not shown).

Figure 3 Western blot analysis of ST3 and ST2 proforms and (N)ST3-
ST2(C) chimeras processed by furin or PACE-4

COS-1 cells were transiently co-transfected with expression vectors for furin or PACE-4, and

vectors for hST3 or mST3 or hST2 or the indicated (N)ST3-ST2(C) chimeras (see the legend

of Figure 1 for definition). Conditioned media were collected and analysed as described in the

legend of Figure 1. PE and E indicate zymogens and mature forms respectively.

Convertase-dependent processing of ST3, and (N)ST3-ST2(C) and
(N)ST2-ST3(C) chimeras

These results indicated that the 10 extra amino acids characteristic

of ST3 at the junction between the pro- and catalytic domains

(Figure 2) were in part responsible for the inability of the ST3

proform to autoactivate in the presence of APMA. Interestingly,

these amino acids have been recently shown to contain a

functional furin cleavage site [21]. Consistently, when expression

vectors encoding either hST3 or mST3 and human furin were co-

transfected into COS-1 cells (containing only low levels of

endogenous furin; [31]), the ST3 proform was entirely con-

verted into lower-molecular-mass forms, these corresponding

to the putative ST3 mature form and to another species of about

28 kDa (Figure 3, lanes 1, 2, 4 and 5). Furthermore, while the

hST2 proform and the hproST3(∆10)-hEST2 chimera were not

processed by furin (Figure 3, lanes 7, 8, 10 and 11), the hproST3-

hEST2 chimera was processed by furin (Figure 3, lanes 13 and

14). These results indicated that the sole requirement for furin

action was located within the Gly-Leu-Ser-Ala-Arg-Asn-Arg-

Gln-Lys-Arg sequence corresponding to the C-terminal portion

of the hST3 prodomain. Accordingly, the replacement of the

hST3 prodomain by that of hST2 led to an (N)ST2-ST3(C)

chimera (hproST2-hEST3) which could not be activated by furin

(Figure 4, lanes 1 and 2), while the hproST2-(10)hEST3 chimera,

in which the Gly-Leu-Ser-Ala-Arg-Asn-Arg-Gln-Lys-Arg sequ-

ence was inserted, was fully processed (Figure 4, lanes 3 and 4).

However, it appears that protein determinants other than the

Arg-Asn-Arg-Gln-Lys-Arg furin recognition site [32] found in

the prodomains of both hST3 and mST3 (Figure 2), play a role

in the ability of the furin-like convertase PACE-4 to activate the

ST3 proform. Indeed, while PACE-4 was found to process the

mST3 proform almost as efficiently as furin (Figure 3, lanes 5

and 6), PACE-4 was much less active on the human enzyme

(Figure 3, lane 3) and on the hproST3-hEST2 chimera (Figure 3,

lane 15).

Inhibition of ST3 processing by a furin inhibitor

MCF7hST3}9 human breast cancer cells stably transfected to

constitutively express a full-length hST3 cDNA (A. Noe$ l, un-

published work) were cultured in the presence or absence of the

furin inhibitor Dec-Arg-Val-Lys-Arg-CH
#
Cl [26], and ST3 ex-
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Figure 4 Western blot analysis of (N)ST2-ST3(C) chimeras processed by
furin

COS-1 cells were transiently co-transfected with expression vectors for furin and for the

indicated (N)ST2-ST3(C) chimeras in which the hST3 prodomain was swapped with the hST2

prodomain (hproST2-hEST3) or with the hST2 prodomain C-terminally extended with the 10 C-

terminal amino acids of the hST3 prodomain [hproST2-(10)hEST3] (see also the Experimental

section). Conditioned media were collected and analysed using polyclonal antibody R654

directed against the hST2 mature form, as described in the legend of Figure 1.

Figure 5 Western blot analysis of ST3 expression in MCF7hST3/9 cells
treated with a synthetic furin inhibitor

MCF7hST3/9 cells stably transfected with an expression vector encoding a full-length hST3

cDNA were cultured in serum-free conditions for 24 h in the presence of increasing

concentrations (0 to 100 µM) of the synthetic furin inhibitor Dec-Arg-Val-Lys-Arg-CH2Cl. Cell

extracts and conditioned media were analysed by Western blotting using MAb 5ST-4C10

directed against the hST3 catalytic domain (A) and MAb 6ST-1E11 directed against the hST3

prodomain (B). Abbreviations : hmwPE and lmwPE, high- and low-molecular-mass hST3

proforms respectively ; E, hST3 mature form.

pression patterns were evaluated by Western blot analysis. In the

absence of the inhibitor, we could detect a major protein species

at an average molecular mass of 56 kDa (lmwPE) in

MCF7hST3}9 cell extracts. This form corresponded to the ST3

proform since it was recognized by both MAb 5ST-4C10, raised

against the ST3 catalytic domain (Figure 5A, lane 1), and MAb

6ST-1E11, directed against the hST3 prodomain (Figure 5B, lane

1). A minor protein species at an average molecular mass of

47 kDa was specifically detected by MAb 5ST-4C10, and it

corresponded to the mature ST3 form. However, in media

conditioned by MCF7hST3}9 cells, only the 47 kDa mature ST3

form could be detected (Figures 5A and 5B, lanes 7). By

incubating MCF7 hST3}9 cells with increasing concentrations of

furin inhibitor for 24 h, we observed the appearance in cell

Figure 6 Western blot analysis of ST3 expression in MCF7hST3/9 cells
treated with brefeldin A

MCF7hST3/9 cells stably transfected with an expression vector encoding a full-length hST3

cDNA were cultured in serum-free conditions in the presence of 0.5 µg/ml brefeldin A for the

indicated times. Cell extracts were analysed by Western blotting using MAb 5ST-4C10 directed

against the hST3 catalytic domain. Abbreviations : hmwPE and lmwPE, high- and low-molecular-

mass ST3 proforms respectively ; E, hST3 mature form.

extracts of a second higher-molecular-mass ST3 proform

(hmwPE), at about 62 kDa (Figures 5A and 5B, lanes 2–6).

Concomitantly in media conditioned by these cells, we also

detected the 62 kDa ST3 proform, while the amount of the

47 kDa mature ST3 form was found to progressively decrease

(Figures 5A and 5B, lanes 8–12).

Taken together, these results suggested that the hmwPE protein

species was a post-translationally modified ST3 proform derived

from the lmwPE form, and that it corresponded to the ST3

proform cleaved by furin in the trans-Golgi network (TGN) [33].

To evaluate this possibility further, we disrupted the transport of

proteins from the endoplasmic reticulum to the Golgi complex

by using brefeldin A, a fungal metabolite which is known to

functionally isolate the TGN from the rest of the Golgi complex

[33–35]. When MCF7hST3}9 cells were incubated in the presence

of 0.5 µg}ml brefeldin A, increasing amounts of the hmwPE

form were detected in cell extracts, while the levels of the lmwPE

remained stable (Figure 6). This indicates that the ST3 proform

(lmwPE) is post-translationally modified in the cis- or media-

Golgi before its processing in the TGN to the mature form.

Comparative expression of furin and ST3 RNAs in human
fibroblasts

Since the ST3 gene is specifically expressed in fibroblastic cells of

human carcinomas [6], we tested whether the ST3 and furin genes

could be co-ordinately expressed in human HFL1 fibroblasts

known to express ST3 and other MMPs implicated in cancer

progression [1,36]. While the levels of ST3 RNA were found to

progressively increase in HFL1 cells treated with PMA

(10 ng}ml), furin RNA was found to be constitutively expressed

in these cells, and its expression level was not affected by PMA

addition (Figure 7).

DISCUSSION

In media conditioned by cells expressing the endogenous ST3

gene [20] or stably transfected ST3 cDNAs constructs [14,15],

ST3 is detected in a form which has lost theN-terminal propeptide

rather than being detected in a proform. These observations

contrast with those made for other MMPs which are secreted as

zymogens, requiring activation in the extracellular space [5,18,19].

The present study was undertaken to determine how this unusual



957Activation of stromelysin-3 proform

PMA(h)

Figure 7 Northern blot analysis of ST3 and furin RNAs in HFL1 fibroblasts

HFL1 cells cultured in serum-free conditions were incubated in the presence of 10 ng/ml PMA

for the indicated times. Total RNA (8 µg of RNA per lane) was separated by electrophoresis

and transferred to a nylon filter which was successively hybridized with 32P-labelled cDNA

probes specific for hST3 and furin. In order to check loading and transfer, the filter was re-

rehybridized with a 36B4 cDNA.

expression pattern could be related to an activation mechanism

for the ST3 zymogen which differs from those reported for other

MMPs.

The latent forms of MMPs can be activated by a variety of

means, collectively known as the ‘cysteine-switch mechanism’

[37]. This involves disruption of the bond existing between the

conserved cysteine of the MMP prodomain and the zinc atom of

the catalytic site. The ‘cysteine switch’ is regarded as requiring

two steps, in which the initial destabilization of the prodomain is

usually followed by its autoproteolytic cleavage or its removal

with the help of another MMP ([30,38] and references therein).

In �itro, the proforms of all secreted MMPs so far characterized

have been found to be readily activated by APMA, which is

believed to unlock the active centre of the zymogen, and thus

permit the subsequent autocatalytic cleavage of the propeptide.

In the case of ST3, however, we observed that the ST3 zymogen

was not processed to its corresponding mature form in the

presence of APMA. We previously proposed that this was due to

the unusual structure of the ST3 prodomain [39]. Indeed, the ST3

prodomain does not exhibit significant homologies with the

corresponding domains of most other MMPs, apart from the

Pro}Leu-Arg-Cys-Gly-Val-Pro-Asp sequence [1,9]. Consistently,

in the present study using (N)ST3-ST2(C) chimeras we found

that hST3 resistance to APMA activation could be transferred to

hST2 by swapping the hST2 prodomain with that of hST3.

However, a small amount of the hproST3-hEST2 chimera, but

not of the hST3 zymogen, could be converted into lower-

molecular-mass species after prolonged activation (16 h) with

APMA, suggesting that functional characteristics of the ST3

catalytic domain also contribute to this APMA resistance. In this

regard, we note that human, and to a certain extent mouse, ST3

are characterized by both their limited spectra and low levels of

activity [14,15,39]. Accordingly, we observed that the (N)ST2-

ST3(C) chimera in which the hST3 prodomain was swapped with

that of hST2 could not be activated in the presence of APMA

(results not shown).

Altogether, these findings indicate that the activation mech-

anism for the ST3 zymogen differs from those of other MMPs,

and that at least part of this difference is due to the particular

structure of the ST3 prodomain. In addition to its weak homology

with corresponding domains of other MMPs, the ST3 prodomain

is characterized by the presence of 10 extra amino acids at its

junction with the catalytic domain [1,9]. Comparable stretches of

amino acids have been described in the membrane-type MMPs

[16,17], and have been proposed to play a role in zymogen

activation because they each contain a potential cleavage site for

furin or furin-type convertases [16]. In agreement with this

hypothesis and with the recent finding of Pei and Weiss [21], we

found that the hST3 proform was processed to its mature form

by furin when cDNAs encoding both proteinases were transiently

co-transfected into COS-1 cells. By using (N)ST3-ST2(C) and

(N)ST2-ST3(C) chimeras, we demonstrated that the information

necessary to allow processing of the hST3 proform by furin was

entirely contained within the 10 extra amino acids characteristic

of the ST3 prodomain. The mST3 proform was also found to be

processed by furin. However, while the hST3 proform was much

less processed by PACE-4, another convertase of the furin-type

[31], the mouse enzyme, was processed equally well by PACE-4

and furin. This observation suggests that ST3 protein deter-

minants other than the conserved Ala-Arg-Asn-Arg-Gln-Lys-

Arg sequence containing the furin recognition site (Figure 2) may

play roles in the capacity of furin-type convertases to cleave the

ST3 prodomain.

To evaluate further the possibility that furin or furin-type

convertases are the biologically relevant activators of the ST3

proform, we examined ST3 expression in human MCF7 breast

cancer cells which had been stably transfected with a full-length

hST3 cDNA. In medium conditioned by these cells, the major

protein species which was immunodetected corresponded to the

47 kDa mature form of hST3. In cell extracts, however, a 56 kDa

proform was mainly found, with only low levels of mature form.

In the presence of increasing concentrations of the furin inhibitor

Dec-Arg-Val-Lys-Arg-CH
#
Cl [26], the 47 kDa form progressively

disappeared from conditioned media, while the predominant

secreted ST3 form was found to correspond to a 62 kDa proform.

These observations suggest that ST3 is first translated into a

precursor form of 56 kDa and then post-translationally modified

into a 62 kDa proform which is translocated to the cell surface

through the TGN, where it is proteolytically processed and

finally secreted as a 47 kDa mature form. When MCF7 cells were

cultured in the presence of brefeldin A, the 62 kDa proform

accumulated intracellularly to high levels. This indicates that the

post-translational modification of the ST3 proform occurs early

after ST3 protein synthesis, probably in the endoplasmic reti-

culum and}or the cis- and media-Golgi compartments, while its

processing by furin into a mature form occurs in the TGN [35].

Thus, furin appears to be required for ST3 zymogen activation,

although its ubiquitous tissue expression [31] and its constitutive

expression in fibroblasts known to express the ST3 gene under

various stimuli (the present study), suggest that the expression

level of furin itself does not play a critical role in the regulation

of the amount of secreted mature ST3 form.

The secretion of ST3 as a potentially active molecule, in

contrast to other MMPs which are secreted as proforms requiring

activation in the extracellular space, has important implications.

This suggests that ST3 activity does not need to be as tightly

controlled as other secreted proteinases, which can be explained

if ST3 has limited proteolytic activity toward a precise substrate,

or if it has functions other than proteolysis. Both possibilities are

compatiblewith the unusual enzymic properties of ST3previously

described [14,15,39]. Alternatively, ST3 might acquire strong

and}or broad proteolytic properties only after interaction with

another protein whose expression would be tightly controlled.

Finally, it cannot be presently excluded that ST3 may exert its

proteolytic activity on a substrate present in the TGN, since we

could detect the presence of the ST3 mature form in cellular

extracts of MCF7 cells stably transfected with the hST3 cDNA.
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In this case, the ST3 mature form could be secreted together with

its already processed substrate, and immediately inhibited by the

tissue inhibitors of MMPs (TIMPs) once in the extracellular

space.
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