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Abstract: - Nowadays, noise and vibration problems tend to become an important part of the design process
in the automotive and naval industries. Vibrations often affect the passengers comfort, but more dangerously
may damage the structure, embarked merchandise and equipments. A simple way to avoid vibrations is to
prevent the resonance conditions. The paper presents a study about the vibration of beam structures and
stiffened panels. The main application is to determine the eigenfrequencies of structures like platforms,
trailer chassis and as well as stiffened shell - beam assemblies. The research work covers analytical vibration
modeling of 3D beam structures and 3D stiffened shells, as well as the finite element analyses necessary for
the validation. The analysis combines the assumption of undamped free vibrations with the simple harmonic
motion for the displacement. The 3D numerical model (6 degrees of freedom per node) uses Euler-Bernoulli
beam equations in the axial, torsional and flexural cases. This modeling allows to easily take into account the
concentrated masses distributed on the panel surface. This approach has been implemented in FORTRAN
into a numerical module and will be integrated in the near future with the LBR-5 generic stiffened structure
optimization tool.
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1 General overview

Vibrations acting into the mechanical systems can
cause many problems at different levels such as
mechanical and performance degradation. If we
include the human factor, the study of the vibration
becomes extremely important.

The work presented in this paper is devoted only to
the case of beams structures, stiffened panels, their
assemblies, and other connected problems. For this
type of structures the contact with the human
beings are very limited. The most affected are the
structural fatigue level and the functioning of the
embarked installations.

In addition of the marine engineering field (decks,
ship tanks, offshore structures), the stiffened panels
and beam structures are the base element of many

other engineering domains. For example, taking the
case of a platform vehicle equipped with a military
shooting system, the resonant displacement of the
platform can affect the fire precision. Imagine also
an armored tank equipped with a balance-bridge
damaged by the vibration during military actions.

Another important application connecting the
marine and vehicle fields refers to the dynamics
vehicle/ship-deck investigations. The experiences
demonstrate that the dynamic interactions between
the vehicles and the vessel deck (for example, a
roll-on/roll-off RO-RO vessel with vehicle cargo)
may be very different from that of static case. In
this case, it was found that the vehicle cargoes can
work as mass dumpers to reduce at least one mode
shape response of the deck [1].



Nowadays, the vibrational comportment is often
verified in the design process of this type of
structures. Therefore, in the preliminary design
stage or during the structural design phase, the
stakeholders will carry out adequate vibration
analysis for each type of structures. These analyses
have a dual aim:

- The first goal is purely theoretical and
supposes to determine their natural
frequencies;

- The second aim assumes to measure and
compare, during the normal operating, the
vibrational characteristics with the agreed
limit values because despite careful
analysis vibrations cannot be avoided
completely.

The parameters calculated or measured for the
second goal are vibrational displacement s,
vibrational velocity v and vibrational acceleration
a. The acceptable values are indicated in ISO
standards, directives and intern specifications.
Magnitudes exceeding these values or falling short
of them do not necessarily indicate an admissible
state of vibration [2]. These criteria may be used as
bounds of admissibility, for instance if made a part
of the contractor or some other form of obligation.
Concerning this paper, criteria for vibrations are
stipulated with respect to the overstressing of
structural members (deformation, fatigue, strength),
engines and equipments (failure, malfunctions) and
to physiological effects on people (if it is the case).
Concerning the first category (structural vibrations)
for each type of structures assessment diagrams can
be obtained experimentally (Fig. 1).
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Fig. 1 — Assessment diagram for vibration of structures

[2]

The series ISO 7919 and ISO 10816 specify the
limitations concerning engines and connected
aggregates. These parts should generally not be
subjected to vibrations exceeding 0.71 mm in
amplitude, 14 mm/s in velocity amplitude and 0.7 g
in acceleration amplitude [3]. This paper will not
cover these aspects, but it will give you some
general indications to calculate the vibrational
magnitudes. It is important to know that, in
simulations, these magnitudes can be correctly
estimated only when all structural details, including
also mass distribution, are known.

Thereby, this paper will present only the numerical
modeling necessary to obtain the natural
frequencies of beams structures, stiffened panels
and their assemblies. The numerical model
constitutes the base of a vibration module written in
FORTRAN. FE simulations were carried out in
order to validate and asses the limitations of this
module. We have chosen an analytical way to
obtain these resonant frequencies. In this way, the
vibration module can be effortlessly implemented
under an EF code through external subroutines (i.e.
UVARM user variables routines in ABAQUYS).

2 Numerical model

To calculate analytically the eigenfrequencies of a
stiffened panel we employ a virtual artifice that
consists in the decomposition of the panel into a
beam grid (Fig. 2). The mass of the plate (without
stiffeners) will be distributed along the longitudinal
stiffeners in order to keep the beam aspect
approximation and to preserve the total mass of the
structure. The main condition is to preserve the
global inertia of the stiffened panel.

This choice allows us to use the beam theory to
solve the problem. At the same time it will be easily
to assess vibration for complex structures like
stiffened panels - beams assemblies and also to take
into account concentrated masses distributed on the
panel surface.

The beam vibration analysis combines the
assumption of undamped free vibrations combined
with the simple harmonic motion for the
displacement. The mathematical model uses Euler-
Bernoulli beam equations in the axial, torsional and
flexural cases and allows considering 6 degrees of
freedom per node. The torsion and the flexion are
uncoupled in this study.



Fig. 2 — Decomposition of a stiffened panel
into a beam grid

2.1 Analytical method

The analytical method is based on the elastic,
homogeneous and isotropic material hypothesis.
The Euler-Bernoulli formulation assumes that
cross-section, which are initially plane and
perpendicular to the axis of the beam, remain plane
and perpendicular to this axis. The transverse shear
deformation is thereby neglected.

Considering the dynamic equilibrium of an
elementary section of the beam, we obtain the next
equations of motion for the three fundamental cases

[4]

- axial vibration
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where u is the axial displacement, v is the
transversal displacement and 6 is the angular
rotation (twist). 4 represents the cross-section area,
1 - the second moment of area, Ip — the polar second
moment of area, G — the shear modulus and J is the
torsional constant.

Since the system is supposed undamped, we
assume that a mode of vibration is harmonic, as for
discrete systems. Thus the general solution of eq.
(1) to eq. (3) is one of the form:

h(x,t)= ¢(x)sin(wt + ) 4)

where h is the displacement or rotation, w a
pulsation, ¥ a constant and @(x) an eigenfunction,
which describe the mode shape at the frequency w.

Substituting eq. (4) in the previous equations and
factoring out the sine terms, we get for each
equation the next solutions (5, 6, 7):
- axial vibration
U(x)= 4, sin(ax)+ 4, cos(a x) ()
- flexural vibration
V(x)= B, sin(bx)+ B, cos(b x) 6
+ B, sinh(b x)+ B, cosh(b x) ©)
- torsional vibration
0(x)=C, sin(cx)+ C, cos(c x) @)

where a = a)\/% (pulsation multiplied by the

velocity of propagation of extensional waves in the

beam), b= a)zp—A and c=w p_lp In theory,
El GJ

the constants A;, B; C; are evaluated by the
boundary conditions. Knowing the displacements
and rotation expressions, we can calculate the
internal nodal forces in the nodes of the beam by
the next formulae:

- normal effort
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- transversal effort
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M,=GJ and M =EI
For a single beam (Fig. 3) it is possible to eliminate
the constants in order to obtain an expression
between nodal local forces (N, six per node) and
nodal local displacements (U*, six per node).

[NL ]lel = [KL (a), Cop )]uxlz [UL ]Ile (11)

C,, represents the mechanical
characteristics of the beam.

and physical
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Fig. 3 — Efforts and sign convention for a single beam

The matrix K* represents the stiffness and mass
matrix. It is considered a continuous matrix because
a beam represents in this case a continuum system.
A continuous system has its mass, elasticity and
damping distributed. Therefore its mass is
inseparable from the elasticity of the beam. In this
way, this matrix [K(w, Con)] cannot be
decomposed into a separate mass matrix and a
separate stiffness matrix without losing in accuracy.
This matrix is non-symmetrical and the pulsation w
1s located inside the sin, cos, sinh and cosh
functions.

In the case of a 3D multi-beam structure, the nodal
local efforts and displacement must be projected
into a global coordinate system. A global
continuous stiffness and mass matrix will be
obtained. This matrix connects the global nodal
effort with the global nodal displacements and
allows us to calculate the eigenfrequencies of the
system:

Vel =l&%@.C ), Wl 12
of x dof

where “dof” is the total number of degrees of
freedom. In reality the resonant phenomena express
by very important structural displacements, but
numerically the displacements is supposed to tend
towards the infinite one. This condition is
accomplished by the cancellation of the
determinant of the matrix K¢

det([KG (a), Cop )Lofx dof )= 0 (13)

Calculating this determinant, an equation function
of the pulsation @ (or function of the frequency f) is
obtained. The solutions of this equation represent
the eigenfrequencies of the beam structure. The
total number of the natural frequencies is equal to
the degree of the characteristic equation (13).

Knowing the external forces that acts into the nodes
structure, form the equation (12) we can obtain the
vibrational displacements of each node. For
harmonic excitations, the vibrational parameters are
connected through the following relations:

v=2rx-f-s and a=2x-f-v (14)

2.2 Concentrated masses

The beam modeling can easily take into account the
concentrated masses on the stiffened panel surface.
The masses must be distributed into the beam
structure nodes. The presence of these auxiliary
masses will determine a decrease of the
eigenfrequencies values because the pulsation ® is
proportional to the square root of k/m

(stiffness/mass): o~ K
m

To implement the concentrated masses into the
vibration calculus, we write the dynamic
equilibrium for each node that has an associated
mass. We obtain:

el =[k¢(e.c,, @)

[NG ]: E fynamic (: mU(x, t))

where Fynamic are the dynamic inertial forces dues
to the concentrated masses. Numerically Fyamic 1S
represented by a diagonal matrix. Considering a
harmonic function of time for the displacements,
the above relation become:

(&¢(w.c,, ) oM, Jul=0 a6

where [M,] is the additional mass matrix. To
calculate the eigenfrequencies of a beam structure
with  additional masses, we compute the
determinant of the next expression:

det([K ¢ (a) C,p )]— w*[M, ]): 0 (17)

(15)

2.3 CPU time dissemination

The resolution of equations (13) and (16) (the
unknown is the pulsation ®) makes possible to find
the eigenfrequencies of the beam structure.
Numerically, two methods were tested.

2.3.1 Classic dichotomy

The first method supposes to divide the relevant
frequency interval into small fixed intervals and
calculate the determinant at each frequency step. A
change of the determinant sign indicates a solution
of the characteristic equation.



The accuracy of this method is influenced by the
frequency step dimension, but smaller is the step
larger is the CPU calculation time.

We have tried 5 common numerical methods to
calculate the determinant of the global mass and
stiffness continuous matrix (eq.13). The next table
summarizes the CPU time machine necessary to
find the first natural frequency of a beam structure
with 300 degrees of freedom. The program carries
out 37 calculations of the determinant (frequency
range from 0.1 Hz to 3.7 Hz with an increment of
0.1 Hz, the first eigenfrequency being between 3.6
Hz and 3.7 Hz).

Method (single precision) CPU time
Leverrier algorithm hours
Product of eigenvalues (Lapack) 57.00 s
Gauss partial-pivoting scheme 14.9 s
Classic LU decomposition 11.5s
Optimized LU decomposition (Lapack) 79s

The optimized LU decomposition using Lapack
libraries of linear algebra routines proves to be the
fastest method with 0.21 seconds per increment for
this case. Using the same method, for a beam
structure with 990 dof, the time was around 1 s per
increment (on a laptop with Intel Centrino Core 2
Duo, 4 Gb RAM). All methods give identically
results.

2.3.1 Discrete approach
The second method supposes to dissociate the

. G . . G
matrix K (a), Cmp) into a mass matrix M (Cmp)
and a static stiffness matrix K ¢ (Cmp ), similar to the

discrete systems. To obtain the static stiffness
matrix, we carry out series expansions at least 15

terms of the matrix K¢ (a), Cmp) and of his double

derivation with regard to w in the vicinity of @ =0.

k°(c,,)=limk(.C,,) (18)
G
m°(c,, )= },ig})a . a(a;C”"”) (19)

These matrices are independents of the frequency f.
With this approach, the resonant frequencies are
obtained solving the eigenvalue problem (eq. 12).

K¢ —w*M° =0 (20)

The CPU time is considerably reduced: 1.4 s
instead 7.9 s for the case characterized by 300 dof.

The last method represents an approximation of the
analytical method and it is wvalid for lower
frequency domain (< 100 Hz). For a single analysis,
the first method is desirable. Is not the case for the
optimization software that requires very small CPU
time. In this case, the second method shall be used.

3 Particularities and tests

Finite element simulations with the industrial
software ABAQUS were carried out to validate our
numerical tool. Then, the results are compared.

3.1 3D beam structures

The first validation of the vibration tool was
realized on 3D beam structures. The finite element
simulations used a beam modeling. For both
simulations (FE and vibration tool), all connected
nodes are rigidly joined, instead all non-connected
nodes are clamped. All the beam sections are
identically. We have treated two typical of
structures, i.e. a 3D type (masts, Fig. 4) and a
planar type (planar grid, Fig. 5). The material is
steel (E =2.1el1 N/m?, p = 7800 kg/m’, v = 0.3).

Fig. 4 — 3D multi-beam structure
length 24 m, width =6 m
annular section - ® = 100 mm, thickness = 10 mm

Frequency
Method fl fz f3 f4
Classic
dichotomy 0.76 1.40 ) )
Discrete method | 1.24 | 1.35 1.50 | 1.61
ABAQUS 052 | 1.47 | 3.09 | 3.20

Table 1 — 3D multi-beam structure results

Generally, only FE calculus using very fine mesh
can supply results closed to those of analytical
continuum methods. Using classic dichotomy
method, the natural frequencies agree well with
those determined with ABAQUS. The differences
can be justified by unheeded of the constrained
torsion. Moreover, we don’t use the Timoshenko’s
beam model, so we neglect shear and rotational
inertia effects.



The results obtained with discrete method are
different. This second method is adapted for
complex three-dimensional structure only using
many beams and many beam connections.

Fig. 5 — Complex planar beam structure
Length 17 m, width =8 m
Rectangular section - h =30 mm, b =40 mm

The next tables(Which ones) present the results
obtained with classic dichotomy method, discrete

approach (see §2.3) and ABAQUS for the
second problem test.
Frequenc
Method f) f> f3

Classic dichotomy 1.55 | 2.15 | 2.68
Discrete method 1.56 | 2.16 | 2.80
ABAQUS 1.72 | 222 | 3.15

Table 2 — Vibration module methods comparison

As we can see in the Table 2, for planar structures
the both methods give practically the same results,
but with different CPU times (greater for the classic
dichotomy). These results are also in good
correlation with ABAQUS results.

3.2 3D stiffened panels

The second validation of our vibration module uses
planar stiffened panels. For stiffened panels having
only one direction stiffeners, the mass of the plate
will be distributed on the second direction
(perpendicularly on stiffeners) by creating virtual
beam on this direction.

After the split of the stiffened panel into a beam
grid (Fig. 2), it is necessary to calculate the second
moment of area of each beam section of the new
structure. To second moment of area about y-axis /,
is calculated with respect to the vertical principal
axis of the considered cross section (Fig. 6).

To calculate the second moment of area about z-

axis I, we tested 3 feasible cases for which this

moment is calculated to respect of:

- the horizontal principal axis of the considered
section (C1);

- the horizontal principal axis of the undivided
section of the stiffened panel (C2);

- the horizontal plane passing through the virtual
centroid C, of the whole stiffened panel (eq. 21),
(C3).

z AT vzt 4t
C, =Ze Z TF 1)
A+ 4

where z.! and z! are the centroid (C) of the

transversal and horizontal cross-section area of the

entire stiffened panel, and A’ and A" the
correspondents cross-section areas.

Fig. 6 — Notations of transversal cross-section

The first type of tested problems refers to stiffened
panels with clamped edges. We consider a
rectangular panel (20 x 30 x 0.006 m, Fig. 7) with
11 identical transversal frames (T section, web 0.25
x 0.01 m, flange 0.2 x 0.012 m) and 15 different
longitudinal frames (the same T section and L
section - web 0.16 x 0.008 mm, flange 0.05 x 0.02
m). The material is steel.

Fig. 7 — Complex stiffened panel

For this problem, we apply 3 different boundary
conditions on free edges:
- BC1 —all sides clamped;
- BC2-sides 1 and 2 clamped, 3 and 4 free;
- BC3 —sides 1 and 3 clamped, 2 and 4 free.

The vibration tool values (Table 3) are obtained
using the discrete method.



Boundary | Freq. Vibration tool

condition | [Hz] | C1 | C2 | C3
fi 3.99 | 402 | 402 | 3.8
BCI f;, [534 546|546 | 531
f; | 829 859|855 8.15
f) 0.60 | 0.60 | 0.60 | 0.60
BC2 f;, [ 135140140 | 133
f; [ 284 |285]285 ] 3.20
f) 1.16 | 1.21 | 1.22 | 1.09
BC3 ;b [ 131 | 137 137 ] 127
f; | 287|287 |287 | 2.88

Abaqus

Table 3 — Comparisons with FE results

All results are in good agreement with those of
ABAQUS, but those of case 1 (second moment of
area about z-axis 7, is calculated with respect to the
horizontal principal axis of the considered section)
are very closed. However, the vibration tool results
remain higher than ABAQUS results.

The second type of studied problems relates to
platforms. The boundary conditions impose to
block the displacements and rotations for 4 nodes
(Fig. 8). The panel (4 x 3 x 0.016 m) has identical
transversal and longitudinal frames disposed
symmetrically. The section of the frames is I profile
with web 50 x 10 mm and no flange. The material is
steel.

Fig. 8 — Complex stiffened panel - beam assembly

Table 4 gives the results obtained with our
numerical tools (classic dichotomy method and the
discrete approach) and those of ABAQUS. In this
case, the panel and the stiffeners are meshed with
shell elements.

Method f] f2 f3 f4
Classic 852 10.52 | 13.67 | 18.52
dichotomy
Discrete 8.54 | 10.52 | 13.73 | 18.59
approach
Abaqus 8.67 1059 | 17.53 | 19.21

Table 4 — Vibration module comparisons

Excepting the mode 3, the numerical tool results are
in very good agreement with ABAQUS results. In
ABAQUS, all 4 modes are global modes of
vibration. Unfortunately, we can only to compare
the natural frequency values. To view the vibration
mode associate to each natural frequency, we must
model under an FE code the equivalent beam grid
associate to considered panel. Our simulations
using the equivalent beam grid ensure that the first
modes are global modes.

33 Vibration module limitations

As we have described in § 2.1, the vibration tool
uses a beam modeling. As a consequence the
deformation of the shell between beam grid cannot
be take into account. If the beams of the panel have
a very high moment of inertia, the first vibration
modes are represented by local modes (Fig. 9). If
the stiffeners’ width is very large the first mode of
vibration can also be a local mode. Certainly, the
boundary conditions can also affect the vibration
modes.

Fig. 9 — Local vibration modes of a stiffened panel

To identify some limitations of this numeric tool,
we tested a type of stiffened panel in relevant
configurations.

Fig. 10 — Stiffened panel notations

The first three configurations refer to a square
panel, and the next five configurations refer to a
rectangular panel. The both structures have 10
transversal and 10 longitudinal stiffeners. The
stiffeners are disposed symmetrically with respect
to the symmetry axis of the panel and the distance
between them is equally. Figure 10 and Table 5
present the characteristic dimensions of each case.



Case L | hr, h; t
1 6.,6m | 6.,6m | 022m | 022m | 8§ mm
2 66m | 6.6m | 044m |022m | 8§ mm
3 6.6m | 6.66m | 0.66m | 0.22m | 8 mm
4 198m | 6.6m | 0.22m | 0.22m | 8 mm
5 198m| 66m | 044m | 022m | 8§ mm
6 198m | 6.6 m | 0.66 m | 0.22m | 8§ mm
7 198m| 66m | 022m | 044 m | 8 mm
8 198m | 6.6m | 022m | 0.66m | 8 mm

Table 5 — Panel dimensions

Concerning the results, we compared our results
with those of COSMOS only for the first global
mode of vibration (Table 5). Apart from the cases 3
and 8 for which the first mode of vibration is a local
mode (vibration of stiffeners), all other results are
in good concordance.

Vibration tool | COSMOS
Case Natural frequency [Hz] Mo
Cl Cc2 de
1 32.08 | 32.10 | 30.10 1
2 56.97 | 57.02 | 53.36 1
3 86.43 | 86.49 | 7721 | 111
4 1541 | 1541 | 15.40 1
5 1496 | 1497 | 15.15 1
6 1583 | 1583 | 15.77 1
7 39.09 | 39.26 | 34.89 1
8 62.86 | 63.38 | 53.01 | 87

Table 5 — Panels dimensions

It is very difficult to give the real limitations of this
vibration tool. After few tests, we consider that the
dimensions of the stiffeners must remain smaller in
front of the dimension of the shell and the distance
between stiffeners.

4 Conclusion

In this paper, a numerical approach to calculate the
resonant frequencies for beam structures, stiffened
panels and their assemblies is presented. Finite
element simulations were carried out to validate the
numerical tool.

Two methods can be used to obtain the natural
frequencies. The first, named classic dichotomy is
based on Euler-Bernoulli equations and is purely
analytical. In this case it is necessary to divide the
relevant frequency interval into small intervals and
to calculate the determinant of the characteristic
mass and stiffness continuum matrix. The main
advantage of this method is the accuracy of the
results. Nevertheless, this accuracy is limited by the

modeling and is influenced by frequency step size.
The main inconvenience is the large CPU
calculation time in case of complex structures (over
600 dof). In some cases, the numerical tool delivers
some parasite frequencies in the vicinity of a
natural frequency. This may be due to some
numerical errors, a non-dimensionless model and/or
to single precision.

To integrate the numerical model into an
optimization design process (that requires reduced
CPU calculation time) a second method was
developped, named discrete approach. The
calculation time becomes very small even for
structures with many degrees of freedom (2000 dof)
and the parasite frequencies disappear. This method
was validated with simplified FEA (beam mesh
which contains only one element).

Due to beam modeling, the both methods allow to
obtain only the resonant frequencies corresponding
to global vibration modes. The modeling of the
concentrated masses was tested and validated only
in the case of simple structures.

In practical dimensioning, the two first natural
frequencies are the most relevant. These two values
calculated with the vibration tool are very close to
those given by ABAQUS for all problems treated in
this paper. In conclusion, taking into account the
limitations of these methods, it is appreciated that
the numerical tool can be successfully used to
calculate correctly at least the two first resonant
frequencies for beam structures and stiffened
panels.
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