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ABSTRACT

We previously described significant changes in GH-binding protein
(GHBP) in pathological human pregnancy. There was a substantial
elevation of GHBP in cases of noninsulin-dependent diabetes mellitus
and a reduction in insulin-dependent diabetes mellitus. GHBP has
the potential to modulate the proportion of free placental GH (PGH)
and hence the impact on the maternal GH/insulin-like growth factor
I(IGF-D) axis, fetal growth, and maternal glycemic status. The present
study was undertaken to investigate the relationship among glyce-
mia, GHBP, and PGH during pregnancy and to assess the impact of
GHBP on the concentration of free PGH. We have extended the anal-
ysis of specimens to include measurements of GHBP, PGH, IGF-I,
IGF-II, IGF-binding protein-1 (IGFBP-1), IGFBP-2, and IGFBP-3 and
have related these to maternal characteristics, fetal growth, and
glycemia. The simultaneous measurement of GHBP and PGH has for
the first time allowed calculation of the free component of PGH and
correlation of the free component to indexes of fetal growth and other
endocrine markers. PGH, free PGH, IGF-I, and IGF-II were substan-
tially decreased in IUGR at 28-30 weeks gestation (K28) and 36-38
weeks gestation (K36). The mean concentration (=SEM) of total PGH
increased significantly from K28 to K36 (30.0 = 2.2 to 50.7 = 6.2

ng/mL; n = 40), as did the concentration of free PGH (23.4 *= 2.3 to
43.7 = 6.0 ng/mL; n = 38). The mean percentage of free PGH was
significantly less in IUGR than in normal subjects (67% vs. 79%; P <
0.01). Macrosomia was associated with an increase in these param-
eters that did not reach statistical significance. Multiple regression
analysis revealed that PGH/IGF-I and IGFBP-3 account for 40% of the
variance in birth weight. IGFBP-3 showed a significant correlation
with IGF-I, IGF-II, and free and total PGH at K28 and K36. Nonin-
sulin-dependent diabetes mellitus patients had a lower mean per-
centage of free PGH (65%; P < 0.01), and insulin-dependent diabetics
had a higher mean percentage of free PGH (87%; P < 0.01) than
normal subjects. Mean postprandial glucose at K28 correlated posi-
tively with PGH and free PGH (consistent with the hyperglycemic
action of GH). GHBP correlated negatively with both postprandial
and fasting glucose. Although GHBP correlated negatively with PGH
(r = —0.52; P <.001), free PGH and total PGH correlated very closely
(r = 0.98). The results are consistent with an inhibitory function for
GHBP in vivo and support a critical role for placental GH and IGF-I
in driving normal fetal growth. (J Clin Endocrinol Metab 85: 1143—
1150, 2000)

ATE PREGNANCY is a catabolic phase with redistribution

of maternal nutrients to support fetal growth (1). Work by
Gluckman (2) and others has shown fetal growth to be depen-
dent on maternal substrate supply, and the hormonal mecha-
nisms driving these changes are beginning to be elucidated.
Placental GH (PGH) progressively replaces pituitary GH
(hGH-N) in the maternal circulation from midgestation (3).
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Placental GH is a major regulator of maternal insulin-like
growth factor I (IGF-I) (4, 5) and has a spectrum of metabolic
activities comparable to that of hGH-N (6) and a similar so-
matogenic effect (7). The high levels of PGH measured from
midgestation in human pregnancy (8) are likely to impact on
placental metabolism and substrate supply to the fetus, either
directly or mediated by IGF-I (2, 5, 9, 10). This is supported by
observations that maternal concentrations of total PGH and
IGF-I correlate strongly and are decreased in cases of intrauter-
ine growth retardation (IUGR) (5, 8, 11) and that maternal IGF-I
correlates with fetal femur length and birth weight (12). Fur-
thermore, the administration of hGH to pregnant rats impacts
on fetal weight (13, 14). It has been demonstrated that GH does
not cross the placenta in pregnant rats (15), so it is likely that its
effects on fetal growth are indirect and mediated by effects on
maternal IGF-I concentrations and on substrate supply to the
fetus.
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The effects of PGH on maternal metabolism, on the pla-
centa, and hence on fetal growth are potentially modulated
by the high affinity GH-binding protein (GHBP) (16-18). In
the maternal circulation GHBP concentrations are compara-
ble or higher than the levels in the nonpregnant state, de-
pending on gestational stage (19, 20). However, to date there
have been no studies relating the concentration of free PGH
to maternal biochemical parameters or to fetal growth. For
better understanding of the GH axis during pregnancy it is
necessary to have measurements of the gestational profile of
free PGH in normal and pathological pregnancies. A com-
parison of the correlations between free PGH and growth
parameters and between total PGH and growth parameters
would also provide evidence relevant to the impact of ma-
ternal GHBP on fetal growth and, more generally, on the
physiological role of GHBP in the control of GH action in vivo.

We have previously described significant changes in GH-
binding protein (GHBP) in human pregnancy (19). That
study demonstrated a reduction in GHBP with advancing
gestation and a positive correlation between GHBP and ma-
ternal weight and body mass index (BMI). Another finding
of that study was the substantial elevation of GHBP across
all stages of gestation in cases of noninsulin-dependent di-
abetes mellitus (NIDDM), which contrasted with the reduc-
tion in GHBP in insulin-dependent diabetes mellitus
(IDDM). The existence of divergent GHBP concentrations in
these different forms of diabetes prompted the present study
to investigate the relationship among changes in glycemia,
PGH, and changes in GHBP during pregnancy.

Therefore in the present work we have extended the anal-
ysis of specimens from our previous study (19) to include
measurements of PGH, free PGH, IGF-I, IGF-1II, IGF-binding
protein-1 (IGFBP-1), IGFBP-2, and IGFBP-3, and we have
related these to maternal characteristics, fetal growth, and
glycemia. Finally, the present study was undertaken to de-
termine whether any combination of these biochemical vari-
ables could predict birth weight.

Subjects and Methods

Consent forms and study protocols were approved by the Mater
Mothers” Hospital and Queensland University of Technology ethics
committees. Subjects gave formal written consent to participate in the
study after receiving appropriate written and verbal information.

Patient characteristics have previously been described in detail (19).
The current study used all available samples taken in the third trimester
from patients with prepregnancy IDDM (n = 13), NIDDM (n = 6), and
IUGR (n = 16) pregnancies. A subset of samples from normal pregnan-
cies (n = 23) was analyzed for comparative purposes. Normal women
underwent a 50-g nonfasting glucose challenge test at 28 weeks gestation
to exclude gestational diabetes.

In the light of previous data regarding PGH secretion (4, 5, 8), samples
taken at 28-30 weeks gestation (K28) or at 36-38 weeks gestation (K36)
were analyzed. Ultrasonographic fetal assessments were performed at
K28 and K36 to assess fetal growth.

Fetal outcome data collected at delivery included weeks of gestation,
gender, birth weight, head circumference, and crown-heel length. The
z (sp) scores for birth weight, corrected for gestational age and gender
[z = birth weight — mean birth weight/sp (birth weight)] were calcu-
lated for each baby to allow comparison of relative fetal growth across
a range of gestational ages.

Categories of fetal growth were defined prospectively as follows:
IUGR, birth weight less than 10th percentile; normal, birth weight more
than 10th and less than 90th percentiles; and macrosomia, birth weight
more than 90th percentile. Normative data were derived from a con-
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temporary cohort of 21,221 singleton babies born at the Mater Mothers’
Hospital.

Glycemic control records

In a subset of the patients with IDDM (n = 9) or NIDDM (n = 6),
records of glycemic control were available from home monitoring and
from clinic visits, all using the ACCUTREND reflectance glucose mon-
itor (Roche Molecular Biochemicals, Mannheim, Germany). For each
patient, the mean of self-monitored capillary glucose measurements
taken while fasting and 2 h after breakfast was calculated in addition to
a mean value for capillary glucose measurements taken at clinic visits.
Mean capillary glucose values for each patient (fasting, postprandial,
and at the clinic) were calculated using all available measurements
between 20 and 30 weeks gestation. These mean values therefore rep-
resent overall glycemia around the time of the K28 blood sampling and
have been used in the correlation analyses described below to explore
the relationship between glycemia and parameters of GH metabolism.

Laboratory methods

All GHBP measurements were performed using the ligand immuno-
functional assay for GHBP as reported previously (19, 21). PGH was
assayed using the recombinant PGH standards and monoclonal anti-
bodies E8 and 7C12 developed by Hennen’s group (22-24) in an '*I-
labeled sandwich immunoassay assay. In our hands the mean intraassay
coefficient of variation was 7.7%, and the interassay coefficient of vari-
ation was 9.3%. Free PGH was calculated according to the algorithm and
computer program of Barsano and Baumann (25), as applied previously
by Cramer et al. (26), using the paired values of GHBP and PGH mea-
sured in each serum sample and using the affinity for native human
GHBP measured by Barnard et al. (18).

Serum IGF-I and IGF-II were assayed using modifications of pub-
lished RIA protocols after extraction of serum with acetone and formic
acid (27, 28). "**I-Labeled IGF-I and IGF-II tracers were purchased from
Amersham Pharmacia Biotech (Aylesbury, UK). Primary incubation
with rabbit anti-IGF-I or IGF-II antiserum (GroPep Pty. Ltd., Adelaide,
Australia) for 16 h was followed by immunoprecipitation with Sac-cel
anti-rabbit antibody and counting. For the IGF-I, interassay CVs at the
lower and upper ends of the sensitive range were 14.5% and 17.7%,
respectively. For IGF-II, interassay CVs at the lower and upper ranges
were 16.4% and 11.7%, respectively.

IGFBP-1, -2, and -3 were assayed using immunoradiometric assay kits
supplied by Diagnostics Systems Laboratories, Inc. (Webster, TX). Re-
ported intraassay CVs of these assays were 2.7-5.2% for IGFBP-1, 4.7—
8.5% for IGFBP-2, and 1.8-3.9% for IGFBP-3. Interassay CVs for these
assays were 3.5-6.0%, 4.5-7.4%, and 0.5-1.9% for IGFBP-1 to -3,
respectively.

Statistical analysis

Differences between serum hormone concentrations at K28 and K36
and between groups of patients classified by growth (normal, IUGR, and
macrosomic) and diagnosis (normal, IDDM, NIDDM, and IUGR) were
analyzed using ANOVA and covariance. Significant differences were
further examined using the least significant difference test. Linear cor-
relation analysis was used to explore the relationships between contin-
uous variables, and the r values quoted are Pearson’s correlation
coefficients.

Forward stepwise multiple regression analysis was used to develop
a biochemical model for the prediction of birth weight using all GH-
related variables and to examine the influence of glycemia on PGH and
GHBP concentrations. In all cases, F > 1.0 was required for variables to
enter the model. For all analyses, statistical significance was accepted at
the 5% level on two-tailed testing. All statistical analyses were per-
formed using Statistica for Windows (StatSoft, Tulsa, OK).

Results

Data from a total of 58 women with singleton pregnancies
were included in this study. Maternal and fetal characteris-
tics are summarized in Table 1. Women with NIDDM
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TABLE 1. Maternal and fetal characteristics

Diagnostic Maternal age Maternal Maternal BMI Birth wt Birth Head circumference Crown-heel

group (yr) wt(kg) (kg/m?2) (z-score) wt (g) (cm) length (cm)
Normal 23 29.7 (1.0) 59.9 (2.0) 23.5(0.8) 0.04 (0.16) 3324 (96) 34.5(0.3) 50.5 (0.6)
IDDM 13 26.5 (1.5) 70.6 (4.0)* 26.4 (1.2) 0.76 (0.25)° 3346 (126) 34.3(0.4) 51.4 (0.6)
NIDDM 6 27.7 (1.6) 95.0 (9.8)° 36.2 (2.7)° 0.53 (0.26) 3356 (131) 34.1(0.4) 48.8 (1.5)
IUGR 16 27.4 (1.2) 56.6 (4.7)° 21.8 (1.9) —1.8 (0.09)° 2326 (111)° 32.4 (0.4)° 45.8 (1.1)°

Characteristics of mothers recruited into the study and of their babies at birth, classified by diagnostic group. Birth weight SD (z-scores) are
corrected for gestational age at delivery and for gender. Figures in parentheses are SEMs.

¢ P < 0.05 vs. normals.
b P < 0.01 vs. normals.
¢ P < 0.01 vs. all other groups.

Total and free PGH by Growth and Gestation

80
-
£ w0
[}
£
Fia. 1. Total and free PGH by growth T
category (IUGR, <10th percentile; 3]
Macro, >90th percentile) at K28 and o 40

K36.a, P <0.01;b, P < 0.05 (vs. IUGR).

20

WUGR

showed significantly greater body mass and BMI. Because of
this and because our previous study (19) showed a positive
correlation between BMI and GHBP levels, an analysis of
covariance was performed using maternal weight and BMI
as covariates when examining the outcome parameters. The
results were congruent with those obtained without analysis
of covariance. In the interests of simplicity the uncorrected
means are reported in the tables and figures. As expected,
birth weight z-scores were higher than normal in IDDM
pregnancies (P < 0.01) and lower in IUGR (P < 0.001). The
ITUGR group also demonstrated significantly reduced head
circumference and crown-heel length.

Effects of gestation

Mean maternal total PGH concentrations increased by 69%
from K28 to K36 (P < 0.01). GHBP levels did not change
significantly over this period, as noted in our previous study
(19), but free PGH rose by 87% (P < 0.01). No significant
differences were noted in levels of IGF-I, IGF-II, IGFBP-1,
IGFBP-2, or IGFBP-3 at these two gestational ages.

Effects of diagnosis

At both K28 and K36, women recruited because of ante-
natally detected IUGR showed lower levels of PGH and free
PGH than normal subjects [free PGH, 24.25 * 2.62 ng/mL

Normal
Gestation K28

T sem
Free PGH
Il Total PGH

IUGR

Macro

Normal
Gestation K36

Macro

(normal) vs. 8.46 = 1.16 ng/mL (IUGR) at K28 (P < 0.01);
54.87 *+ 8.31 ng/mL (normal) vs. 22.96 + 5.67 ng/mL (IUGR)
at K36 (P < 0.01); Fig. 1]. In addition, IUGR patients showed
higher levels of GHBP at K28 and K36 (Figs. 2 and 3). Levels
of IGF-I and IGF-II were reduced in IUGR (Figs. 4 and 5)
Analysis of the IGFBPs showed no consistent pattern, al-
though IGFBP-3 levels were somewhat lower in IUGR pa-
tients at K36 (P < 0.05).

The diabetic subjects showed some additional changes in
GH-related parameters. Total PGH levels were similar to
those in normal subjects, but reduction of GHBP in IDDM
and elevation of GHBP in NIDDM compared to normal sub-
jects (both P = 0.02) were noted at K28. As a consequence of
changes in the GHBP concentration, at K28 the percentage of
free PGH was lower in NIDDM subjects than in normal
subjects (62% vs. 74%; P < 0.05) and higher in IDDM than in
normal subjects (84% vs. 74%; P < 0.05). At K36 this trend was
also significant, with a reduced percentage of free PGH in
NIDDM (69% vs. 85%; P < 0.05) and an increased percentage
in IDDM relative to that in normal subjects (91% cf. 85%; P <
0.05). IGFBP-2 levels were higher in IDDM and NIDDM
subjects than in normal subjects at K28 (P < 0.05). Both
NIDDM and IDDM patients demonstrated higher levels of
PGH, free PGH, IGF-I, and IGF-II at K28 than the IUGR
patients.
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Effects of fetal size

The results were also analyzed using the predefined
growth categories (IUGR, <10th percentile, n = 16; normal,
n = 36; macrosomia, >90th percentile, n = 6), as outlined
above. In this analysis, recruitment diagnosis was not
considered.

The results found were congruent with those outlined
above for the recruitment diagnosis, with reductions in PGH,
free PGH, IGF-I, and IGF-II found in IUGR at both gestational
ages (P < 0.01). Macrosomia was associated with slightly
higher numerical values for most of these parameters, but the
differences were not statistically significant. IGFBP-1 at K28
showed a significant negative correlation with birth weight
(r = —0.35), but no correlation at K36.

Free vs. total GH

The calculated percentage of total placental GH present in
the unbound state varied significantly with diagnosis (by

ANOVA, P < 0.0001), but not with gestation. In normal
subjects 79 * 2% (n = 33) of total PGH was unbound com-
pared to 67 = 4% in IUGR (n = 19; P < 0.01), 65 * 4% in
NIDDM (n =9; P <0.01),and 87 = 2% in IDDM (n = 17, P =
0.06).

Correlation analysis

One of the primary aims of the study was to determine the
value of estimations of maternal GH-related parameters as
predictors of fetal growth. In the correlation analysis (see
Tables 2 and 3), levels of hormonal parameters at K28 and
K36 were correlated with birth weight z-scores, and the in-
terrelationship of the various GH-related parameters was
also explored.

Total PGH, free PGH, and IGF-II correlated positively with
z-score at both K28 and K36. IGFBP-1 showed a negative
correlation with z-score only at K28, whereas IGF-I corre-
lated positively with birth weight at K36. As shown in Table
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2, PGH, free PGH, and IGF-I measured at K36 correlated
positively, whereas GHBP correlated negatively with head
circumference and crown-heel length, suggesting an overall
positive effect of PGH on fetal size. Interestingly, only PGH
and free PGH correlated significantly with ponderal index
(birth weight/crown-heel length®) which is a measure of
relative fetal adiposity.

Forward stepwise multiple regression analysis was used
to determine whether any combination of GH-related vari-
ables was able to predict birth weight z-score. At K28, an r
of 0.64 (r* = 0.41; P < 0.01) was obtained, with IGF-II, IG-
FBP-1, PGH, GHBP, and IGFBP-3 retained in the model as
significant variables. At K36 an r of 0.59 (r* = 0.35; P < 0.01)
was noted, with IGF-I, free PGH, and IGFBP-3 retained in the
model. These results suggest that these GH-related variables
may account for up to 40% of the observed variance in birth
weight.

PGH and free PGH correlated closely (r = 0.98-0.99). PGH
correlated negatively with GHBP at both gestational ages. At

Diagnosis

K28, PGH correlated positively with IGF-II, but not with
IGF-I. At K36, significant positive correlations with both
IGF-I and IGF-II were seen.

IGFBP-3 showed a significant positive correlation with
IGF-I and IGF-II at both gestational ages. IGFBP-3 also
correlated significantly with free and total PGH at K28
and K36.

Effects of glycemia

Linear correlation analysis of the effects of maternal gly-
cemia on GH parameters showed significant effects related
to postprandial glucose levels (Table 4). At K28, there was a
positive correlation between mean postprandial glucose and
PGH (r = 0.57; P = 0.03), free PGH (r = 0.64; P = 0.01), and
IGFBP-3 (r = 0.57; P = 0.03). GHBP correlated negatively
with both postprandial glucose (r = —0.56; P = 0.03) and
fasting glucose (r = —0.58; P = 0.03) at K28. Insufficient
glucose data were available at K36 for an adequate correla-
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TABLE 4. Glycemia and GH parameters at gestation K 28

Variabl Gestati Birth wt Head Crown-heel Ponderal Variabl Mean clinic Mean fasting Mean postprandial
anable estation ) score  circumference length index anable glucose glucose glucose

PGH 28 0.39¢ PGH 0.49 0.24 0.57¢
PGH 36 0.42° 0.33¢ 0.35¢ 0.35% GHBP —-0.39 —0.58¢ —0.56¢
GHBP 28 -0.25 Free PGH 0.48 0.38 0.64°
GHBP 36 —0.25 —0.58° —0.60° IGF-1 —0.06 —0.23 —0.01
Free PGH 28 0.37¢ IGF-II 0.44 0.21 0.45
Free PGH 36 0.43% 0.34¢ 0.43% 0.38 IGFBP-1 0.02 0.14 0.27
IGF-1 28 0.27 IGFBP-2 0.33 0.44 0.39
IGF-I 36 0.51° 0.36¢ 0.51° IGFBP-3 0.24 0.27 0.57¢
IGF-II 28 0.45° P lati fFici b 1 ol R
IGF-II 36 0.37% 0.37% earson corre at%on coefficients etweep mean maternal glycemia
IGFBP-1 28 _0' 35e ’ (at clinic visits, fasting and 2 h postprandial) and GH-related param-
IGFBP-1 36 0.0 " eters in patients with diabetes.
IGFBP-2 28 —0.003 b h o 08
IGFBP-2 36 —0.06 o
IGFBP-3 28 0.21
IGFBP-3 36 0.18

Pearson correlation coefficients between GH-related parameters
measured in maternal serum at 28 and 36 weeks gestation and in-
dexes of fetal growth at birth. All correlations are quoted for birth
weight SD (z) score. For head circumference, crown-heel length, and
ponderal index (weight/crown-heel length?®), only statistically signif-
icant correlations are shown.

“P < 0.05.

bpP < 0.01.

TABLE 3. Correlations: PGH and free PGH vs. other GH-related
variables

Variable PGH Free PGH
a) Gestation K 28
GHBP —0.52¢ —-0.66*
IGF-1 0.19 0.12
IGF-II 0.55% 0.55%
IGFBP-1 0.13 0.17
IGFBP-2 0.30 0.43%
IGFBP-3 0.43¢ 0.43%
b) Gestation K 36
GHBP —0.32° -0.37°
IGF-1 0.52% 0.52%
IGF-II 0.322 0.33°
IGFBP-1 -.004 0.008
IGFBP-2 0.08 0.12
IGFBP-3 0.45% 0.47*
r values are shown.
“P <0.01.
b P < 0.05.

tion analysis. Our previous study (19) showed a positive
correlation between GHBP levels, and maternal prepreg-
nancy weight and BMI. Because of the possibility that this
effect may have been influencing our conclusions about the
relationship between glycemia and PGH and GHBP levels,
multiple regression analysis combining both measures of
maternal size (weight, height, and BMI) and of maternal
glycemia (fasting, postprandial, and clinic-measured glu-
cose) as determinants of PGH and GHBP was also under-
taken at K28. Data for all of these variables were available for
13 women.

Forward stepwise multiple regression with PGH as the
dependent variable showed r = 0.80, r? = 0.65,and P = 0.05,
with postprandial glucose, maternal BMI, fasting glucose,
and maternal weight retained in the model. With GHBP as
the dependent variable, the analysis showed r = 0.89, r* =

0.79, and P < 0.001, with maternal weight and postprandial
glucose retained. Using free PGH as the dependant variable,
we obtained r = 0.83, r* = 0.69, and P < 0.02, with post-
prandial glucose, BMI, and fasting glucose retained in the
model.

These multiple regression results suggest that glycemia is
related to PGH concentrations by mechanisms independent
of maternal weight and BMI. Further, maternal weight and
BMI influence both PGH and GHBP levels.

IGFBP-1 did not show significant correlation with indexes
of glycemia at K28 or K36, but was significantly lower in
NIDDM than in normal subjects at K28 (P < 0.02).

Discussion

There have been a number of reports supporting a critical
role for maternal IGFs and maternal GH as determinants of
fetal growth (11-14, 22). The present report is the first in
which PGH, GHBP, IGFs, and IGFBPs in late pregnancy have
all been measured in the same sample set. This has allowed
calculation of the free component of placental GH and cor-
relation of the free component with indexes of fetal growth
and other endocrine markers.

Our previous study (19) of the same cohort and another
study (29) suggested that there may be a link between the
glycemic status of patients and the concentration of GHBP
and, hence, the concentration of free GH. In the current work
we have also attempted to address this hypothesis.

A highly significant correlation was found between PGH
and birth weight and between free PGH with birth weight at
both K28 and K36. This is consistent with the finding of
Evain-Brion et al. for total PGH (11, 22). Correlations and
significance levels were very similar for free and total PGH,
reflecting the tight correlation between free and total PGH
(r = 0.98-0.99). Note that IGF-I and IGF-II also correlated
well with birth weight, consistent with previous studies.
IGF-I and IGF-II correlated strongly with each other at both
gestation stages, consistent with observations by Ferguson et
al. (12). Interestingly, although PGH and free PGH concen-
trations doubled between K28 and K36, IGF concentrations
did not change significantly, suggesting a decrease in IGF
responsiveness to GH between these gestational ages. The
elevation in GH along with its continuous, rather than pul-
satile, secretion are congruent with the well known clinical

Downloaded from jcem.endojournals.org at Bibliotheque de la Faculte de Med - Univ De Liege on December 4, 2008


http://jcem.endojournals.org

PLACENTAL GH, GHBP, AND IGF AXIS IN PREGNANCY

observation of increased glycemia and insulin resistance dur-
ing later pregnancy.

IUGR patients showed higher levels of GHBP at K28 and
K36 along with reduced PGH concentration. Fisker et al. (30)
reported that GH replacement in GH-deficient adults re-
sulted in a reduction in GHBP that was secondary to de-
creased adiposity. Another recent GH replacement study in
GH-deficient adults (31) found a very strong three-way cor-
relation (r > 0.81) among adiposity, serum leptin, and GHBP.
Indeed, our earlier study (19) of normal and diabetic preg-
nancies found a significant correlation between BMI and
GHBP. However, the elevated concentration of GHBP in
IUGR pregnancy does not appear to result from increased
adiposity, because the mean maternal BMI of the IUGR
group was not significantly different from that in the normal
group.

The present study was also undertaken to determine
whether any combination of biochemical variables could pre-
dict birth weight. At K28 the combination of IGF-II, IGFBP-1,
PGH, GHBP, and IGFBP-3 was the strongest predictor of
birth weight. At K36 a combination IGF-I, free PGH, and
IGFBP-3 was the best predictor. These results show that
maternal GH-related parameters account for up to 40% of the
observed variance in birth weight.

IGFBP-1 at K28 showed a significant negative correlation
with birth weight (r = —0.35), but not at K36. This is con-
sistent with the observations of Baldwin et al. (32). They
reported a correlation coefficient at K20-K24 (r = —0.368)
very similar to the one we measured at K28 (r = 0.35) and a
weaker but significant negative correlation at K30-K34. In the
nonpregnant state IGFBP-1 is thought to regulate the avail-
ability of IGF-I. In pregnancy its observed relationship to
fetal size suggests a similar role that is independent of PGH
status, as IGFBP-I showed no correlation with PGH, but
showed a significant negative correlation with birth weight.

At both gestational ages IGFBP-3 correlated significantly
with free and total PGH. IGFBP-3 is an index of functionality
of the GH/IGF axis in the nonpregnant state (33) with the
IGFBP-3 gene under direct control of a GH-responsive pro-
moter (34). Our results suggest that this GH-responsive pro-
moter is likely to have an active regulatory role during
pregnancy.

There were significant correlations of PGH and free PGH
with IGF-II at both gestational ages, but although the cor-
relation coefficients for IGF-I were similar at K28 and K36, it
was significant only at K36. Our finding is consistent with a
number of studies (5, 8, 22) that showed decreased maternal
serum IGF-I in IUGR, but differs from the results of
Witznitzer ef al. (35). The latter group did not find a corre-
lation between maternal serum IGF-I and birth weight after
week 37, but their study did not include cases of IUGR.

IGFBP-1 did not show a significant correlation with in-
dexes of glycemia at K28 or K36. By contrast, Baldwin et al.
(32) found a negative correlation in the third trimester be-
tween IGFBP-1 and glucose levels after a 50-g oral glucose
tolerance test. Our different result probably reflects meth-
odological differences, because our measurements were
taken during fasting and 2 h after breakfast, rather than after
an oral glucose load. Although IGFBP-1 did not show sig-
nificant negative correlation with indexes of glycemia, it was
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significantly lower in NIDDM patients than in normal sub-
jects at K28 (P < 0.02). The latter result could be consistent
with suppression of IGFBP-1 by elevated insulin, as observed
in the nonpregnant state (36, 37).

PGH, free PGH, and IGFBP-3 were all strongly correlated
with glycemia at K28. This is consistent with the well estab-
lished antiinsulin and hyperglycemic action of GH (38, 39).
Whereas GH correlated positively with glycemia, GHBP cor-
related negatively. This may be consistent with GHBP nor-
mally functioning to inhibit GH metabolic actions in vivo [as
it does in vitro (40—43)]. Limited published data concerning
PGH regulation in vitro and in vivo suggested inhibition of
PGH secretion at high glucose concentrations and stimula-
tion of PGH during hypoglycemia. Patel et al. (44) described
a concentration-dependent inhibition of PGH secretion by
glucose in human placental explants and in trophoblast cul-
tures, whereas Bjorkland et al. (45) described a mean 27%
increase in PGH during a hyperinsulinemic hypoglycemic
clamp (glucose, 2.2 mmol/L) in pregnant IDDM subjects.
However, this increase in PGH was detected at glucose levels
well below the normal range. It appears to represent a coun-
terregulatory response to hypoglycemia, as seen with pitu-
itary GH in the nonpregnant state. Another group (46) de-
scribed reduction in PGH concentrations during an oral
glucose tolerance test in women with gestational diabetes.
This also suggests an inhibitory effect of acute hyperglycemia
on PGH secretion.

In light of these studies we might have expected to see a
counterregulatory decrease in GH concentrations in re-
sponse to hyperglycemia. However, we observed a positive
correlation between PGH and glycemic status, suggesting
that the physiological relationship between long term gly-
cemia and PGH in pregnant patients with diabetes may be
different. In our patients glucose was generally somewhat
elevated chronically, and no patient demonstrated frank hy-
poglycemia. In the chronic situation we hypothesize that
PGH levels are driving increased glycemia, rather than re-
sponding to glycemia in a counterregulatory mechanism.

In general, total PGH and free PGH correlate very closely.
This would tend to keep the free or bioavailable GH within
tightly set limits for a particular subject, particularly as se-
cretion of PGH, unlike that of pituitary human GH, is not
pulsatile (5, 47). Our observations in this and our previous
study indicate that large excursions in GHBP concentration
only appear to occur in chronic pathological states, such as
NIDDM and IUGR, where the levels are elevated and cause
a significant reduction in the free fraction of PGH.

In conclusion, maternal free PGH, total PGH, and IGF-I
correlate significantly with fetal weight. Free and total PGH
correlate strongly with postprandial glycemia at K28. More-
over, maternal GH-related parameters, taken together, ac-
count for up to 40% of the observed variance in birth weight.
In rodents (48) maternal treatment with IGF-I has been as-
sociated with an increase in messenger ribonucleic acid for
the placental glucose transporters GLUT1 and GLUT3. As
GLUT1 is thought to be responsible for glucose transport
from mother to placenta and GLUT3 to be responsible for
glucose transport from placenta to fetus, this observation, if
congruent in humans, would provide a causal link between
maternal GH-related parameters and fetal size.
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