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Abstract. Water table elevations are usually sampled in space using piezo-3

metric measurements that are unfortunately expensive to obtain and are thus4

scarce over space. Most of the time, piezometric data are sparsely distributed5

over large areas, thus providing limited direct information about the level6

of the corresponding water table. As a consequence, there is a real need for7

approaches that are able at the same time to (i) provide spatial predictions8

at unsampled locations and (ii) enable the user to account for all potentially9

available secondary information sources that are in some way related to wa-10

ter table elevations. In this paper, a recently developed Bayesian Data Fu-11

sion framework (BDF) is applied to the problem of water table spatial map-12

ping. After a brief presentation of the underlying theory, specific assump-13

tions are made and discussed in order to account for a digital elevation model14

as well as for the geometry of a corresponding river network. Based on a data15

set for the Dijle basin in the north part of Belgium, the suggested model is16

then implemented and results are compared to those of standard techniques17

like ordinary kriging and cokriging. Respective accuracies and precisions of18

these estimators are finally evaluated using a “leave-one-out” cross-validation19

procedure. Though the BDF methodology was illustrated here for the inte-20

gration of only two secondary information sources (namely a digital eleva-21

tion model and the geometry of a river network), the method can be applied22

for incorporating an arbitrary number of secondary information sources, thus23

opening new avenues for the important topic of data integration in a spa-24

tial mapping context.25

D R A F T August 12, 2008, 11:33am D R A F T



FASBENDER ET AL.: BAYESIAN DATA FUSION APPLIED TO WATER TABLE SPATIAL MAPPING X - 3

26

27

Keywords: kriging, cokriging, data merging, Digital Elevation Model, DEM,28

river network.29

D R A F T August 12, 2008, 11:33am D R A F T



X - 4 FASBENDER ET AL.: BAYESIAN DATA FUSION APPLIED TO WATER TABLE SPATIAL MAPPING

1. Introduction

Water table elevations can be directly obtained from piezometric heads measurements30

at wells and boreholes locations. Unfortunately, for most survey studies and due to the31

associated costs, the number of these locations are most of the time limited to already32

existing wells and boreholes, that are typically scarce and sparsely distributed over space.33

As a result, using cheaper and/or more abundant auxiliary information that are in some34

way related to piezometric heads is of great interest for the prediction of the water table35

elevations, especially for predicting at locations that are far away from the sampled ones.36

More generally, there is a real need for methods that enable the user to account for multiple37

auxiliary information sources in a spatial prediction context. Though such methods exist38

since the early 1990s (e.g. Christakos [1990]), this was recently called to mind in [IAHS ,39

2003] and, accordingly, new methods are currently undergoing investigations.40

Focusing on the single context of water table spatial mapping, [Hoeksema et al., 1989]41

already tried to use a cokriging (CoK) approach (see e.g. [Chilès and Delfiner , 1999]) for42

the spatial mapping of a water table in the area of Oak Ridge (Tennessee). The secondary43

variable used in that study was the ground surface elevation because the underlying wa-44

ter table was supposed to be a smoothed replica of it. Though results were found more45

accurate than ordinary kriging (OK), the cokriging approach remains limited to linear46

predictions and the corresponding multivariate model (like, e.g., the linear model of core-47

gionalization that relies on linear combinations of basis covariance functions models ; see48

e.g. [Chilès and Delfiner , 1999]) is in general hard to infer when there are several (and49

possibly numerous) information sources at hand. Lately, [Linde et al., 2007] proposed a50
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Bayesian approach of the problem that enables the user to account for piezometric and51

self-potential measurements. Thanks to its Bayesian formulation, non-linear relationships52

were permissible, leading thus to a more flexible set of models. As expected, the influence53

and advantage of auxiliary self-potential measurements were noticeable in locations far54

away from piezometric heads measurements.55

Over the last twenty years, Bayesian approaches have gained more and more credit in56

spatial statistics. Initially proposed by Christakos [Christakos , 1990, 1991], the Bayesian57

Maximum Entropy (BME) paradigm for example has proven in many cases its ability to58

account for additional information sources and their associated uncertainties in various59

space-time prediction contexts. Though originaly proposed in the case of continuous60

data [see e.g. Christakos , 1992; Christakos and Li , 1998; Christakos , 2000; Serre and61

Christakos , 1999], other cases like categorical data (see e.g. [Bogaert , 2002; Bogaert and62

D’Or , 2002; D’Or and Bogaert , 2004]) and even mixed continuous and categorical data63

[Wibrin et al., 2006] were rapidly tackled, making BME a complete and unified framework.64

Very recently, [Bogaert and Fasbender , 2007] proposed a complementary Bayesian Data65

Fusion (BDF) framework that permits to account at the same time for several auxiliary66

information sources, where each of them is potentially improving the knowledge about a67

variable of interest. In theory, the number of secondary information sources that can be68

incorporated is not restricted. As emphasized by the authors, one of the main advantages69

of this approach compared to traditional multivariate ones (e.g. cokriging methods) is70

that it relieves the need of relying on spatial multivariate linear models, so that a much71

richer category of non-linear models can be accessed.72
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In this paper, an implementation of the BDF approach is proposed in the context of73

a water table spatial prediction. A Digital Elevation Model (DEM) and the geometry74

of the corresponding river network are used as secondary information sources in order75

to improve knowledge about water table elevations at unsampled locations. The general76

formulation of the method is first briefly described and several specific assumptions are77

proposed for its practical implementation. This method is then applied to the case study78

of the Dijle basin in the north part of Belgium. Finally, a discussion and some conclusions79

about the method, its results compared to other ones and its perspectives are provided.80

2. Bayesian data fusion

Combining multiple information sources into a single final prediction (i.e. data fu-81

sion) is not a new problem and is not restricted to environmental sciences, as it covers82

a wide variety of applications. Among them, Bayesian approaches have provided conve-83

nient solutions to various interesting problems such as image surveillance [Jones et al.,84

2003], object recognition [Chung and Shen, 2000], object localization [Pinheiro and Lima,85

2004], robotic [Moshiri et al., 2002; Pradalier et al., 2003], image processing [Pieczynski86

et al., 1998; Zhang and Blum, 2001; Rajan and Chaudhuri , 2002], classification of remote87

sensing images [Melgani and Serpico, 2002; Simone et al., 2002; Bruzzone et al., 2002],88

enhancement of remote sensing images [Fasbender et al., 2008, 2007] and environmental89

modeling [Wikle et al., 2001; Christakos , 2002], just to quote a few of them. The two90

main advantages of Bayesian approaches are (i) to set the problem in a proper probabilis-91

tic framework and (ii) to provide straightforward means to update existing probability92

density functions with new relevant information. Lately, [Bogaert and Fasbender , 2007]93

proposed a general BDF formulation especially designed for spatial prediction problems.94
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These general results will be applied here for the spatial mapping of water table elevations.95

For the sake of brevity, it is not possible to present the whole underlying theory, so only96

theoretical results that are the most relevant ones for our application will be presented97

hereafter. The interested reader may refer to [Bogaert and Fasbender , 2007] for a detailed98

description of the theory.99

2.1. General formulation

Let us define {x0, . . . ,xn} as the set of locations where indirect observations y′ =100

(y0, . . . , yn) are available about a variable of interest Z. Based on the idea that the101

corresponding random vector of interest Z′ = (Z0, . . . , Zn) cannot be directly observed at102

these locations, BDF as presented in [Bogaert and Fasbender , 2007] aims at reconciling103

the auxiliary variables Y to the primary variables Z through an error-like model, with104

Y = g(Z) + E (1)105

where g(.) are functionals and where E′ = (E1, . . . , En) is a vector of random errors that106

are stochastically independent from Z. Using classical probability calculus, it is possible107

to formulate the conditional probability density function (pdf) of the vector of interest108

given the observed variables as109

f(z|y) ∝ fZ(z)fE(y − g(z)) (2)110

where fZ(.) is the a priori pdf for Z and fE(.) is the pdf of the errors E. In the context of111

a water table mapping, one can write that Z = (Z0,ZS,ZU)′ where Z0 refers to the water112

table elevations at prediction location x0, ZS refers to locations xS = {x1, . . . ,xm} where113

both Zi’s and Yi’s are jointly sampled, and ZU refers to locations xU = {xm+1, . . . ,xn}114

where only Yi’s are sampled. As the final goal is to obtain a conditional pdf of Z0|zS,y,115
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elementary probability theory leads to the expression116

f(z0|zS,y) ∝
∫

fZ(z)fE(y − g(z))dzU (3)117

Furthermore, if stochastic independence of errors E can be assumed as well as the fact118

that each Yi depends only on a single corresponding Zi through a functional gi(.) (stated119

in other words, Yi = gi(Zi) + Ei), then one can show that the final expression of the120

conditional pdf is given by121

f(z0|zS,y) ∝
m∏

i=0

fEi
(yi − gi(zi))

∫
fZ(z)

m+n∏

j=m+1

fEj
(yj − gj(zj))dzU (4)122

∝
m∏

i=0

f(zi|yi)

f(zi)

∫
fZ(z)

m+n∏

j=m+1

f(zj|yj)

f(zj)
dzU (5)123

where Eqs. 4 and 5 are completely equivalent expressions as they are linked to each124

other using Bayes theorem, with125

fEj
(yj − gj(zj)) = f(yi|zi) ∝

f(zi|yi)

f(zi)
126

so that using either distributions of errors fEi
(.) or conditional distributions f(zi|yi) pro-127

vides two possible way of incorporating different information sources.128

As an interpretation and as a consequence of the independence hypothesis for the errors,129

this Bayesian approach separates the problem into two parts. The first one is making use130

of the spatial dependence of the primary variable through the multivariate distribution131

fZ(z), whereas the second one integrates the various auxiliary information sources through132

the univariate conditional distributions f(zi|yi) on a per-location basis. As a consequence,133

a multivariate formulation is no longer needed and corresponding multivariate models do134

not need to be inferred, thus avoiding the restrictions imposed by multivariate models135

as used in cokriging. One may argue about the practical pertinency of these equations136
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as they rely on this independence hypothesis, but one can show that, from an entropic137

viewpoint, it corresponds to the hypothesis that leads to the minimum loss of information138

(again, see [Bogaert and Fasbender , 2007] for details about this topic).139

It is also worth noting that Eq. 4 is closely related to those obtained with the Bayesian140

Maximum Entropy (BME) method, although BME proposes a Maximum Entropy step141

for the choice of the prior distribution f(Z) whereas BDF leaves this choice open to the142

user. BME and BDF can thus be viewed as complementary formulations of a same general143

Bayesian approach. The main difference between both approaches is that the distributions144

from the secondary information are either considered as likelihood functions f(yj|zj) or145

as a conditional distribution f(zj|yj), which leads thus to different results.146

Finally, it is worth noting that for applications where secondary information are not147

exhaustively known, one could of course not use f(zj|yj) (resp. f(yj|zj)) at these locations.148

Fortunately, the BDF framework is still sound theoretical in that case as it is sufficient149

to remove the corresponding conditional pdf in Eq. 4 (resp. in Eq. 5). Particularly,150

if all conditional distributions at unsampled locations are not taken into account, the151

integrals in Eq. 4 and 5 come down both to f(z0|zS) which simplifies substantially the152

final expression (e.g. f(z0|zS) could be computed separately from classical space-time153

prediction methods such as kriging ones).154

2.2. Specific assumptions

Though Eqs. 4 and 5 are intended to be as general as possible, specific assumptions155

need to be made here in order to fit the specific problem of water table prediction, of156

course. For this purpose, it is also important to identify which secondary information157

sources may be potentially useful.158
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Using merely the sampled water table elevations, it is already possible to estimate the159

spatial dependence of this variable and to use it afterwards for kriging prediction (e.g.160

[Chilès and Delfiner , 1999; Cressie, 1990, 1991]). Kriging is known to provide a linear161

predictor that corresponds to the Best Linear Unbiased Predictor (BLUP) in the least-162

squares sense. Additionally, it is the best possible predictor when the random vector Z163

is assumed to be multivariate Gaussian. It is also well-known that, under constraints for164

the first two moments (i.e., the vector of the means and the covariance matrix), the joint165

distribution fZ(z) that maximizes Shannon entropy is precisely the multivariate Gaussian166

one (see e.g. [Papoulis , 1991] or [Christakos , 1990]). For these reasons, an a priori167

multivariate Gaussian distribution fZ(z) with mean vector µ and covariance matrix Σ as168

inferred from the data is relevant according to information at hand. One is not restricted169

to this choice, as it would be possible to include other information (i.e., skewness) that170

would lead to another maximum entropy distribution (see [Papoulis , 1991] or [Christakos ,171

1990]). However, we will show hereafter that assuming a multivariate Gaussian hypothesis172

is also a convenient choice as it will provide analytical formulas in some situations, thus173

decreasing significantly the computational burden induced by the multivariate integration174

in Eq. 5.175

For our specific case study, possible auxiliary information are the DEM and the geometry176

of the river network. Indeed, the study area is a sandy aquifer with a high hydraulic177

conductivity and a draining river network. For these reasons, one thus expects to get water178

table elevation close to the DEM for locations that are close to a river, and the water table179

level is expected to be a smooth surface (because of the relative homogeneity and high180

conductivity of the aquifer) that (i) shows on the surface at the river network locations181
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and (ii) that remains under the DEM at every other locations, of course. Accordingly, it182

is relevant to think about the water table elevation Z(xi) as possibly modeled with183

Z(xi) = DEM(xi) − g
(

dDEM(xi)
)

+ E(xi) (6)184

where DEM(xi) is the DEM value at location xi, dDEM(xi) is a measure of the proximity185

of location xi to the river network, g(.) is an increasing non-negative function (see Sec-186

tion 3.2 for a concrete example) and E(xi) is a zero-mean random error with a variance187

σ2
E(xi) that increases as the distance dDEM(xi) increases, i.e. the correspondence between188

DEM(xi) and Z(xi) is supposed to loosen as a location is further away from the network.189

It is worth noting that dDEM(xi) is computed using an empirically defined penalized190

function on the changes of DEM along the path between the location and the network,191

in such a way that, for a same planar distance dDEM(xi) will be larger if the DEM varies192

highly along the path between xi and the network than if the DEM is quite flat. The193

computation of this penalized function is similar to the computation of the distance that194

one should walk between the location and the network, except that vertical moves are195

highly penalized. As a consequence, dDEM(.) may be relatively small in areas where the196

DEM is quite constant even if these locations are quite far in a Euclidean viewpoint,197

whereas it may increase rapidly in areas where the DEM varies strongly, even if these198

points are quite close from an Euclidean viewpoint. Therefore, high DEM fluctuation199

areas will obtain high dDEM(xi) values, ensuring that this information will get less credit200

in the model since the corresponding variance σ2
E(xi) will be high.201

Based on this model, we may thus predict water table elevations at any arbitrary lo-202

cation x0 as DEM values are exhaustively known over space and corresponding distances203

to the network are easily computed. Using only this information at location x0 in Eq. 5204
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(i.e. neglecting information at other surrounding locations xU), integration is not relevant205

anymore and the conditional pdf is then simply given by206

f(z0|zS, DEM(x0), dDEM(x0)) ∝
f(z0|zS)

f(z0)
f(z0|DEM(x0), dDEM(x0)) (7)207

Assuming now that f(z0|DEM(x0), dDEM(x0)), f(z0) and f(z0|zS) are Gaussian dis-208

tributed automatically implies that f(z0|zS, DEM(x0), dDEM(x0)) is also Gaussian dis-209

tributed with a mean µP and a variance σ2
P that are given by (see Appendix for details)210






µP =

(
µk

σ2
k

+
µd

σ2
E

− µ0

σ2
0

)
σ2

P

σ2
P =

(
1

σ2
k

+
1

σ2
E

− 1

σ2
0

)
−1 (8)211

where µk and σ2
k are the mean and variance of distribution f(z0|zS) (i.e. the212

ordinary kriging prediction and variance of prediction, respectively), where µd =213

DEM(x0) − g(dDEM(x0)) and σ2
E are the mean and variance of distribution214

f(z0|DEM(x0), dDEM(x0)), and where µ0 and σ2
0 are the mean and variance of the a215

priori distribution f(z0).216

Using only information at location x0, µp could be considered as a relevant choice for the217

predictor of the water table elevation at location x0 whereas σ2
P would be the associated218

prediction variance (remembering that f(z0|zS, DEM(x0), dDEM(x0)) is Gaussian distri-219

bution, µP is at the same time the mean, the median and the mode of this distribution,220

and µP along with σ2
P fully characterizes this pdf).221

3. Application to the Dijle basin in Belgium

The study area is situated in Central Belgium where the geology is dominated by the222

Brussels Sands Formation, one of the main aquifers in Belgium for drinking water produc-223

tion. This Brussels Sands aquifer is of Middle Eocene age and consists of a heterogeneous224
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alteration of calcified and silicified coarse sands [Laga et al., 2001]. These sands are de-225

posited on top of a clay formation of Early Eocene age, the Ieper Clay Formation, which226

forms the base of the aquifer in the study area. On the hilltops, younger sandy formations227

of Late Eocene to Early Oligocene age cover the Brussels Sands. These mainly consist of228

glauconiferous fine sands. The entire study area is covered with an eolian loess deposit of229

Quaternary age; in the north east of the study area, these deposits are more sandy loess.230

The main river in the study area is the Dijle river and many of its tributaries cut231

through the Brussels Sands during the Quaternary, so in most of the valley floors the232

Brussels Sands are absent and groundwater flows in the alluvial deposits of the rivers233

on top the Ieper Clay formation. These alluvial deposits consist of gravels at the base,234

covered with peat and silt. In the river valleys a great number of springs drain the aquifer235

and provide the base flow for the river Dijle and its tributaries.236

The hydraulic conductivity of the Brussels Sands varies between 6.9 × 10−5 m/s and237

2.3 × 10−4 m/s, due to the heterogeneity of the Eocene aquifer [Bronders , 1989]. The238

calciferous parts of the aquifer have a lower conductivity than the silicified parts.239

3.1. Data

Through the monitoring network of the Flemish Region (Databank Onderground Vlan-240

deren, http://dov.vlaanderen.be), piezometric data where gathered from 135 locations in241

the Dijle basin (see Fig. 1). The measuring frequency varies depending on the locations242

and most data are available from 2004 onwards. In this study, measurements between243

April 2005 and June 2005 were used. For locations where no measurements were available244

for this period in the year 2005, the average value for the April-June period was computed245

based on measurements in the preceding years. The piezometric measurements and the246
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DEM elevations are both expressed in elevation above sea-level. The whole data set thus247

consists of the 135 piezometric head measurements, planar coordinates and values, along248

with the DEM and the geometry of the river network over the area (see Figs. 1 and 2).249

[Insert Figures 1 and 2 about here]

3.2. Results

According to the data at hand, several options can be considered for obtaining a map250

of predicted piezometric heads values over the area. The first one would be to only rely251

on piezometric measurements as classically done using ordinary kriging (OK). A second252

one would be to try improving the prediction by accounting at the same time for DEM253

values using ordinary cokriging (OCoK). Both of them are very classical ones, but it will254

be shown herafter that both fail to provide satisfactory results.255

Using the 135 piezometric measurements, an experimental semi-variogram was com-256

puted and a semi-variogram was modeled (see Fig. 3). As suggested by Fig. 3 and alike257

[Linde et al., 2007], a spherical model was chosen with theoretical variance and range258

equal to 300m2 and 13700m, respectively. This high range value is reflecting a strong259

spatial dependence of the water table elevations, in close agreement with the geology and260

soil properties of the study area (i.e. coarse sand aquifer with high conductivity; see Sec-261

tion 3). It is also worth noting that fluctuations around the fitted model are only artifacts262

due to the relatively large distance lag in comparison with data set window.263

[Insert Figure 3 about here]
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Using only the 135 piezometric measurements, OK was conducted on a 525×525 regular264

grid covering the whole area in order to draw a map of piezometric head values (see Fig. 4;265

the 15 closest measurements where used at each prediction node). As emphasized by266

[Hoeksema et al., 1989], water table elevations should of course never exceed DEM values,267

which is obviously not the case for OK prediction, especially at locations close to the268

network and far away from the sampled locations. In approximately 17% of the grid cells,269

the predicted head values are above the DEM-value and along the network the average270

overestimation of OK amounts to 6.3m. One may think about correcting for this issue by271

replacing predicted values with the corresponding DEM elevations in this case. However,272

this option was discarded as it leads to obvious artifacts, like creating areas of constant273

piezometric heads as well as leading to non continuous derivatives of the piezometric heads274

along the border of these areas, which is in conflict with the expected physical behaviour275

of the aquifer.276

[Insert Figure 4 about here]

As OK is only making use of the 135 piezometric head measurements, one may think277

about accounting for DEM information as well using OCoK. In order to do so, variogram278

and cross-variogram for DEM need to be estimated and modelled as well (not shown here).279

Because the spatial dependences of the DEM and the water table seemed to have different280

ranges, a combination of 2 spherical models with different ranges (13700m and 6000m)281

was needed. Using again the 15 closest measurement along with the DEM value at the282

corresponding prediction location, a OCoK prediction map was produced (see Fig. 5),283

very similar to the OK one. As for the OK map, approximately 17% of the predictions284
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were above the corresponding DEM elevations with an average overestimation of 6.4m for285

the water table elevations along the network. Clearly, despite the fact that OCoK is using286

more information than OK, no real benefit can be observed, leading us to think that this287

multivariate approach is not particularly relevant here. Indeed, since OCoK belongs to288

the family of linear spatial predictors and since the relation between the water table and289

the DEM elevations is not linear (the DEM elevation is merely an upper bound for the290

water table), it explains easily why OCoK does not provide significant improvement in291

that study case and justifies the use of non linear approaches such as BDF.292

[Insert Figure 5 about here]

In order to implement the BDF approach, a penalized distance dDEM(xi) (Section 2.2)293

was computed first at each of the 135 measurement locations. Plotting now DEM(xi) −294

Z(xi) (i.e., groundwater depth) as a function of dDEM(xi) clearly shows that there exists295

on the average a non-linear relationship g(.) between these quantities, i.e. that (see296

Fig. 6)297

DEM(xi) − Z(xi)) = g (dDEM(xi)) + E(xi) (9)298

A logistic-like functional g(.) was fitted from these observations, and a same logistic-like299

equation was used to model the way the variance of E(xi) increases with the distance to300

the network. This choice for the function g(.) is motivated by (i) the fact that the depth is301

expected to increase with the distance to the network and (ii) as the function g(.) reaches302

a plateau for larger distances, it is also expected that for such distances one could only303

estimate a mean depth. Furthermore, as the variance was also modeled as a logistic-like304

function, the growth of this second function indicates that the information is loosing its305
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influence on the fused pdf. As a consequence, the plateaus of the function g(.) and of the306

conditional variance could be interpreted respectively as the unconditional mean depth307

and unconditional depth variance.308

[Insert Figure 6 about here]

If we assume that Z is multivariate Gaussian distributed, the conditional pdf f(z0|zS)309

is Gaussian distributed too with a mean and a variance that correspond to OK prediction310

and variance of prediction, respectively. From Eq. 7, it is then easy to remark that in this311

case BDF amounts to updating the OK pdf by using information about the DEM and312

the river network as given by f(z0|DEM(x0), dDEM(x0)). As seen from Eq. 7, the BDF313

prediction map leads to much more satisfactory results. Contrary to OK or OCoK, only314

0.023% of predicted values were above the corresponding DEM values. By comparison315

with Figs. 4 and 5, one can also notice that the DEM values and the network position316

were well accounted for, especially in locations close to the river network, of course, as317

the relationship between distance to network and groundwater depth is loosening up (i.e.318

variance of error increases) as this distance increases.319

[Insert Figure 7 about here]

In order to validate our results, cross-validation was performed using a “leave-one-out”320

approach (see e.g. [Chilès and Delfiner , 1999]). For comparing the respective accuracies321

and precisions of the methods, the following indicators were chosen :322
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ME =
1

N

N∑

i=1

êi (10)323

324

MAE =
1

N

N∑

i=1

|êi| (11)325

326

RMSE =

√√√√ 1

N

N∑

i=1

ê2
i (12)327

where êi is the estimated error at sampled location xi, with N = 135. From Table 1 that328

summarizes the results, one can notice that the DEM values and the network position329

enabled us to increase the quality of the prediction since all indicators were found to330

be lower for BDF. The variance of prediction can also be used as an indicator of the331

expected local quality of the predicted map. Figs. 8a to 8c show this variance for the OK,332

OCoK and BDF predictions, respectively. A direct comparison of these figures indicates333

an important decrease of BDF variance especially in locations (i) that are close to the334

river or (ii) where DEM is flatter (northern area). This is a direct consequence of the335

information conveyed by the model as given in Fig. 8.336

[Insert Table 1 about here]

[Insert Figure 8 about here]

Eventually, it is worth noting that none of the method (neither OK, OCoK nor BDF)337

provides pertinent predictions in the South-East area given the pour amount of informa-338

tion there (i.e. neither network positions nor sample locations). This reflection is totally339

in accordance with the variances of predictions shown in Figs. 8a to 8c.340
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4. Discussion and conclusions

In this paper, the recently developed spatial BDF technique as proposed by [Bogaert341

and Fasbender , 2007] was applied to the case study of water table elevation mapping.342

After a brief presentation of the method, specific assumptions were stressed in details and343

the method was illustrated with the case study of the north part of the Dijle basin in344

Belgium. A comparison of BDF with classically used spatial interpolation methods like345

ordinary (co)kriging showed that, to the contrary of cokriging, BDF is able to account for346

secondary information sources (namely a digital elevation model and the geometry of a347

river network in this case) both in a consistent and efficient way. Compared to standard348

multivariate methods (see e.g, [Hoeksema et al., 1989] who used a multivariate model349

for the water table and ground elevations), BDF permits to avoid the need of defining350

a spatial multivariate model, that may be to restrictive or demanding. Though we did351

not mentioned it in this paper, several variations around kriging have been proposed to352

circumvent the limitations that were observed here (e.g., kriging with external drift was353

used by [Desbarats et al., 2002]) for the water table prediction too). However, most of354

them lack sound theoretical rational and none of them can be generalized to the case of355

multiple secondary information.356

Though more general, in this paper, the BDF method was implemented using (multi-357

variate) Gaussian distributions. More than being particularly convenient (e.g. analytical358

expression for the final posterior distribution, fast implementation), this choice is also the359

Maximum Entropy solution when using the first two moments only (see e.g. [Papoulis ,360

1991]). On the other hand, by construction, the final posterior distribution suffers from361

several drawbacks (e.g. symmetric distribution, non-bounded support) which might influ-362
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ence unfavorably the results and the prediction maps for some applications. In particular,363

the multivariate Gaussian assumption might be replaced by other multivariate distribu-364

tions that account for irregularities in the marginal distributions (see e.g. [?] for more365

details). However, in the present water table application, results were acceptable and sig-366

nificantly better than Ordinary (co-)kriging methods, so that these possible adaptations367

were left for further researches at this point.368

One of the originality of this work was also to make use of a distance to a network for369

defining a non-linear relationship between a Digital Elevation Model (DEM) and water370

table elevations. Consequently, the proposed approach is less restrictive than cokriging371

as proposed by [Hoeksema et al., 1989], in which the relation is purely linear by construc-372

tion. There are also some similitudes with [Linde et al., 2007] who proposed a Bayesian373

based solution for his specific data integration problem. However, the BDF framework374

as proposed here is intended to be more general and only rely on assumptions that are375

depending of the application at hand.376

Finally, it is worth noting that the BDF methodology was illustrated here for the inte-377

gration of only two secondary information sources, but the method can be readily imple-378

mented too in situations where more information sources might be available (see [Bogaert379

and Fasbender , 2007] for a detailed discussion about this topic), thus potentially improv-380

ing the quality of the prediction and opening new avenues for the important topic of data381

integration in a spatial mapping context.382
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Appendix

Assuming that X is a Gaussian random variable with mean equal to b and variance477

equal to a2, its pdf must be given by478

f(x) =
1√
2πa

e
− 1

2a2
(x − b)2

479

∝ e
− 1

2a2
x2 +

b

a2
x

(13)480

For the water table prediction study, it was shown that (see Eq. (7))481

f(z0|zS, DEM(x0), dDEM(x0)) ∝
f(z0|zS)

f(z0)
f(z0|DEM(x0), dDEM(x0))482

Assuming now that all these pdf’s are Gaussian and plugging the corresponding expres-483

sions given by Eq. ( 13) into the previous equality, one obtains484
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f(z0|zS, DEM(x0), dDEM(x0)) ∝ e
− 1

2σ2
E

(z0 − µd)
2

e

1

2σ2
0

(z0 − µ0)
2

e
− 1

2σ2
k

(z0 − µk)
2

485

486

∝ e
−1

2

(
1

σ2
k

+
1

σ2
E

− 1

σ2
0

)
z2

0 +

(
µk

σ2
k

+
µd

σ2
E

− µ0

σ2
0

)
z0

(14)487

By direct identification between Eqs. (13) and (13), it is now easy to see that488

f(z0|zS, DEM(x0), dDEM(x0)) is also a Gaussian pdf with a mean µP and a variance σ2
P489

that are given by490 




µP =

(
µk

σ2
k

+
µd

σ2
E

− µ0

σ2
0

)
σ2

P

σ2
P =

(
1

σ2
k

+
1

σ2
E

− 1

σ2
0

)
−1491
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List of Tables

Table 1. Mean Error (ME), Mean Absolute Error (MAE) and Root Mean Squared Error

(RMSE) of the leave-one-out procedure for ordinary kriging, ordinary cokriging and Bayesian

data fusion predictions.

ME [m] MAE [m] RMSE [m]
OK -0.71 2.63 4.68

OCoK -0.70 2.65 4.70
BDF -0.31 2.45 3.94

D R A F T August 12, 2008, 11:33am D R A F T



X - 28 FASBENDER ET AL.: BAYESIAN DATA FUSION APPLIED TO WATER TABLE SPATIAL MAPPING

List of Figures

1.6 1.65 1.7 1.75 1.8 1.85

x 10
5

1.58

1.6

1.62

1.64

1.66

1.68

1.7

1.72

1.74

1.76

1.78

1.8
x 10

5

Easting [m]

N
or

th
in

g 
[m

]

20

30

40

50

60

70

80

90

100

[m]

Figure 1. Sampled locations of the 135 piezometric heads values, with corresponding elevations

above sea-level (in meters) as represented by color.
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Figure 2. Digital Elevation Model of the study area (in meters above sea-level).
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Figure 3. Experimental and modelled spatial semi-variogram based on the 135 raw piezometric

measurements.

D R A F T August 12, 2008, 11:33am D R A F T



FASBENDER ET AL.: BAYESIAN DATA FUSION APPLIED TO WATER TABLE SPATIAL MAPPING X - 31

1.6 1.65 1.7 1.75 1.8 1.85

x 10
5

1.58

1.6

1.62

1.64

1.66

1.68

1.7

1.72

1.74

1.76

1.78

1.8
x 10

5

Easting [m]

N
or

th
in

g 
[m

]

20

30

30

30
30

30

30

40 40

40

40

40

40

40

40

50

50

50

50
50

50

50

60

60

60

60

60

60

60

60

60

70

70

70

70

70

80

80

80

20

30

40

50

60

70

80

90

100

[m]

Figure 4. Prediction of the water table using ordinary kriging. The colormap convention is

the same as in Fig. 1. Bold lines represent the river network over the study area.
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Figure 5. Prediction of the water table using ordinary cokriging. The colormap convention is

the same as in Fig. 1. Bold lines represent the river network over the study area.
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Figure 6. Graph of the groundwater depth DEM(x) − Z(x) as a function of the penalized

distance dDEM(x) to the network. Dots represents the observed pair of values, plain line repre-

sents the fitted non-linear relationship g(.) whereas dashed lines represent the 95% symmetric

confidence interval based on a Gaussian distribution. The two Gaussian distributions overlayed

on the graph illustrate the way variance of E(x) is increasing with dDEM(x).
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Figure 7. Prediction of the water table using the Bayesian data fusion approach. Bold lines

represent the river network over the study area.
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Figure 8. Variance of prediction of (a) ordinary kriging, (b) ordinary cokriging and (c)

Bayesian data fusion methods. Bold lines represent the river network over the study area.
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Figure 1. Sampled locations of the 135 piezometric heads values, with corresponding elevations

above sea-level (in meters) as represented by color.

Figure 2. Digital Elevation Model of the study area (in meters above sea-level).

Figure 3. Experimental and modelled spatial semi-variogram based on the 135 raw piezometric

measurements.

Figure 4. Prediction of the water table using ordinary kriging. The colormap convention is

the same as in Fig. 1. Bold lines represent the river network over the study area.

Figure 5. Prediction of the water table using ordinary cokriging. The colormap convention is

the same as in Fig. 1. Bold lines represent the river network over the study area.

Figure 6. Graph of the groundwater depth DEM(x) − Z(x) as a function of the penalized

distance dDEM(x) to the network. Dots represents the observed pair of values, plain line repre-

sents the fitted non-linear relationship g(.) whereas dashed lines represent the 95% symmetric

confidence interval based on a Gaussian distribution. The two Gaussian distributions overlayed

on the graph illustrate the way variance of E(x) is increasing with dDEM(x).
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Figure 7. Prediction of the water table using the Bayesian data fusion approach. Bold lines

represent the river network over the study area.

Figure 8. Variance of prediction of (a) ordinary kriging, (b) ordinary cokriging and (c)

Bayesian data fusion methods. Bold lines represent the river network over the study area.
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