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Although water rockets are widely used to illustrate first year physics principles,

accurate

measurements show that they outperform the usual textbook analysis at the beginning of the thrust
phase. This paper gives a more thorough analysis of this problem. It is shown that the air expansion
in the rocket is accompanied by water vapor condensation, which provides an extra thrust; the
downward acceleration of water within the rocket also contributes to the thrust, an effect that is
negligible in other types of rockets; the apparent gravity resulting from the acceleration of the rocket
contributes as much to water ejection as does the pressure difference between the inside and outside
of the rocket; and the water flow is transient, which precludes the use of Bernoulli’s equation.
Although none of these effects is negligible, they mostly cancel each other, and the overall accuracy
of the analysis is only marginally improved. There remains a difference between theory and
experiment with water rockets. © 2010 American Association of Physics Teachers.

[DOL: 10.1119/1.3257702]

I. INTRODUCTION

The water rocket' is a popular toy that is often used in first
year physics courses to illustrate Newton’s laws of motion
and rocket propulsion. In its simplest version, a water rocket
is made of a soda bottle, a bicycle pump, a rubber stopper,
and some piping (see Fig. 1). The bottle is half-filled with
water, turned upside-down, and air is pushed inside the bottle
via a flexible pipe that runs through the stopper. When the
pressure builds up, the stopper eventually pops out of the
neck. The water is then ejected and the rocket takes off.
Witnesses of the launch of a water rocket cannot but be
amazed that such a simple device can reach a height of tens
of meters in a fraction of a second.

The popularity of water rockets extends beyond physics
classrooms, with many ex1stmg associations and competi-
tions organized worldwide.! The more than 5000 videos
posted on YouTube with the words “water rocket” in their
title testify to their popularity. Some of these videos involve
elaborate technical developments such as multistage water
rockets, nozzles that adapt to the pressure, the replacement of
water by foam or flour, underwater rocket launches, and even
a water-propelled human flight. The public’s passionate ex-
plorations with water rockets contrast with the small number
of articles devoted to their analysis. I found only two
papersz’3 that treat the simplest possible rocket, similar to
that shown in Fig. 1.

In the cited papers, the air expanswn in the rocket is mod-
eled as an isothermal® or adiabatic’ process involving dry air,
which enables the authors to estimate the pressure at any
stage of water ejection. Based on Bernoulli’s steady state
equation, the pressure is then converted to a water ejection
velocity at the nozzle, from which the thrust is estimated via
the classical equation of rocket propulsion. Finally, Newton’s
laws of motion are solved numerically to predict the flight of
the rocket. This analysis enables the time of flight to be
predicted within the experimental uncertainties of a first year
laboratory project.3 However, more accurate measurements
with a high-speed camera show that the acceleration of the
rocket is substantially underestimated at the beginning of the
thrust phase.2

Simple observations of water rockets hint at physical phe-
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nomena that were not considered in Refs. 2 and 3. First, the
rocket is filled with fog at the end of a launch, as is visible in
the inset of Fig. 2(b). Water condensation is an exothermic
process that is expected to contribute positively to the thrust.
Second, the acceleration of the rocket is huge, which sug-
gests that the noninertial contribution to the apparent gravity
in the rocket might help significantly water ejection. The
rocket in Fig. 2 reaches a height of about 4 m in 0.2 s, which
implies an average acceleration of 200 m/s%. A more accu-
rate measurement’ with a high-speed camera leads to an ac-
celeration of 100g’s. The flow of water is rapid not just at the
nozzle but also inside the rocket. The cloud in Fig. 2(b)
forms at the end 0f ejection and appears after less than 0.2 s.
A more accurate’ ejection time is 7=0.1 s. Because the
height of water in the rocket is initially H=10 cm, this time
converts to a velocity of U=1 m/s inside the rocket. The
latter motion carries a momentum that may also contribute
positively to the thrust.

In this paper an analysis of the water rocket is proposed,
which takes account of the phenomena we have mentioned.
A detailed physical analysis is presented in Sec. II, and the
governing equations are derived. In Sec. III numerical solu-
tions are compared with published experimental data.”

II. PHYSICAL ANALYSIS

A. Moist air expansion

Air expansion is the only source of energy of the rocket.
As mentioned in Sec. I, it is accompanied by vapor conden-
sation. The specific issue addressed here is the relation be-
tween the pressure P and the volume V of the expanding
moist air. This relation determines the total amount of energy
released during the ejection.

The first question is whether the expansion is adiabatic” or
isothermal as some authors claim.® For the process to be
isothermal, heat would have to diffuse into the rocket from
outside to keep the temperature constant. Generally, during a
time 7, heat diffuses in air over a distance &, given by 3
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Fig. 1. In its simplest version, a water rocket is made of a soda bottle
partially filled with water, in which air is injected with a bicycle pump.
When the pressure increases, the stopper eventually pops out, water is
ejected, and the rocket takes off.

8~ X, (1)

where y is the heat diffusivity of air. If we use the value*
x=0.014 cm?/s and 7=0.1 s, we find §,=0.04 cm. Be-
cause this distance is much smaller than the radius of the
rocket, the gas expansion has to be modeled as an adiabatic
process.

Adiabaticity does not necessarily imé)ly that PV7 is a con-
stant, with y=1.4 for diatomic gases. " The cooling of air
during an adiabatic expansion induces the condensation of
the water vapor it contains. Because condensation is exother-
mic, the temperature does not drop as rapidly as if the air
was dry, which keeps the pressure higher than predicted by
the PV7” relation. Neglecting this effect leads to an underes-
timation of the work performed by the expanding air, and
hence of the thrust.

The pressure-volume relation is derived, assuming that the
total entropy resulting from dry air, water vapor, and con-
densed water (the fog) is constant during the adiabatic ex-
pansion. Assuming that air is an ideal gas, its molar entropy
s, 1s written as®®

Fig. 2. Snapshots taken at times (a) t=0 s, (b) t=0.2 s, and t=0.4 s during
the launch of a water rocket. The insets show the rocket at the onset of

ejection and soon after the end of ejection. Note that the ejected water in the
cloud of (b) is moving upward.
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where ¢, is the specific heat of air and V is the volume. The
0 subscript refers to any arbitrarily chosen reference state.

The molar entropy of water vapor in equilibrium with liquid
water at temperature 7 is written as™

A
D) =51+ 3)

where s,(T) is the molar entropy of the liquid water and Ahy,
is the molar enthalpy of vaporization of water. The molar
entropy of liquid water s,(T) is

si(T) = s(Tp) + ¢, ln(%) (4)
0

where the specific heat of water ¢}, has been assumed to be
temperature independent.

The number of molecules in each of the three phases—air,
water vapor, and liquid water—is obtained by assuming ther-
modynamic equilibrium. This assumption implies that the
partial pressure of water vapor at any stage of the expansion
is equal to the saturating pressure Py(T). By using the ideal
gas law, Py(T) is converted to the total number of vapor
molecules Ny in the volume V. The total number of water
molecules N; in the liquid is the difference between the ini-
tial and the current values of Ny. The constant number of air
molecules in the rocket N, is determined as a function of the
initial pressure P;, volume V;, and temperature 7; by sub-
tracting the contribution of water vapor to the total pressure.

The temperature-volume relation during the adiabatic ex-
pansion of moist air is obtained by conserving the total en-
tropy S=N,s,+Nys,+N, s; during the adiabatic expansion.
We use Egs. (2)—(4) to find

-2 el ()G
1-—————|eyIn|l| = ]| = +| =
P; T,)\V, T
X<1>PV(T>A_hV+PV<T,-><Clm(g)_A_hV):O
Vi) P, T p, \?\1;) T,

(5)

For the case of dry air, that is, for Py/(T)=P(T;)=0, the
solution of Eq. (5) is TV(*V=constant, as expected. For
moist air, however, Eq. (5) has to be solved to estimate the
temperature 7" reached after an adiabatic expansion. Know-
ing that temperature, the corresponding pressure is obtained
by the ideal gas law.

Solutions of Eq. (5) are plotted in Fig. 3(a) for three values
of P; and three values of T, The dry adiabats (PV”
=constant) and isotherms (PV=constant) are shown for com-
parison. The numerical values used for the calculation are
cy=20 J/mol K.} ¢£,=75.3 J/mol K,* Ahy=45 051 J/mol,*
and y=1.4; the saturating pressure was estimated from the
Clausius—Clapeyron equation,6_8 with Py(Ty)=1 bar at T,
=100 °C.

The moist adiabats in Fig. 3(a) are found to be well ap-
proximated by a polytropic process8 of the type PVP
=constant (dotted lines). The exponent 3 obtained by a least-
squares fit is found to depend mostly on the initial relative
humidity Py(T;)/P;, as shown in Fig. 3(b). The dependency
is well described by the empirical function
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Fig. 3. (a) Pressure-volume curves of moist air during adiabatic expansion,
starting from P;=2, 4, and 6 bars, and initially in equilibrium with water at
T;=10, 50, and 90 °C (+). The solid lines are isotherms (pV=constant) and
dry adiabats (pV”=constant). (b) Moist adiabats are approximated by a
polytropic process of the form pV#=constant [dotted lines in (a)], the expo-
nent of which is a function of the initial relative humidity.

PV(Ti))’ ©)

B=1.15+(1.4- 1.15)exp(— 36T
which reduces to S=vy=1.4 for dry air.
Figure 4 shows a plot of the amount of work performed by
a given volume of moist air, initially pressurized at P;=3, 4,
and 7 bars, when it adiabatically doubles its volume against
atmospheric pressure. In Fig. 4, the work is normalized to the
amount of work performed by dry air in the same conditions.
From Fig. 4, we see that air compressed to 3 bars performs
20% more work when it is saturated with water at 70 °C
than when it is dry. In the experiments of Ref. 2 with P;
=3.4 bars and P;=6.8 bars, and 7,=25 °C, the correspond-
ing exponents are estimated to be S=1.31 and B=1.35. In
both cases, the extra work resulting from water condensation
is expected to be only a few percent. The same conclusion
applies to the launches reported in Ref. 3 with P;=4 bars.
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Fig. 4. Mechanical work performed by moist air upon doubling adiabati-
cally its volume against atmospheric pressure, as a function of the initial
temperature 7; and initial pressure P;=3 bars (+), 4 bars (O), and 7 bars
(A). The work is normalized by the work performed by dry air under the
same conditions.
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Fig. 5. The two reference frames used in the present analysis, and the
meaning of some symbols. The free surface of water does not remain flat if
the velocity profile is not uniform.

B. Water ejection

The determination of the rate of water ejection is a prob-
lem in fluid mechanics. The starting point of the analysis is
to assess the importance of viscous forces. Using reasoning
similar to Eq. (1), the distance &, over which momentum
diffuses in a fluid during a time 7 due to its viscosity is*™

5%, =~ T, (7)

where v is the kinematic viscosity of the liquid. For water” at
20 °C, »=0.01 cm?/s. Using 7=0.1 s leads to J,
=0.3 mm. This small value means that the flow of water out
of the rocket is not affected by viscosity, except for a sub-
millimeter thin boundary layer. Water can therefore be as-
sumed to be inviscid in this context, and ejection can be
analyzed with Euler’s equation.
The general form of Euler’s equation is*?

%+(ﬁ~V)ﬁ=—lVP+§, (8)

ot p
where i is the vector velocity of water, P is the pressure, p is
the density, and g is the gravitational field; & and P are gen-
erally space and time dependent. When Eq. (8) is integrated
along the axis of the rocket, from the nozzle up to the free
surface of the liquid (see Fig. 5), we obtain

fh u, u’(h)—u>0) P-P,
—dz+ +
1% 2 p

+gh=0, )

0
where h(z) is the time-dependent height of water on the axis
of the rocket, P, is atmospheric pressure, u.(h) is the (nega-
tive) vertical velocity of the water free surface on the axis of
the rocket, and u.(0) is the exhaust velocity on the axis.
Bernoulli’s equation, as used in Refs. 2 and 3, results directly
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from Eq. (9) by neglecting the time derivative as well as
gravity.

The order of magnitude of the first term in Eq. (9) is
HU/ 7, which is equal to the magnitude of the second term
U?. As for the last two terms, using P—P,=10° Pa, p
=1000 kg/m3, H=0.1 m, and apparent gravity g
=1000 m/s?, they are found to be comparable. Therefore,
Eq. (9) cannot be simplified a priori to analyze the water
rocket.

To use Eq. (9) for making predictions, assumptions have
to be made about the flow pattern. We shall assume that the
velocity profiles at various heights are self-similar, that is,

dh| Q(h)
dt{ﬂ(o)}]{R( )) (10

where R(z) is the radius of the bottle at height z (see Fig. 5),
O(z)=mR?(z) is the cross sectional area at height z, and f is
a function that characterizes the velocity profile and satisfies
f(0)=1. Uniform velocity is recovered with f(x)=1; the case
where the water drops more rapidly at the center of the
rocket corresponds to a function f(x) with a maximum at x
=0. The ratio in the square brackets in Eq. (10) ensures that
the total flow of water is the same over any section of the
rocket. Moreover, the latter flow has to be equal to the rate of
air expansion. Integrating Eq. (10) over a section leads to

u(z,r,t) =

T pow (11)

with (f)= [§2xf(x)dx.
By using Eq. (10), the various terms in Eq. (9) can be
written explicitly as a function of A(r), which leads to

S(-(RE

l(P(Ly; P) h=0 12
+P i V(l) —F,)tgh= ( )

I(h)%(ﬂ(h)%) +

with

1(h) = f Qz) (13)

The notation highlights that this term accounts for the inertia
of the accelerated water. In Eq. (12), B is the polytropic
exponent obtained in Sec. IT A and Q,=0(0) is the area of
the nozzle.

If the rocket was forced to remain immobile, Egs. (11) and
(12) could be solved for A(t) and V(z). When the rocket is
free to move, however, the gravity term g includes a nonin-
ertial component resulting from the rocket’s acceleration.
The water ejection can, therefore, not be predicted indepen-
dently of the rocket acceleration: the two problems are
coupled and have to be solved simultaneously.

C. Rocket acceleration

In an inertial frame immobile with respect to the ground
conservation of vertical momentum takes the form
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d
EMU:Th—W—D, (14)

where the total momentum of the rocket is written as MU,
Th is the thrust, W is the weight, and D is the aerodynamic
drag. We next discuss each of these terms.

For a conventional rocket, MU is generally estimated by
assuming that the fuel moves upward at the same speed as
the rocket. This assumption does not hold for water rockets.
More generally, the total momentum is

dz h R(z
MU:mZ+f dzf 2ardrpu(z,r,t), (15)
0

where m is the mass of the empty rocket, Z is its vertical
position, and u(z,r,r) is the velocity of the water in the
rocket. Note that, contrary to Sec. II B, the water velocity
u(z,r,t) is expressed here with respect to the ground. If we
correct Eq. (10) by adding dZ/dt, Eq. (15) becomes

dz dh
MU=[m+pVW]E+p<f>hQ(h)E, (16)

where V,,=["0(z)dz is the volume of water in the rocket.
The second term in Eq. (16) is negative; it is specific to water
rockets and it was not taken into account in previous
studies.” This term accounts for the fact that the velocity of
water in the rocket is smaller than the velocity of the rocket
itself.

The three forces on the right-hand side of Eq. (14) are
estimated in the usual way. The thrust is the rate of momen-
tum transfer out of the rocket resulting from water
expu1s10n By using the velocity profile in Eq. (10), the
thrust takes the form

Q(h)?

ThpQ
0

dh dhdZ
( ) Py +p (h)zg(f) (17)

with (f2)=[}2xf*(x)dx. For the case of a uniform velocity
profile, the first contribution is the product of the rate of
mass loss with the exhaust velocity; the second term ac-
counts for the fact that the thrust is not estimated in the
reference frame of the rocket. The last two forces exerted on
the rocket are the weight and the aerodynamic drag. The
weight is

W= (m+pV,)go, (18)

where g is the gravity, not to be confused with g that enters
Eq. (12) and includes a noninertial contrlbutlon The aerody-
namic drag is calculated in the usual way™ 4

pa(dZ\?
D=CAQmaxE<E) > (19)

where p, is the density of air, ), is the maximum cross
section area of the rocket, and C4 is a dimensionless drag
coefficient. For a rocket with a circular cross section and no
side wings, C, is about 0.75." but for the following analysis,
it is sufficient to consider that its order of magnitude is 1.

Combining Egs. (14)—(19) leads to the following differen-
tial equation:
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Fig. 6. Predicted and experimental heights reached by a water rocket as a
function of time for (a) P;=3.4 bars and (b) P;=6.8 bars: (O) experimental
data from Ref. 2, (0) textbook analysis, (1) current model with simplified
geometry, (2) with realistic geometry, (3) with realistic geometry and vapor
condensation, and (4) with realistic geometry, condensation, and nonuniform
flow.

d dz dh
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which expresses the conservation of vertical momentum.
Equations (11), (12), and (20) constitute a closed system of
three differential equations that are coupled through the term
g=go+d’Z/dr* and have to be solved simultaneously for
Z(t), h(r), and V(z).

II1. DISCUSSION

A. Numerical solutions and experimental data

In this section the predictions of Egs. (11), (12), and (20%
are compared with the experimental data of Kagan et al.
which are summarized in Fig. 6. These authors used a 2-1
soda bottle as a rocket, the takeoff of which they measured
with a high-speed camera and a “smart-pulley” system.lo
Their analysis was based on a dry adiabatic expansion, on
Bernoulli’s equation, and on the estimation of the thrust as
the product mass loss rate and exhaust velocity. They also
assumed that the rocket is a cylinder with a constant section
area (), ended by a sudden constriction to a smaller section
. The predicted height as a function of time is reproduced
in Fig. 6 as curve 0. As mentioned, the rocket outperforms
this analysis.

The discrepancy between theory and experiment is not in
contradiction with the findings of Finney,3 according to
which the simplified analysis predicts the time of flight of the
rocket with an accuracy better than 0.2 s. Figure 6 shows that
the velocity of the rocket is underestimated only at the be-
ginning of the burnout; the velocity v, at the end of the
burnout is predicted fairly accurately. As a consequence, the
remaining time of flight after the end of the burnout—
calculated, for example, as 2v,/g when drag is neglected—is
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also accurately predicted. The main source of error for the
total time of flight is the duration of the burnout, which is
overestimated by less than 0.05 s for the case in Fig. 6(a).
Accuracy better than 0.2 s is therefore needed to detect a
discrepancy between theory and experiment on the basis of
time of flight measurements.

We have accounted for several effects which were previ-
ously not considered and which may have an important role
during the burnout. The first effect is water condensation
during air expansion, which is accounted for by a polytropic
exponent B smaller than . The second effect is the rocket
acceleration, which favors water ejection through increasing
the apparent gravity in the rocket. From dimensional analy-
sis, the acceleration is expected to be as significant as the
pressure difference between the inside and the outside of the
rocket. The third effect is the acceleration downward of the
water inside the rocket, which reduces the vertical momen-
tum of the rocket. On the other hand, water inertia is under-
estimated in the usual analysis, which makes use of Bernoul-
1i’s steady equation. The transient term, proportional to I(/)
in Eq. (12), is expected to reduce the overall rocket perfor-
mance.

The procedure used for the numerical integration of Egs.
(11), (12), and (20) is discussed in Appendix A. We shall first
assume the same rocket shape as in Ref. 2. For a perfect
cylinder, we have Q(h)=Q,,. and from Eq. (13), I(h)
=h/Q .. The numerical solutions for P;=3.4 and 6.8 bars
are plotted in Fig. 6 as curve 1 for f=1.4 (dry air) and (f)
=(f=1 (a uniform velocity profile). For both pressures,
curve 1 is slightly above the analysis of Ref. 2, but the the-
oretical prediction remains below experiment.

A more realistic soda bottle has a transition from body to
neck, as presented in Appendix B together with the corre-
sponding values of Q(h) and I(h). The corresponding solu-
tions of Egs. (11), (12), and (20) are shown in Fig. 6 as curve
2. Another refinement of our analysis accounts for the con-
densation of water vapor using the exponents S=1.31 and
B=1.35 as calculated in Sec. IT A [see Fig. 3(b)]. The corre-
sponding predictions are shown in Fig. 6 as curve 3. For the
launch at P;=3.4 bars, the performances are slightly im-
proved by water vapor condensation, but the extra thrust is
negligible for P;=6.8 bars, as anticipated in Sec. II A.

The effect of a possible nonuniform velocity profile was
also investigated. The velocity profile in Eq. (10) is modeled
empirically as f(x)=exp(=0.5(x/)?), which amounts to as-
suming that most of the flow occurs at the center of the
rocket in a region that extends over a fraction o of its radius.
With this form of f(x) the coefficients {f) and (f%) are (f)
=20%(1-exp(=0.5/0?)) and (f*)=0(1-exp(=1/0?)). With
these coefficients, we found that any finite value of o results
in lower performances of the rocket, as exemplified in the
figure for =0.5 (curve 4).

B. Analysis of simplified equations

Although some of the effects included in the present
analysis bring theory slightly closer to experiment, the im-
provements are small: a real rocket still outperforms the the-
oretical prediction. To try and understand why, we now con-
sider the simplified cylindrical model with Q(h)=Q,,,, for
h>0 and I(h)=h/Q . It is shown in Appendix A that grav-
ity and aerodynamic drag are negligible during the thrust
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Fig. 7. Water height & and altitude Z of the rocket according to textbook
(gray) and the present (black) analyses using conditions from Ref. 2 with
P;=3.4 bars. In (b) and (c) the velocities are plotted on a logarithmic time
scale to stretch the shorter times. The horizontal line in (b) is given by Eq.
(24), and the initial slope in (c) is d’Z/df* =~ (QAP)/m.

phase, and thus we shall here assume g,=0 and C,=0. With
these assumptions, Egs. (12) and (20) take the form

W hezy=_ AP lK&)z 1}(@>2 @1)
a2 T e, T |\

and

ﬂdz—zmd—z(mz)—[(Q) 1}<@)2 (22)
pQ di* " di? T L\Q, dr)”’

where AP is the time-dependent pressure difference between
the inside and the outside of the rocket.

The solution of Egs. (21) and (22) for P;=3.4 bars is
shown in Fig. 7(a), together with the solution of the simpli-
fied equations of Ref. 2. The time derivatives dh/dt and
dZ/dr are plotted in Figs. 7(b) and 7(c) on a logarithmic time
axis to stretch the short times. The curves exhibit three dis-
tinct time intervals. For very short times (r<<10™ s), the
rocket accelerates uniformly [Fig. 7(c)]. This interval is fol-
lowed by one (107 s<<t<<1072 s) during which the rate of
water ejection is maximum [Fig. 7(b)], and the vertical speed
of the rocket dZ/dt is a constant [plateau in Fig. 7(c)]. For
t>1072 s, the rate of water ejection decreases monotonically
and the rocket accelerates again. The latter stage is the only
visible one on the time scale of Fig. 7(a).
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To analyze the first two intervals, we eliminate the second
time derivative of (h+Z) between Egs. (21) and (22), leading
to

mdZ 1| Q . 2<dh>2 AP @3)

——+ | — - — ] =—.

pQdrr 2] Qp dt p
The initial value of dh/dt is 0, and thus the middle term in
Eq. (23) is negligible at the onset of water ejection. The
initial vertical acceleration of the rocket is found to be
d*Z/di*~(QAP)/m, in excellent agreement with the nu-
merical solution [initial slope in Fig. 7(c)]. Note that AP can
be considered to be a constant over a time scale as short as in
Figs. 7(b) and 7(c). Because the maximum in dh/dr is
reached for d°Z/dt*=0, the maximum rate of water ejection

is obtained by neglecting the first term in Eq. (23), which
leads to

dh  ~\2APIp (24)
dt QQy-1"

which is plotted as a horizontal line in Fig. 7(b), in agree-
ment with the numerical solution. Incidentally, the level of
the plateau in Fig. 7(c) is found to be —dh/dt, which means
that the height of the water surface is initially a constant with
respect to the ground.

The maximum rate of water ejection predicted by Eq. (24)
is slightly larger than that predicted by Bernoulli’s equation,
as is seen in Fig. 7(b). Bernoulli’s ejection rate is obtained by
neglecting the time derivative in Eq. (21), which amounts to
replacing the factor Q/Qy—1 in Eq. (24) by \(2/Q)*-1.
For large values of )/}, the two numbers are very close to
each other. In general, applying Bernoulli’s equation leads to
an underestimation of the initial ejection velocity. Over
longer times, the evolution of h(r) and Z(r) predicted by
Egs. (23) and (24) and by the simplified model® are similar
[Fig. 7(a)].

IV. CONCLUSIONS AND PROSPECTS

This paper was motivated by the observation” that water
rockets outperform the usual textbook analysis at the begin-
ning of the thrust phase. The present analysis takes account
of several phenomena that were previously not considered.
These corrections bring theory slightly closer to experiment,
but a discrepancy persists that is larger than the experimental
uncertainty.

The present analysis does answer some questions raised in
Ref. 2. Should the energy released by the condensation of
water be included in the theory? If so, how? We have shown
that this energy can be accounted for using a polytropic ex-
ponent smaller than y=1.4. The value of the exponent has to
be calculated from the initial pressure and temperature. No-
tably, the performance of a rocket can be increased if it is
filled with hot water. Advanced users may also want to try
other liquids. As a rule of thumb, the liquid should be very
volatile with a large enthalpy of evaporation. Why is the size
of the hole in the bottle so crucial? The movement of water
inside the rocket contributes significantly to the total mo-
mentum of the rocket, an effect that is more pronounced for
a larger hole. This effect is absent in other types of rockets.
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Incidentally, the movement of water within the rocket is also
expected to stabilize it, in agreement with an observation
reported in Ref. 2.

We also found that any deviation from a uniform water
velocity profile over the rocket section is detrimental to the
performance of the rocket. The shape of the rocket also in-
fluences water ejection in a way that can be calculated nu-
merically through the function I(%), which offers the pros-
pect of finding the optimal rocket’s shape. In this respect,
current water rockets are energetically very inefficient. Maxi-
mum energy efficiency would require that water be ejected
with a constant velocity with respect to the ground.ll As
noted when discussing Fig. 2 some of the ejected water
moves upward, which leaves much room for optimization.

These partial results leave the main question more relevant
than ever: What is the origin of the extra thrust at the begin-
ning of the burnout? Should the elastic deformation of the
rocket be included in the analysis? Should the interaction of
the water jet with the ground be taken into account? The
water rocket has long been used to teach momentum conser-
vation, elementary fluid mechanics, and thermodynamics.
There is more to learn from it: for instance, that some simple
and popular devices are still lacking a satisfactory physical
analysis.
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APPENDIX A: DIMENSIONLESS FORM
OF THE GOVERNING EQUATIONS
AND THEIR NUMERICAL INTEGRATION

To estimate the order of magnitude of the different terms
in the governing equations, and to make their numerical in-
tegration easier, the equations derived in Sec. II are here
expressed in dimensionless form. The height of the rocket H

is used as the length unit, with notation h=h/H and Z

=z/H. For the time unit, we choose 7=\pH?/P,, which is
the order of magnitude of the time needed for a pressure

difference of P, to accelerate an unrestricted column of fluid
of density p and height H, starting from rest, over a distance
H. The dimensionless time is 7=t/ 7.

Using these dimensionless variables, Egs. (11), (12), and
(20) can be put into the form

av _dh
E=—<f>w(h);;, (A1)
_ —\2 —\ 2
o) Lo}
a7 ai) 2 o a7
<13<E)B 1) (F @>E—o (A2)
+ i v - + 0+df2 =0,
d o i
E |: (m+V,) " + (fHhw(h) dt_]
—“’2(’;)<d—’;)2<ﬂ>+ a2,
oy \df dr di
—\2
_ p,1 _|(az
=Tyl +V,) - ";ﬁ(E) (A3)

with Q):Q/Qmax, wO:QO/QmaX’ PZP/Pa, IZQmaXI/H, FO
=pg0H/ Pa’ szvw/(QmaxH)’ ’ﬁ:m/(pvw)s and 14
=V (QmaxH)-

The choice of the time unit 7 makes all time derivatives of
the order of 1 in Egs. (A1)—(A3). For H=0.2 m, we find
I'y)=0.02, and hence gravity is negligible during the water
ejection. The magnitude of the aerodynamic drag in Eq. (A3)
is p,/p=0.001, which means that the drag is also negligible
during this phase.

The numerical integration of Egs. (A1)—(A3) requires that
they be written as a system of first-order differential equa-
tions. For that purpose, we introduce the variables

_dh
=w(h)— (A4)
Ph a7
and
dz
=— A5
Pz a7 (A5)

which enable us to write Egs. (A1)—(A3) in matrix form

1 0 0 0 0 % —{Hpn
0O 1 0 O 0 n Pl @
__ _ d _
0 0 1(h) O h —| p, |= —(P(VIV)P=1)+0.5(1/ 0} — 1/0*)p; — T, ,
dr
0O 0 0 1 0 7 Dz
w0 (Hh 0 (m+V,-V) Py () wi = Y P)pi+{Ppupz— Lol + V, = V) = 0.5(p,/p) Capy
(A6)
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Fig. 8. A more realistic model of a soda bottle, consisting of a cylinder of
radius R ended by a hemispherical cap truncated at the bottle neck. The
radius ry of the neck has been exaggerated for clarity.

where we have replaced V,, by V.-V, and V,=V,/ (Q.H) is
the dimensionless total volume of the rocket. By using the
form of Eq. (A6), the governing equations of the water
rocket can be easily solved numerically.

APPENDIX B: A REALISTIC SODA BOTTLE SHAPE

We assume here that the soda bottle of Ref. 2 is a cylinder
of radius R with a hemispherical cap truncated at the bottle
neck (Fig. 8). If we let R, be the radius of the neck, the shape
of the bottle is given by

RVZIR(2-2z/R) for zp=z=R

r(z) = B1
@ R for R<z=H+z, (B1)

where z0=R—\e“"R2—R3 is the position of the neck, and H is
the total height of the bottle. Using Eq. (B1), the dimension-
less section of the rocket is

Zo'l'h

Zo+h
p_ X0

w= for h=R-7%, (B2)

R R

and w=1 for larger values of i. From Eq. (13), we find
R [ (Z+h)(2R-7%)

_ln P

5 - R for h=R-7,

= B ZO_( -Zp—h) (B3)
I_an(—(ZR %) ) +h—(R-7,) otherwise,
2 20

which function is needed to predict the rate of water ejection
through Eq. (12).
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