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Split Cuts
Lattice-Point-Free Polyhedra

@ Integral Farkas Lemma for Systems with Inequalities

Extension to the mixed case

Cutting Planes from Lattice-Point-Free Polyhedra

Conclusion
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Split cuts

The algebra

Based on a disjunction
7rTx§7ro or 7rTx27ro+1

is valid for x € Z" when , mo are integer.
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Split cuts

The algebra

Based on a disjunction

T T
mx<m or wx>m+1

is valid for x € Z" when , mo are integer.

The geometry
L] [ ] *®

Split cut
O
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More about split cuts

The split closure

Consider a polyhedron P C R”, the intersection of all split cuts of P is called the (first)
split closure of P, denoted by SC(P).
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More about split cuts

The split closure

Consider a polyhedron P C R”, the intersection of all split cuts of P is called the (first)
split closure of P, denoted by SC(P).

| A

Some previous results
@ Cook, Kannan, Schrijver [1990] The split closure is a polyhedron
o Lift-and-project, Chvatal-Gomory cuts are split cuts

@ Nembhauser, Wolsey [1988] MIR inequalities are split cuts and MIR closure and split
closure are equivalent

Cook, Kannan, Schrijver [1990] The number of rounds of split cuts to apply to
obtain the integer hull of a polyhedron might be infinite

e Dash, Giinliik, Lodi [2007] Optimizing over the MIR closure
Vielma [2006] New constructive proof that the MIR closure is a polyhedron

o Andersen, Cornuéjols, Li [2005] Every split cut of P is also a split cut of a basis of P
(maybe infeasible).
Split cuts are intersection cuts [Balas 1971]

o Jorg [2007] Finite cutting plane algorithm based on k-disjunctions.
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Towards high-dimensional splits

Lattice-point-free polyhedra

A polyhedron P is lattice-point-free when there is no integer point in its interior.
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Towards high-dimensional splits

Lattice-point-free polyhedra

A polyhedron P is lattice-point-free when there is no integer point in its interior.
® [ ] [ ]
® [ ] [ ]
® [ ] [ ]
® [ ] [ ]
A basic split set in R? is a lattice-point-free polyhedron
v
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A polyhedron P is lattice-point-free when there is no integer point in its interior.

® [ ]

® [ ]
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conv{v, w} + span{r}

v
V
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Towards high-dimensional splits

Lattice-point-free polyhedra

A polyhedron P is lattice-point-free when there is no integer point in its interior.

conv{v, w} + span{r, s}
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Towards high-dimensional splits

Lattice-point-free polyhedra

A polyhedron P is lattice-point-free when there is no integer point in its interior.

A triangle in R? can be lattice-point-free
It can be lifted to a lattice-point-free polyhedron in R®
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Towards high-dimensional splits

Lattice-point-free polyhedra

A polyhedron P is lattice-point-free when there is no integer point in its interior.

conv{v, w, x} + span{r}
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Towards high-dimensional splits

Lattice-point-free polyhedra

A polyhedron P is lattice-point-free when there is no integer point in its interior.

conv{v, w, x} + span{r}

v

Definition of the

A lattice-point-free polyhedron P C R” can be written as

P = conv{v',..., v} + cone{w',..., w7} +span{r',... r" 7}

The split-dimension of P is d.
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Classical Farkas Lemma

The continuous Farkas Lemma

Let Ac R™*" be R™,

Ax < b yTA>0
x>0 is empty if and only if y'h<0
x €R" for some y € R".
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The continuous Farkas Lemma

Let Ac R™*" be R™,

Ax < b yTA>0
x>0 is empty if and only if y'h<0
x €R" for some y € R".

Example
(1) 10x+14x, < 35
(2) —x+ <0
3) — x <=2
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Classical Farkas Lemma

The continuous Farkas Lemma

Let Ac R™*" be R™,

Ax < b yTA>0
x>0 is empty if and only if y'h<0
x €R" for some y € R".

Example

(1) 10x1+14x> < 35
2) —x+ <0
(3) X2 S*Z

A certificate of infeasibility
y=( 8 21)7
(1) 10x1+14x; < 35
8(2) -8x1+ 8 < 0
21(3) —21x; <—42

2x1+ x < -7
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Classical Integral Farkas Lemma

The Integral Farkas Lemma

Let Ac Z™*" be Z™,

Ax=b . . . m ... YAEZ"
X E T is empty if and only if Jy € Q™ with Y
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Classical Integral Farkas Lemma

The Integral Farkas Lemma

Let Ac Z™*" be Z™,

Ax=b . . . m .. YTAEZ
X E T is empty if and only if Jy € Q™ with VThez
Example (1) 3x1+ x2—5x3+ x4—Tx5s = 1
(2) Tx1—3x2—3x3—2x4+5x5 = 5
(3) 2x1+ xo+ x3+6xs4 =1
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The Integral Farkas Lemma

Let Ac Z™*" be Z™,

Ax=b . . . m .. YTAEZ
X E T is empty if and only if Jy € Q™ with VThez
Example (1) 3x1+ x2—5x3+ x4—Tx5s = 1
(2) Tx1—3x2—3x3—2x4+5x5 = 5
(3) 2x1+ xo+ x3+6xs4 =1
The certificate y = ( % % % )
1(1) X+1X 7§X+1X7 ZX 71
3 T33P T3 3% T3
%(2) %X]_— 2X2— 2X3—%X4+L3()X5 = ?
2 4 2 2 2
< = < z 4 ==
3(3) 3ty tant 4 3
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Classical Integral Farkas Lemma

The Integral Farkas Lemma

Let Ac Z™*" be Z™,

i\xezznb is empty if and only if Jy € Q™ with }{;?;%n
The certificate y= ( % % % )
l(1) X1+1X2—§X3+}X4— sz ~1
3 377 373 3 3
%(2) 1—34x17 2xp — 2><3ng4+fo5 = 1?0
%(3) %X1+§X2+§X3+ 44 = %

1
Z Tx1— x2— 3x3+ xu+ x5 = ?3
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Geometric interpretation of the Integral Farkas Lemma

Ax =b {v*} +span{w',...,w?}

Quentin Louveaux (Université de Lizge) Certificate of infeasibility October, 23 2007 8/25



Geometric interpretation of the Integral Farkas Lemma

Ax =b {v*} +span{w',..., w?}

y'A subset of span{w', ... w}+

Quentin Louveaux (Université de Lizge) Certificate of infeasibility October, 23 2007 8 /25



Geometric interpretation of the Integral Farkas Lemma

Ax=b {v*} +span{w!, ... w}
y'A subset of span{w', ... w}+
y'beZ there exists 7 € span{w’,..., w?}t NZ"

with 77 v* & Z.
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Geometric interpretation of the Integral Farkas Lemma

Ax=b {v*} +span{w!, ... w}
y'A subset of span{w', ... w}+
y'beZ there exists 7 € span{w’,..., w?}t NZ"

with 77 v* & Z.
Equivalent to say that L = {|7"v*| < 7"x < [r"v*]} contains Ax = b in its interior.

Existence of a split proving that Ax = bNZ" = ()
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Natural extension for one range inequality

Integral Farkas Lemma with one range inequality

Ax=0b T n
I<cx<u =0 iff 3JyeQ” zeQ, with v Z)<C <z
x €L y b+z,y"b+zulNZ =10
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Natural extension for one range inequality

Integral Farkas Lemma with one range inequality

Ax=0b - )
I<cx<u =0 iff 3FyeQm zeQy with (v Z)<c =2

xez" y"b+zl,y"b+zulNZ =0
Example (1) 2x1+ x+3x3— xa =3

(2) 6x1— x2—2x3+ x4 =5
(3) 5 < dxo+ x3—4xs < 8
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Natural extension for one range inequality

Integral Farkas Lemma with one range inequality

Ax=b - A )
I<ex<wu =0 iff 3JyeQ” zeQ with (v Z)<c =4
x ez y'b+zl,y"b+zulNZ =0
Example (1) 2x1+ x+3x3— xa =3
(2) 6x1— x2—2x3+ x4 =5
(3) 5 < dxo+ x3—4xs < 8
. s 1 1
The certificate y=(3% %t),z= :
20) O hi20i8 2, 6
5 5 5°'5°'5° 5" 5
1 6 1
Ty 12 Sl 2ila—1
5() 5X1 5X2 5X3+5X4
1 4 1 4 8

=(3) 1< —xo+—=x3—=Xx4 <
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Natural extension for one range inequality

Integral Farkas Lemma with one range inequality

Ax=0b - )
I<cx<u =0 iff 3y €Q™,ze Q, with (v Z)<C e Z
x ez y'b+zl,y"b+zulNZ =0
. > 1 1

The certificate y:( 2 1 )’Z:g

g(1) 6_ iX -l-gx +§X —gx _6

5 5= patpreTEeT X =g

1 6 1 2 1

5() 5X1 5X2 5X3+5X4

1 4 1 4 8

= 1< - xa— oy < =

5(3) = 5X2+5X3 5X4_ 5

Z 15£ <2x1+ e+ x3— x5 < %
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Geometry of the Farkas Lemma with one range inequality

Ax=0b E*+span{w1,...7wd},
I<ex<u with edge E* = conv{v{, v5'}.
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Existence of a split that contains Ax in its interior
P I<ex<u
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Geometry of the Farkas Lemma with one range inequality

Ax=0b E*+span{w1,...7wd},
I<ex<u with edge E* = conv{v{, v5'}.

Existence of a split that contains Ax in its interior
P I<ex<u

>
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Extension of an Integral Farkas Lemma to Systems with Inequalities

Ax=0b
Cx<d (1)
x ez"

The bigger rank(C), the more complicate the certificate of infeasibility.
(1) is infeasible if and only if {Ax = b, Cx < d} is contained in the interior of a
lattice-point-free polyhedron of split-dimension equal to rank(C).
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Extension of an Integral Farkas Lemma to Systems with Inequalities

Ax=b
Cx<d (1)
xeZ"

The bigger rank(C), the more complicate the certificate of infeasibility.

(1) is infeasible if and only if {Ax = b, Cx < d} is contained in the interior of a
lattice-point-free polyhedron of split-dimension equal to rank(C).

| A\

Integral Farkas Lemma for Systems with Equalities and Inequalities

[Andersen, L. , Weismantel 2007]
A certificate of infeasibility of (1) is an integral infeasible linear system (derived from the
rows of (1)) with as many variables as rank(C).
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Example with rank(C) = 2

Quentin Louveaux (Université de Ligge)

x1+2x2+3x3 =0
—3x1+4x; <0
-3
5

—X1—2X2

INIA

2X1 — X2
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Example with rank(C) = 2

A certificate

Quentin Louveaux (Université de Ligge)

x1+2x+3x3 =0

—3x1+4x; <0
—X1—2X0 < -3
2X1— X2 S 5
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Example with rank(C) = 2

(1) x1+2x+3x3 =0

@] —3x1+4x2 <0

3) —Xx1—2X2 <-3

(4) 2X1— X2 S 5

A certificate

1 1 1
2 = (2) - < _ =
31+ 15(2) xe+x < —5a
1 1 1 1
5(1)_6(3): Xt xs 2 —5x+ o
1 1 1 5
(1) - Z(4) : > Zx - 2.
3() 3() X2+X3_3X1 3
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Example with rank(C) = 2

(1) x1+2x+3x3 =0
@] —3x1+4x2 <0
3) —Xx1—2X0 < -3
(4) 2X1— X2 S 5
A certificate
1 1 1
= il . < =
31+ 15(2) xe+x < —5a
1 1 1 1
=(1) = =(3): > —= =
S -0 etx>-sxto
1 1 1 5
(1) — =(4): > X — —.
3() 3() X2+X3_3X1 3
It is a system with 2 variables and 3 inequalities
1 1 1 1 5
< —— > —— — > Ty — =
ysoppo y2ooats yaZgaog
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Example with rank(C) = 2

A certificate

%(1)4—1—12(2): X2+X3S—%X1
%(1)—%(3): X2+X32—%X1+%
%(1)—%(4): X2+X32%X1—§.
It is a system with 2 variables and 3 inequalities
)’S*%M ,VZ*%XML% }/Z%M*g
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Sketch of the proof on the

X = {x € R"|Ax = b, Cx < d} with rank(C) = 2.
X NZ" = iff there exists a lattice-point-free polyhedron L of split-dimension at most 2
that contains X in its interior.
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Sketch of the proof on the

X = {x € R"|Ax = b, Cx < d} with rank(C) = 2.

X NZ" = iff there exists a lattice-point-free polyhedron L of split-dimension at most 2
that contains X in its interior.

X C L := L* 4+ span{w!,...,w"?},
with L* polytope of dimension 2.

0
L = conv{p', p*, p*} +span{| —1 |}.
1
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Sketch of the proof on the

X = {x € R"|Ax = b, Cx < d} with rank(C) = 2.
X NZ" = iff there exists a lattice-point-free polyhedron L of split-dimension at most 2

that contains X in its interior.
0

X C L := L* +span{w!,...,w"?}, L = conv{p*, p?, p*} +span{| -1 |}.
with L* polytope of dimension 2. 1

We can find 2 new vectors v!, v? ortho- 1 0
gonal to wh, w?, ..., w2 vi=1] o0 and v? = 1
0 1
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that contains X in its interior.
0

X C L := L* +span{w!,...,w"?}, L = conv{p*, p?, p*} +span{| -1 |}.
with L* polytope of dimension 2. 1

We can find 2 new vectors v!, v? ortho- 1 0
gonal to wh, w?, ..., w2 vi=1] o0 and v? = 1
0 1

An inequality description of L is 7"x < 7§,
¥ are linear combinations of v!, v?

Quentin Louveaux (Université de Lizge) Certificate of infeasibility October, 23 2007 13 /25



Sketch of the proof on the

X = {x € R"|Ax = b, Cx < d} with rank(C) = 2.
X NZ" = iff there exists a lattice-point-free polyhedron L of split-dimension at most 2

that contains X in its interior.
0

X C L := L* +span{w!,...,w"?}, L = conv{p*, p?, p*} +span{| -1 |}.
with L* polytope of dimension 2. 1

We can find 2 new vectors v!, v? ortho- 1 0
gonal to wh, w?, ..., w2 vi=1] o0 and v? = 1
0 1

An inequality description of L is 7"x < 7§,
¥ are linear combinations of v!, v?

We can rewrite the system using 2 variables corresponding to v! and v? respectively.
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Integral Farkas Lemma for Systems with Equalities and Inequalities

Theorem [Andersen, L. , Weismantel 2007]
Let A€ Z™*", C € ZP*" with rank(C) = L.
Ax=b

Cx<d
x "

is empty if and only if
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Integral Farkas Lemma for Systems with Equalities and Inequalities

Theorem [Andersen, L. , Weismantel 2007]

Let A€ Z™*", C € ZP*" with rank(C) = L.
Ax=b
Cx<d
xelZ"

is empty if and only if
e Jy',...,y eQ"x Q%
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Integral Farkas Lemma for Systems with Equalities and Inequalities

Theorem [Andersen, L. , Weismantel 2007]
Let A€ Z™*", C € ZP*" with rank(C) = L.
Ax=b
Cx<d
xelZ"
is empty if and only if

e Jy',...,y eQ"x Q%
o 3L linearly independent v/ € Z" such that

L
(yk)T[ p } = Y 2 ez'with Xeez
i=1
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Integral Farkas Lemma for Systems with Equalities and Inequalities

Theorem [Andersen, L. , Weismantel 2007]
Let A€ Z™*", C € ZP*" with rank(C) = L.
Ax=b

Cx<d
x "

is empty if and only if
e Jy',...,y eQ"x Q%
o 3L linearly independent v/ € Z" such that

L
(yk)T[ p } = Y 2 ez'with Xeez
i=1

o the system in variables z (representing (v')" x)

has no integral solution.

Quentin Louveaux (Université de Lizge) Certificate of infeasibility October, 23 2007
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Some remarks about the lemma

@ Consistent for rank(C) = 0 or 1.
rank(C) = 0 : system with 0 variables y" b ¢ Z
rank(C) =1 : system with 1 variable /| <z < u
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Some remarks about the lemma

@ Consistent for rank(C) = 0 or 1.
rank(C) = 0 : system with 0 variables y" b ¢ Z
rank(C) =1 : system with 1 variable /| <z < u

@ For rank(C) = 2, the certificate is made of 3 or 4 inequalities
Follows from [Andersen, L., Weismantel, Wolsey, IPC02007]

@ For rank(C) > 3, the number of inequalities in the certificate can be arbitrarily large
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Some remarks about the lemma

@ Consistent for rank(C) = 0 or 1.
rank(C) = 0 : system with 0 variables y" b ¢ Z
rank(C) =1 : system with 1 variable /| <z < u

@ For rank(C) = 2, the certificate is made of 3 or 4 inequalities
Follows from [Andersen, L., Weismantel, Wolsey, IPC02007]

@ For rank(C) > 3, the number of inequalities in the certificate can be arbitrarily large

o Proposition
The feasibility problem {Ax = b, Cx < d} where rank(C) is fixed is in co-NP.

The proof follows from the fact that IP in fixed dimension is in P ([Lenstra 1983])
and that any infeasible IP in n variables is also infeasible on 2" constraints ([Doignon
1973)).
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Some remarks about the lemma

@ Consistent for rank(C) = 0 or 1.
rank(C) = 0 : system with 0 variables y" b ¢ Z
rank(C) =1 : system with 1 variable /| <z < u
@ For rank(C) = 2, the certificate is made of 3 or 4 inequalities
Follows from [Andersen, L., Weismantel, Wolsey, IPC02007]
@ For rank(C) > 3, the number of inequalities in the certificate can be arbitrarily large

o Proposition
The feasibility problem {Ax = b, Cx < d} where rank(C) is fixed is in co-NP.

The proof follows from the fact that IP in fixed dimension is in P ([Lenstra 1983])
and that any infeasible IP in n variables is also infeasible on 2" constraints ([Doignon
1973)).

@ What about my favourite problem {Ax = b, Cx < d,x € Z1}?
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Some remarks about the lemma

@ Consistent for rank(C) = 0 or 1.
rank(C) = 0 : system with 0 variables y" b ¢ Z
rank(C) =1 : system with 1 variable /| <z < u

@ For rank(C) = 2, the certificate is made of 3 or 4 inequalities
Follows from [Andersen, L., Weismantel, Wolsey, IPC02007]

@ For rank(C) > 3, the number of inequalities in the certificate can be arbitrarily large

o Proposition
The feasibility problem {Ax = b, Cx < d} where rank(C) is fixed is in co-NP.

The proof follows from the fact that IP in fixed dimension is in P ([Lenstra 1983])
and that any infeasible IP in n variables is also infeasible on 2" constraints ([Doignon
1973]).

@ What about my favourite problem {Ax = b, Cx < d,x € Z1}?
... Unfortunately, nothing new!
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Extension to the mixed case

The Mixed-Integer Farkas Lemma for equality systems
Let Ac Z™*", G e R"*P beZ",

T n

_ y'AeZ
f)fe—’_Z’?ss_e %p is empty if and only if 3y € Q" with y’G =0
) yTb € 7
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Let Ac Z™*", G e R"*P beZ",

T n
_ y'AeZ
f)fe—’_Z’?ss_e %p is empty if and only if 3y € Q" with y’G =0
) yTb € 7
Example (1) X1+2x24+3x3+25 = 4

(2) X1— Xo — s=0
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Extension to the mixed case

The Mixed-Integer Farkas Lemma for equality systems
Let Ac Z™*", G e R"*P beZ",

T n
_ y'AeZ
fz—’_ZHGSS; ]lbgp is empty if and only if 3y € Q" with y’G =0
’ ybgZ
Example (1) X1+2x24+3x3+25 = 4
(2) X1— X2 — s=0
The certificate y = ( % % )
1(1) 1X+2X+X +25_ﬂ
3 37T3MTRT3Y T3
2 2 2 2
5(2) gX]__ng _55 =0

Z X1 +X3 = g
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Extension to the mixed case

The Mixed-Integer Farkas Lemma for equality systems
Let Ac Z™*", G e R"*P beZ",

T n
_ y'AeZ
fz—’_ZHGSS; ]lbgp is empty if and only if 3y € Q" with y’G =0
’ v beZ
The certificate y = ( % % )

1 1 2 2 4
5(1) gatzetatas =g

3 3 3
2 2 2 2
—(2 —X1—— ——Ss =
3( ) 3 3% 35 0

Wl

Z X1 +x3
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The philosophy for the mixed case

A set X C R""P has no mixed-integer solutions, namely X N (Z" x R?) = ), if and only if
the projection to the “integer space” has no integral solution.
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Mixed-Integer Farkas Lemma for Systems with Equalities and Inequalities

Theorem [Andersen, L. , Weismantel 2007]

Let Ac Z™*", G € R™*P C € Z9*", H € RI*P with rank([C, H]) = L.

Ax+ Gs=b
Cx+ Hs <d
x€Z",seRP

is empty if and only if 3y',...,y" € Q™ x Q7 such that
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Mixed-Integer Farkas Lemma for Systems with Equalities and Inequalities

Theorem [Andersen, L. , Weismantel 2007]

Let Ac Z™*", G € R™*P C € Z9*", H € RI*P with rank([C, H]) = L.

Ax+ Gs=b
Cx+Hs<d
x €Z" s € RP

is empty if and only if 3y',...,y" € Q™ x Q7 such that

(yk)T[ f, ] =0,

3L linearly independent v/ € Z" such that

L
(yk)T{ é ] = D MV €z with X €z,

i=1
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Mixed-Integer Farkas Lemma for Systems with Equalities and Inequalities

Theorem [Andersen, L. , Weismantel 2007]

Let Ac Z™*", G € R™*P C € Z9*", H € RI*P with rank([C, H]) = L.

Ax+ Gs=b
Cx+Hs<d
x €Z" s € RP

is empty if and only if 3y',...,y" € Q™ x Q7 such that

(yk)T[ f, ] =0,

3L linearly independent v/ € Z" such that

L
(yk)T{ é ] = D MV €z with X €z,

i=1

the system in variables z (representing (v')"x)

b
TNz < y[{ ; }

has no integral solution.
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Philosophy of the proof

The projection operation does not change rank([C, H]) (or at least does not increase it) !
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Philosophy of the proof

The projection operation does not change rank([C, H]) (or at least does not increase it) !

Example :

X1+x2 —s=1
0 <x14+2x2+3x3+s<1

Rank of the inequality system is 1.
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Philosophy of the proof

The projection operation does not change rank([C, H]) (or at least does not increase it) !
Example :
X1+x2 —s=1
0 <x14+2x2+3x3+s<1
Rank of the inequality system is 1.

Projecting out the s variable
Using s = x1 + x2 — 1,
1 <2x; +3x+3x3 < 2.

Rank of the inequality system is still 1.
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Using the lattice-point-free polyhedra to generate cuts

The algebra

Let P C R"™™ be a polyhedron and L C R” be a lattice-point-free polyhedron. We define
a set of cuts, valid for {(x,y) € R™"™|x € PNZ"} as

cutsp(L) = conv{(x,y) € R™"|(x,y) € P and x & int(L)}.
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The geometry
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Using the lattice-point-free polyhedra to generate cuts

The algebra

cutsp(L) = conv{(x,y) € R"*"|(x,y) € P and x & int(L)}.

v

The geometry
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The high-dimensional split closure

Definition

The d-dimensional split closure of P is the set of points in the intersection of all
high-dimensional split cuts obtained from P with a split-dimension less or equal to d.
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Definition

The d-dimensional split closure of P is the set of points in the intersection of all
high-dimensional split cuts obtained from P with a split-dimension less or equal to d.

Open question

Is the d-dimensional split closure of a polyhedron a new polyhedron ?
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Open question

Is the d-dimensional split closure of a polyhedron a new polyhedron ?

Cook, Kannan, Schrijver example [1990]

Can be solved in one iteration by a 2-dimensional split cut
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Family of polyhedra of dimension n+ 1 with an infinite n-dimensional split

rank

Constructed in the same way :
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Family of polyhedra of dimension n+ 1 with an infinite n-dimensional split

rank

Constructed in the same way :
- a n-dimensional lattice-point-free polyhedron with integer points on the interior of each
facet
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Family of polyhedra of dimension n+ 1 with an infinite n-dimensional split

rank

Constructed in the same way :
- a n-dimensional lattice-point-free polyhedron with integer points on the interior of each

facet
- lifted by an € in a (n + 1)th variable

22
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Family of polyhedra of dimension n+ 1 with an infinite n-dimensional split

rank

Constructed in the same way :

- a n-dimensional lattice-point-free polyhedron with integer points on the interior of each
facet

- lifted by an € in a (n + 1)th variable

P — conv{(0,0), (ne1,0), (nez,0), .. ., (nen, 0), (%;, O}

22
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(0,3,0) Level 3

Level 2

Level 1

(0,0,0) (300) Level C
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Recent developments

@ We have characterized the dimension needed in the split bodies in order to be able
to cut down to the integer hull
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Recent developments

@ We have characterized the dimension needed in the split bodies in order to be able
to cut down to the integer hull

@ It gives a lower and an upper bound
@ It is determined by the maximum of each face
@ Link to the finite cutting plane algorithm [J6rg 2007]
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Conclusions

o Lattice-point-free polyhedra provide a new geometric interpretation of cutting planes
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o What is the split rank of the cuts generated (sometimes infinite but not always) ?
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Conclusions

Lattice-point-free polyhedra provide a new geometric interpretation of cutting planes

°
@ How to use them in practice ? Closed form formulae ?

o What is the split rank of the cuts generated (sometimes infinite but not always) ?
o

What about the fact that the high-dimensional split closure is a polyhedron?
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Conclusions

Lattice-point-free polyhedra provide a new geometric interpretation of cutting planes

°
@ How to use them in practice ? Closed form formulae ?

o What is the split rank of the cuts generated (sometimes infinite but not always) ?
o

What about the fact that the high-dimensional split closure is a polyhedron?

@ Use the Farkas Lemma in order to obtain good cuts?
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