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ABSTRACT 

The single-output production function has long been regarded as one of the principle 
limitations of the econometric approach to technical efficiency measurement.  If one 
wished to investigate efficiency in a multiple-output industry using econometric 
methods one would usually either: (a) aggregate outputs into a single index of output 
(e.g., total revenue or a multilateral Tornqvist output index); or (b) attempt to model 
the technology using a dual cost function.  The first of these methods require that 
output prices be observable (and reflect revenue maximising behaviour), while the 
latter approach requires an assumption of cost-minimising behaviour.  There are a 
number of instances, however, when neither of these requirements are met (the public 
sector contains many examples).  In this study we outline the recently developed 
distance function solution to the multi-output problem.  The method is illustrated 
using data on European railways.  Output-orientated, input-orientated and constant 
returns to scale distance functions are estimated using corrected ordinary least 
squares.  The distance function estimates are also compared with production function 
estimates involving aggregate output measures.  These comparisons indicate that, for 
the case of European railways, a production function involving a multilateral 
Tornqvist output index exhibits substantially less aggregation bias relative to a 
production function that uses total revenue as a measure of aggregate output. 

 
*  The authors wish to thank Henry-Jean Gathon, Shawna Grosskopf, Kris Kerstens, Knox Lovell and 
Pierre Pestieau for their advice on various aspects of this work.  Any errors which remain are our own. 
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1.  Introduction 

The transformation of inputs into outputs is the primary purpose of the firm.  The 
functional relationship between inputs and outputs is generally described as the 
production function.  Economists have been attempting to obtain estimates of 
production functions by fitting mathematical functions to sample data for many 
decades.  Most of these analyses have involved the estimation of parametric functions 
using least squares methods.  A growing literature has, however, developed which 
observes that the production function should theoretically represent the maximum 
output levels obtained from given inputs and that least squares methods do not 
properly accommodate this notion because they permit observations to lie both below 
and above the estimated function.  Thus a number of authors have suggested 
alternative methods of estimating production functions (or production frontiers as 
they are often termed in this literature) which attempt to fit functions which bound the 
data from above (to varying degrees).  The distance an observed point, for a particular 
firm, lies below the estimated production frontier is then often interpreted as the 
technical inefficiency of the firm.  An excellent introduction to this body of literature, 
which has become known as the efficiency measurement literature, is provided by 
Lovell (1993). 

The efficiency measurement literature may be roughly organised into two groups 
according to the methodology that is used to construct the reference technology.  
Namely, parametric methods [including the stochastic frontier approach of Aigner, 
Lovell and Schmidt (1977) and the deterministic approach of Aigner and Chu (1968)] 
and non-parametric methods, such as data envelopment analysis (DEA) described in 
Charnes, Cooper and Rhodes (1978) and the Free Disposable Hull (FDH) approach 
used by Deprins, Simar and Tulkens (1984).  The relative merits of the alternative 
approaches are often listed as being that the (stochastic) parametric approach can 
account for noise and allow conventional hypothesis tests to be conducted, while the 
non-parametric approach has the advantage of not requiring the arbitrary selection of 
a functional form for the production structure and distributional forms for the error 
terms and that it can easily account for multiple outputs.  

Much effort has been devoted to attempts to adjust these various methods to correct 
their shortcomings [see Lovell (1993) for further discussion].  In this study we look at 
suitable methods of addressing the single-output nature of the traditional parametric 
production function.  The majority of econometric studies which have attempted to 
model a multiple-output technology have either: (a) aggregated the multiple outputs 
into a single index of output (this index may be simply aggregate revenue or perhaps 
a multi-lateral superlative index such as a Tornqvist1 or Fisher index); or (b) modelled 
the technology using a dual cost function.2  These approaches, however, require 
certain assumptions to be made.  The first of these methods require that output prices 
be observable (and reflect revenue maximising behaviour), while the latter approach 
requires an assumption of cost-minimising behaviour.  There are a number of 
instances, however, when neither of these requirements are met.  The public sector 
contains many examples.  In this paper we consider the case of European Railways 
where the vast majority of organisations are both government-owned and highly 
regulated.  The railways are a multiple-output industry where the primary two output 
                                                 
1 See Caves, Christensen and Diewert (1982a). 
2 For example, see Schmidt and Lovell (1979) or Ferrier and Lovell (1990).  Also note that a dual 
profit or revenue function could alternatively be considered. 
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groups are freight and passengers.  It is an industry where both input and output prices 
are observable (although imperfectly) but where the behavioural assumptions of cost 
minimisation and/or revenue maximisation are unlikely to be valid.  Other examples 
of industries in which these assumptions are also unlikely to be appropriate include 
public hospitals and schools, where multiple outputs are produced and, furthermore, 
where output prices are very difficult, if not impossible, to identify. 

Some recent parametric frontier papers have attempted to solve the multiple output 
problem by estimating the production technology using either: (a) an input 
requirements function [e.g., Bjurek, Hjalmarsson and Forsund (1990), Kumbhakar 
and Hjalmarsson (1991) and Gathon and Perelman (1992)] in which a single (possibly 
aggregate) input is expressed as a function of a number of outputs; or (b) an output- or 
input-orientated distance function [e.g., Lovell et al (1994), and Grosskopf et al 
(1996)] which can accommodate both multiple inputs and multiple outputs.   

The input requirements function approach has the advantage of permitting multiple 
outputs but at the cost of restricting the production technology to a single input.  This 
restriction may be accommodated by constructing an aggregate index of inputs or by 
assuming that inputs are used in fixed proportions and selecting the most important 
input as the dependent variable [Gathon and Perelman (1992)].  The distance function 
approach, however, requires no such restriction.  It appears to be an ideal solution to 
our problem, yet at the same time it is a concept which can be quite difficult to 
visualise since it involves a function where the dependant variable (the distance) is 
not observable, and for the simplest example of a multi-input, multi-output 
technology we must think in a minimum of four dimensions. 

The present paper has four primary aims.   

1. To discuss the various methods that one may use to estimate parametric distance 
functions.  In particular to explore the linkages between the various estimation 
methods and to illustrate their relationship with ordinary least squares (OLS) 
estimation of production functions and input requirement functions. 

2. To use the distance function methodology to measure technical efficiency in 
European Railways.   

3. To assess the impact of output aggregation upon technical efficiency measures. 

4. To investigate the sensitivity of the technical efficiency estimates to the selection 
of model orientation. 

This paper is organised into sections.  The following section provides an introduction 
to distance functions and surveys estimation methods.  In Section 3 technical 
efficiency in European railways is investigated using a variety of estimated distance 
functions, and in the final section some conclusions and suggestions for future work 
are made. 

 

2.  Distance Functions 

We begin by defining the production technology of the firm using the output set, P(x), 
which represents the set of all output vectors, y R M∈ + , which can be produced using 
the input vector, x R K∈ + .  That is, 
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 { }P x y R M( ) := ∈ + x can produce y .  (1) 

We assume that the technology satisfies the axioms listed in Fare (1988). 

The output distance function, introduced by Shephard (1970), is defined on the output 
set, P(x), as: 

 { }D x y y P xO ( , ) min :( / ) ( )= ∈θ θ . (2) 

As noted in Lovell et al (1994), DO(x,y) is non-decreasing, positively linearly 
homogeneous and convex in y, and decreasing in x.  The distance function, DO(x,y), 
will take a value which is less than or equal to one if the output vector, y, is an 
element of the feasible production set, P(x).  That is, DO(x,y)≤1 if y∈P(x).  
Furthermore, the distance function will take a value of unity if y is located on the 
outer boundary of the production possibility set.  That is, DO(x,y)=1 if y∈Isoq P(x) = 
{ }y y P x y P x: ( ), ( ),∈ ∉ >ω ω 1 , using similar notation to that used by Lovell et al 
(1994). 

Note that a distance function may be specified with either an input orientation or an 
output orientation.  In this paper we begin by focusing upon an output distance 
function primarily because we wish to make comparisons between technical 
efficiency measures made relative to a production frontier (with an aggregate output 
measure) and technical efficiency measures obtained from a distance function.   

A 2-output, 1-input Example 

It is useful to illustrate the concept of an output distance function using an example 
where two outputs, y1 and y2, are produced using a single input, x.  Now for a given 
quantity of the input, x, we can represent the production technology on the two 
dimensional diagram in Figure 1.  Here the production possibility set, P(x), is the area 
bounded by the production possibility frontier, Isoq P(x), and the y1 and y2 axes.  The 
value of the distance function for the point, A=(y1a, y2a), which defines the production 
point where firm A produces y1a of output 1 and y2a of output 2, using the given 
quantity of the input, is equal to the ratio θ=0A/0B. 

This distance is the inverse of the proportion by which the production of all output 
quantities could be increased while still remaining within the feasible production 
possibility set for the given input level.  Observe that this distance measure is the 
inverse of the Farrell-type output-orientated measure of technical inefficiency (see 
Fare, Grosskopf and Lovell 1994).  Geometrically, the distance measure, θ, is equal to 
the ratio 0A/0B.  The distances 0A and 0B are radial distances and hence are equal to 
the Euclidean distances 

 0 1
2

2
2A y y ya a a= = +  (3) 

and 
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FIGURE 1 

Output Distance Function and Production Possibility Set 

 

 0 1
2

2
2B y y yb b b= = + , (4) 

respectively. 

We also observe that the points B and C are on the production possibility surface, 
denoted by Isoq P(x), and hence would have distance function values equal to 1.   

 

A 1-output, 1-input Example 

To assist with understanding the concept of a distance function it is useful to consider 
the simplest possible example where one output is produced using one input.  The 
value of the output distance function is the distance each production point lies below 
the production possibility curve.  Since we have only one output and one input, we 
can represent all production possibility curves (which are in fact points not curves in 
this simple case) for all levels of the input, x, using a two dimensional diagram.  An 
example of which is depicted in Figure 2, where we have drawn a decreasing returns 
to scale production function, y=f(x). 

In Figure 2 the value of the output distance function for the production point, A, will 
be the distance θ=DA/DB.  This is the inverse of the proportion by which this firm 
may expand output while still using its given level of input.  This measure is obtained 
in the same way as the measure described earlier for the two-output case.  It is a radial 
output measure with input level held constant. 

It can also be noted that in the diagram in Figure 2 we can define an input distance 
function by looking at proportional reductions in input quantities with output levels 
held constant.  In this instance the input distance function measure for the point, A, 
would be equal to FA/FE.  More will be said on input distance functions later in this 
paper.  We shall now consider the issue of estimation of output distance functions. 

 

B=(y1b, y2b) 

C=(y1c, y2c) A=(y1a, y2a) 

y1 0 

y2 

P(x) 

• 

• 
• 

Isoq P(x) 
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FIGURE 2 

Distance Functions for a 1-output, 1-input Example 

 

 

Estimation Methods 

In the above discussion we have assumed that the production possibility frontier is 
known and hence that the required distances may be calculated.  In reality the 
production surface is unknown and must be estimated in some way.  Given sample 
data on N firms, there are a number of alternative ways in which the frontier could be 
calculated.  Five alternative methods of estimating distance function technologies 
(i.e., frontiers) have been used in recent years.  Namely, 

1. construction of a non-parametric piece-wise linear frontier using linear 
programming (DEA) [e.g., Fare, et al (1989), Fare et al (1994)]; 

2. construction of a non-parametric frontier using FDH [see Deprins, Simar and 
Tulkens (1984)]; 

3. construction of a parametric deterministic frontier using linear programming [e.g., 
Forsund and Hjalmarsson (1987), Fare et al (1993)]; 

4. estimation of a parametric deterministic frontier using corrected ordinary least 
squares [e.g., Lovell et al (1994), Grosskopf et al (1996)]; and 

5. estimation of a parametric stochastic frontier using maximum likelihood estimation 
[e.g., Hetemaki (1996)]. 

The two methods used in this paper will be the parametric methods denoted as 
methods 4 and 5, above.3 

                                                 
3 The sensitivity of results to alternative estimation methods is considered in the working paper: Coelli 
and Perelman (1996). 

 

E F 
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Functional Form 

One of the first decisions that must be made in a parametric empirical analysis is the 
selection of an appropriate functional form.  The functional form for the distance 
function would ideally be: 

1. flexible; 

2. easy to calculate; and 

3. permit the imposition of homogeneity. 

The translog form has been selected by the majority of authors [e.g. Lovell et al 
(1994), Grosskopf et al (1996)] since it is able to satisfy these three requirements.  
The Cobb-Douglas form, which has been a popular choice in production analyses for 
a number of decades, does satisfy points 2 and 3 but falls down under point 1 because 
of its restrictive elasticity of substitution and scale properties.  Furthermore, as noted 
by Klein (1953, p227), the Cobb-Douglas transformation function is not an acceptable 
model of a firm in a purely competitive industry because it is not concave in the 
output dimensions.  For example, this would imply that the output transformation 
curve in Figure 1 would have an “isoquant-like” shape which is convex to the origin 
rather than the concave curve depicted there.4 

The translog distance function for the case of M outputs and K inputs is specified as5 

 lnDOi = α α α β0
1 11 1

1
2

+ + +
= == =

∑ ∑∑ ∑m mi
m

M

mn mi ni
n

M

m

M

k ki
k

K

y y y xln ln ln ln  

  + +
== ==
∑∑ ∑∑1

2 11 11
β δkl ki li

l

K

k

K

km ki mi
m

M

k

K

x x x yln ln ln ln ,    i=1,2,...,N, (5) 

where i denotes the i-th firm in the sample.  Note that to obtain the frontier surface 
(i.e., the transformation function) one would set DOi=1, which implies the left hand 
side of equation (5) is equal to zero. 

The restrictions required for homogeneity of degree +1 in outputs are  

 α m
m

M

=
=

∑ 1
1

 (6a) 

and 

 α mn
n

M

=
∑ =

1
0 ,   m=1,2,...,M,   and   δ km

m

M

=
∑ =

1
0 ,   k=1,2,...,K, (6b) 

and those required for symmetry are 

 αmn = αnm,   m,n=1,2,...,M,   and   βkl = βkl,   k,l=1,2,...,K. (7) 

We also note in passing that the restrictions required for separability between inputs 
and outputs are 

                                                 
4 This is not such a serious problem, however, when optimising behaviour is not an issue.  For 
example, when the primary interest is in obtaining technical measures. 
5 Note that the terms natural logarithm, logarithm, log and ln will be used interchangeably to represent 
the natural logarithm in this paper. 
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 δkm = 0,   k=1,2,...,K,  m=1,2,...,M. (8) 

These last restrictions will be used when we test for separability in the following 
section. 

A convenient method of imposing the homogeneity constraint upon equation (5) is to 
follow Lovell et al (1994) and observe that homogeneity implies that 

 DO(x,ωy) = ωDO(x,y), for any ω>0. (9) 

Hence if we arbitrarily choose one of the outputs, such as the M-th output, and set 
ω=1/yM we obtain 

 DO(x,y/yM) = DO(x,y)/yM. (10) 

For the translog form this provides: 

 ln(DOi/yMi) = α α α β0
1

1

1

1

1

1

1

1
2

+ + +
=

−

=

−

=

−

=
∑ ∑∑ ∑m mi
m

M

mn mi ni
n

M

m

M

k ki
k

K

y y y xln ln ln ln* * *  

  + +
== =

−

=
∑∑ ∑∑1

2 11 1

1

1
β δkl ki li

l

K

k

K

km ki mi
m

M

k

K

x x x yln ln ln ln * ,    i=1,2,...,N. (11) 

where y*m = ym/yM.  Observe that when ym = yM the ratio, y*m, is equal to one and 
hence the log of the ratio is zero.  Thus all terms involving the m-th output also 
become zero.  This is why the summations involving y*m in the above expression are 
over M-1 and not over M. 

A Digression on Production Functions and Input Requirement Functions 

This is an ideal point to make a quick digression to look at some special cases of 
distance functions.  We firstly observe that a single-output production function is 
equivalent to an output distance function when production only involves one output.  
Hence, if we set M=1 and also set D0i=1, so as to trace out the production surface, 
equation (11) becomes 

 -ln(yMi) = α β β0
1 11

1
2

+ +
= ==

∑ ∑∑k ki
k

K

kl ki li
l

K

k

K

x x xln ln ln ,     i=1,2,...,N. (12) 

This is the (negative of the) very familiar translog production function. 

Although we have not yet presented a formal definition of input distance functions we 
have informally stated that they involve a proportional reduction in input usage for a 
given output vector.  A translog input distance function is therefore obtained by 
imposing homogeneity of degree +1 in inputs (instead of in outputs) upon the 
transformation function.  Thus instead of obtaining equation (11) we will obtain 

 ln(DIi/xKi) = α α α β0
1 11 1

11
2

+ + +
= == =

−

∑ ∑∑ ∑m mi
m

M

mn mi ni
n

M

m

M

k ki
k

K

y y y xln ln ln ln *  

  + +
=

−

=

−

==

−

∑∑ ∑∑1
2 1

1

1

1

11

1

β δkl ki ki
l

K

k

K

km ki mi
m

M

k

K

x x x yln ln ln ln* * * ,    i=1,2,...,N. (13) 

where x*k = xk/xK and DIi denotes the input-orientated distance measure.  Now in an 
analogous manner to the relationship we have noted between production functions 
and output distance functions in the single output case, we also observe that an input 
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distance function will be equivalent to an input requirement function when a single 
input is used in the production process. Hence, if we set K=1 and also set DIi=1, so as 
to trace out the production surface, equation (13) becomes 

 -ln(xKi) = α α α0
1 11

1
2

+ +
= ==

∑ ∑∑k mi
m

M

mn mi ni
n

M

m

M

y y yln ln ln      i=1,2,...,N. (14) 

This is the (negative of the) translog input requirements function. 

Estimation of a Parametric Form 

With the selection of a suitable functional form for our output distance function 
completed we must now select an appropriate method of obtaining estimates of the 
unknown parameters of the function.  That is, we must obtain estimates of the 
parameters of the function (which is the outer surface of the production possibility 
set) such that the function is “a good fit” to the data.  

This task may be described using simple algebra by rewriting equation (11) as 

 ln(DOi/yMi) = TL(xi,yi/yMi,α,β),      i=1,2,...,N, (15) 

or 

 ln(DOi)-ln(yMi) = TL(xi,yi/yMi,α,β),      i=1,2,...,N, (16) 

and hence 

 -ln(yMi) = TL(xi,yi/yMi,α,β) - ln(DOi),        i=1,2,...,N. (17) 

What is required here is the selection of parameter values for the translog function 
which ensure the function fits the observed data “as closely as possible” while 
maintaining the requirement that 0<DOi≤1, which implies that -∞<ln(DOi)≤0. 

The three parametric methods mentioned earlier use three different “best fit” criteria.  
Fare et al (1993), use a variant of the Aigner and Chu (1968) parametric linear 
programming methodology to “estimate” their distance function.  They clearly define 
their criterion as the maximisation of the sum of the natural logarithms of the output 
distances, DOi.  Since the output distances are bounded by zero and one, their 
logarithms must then be zero or negative.  Thus this is equivalent to minimising the 
sum of the “deviations” of the observations below the frontier, where the “deviations” 
are defined as the logarithms of the inverses of the distances.6 

COLS Estimation of a Distance Function 

Lovell et al (1994), use the corrected ordinary least squares (COLS) method7 to 
estimate an output distance function.  The function is fitted in two steps.  The first 
step involves interpreting the unobservable term “-ln(DOi)” in equation (17) as a 
random error term and estimating the translog distance function using OLS.  In the 
second step the OLS estimate of the intercept parameter, α0, is adjusted (by adding 
the largest negative OLS residual to it) so that the function no longer passes through 
the centre of the observed points but bounds them from above.  The distance measure 
for the i-th firm is then calculated as the exponent of the (corrected) OLS residual. 

                                                 
6 Schmidt (1976) also observes that the linear programming approach of Aigner and Chu (1968) is 
equivalent to estimating the frontier using maximum likelihood under the assumption that the logs of 
the distances are exponentially distributed. 
7 This method is described in Greene (1980) for the case of production and cost functions. 
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The statistical properties of the COLS estimator is discussed in Greene (1980).  He 
observes that, given the assumptions that: (i) the regressors and the error term are 
independent; (ii) the error term is iid with finite mean and finite, positive variance; 
and (iii) the regressors are well behaved (see Greene (1980, p31) for details), then 
OLS provides best linear unbiased and consistent estimates of the parameters, with 
the exception of the intercept parameter, α0, which will be biased and inconsistent.  
He also establishes that, given the above assumptions, a consistent estimator of the 
intercept can be obtained by adding the largest OLS residual to the OLS estimate of 
the intercept. 

One question which is often asked by persons when first exposed to the OLS 
estimation of a multi-output distance function, such as equation (17), relates to the 
appearance of outputs as regressors and hence to the possibility of simultaneous 
equation bias.  It can be argued, however, that only ratios of the outputs appear as 
regressors and that these ratios may be assumed to be exogenous, since the distance 
function is defined for radial (proportional) expansion of all outputs, given the input 
levels, and hence by definition the output ratios are held constant for each firm. 

At first glance OLS estimation of the output distance function in equation (17) would 
appear to be quite similar to OLS estimation of a production function formulation, 
with -lnyM as the dependent variable.  It is important to observe, however, that OLS 
applied to this equation does not fit that translog transformation function which 
minimises the sum of squares of the deviations between observed and predicted 
values of lnyM.  OLS will, in fact, fit that function which minimises the sum of the 
squares of the (radial) deviations between observed and predicted values of the 
natural logarithm of the norm of the y vectors.  That is, where the norm of the y 
vector is the Euclidean distance:  

 y y y yM= + + +1
2

2
2 2... . (18) 

This distance may be visualised as the distance along a ray from the point (y,x) to the 
point (0,x).  For the case of a two-output, single-input technology, this distance is 
equal to  

 ( , ) ( , ) ( ) ( ) ( )y x x y y x x− = − + − + −0 0 01
2

2
2

1 1
2  

  = + =y y y1
2

2
2 . (19) 

Here we observe the relationship between the estimation method and the radial 
Farrell-type output-orientated technical efficiency measures described in Fare, 
Grosskopf and Lovell (1994).8 

Lovell et al (1994) reports R-squared measures to provide an indication of the 
goodness-of-fit of their fitted OLS distance functions.  They do not explicitly specify 
how the R-squared measures are obtained, hence we assume they have reported the 
conventional OLS R-squared measure that is routinely produced by econometrics 
software, such as the SHAZAM program used in this paper [see White (1993)].  The 
conventional R-squared measure that is reported when OLS is used to estimate the 
distance function in equation (17) is equal to: 
                                                 
8 The fitting of a function by minimisation of  the sum of squares of (logged) radial deviations does not 
appear to be given a particular name by any of the authors who have used the method.  We suggest that 
the term Euclidean Least Squares (ELS) could be used to describe the methodology. 
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 R
RSS
TSS

y y

y y

Mi Mi
i

N

Mi M
i

N
2 1

2

1

2
1 1= − = −

−

−

=

=

∑

∑

(ln ln $ )

(ln ln )
. (20) 

This measure will provide a different value depending upon which of the outputs is 
chosen as the normalising output because the denominator in equation (20) is the total 
sum of squares in the logs of that output.  However, it is important to stress that the 
parameter estimates that are obtained are not affected by the choice of the normalising 
output.   

Given this discussion, we suggest that a more appropriate R-squared measure would 
appear to be: 

 
( )

( )
R

RSS
TSS

y y

y y

i i
i

N

i
i

N
2 1

2

1

21 1= − = −
−

−

=

=

∑

∑

ln ln $

ln ln
, (21) 

which is the proportion of the total sum of squares (from the sample mean) in the logs 
of the radial distances explained by the fitted function.  If the R-squared value is equal 
to one then all observed points would lie upon the fitted function.  If the value is zero 
then this implies that the input quantities do not explain any of the observed variation 
in the ln yi  around the sample mean value, ln y . 

In Figure 3 we illustrate the difference between the estimation of a two-output 
technology using OLS applied to an output distance function versus OLS estimation 
of the production technology using a production function where one output is 
expressed as a function of the other output and the inputs.  If we obtain OLS estimates 
of a production function with lny1 as the dependent variable then it is evident that we 
will be fitting that function which minimises the sum of the squares of the (horizontal) 
deviations of lny1 from ln $y1  [or equivalently the sum of squares of ln( / $ )y y1 1 ].  For 
the case of point A in Figure 3 (the exponent of) this deviation is equivalent to the 
ratio B1A/B1A1.  If lny2 was used as the dependent variable the relevant ratio would 
be B2A/B2A2, and in the case of the estimation of the output distance function the 
relevant ratio would be the radial measure 0A/0A3. 

The three alternative methods are likely to identify three different estimates of the 
“true” production surface.  The “best” estimates to use depend upon ones intentions.  
The distance function estimates may be preferred simply because the method avoids 
the necessity to have to arbitrarily select one of the outputs to be used as the 
dependent variable.  They may also be preferred because the distance function 
approach implies the radial projection of observed points onto the frontier surface.  
Any non-radial projection (such as that resulting if one output is arbitrarily selected 
as the dependant variable) will imply a change in the output mix between the 
observed and the projected point.  This would imply a rather confusing situation 
where, if one were to assume the observed points were allocatively efficient, then a 
systematic degree of allocative inefficiency would be introduced into the projected 
points.   
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One instance, however, when one may be able to argue for the selection of one output 
(or a subset of outputs in the M>2 case) as the appropriate curve fitting dimension(s) 
is when one is considered to only have discretionary control over a subset of the 
outputs, and hence that a projected point that involves the expansion of the non-
discretionary output(s) is not feasible. 

 

FIGURE 3 

OLS Estimation of a Multi-output Technology 

 

 

Input Distance Functions 

The above discussion considers various methods of fitting a curve in one or more 
output dimensions.  It is important to note that the transformation function can also be 
fitted from an input perspective.  The input distance function may be defined on the 
input set, L(y), as: 

 { }D x y x L(yI ( , ) max :( / ) )= ∈ρ ρ , (22) 

where the input set L(y) represents the set of all input vectors, x R K∈ + , which can 
produce the output vector, y R M∈ + .  That is, 

 { }L y x R K( ) := ∈ + x can produce y . (23) 

DI(x,y) is non-decreasing, positively linearly homogeneous and concave in x, and 
increasing in y.  The distance function, DI(x,y), will take a value which is greater than 
or equal to one if the input vector, x, is an element of the feasible input set, L(y).  
That is, DI(x,y)≥1 if x∈L(y).  Furthermore, the distance function will take a value of 
unity if x is located on the inner boundary of the input set. 
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Estimation of a translog input distance function by COLS closely follows the 
approach used for output distance functions.  The two main differences are that 
homogeneity is imposed in the inputs (instead of the outputs)9 and, after OLS 
estimates are obtained, the OLS estimate of the intercept is adjusted by adding the 
largest positive residual (instead of the largest negative residual). 

It is of interest to note that, under constant returns to scale (CRS), the input distance 
function is equivalent to the inverse of the output distance function (i.e., DO=1/DI) 
(Fare et al 1994).  That is, the proportion by which one is able to radially expand 
output (with input held fixed), will be exactly equal to the proportion by which one is 
able to radially reduce input usage (with output held constant).  In the case of the 
translog output distance function, CRS is imposed by imposing homogeneity of 
degree -1 in inputs.  The resulting function will obviously be exactly equal to the 
negative of the input distance function in which homogeneity of degree -1 has been 
imposed in outputs.10 

ML Estimation of a Stochastic Distance Function 

The above two methods of fitting a parametric distance function explicitly assume 
that all deviations between observed production points and the production surface are 
due to technical inefficiency.  The main criticism of these deterministic frontier 
methods is that they do not account for the possible influence of data noise (e.g., as a 
result of measurement error or model miss-specification) upon the shape and 
positioning of the frontier and hence that the methods are sensitive to the influence of 
outliers. 

One method that can be used to attempt to account for the influence of noise upon an 
estimated frontier is to apply the stochastic frontier approach proposed by Aigner, 
Lovell and Schmidt (1977), which involves the specification of a frontier function 
with an error term with two components: a symmetric error to account for noise and 
an asymmetric error to account for inefficiency. We begin by appending a symmetric 
error term, vi, to equation (17) to account for noise, and also change the notation        
“-ln(DOi)” to “ui”.  We thus obtain a stochastic output distance function 

 -ln(yMi) = TL(xi,yi/yMi,α,β) + vi + ui,      i=1,2,...,N. (24) 

Given appropriate distributional assumptions for vi and ui, the parameters of this 
stochastic translog distance function can be estimated using maximum likelihood.  
We follow the suggestion of Aigner et al (1977) in this paper and assume that the vi 
are iid N(0,σv

2), and distributed independently of the ui which are assumed to be iid 
|N(0,σu

2)|.   

The predicted value of the output distance for the i-th firm, DOi=exp(-ui), is not 
directly observable because ui only appears as part of the composed error term, 
ei=vi+ui.  Predictions may, however, be obtained using a modification of the 
                                                 
9 See equation (13). 
10 It is interesting to note that when using DEA under variable returns to scale (VRS), the output- and 
input-orientated models will estimate exactly the same frontier surface and therefore, by definition, 
identify the same set of firms as being efficient.  The DEA efficiency measures, however, may differ 
between the two orientations.  Parametric distance functions, however, differ from this in that both the 
efficiency measures and the estimated frontier may differ with the orientation under VRS.  However 
we note that under constant returns to scale the estimated frontiers and the efficiency measures are 
unaffected by orientation when using either parametric or non-parametric methods. 
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conditional expectation formulae presented in Jondrow et al (1982) and Battese and 
Coelli (1988).  The output distance function value for the i-th firm may be obtained 
using the conditional expectation 

 DOi = E[exp(-ui)|ei] 

       = 
1

1
22− −

−
+

Φ
Φ

( / )
( / )

exp( / )
σ γ σ

γ σ
γ σA i A

i A
i A

e
e

e  (25) 

where σA= γ γ σ( )1 2− , σ2=σu
2+σv

2, γ=σu
2/σ2, and Φ(.) represents the distribution 

function of a standard normal random variable.11  An operational predictor of DOi is 
obtained by replacing the unknown parameters in equation (22) with their ML 
estimates.  The maximum likelihood estimates of the unknown parameters and the 
distance function predictions obtained in this paper are calculated using the computer 
program, FRONTIER, Version 4.1 (see Coelli (1994)). 

The stochastic frontier method may also be applied in a similar manner to a translog 
input distance function.  The primary difference to note is that non-positive error term 
will now be subtracted from the equation rather than added.  That is, the stochastic 
input distance function would appear as 

 -ln(xKi) = TL(xi/xKi,yi,α,β) + vi - ui, (26) 

and the input distances would be predicted as 

 DIi = E[exp(ui)|ei] (27) 

where ei = vi - ui. 

 

3.  Application to European Railways 

There is a long tradition in the estimation of production characteristics and 
performances in railways.  From the Klein's (1953) seminal econometric study on US 
railways to the recent studies using frontier analysis techniques [Perelman and 
Pestieau (1988), Deprins and Simar (1988), Gathon and Perelman (1992)].  The 
majority of this research is devoted to detailed partial productivity analysis [British 
Railways Board and University of Leeds (1979), Nash (1985)] and to total factor 
productivity (TFP) comparisons based on the estimation of multi-output cost 
functions [Caves et al. (1980, 1981)]12. 

The analytical framework used in many of the above studies is influenced by the three 
characteristics which are common to almost all railways companies.  First, multi-
output production: passenger and freight services are provided simultaneously and 
share mainly the same inputs.  Second, all railways companies benefit from some 
degree of (natural) monopoly, even if other transportation modes indirectly compete 
with them.  Third, railroad passenger transportation, and to a lesser extent freight 
transportation, are public services which are often submitted to high regulation. 

The three characteristics described above are common to all 17 European railways 
companies considered in this study (see Table 1 for a list of these companies).  All of 

                                                 
11 The variance parameters σu

2 and σv
2 are replaced with γ and σ2 for the purposes of estimation.  For 

further detail see Coelli (1994). 
12 For a survey of these studies, see Dodgson  (1985). 
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the companies produce both passenger and freight services and, with the one 
exception of the privately owned Swiss company, BLS, they are state-owned (during 
the sample period).  All companies hold a natural monopoly position on the rail 
transportation, but in return, their activity is constrained to varying degrees by public 
authorities. 

The multi-output dual cost function approach that has been applied by many authors 
to the North American industry is likely to be an even less appropriate method of 
analysis in the state-owned European industry, where cost-minimisation is unlikely to 
be an objective which has a high priority with the various bureaucrats who manage 
the industry.  In fact, in terms of performance measurement, Pestieau and Tulkens 
(1994) argue that technical efficiency measurement is probably the only appropriate 
way to compare the performance of enterprises operating in such environments.  They 
observe that the technical efficiency objective, that is, the maximisation of physical 
outputs for a given combination of physical inputs,13 is, in fact, the only objective that 
is compatible with all other objectives fixed by the control authorities and, for this 
reason, appears to be an unavoidable goal. 

Data 
We estimate the multi-output/multi-input technology of European railways using 
annual data on 17 companies observed over the five year period from 1979 to 1983.  
The physical data used is derived from data published by the International Union of 
Railways (UIC, 1979-1983).  Passenger service output and freight service output are 
measured using the sum of distances travelled by each passenger and the sum of 
distances travelled by each tonne of freight, respectively. 

The primary inputs used in rail transportation are labour, energy and capital.  Labour 
is measured by the annual mean of monthly data on staff levels, after taking into 
account the number of workers supplied by private contractors and after making the 
necessary adjustments for staff paid on an hourly basis.  The railways transportation 
staff includes operating and traffic employees as well as those workers in charge of 
the traction, the rolling stock and the permanent way maintenance and supervision. 

Three different sources of energy were used by rail locomotives during the sample 
period, namely, coal, diesel and electricity.  Calorific equivalence’s among these 
energy sources are often used to estimate the total consumption by railways, even if 
these equivalence’s are not representative of their traction power equivalence’s.  In 
this study we adopt a different point of view.  We apply the traction power 
equivalence’s calculated by Gathon (1991) using econometric estimation.14  These 
equivalence scales are as follows: 1 tonne of coal = 0.73 kW/h; and 1 tonne of diesel 
= 4.48 kW/h.  Compared with calorific equivalence’s, these values imply that only 
10% and 35% of coal and diesel, respectively, are actually transformed into traction 
power. 

As always, the selection of a capital variable was a difficult task.  The total length of 
lines is the capital variable that is used in this study.  Other possible alternatives 
include: the length of tracks, the number of locomotives and the number of vehicles 
(coaches, railcars and wagons), however these variables were all found to be closely 

                                                 
13 Or alternatively minimising the inputs required to produce given outputs. 
14 The estimation relies on the same sample of European railways analysed here but covers the period 
1961-1984. 
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related to the chosen variable (all correlation coefficients in excess of 0.90) and hence 
it was considered that the length of lines would be a reasonable proxy for total capital. 

Summing up, the five variables used in our analysis are defined as follows: 

Outputs : y1  =  passenger km, 

  y2  =  tonnes km of freight, 

Inputs : x1  =  annual average staff in railways transportation,15 

  x2  =  energy consumption in kW/h (traction power equivalence’s), 

  x3  =  km of lines. 

One of the principle aims of this study is to assess the impact of measuring technical 
efficiency relative to a production frontier involving a single aggregate output 
measure versus using a multiple-output distance function.  To this end we define two 
commonly used aggregate output measures.  The first is the total revenue of railways 
transportation obtained by adding the revenues from passenger and freight services 
together.16  The second aggregate output measure calculated is a multilateral 
Tornqvist output index (also known as the CCD index after Caves, Christensen and 
Diewert 1982a) which uses revenue shares to weight passenger and freight activities. 

The sample means of all variables are presented in Table 1 for each of the 17 
companies over the period 1979-1983.  The panel consists of European national 
railways that are for a large part interconnected.  The data exhibits large variation 
both in the scale of operations and the input and output ratios.  For example, the 
largest firms, BR, DB and SNCF are more than one hundred times bigger (in terms of 
lines, labour or outputs) than the smallest companies, BLS and CFL.  Also, in terms 
of output composition, some companies such as SNCF and VR, display an even 
balance between passengers and freight transportation, while other railroads, such as 
NS and DSB, are primarily interested in passenger services, leaving most freight 
traffic to other transportation modes. 

Results and Discussion 
Two alternative estimation methods are considered in this study.  Namely, COLS and 
ML.  The parameter estimates are presented in Table 2.  Results for six different 
model formulations are presented: 

1. a production function with total revenue used as a measure of aggregate output; 

2. a production function with aggregate output constructed using a multilateral 
Tornqvist index; 

3. an output distance function with separability between inputs and outputs imposed; 

4. an (unrestricted) output distance function; 

5. an input distance function; and 
                                                 
15 It should be noted that many of the rail companies in our sample are also involved in other activities, 
such as bus and ship transportation.  The data used in this analysis is, however, confined to the inputs 
and outputs pertaining to the railways transportation activities of these companies.  
16 These revenues are obtained by converting the nominal revenue figures to 1980 values using the 
relevant GDP deflator in each country.  These figures are then deflated using OECD PPP GDP 
deflators to obtain our final revenue values expressed in 1980 ECUs. 
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6. a CRS distance function. 

COLS Results 

We will begin by discussing the COLS results which are listed in the first six columns 
of Table 2.  We firstly observe that the R-squared measures17 and t-ratios indicate 
these estimated models appear to be a reasonable fit to the observed data.  All R-
squared values are in excess of 97% and the t-ratios on all first-order coefficients and 
the majority of second-order coefficients exceed 2 in absolute value.  All first-order 
terms are also observed to have correct signs, with the exception of the results for the 
model involving the revenue measure where the coefficient of the log of capital is 
both negative and significant.  In fact, the results for the revenue model are vastly 
different to the other five sets of results, which as a group appear fairly similar, at 
least in the first-order terms.   

The disparity between the revenue function results and the results obtained from the 
other specifications is also reflected in the technical efficiency predictions obtained 
from the various models.  The means of these predictions for each rail company for 
each model are presented in Table 3 and correlations between the various sets of 
technical efficiency predictions are presented in Table 4.  The most striking result is 
seen in Table 4, where the largest correlation between the technical efficiency 
predictions of the revenue model and the other five sets of COLS results is 0.178, 
while the correlations among the remaining five sets of results range from 0.469 to 
0.967.  We also observe from the bottom row of Table 3 that the mean technical 
efficiency for the revenue model is 0.536 while the means obtained from the other 
five models are of the order of 0.8 to 0.9.  Thus we conclude that, assuming that the 
distance function estimates are closest to the true parameter values, the use of total 
revenue as a measure of aggregate output in this empirical analysis appears less than 
satisfactory.  This is not a big surprise given that few publicly owned rail 
organisations set output prices with market conditions or cost recovery notions in 
mind.  Furthermore, issues are further complicated by a variety of government 
subsidies that are paid to many of these companies.  These payments are not included 
in the present analysis.  Future work could involve an investigation of the influence of 
the inclusion of these subsidies into the revenue figures.  The hypothesis being that 
the revenue model results may then become more similar to the other results. 

The production function results obtained using the multilateral Tornqvist index appear 
much better than the revenue model results.  The parameter estimates have the 
expected signs and are much closer to the distance function estimates and the 
correlations between the technical efficiency predictions are positive and mostly of 
the order of 0.5 or more.  The improved performance is probably due to a number of 
factors.  First, the Tornqvist index relies upon revenue shares rather than actual price 
levels and hence will be less susceptible to inter-country price differentials as long as 
any differentials or subsidies are fairly evenly distributed across the two output 
groups.  A second possible reason for a better performance is that the (deflated) 
revenue measure may be interpreted as an implicit quantity index and hence that if the 
price index used in deflation is a Laspeyres or Paasche index then the implicit 
technology is a linear technology.  The Tornqvist index, on the other hand, is a 
superlative index because it is exact for the translog form which is a flexible 

                                                 
17 The R-squared measures refer to the OLS estimates, not to the COLS estimates. 
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functional form (i.e., a second order approximation to an arbitrary functional form) 
and hence is likely to provide a better measure of aggregate output. 

The output distance function results presented in column 4 of Table 2 appear well 
behaved and well estimated.  The second-order output cross-product term, α12, has the 
correct sign so as to encourage the transformation curve to have a concave shape 
(rather than the convex Cobb-Douglas shape that would result if this term was zero).  
We also observe that the first-order input coefficients sum to a value greater than one 
indicating the presence of increasing returns to scale at the mean.  This observation 
conforms with results obtained in the majority of empirical railways analyses. 

Separability restricted output distance function results are also presented in column 3 
of Table 2 for comparative purposes.  This model was included because it is observed 
that the Tornqvist production function differs from the output distance function in two 
respects: (1) it is separable and (2) output aggregation is achieved using revenue share 
information rather than by estimated coefficients.  The separability restricted function 
was estimated in an attempt to shed some light on the relative importance of these two 
factors.  The results show that the separability restricted distance function is not 
noticeably similar or dissimilar to either the unrestricted output distance function or 
the Tornqvist production function, suggesting the two factors contribute to the 
observed differences in a fairly even manner.  The correlations between efficiency 
predictions in Table 4 also appear to support this observation.  It is interesting to note, 
however, the null hypothesis of separability is rejected by a generalised likelihood-
ratio test at a 1% level of significance. 

The fifth set of COLS estimates presented in Table 2 are for an input distance 
function (column 5).  The input distance function results are included partly for purely 
comparative purposes but also because one could argue that an input orientation may 
be more appropriate in railways because the managers are likely to have more 
discretionary control over inputs rather than outputs.18  This argument for endogenous 
input quantities and exogenous output quantities has been presented by a number of 
authors to justify the use of dual cost functions to investigate the multi-output 
railways technology. 

The input distance function results are reassuringly similar to the output distance 
function results.  The first-order parameters do not differ greatly, other than by the 
expected degree due to the imposition of the homogeneity constraint upon the inputs 
instead of the outputs. The sum of the first-order output coefficients is less than one in 
absolute value, indicating the presence of increasing returns to scale.  Finally a value 
of 0.967 is reported in Table 4 for the correlation between the technical efficiency 
predictions from the two models.  Thus, all indicators suggest that the choice of 
orientation is not terribly crucial in this particular industry, especially if one’s primary 
interest is in performance measurement. 

The final set of COLS estimates listed in column 6 of Table 2 are for the CRS 
distance function.  These are included to allow us to test the hypothesis of constant 
returns to scale and also to view the impact of this restriction upon parameter 
estimates and technical efficiency predictions.  The main thing we observe is a 
dramatic decline in the log-likelihood function (LLF) value from 86.4 for the output 
distance function and 96.3 for the input distance function to 45.0 for the CRS distance 
                                                 
18 Recall that the main reason we began with the output orientation was because it was a natural 
progression from a single output production function. 
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function.  Given that the CRS model estimates five fewer free parameters than the 
unrestricted distance functions, a generalised likelihood-ratio test would reject the 
null hypothesis of constant returns to scale at the 5% or even 1% levels.  

A final point of interest is the comparison between the mean technical efficiencies of 
the single-output Tornqvist production function and the two-output output distance 
function, where the mean efficiency level rises from 0.776 for the former to 0.862 for 
the latter.  This reduction in inefficiency when an extra dimension is added to the 
model appears to be similar to the dimensionality dilemma which is a well 
documented problem in DEA analyses.   

ML Results 

Columns 7 and 8 of Table 2 contain the ML estimates for the unrestricted output and 
input distance functions, respectively.  The results for the other four model 
formulations are not reported because they were found to be essentially no different to 
the OLS results.  The γ estimates obtained for these four models were found to be 
equal to zero and the LLF values were thus no different to the values obtained for the 
OLS estimates.  The two unrestricted distance functions, on the other hand, were 
found to have γ estimates in excess of 0.99 in value and furthermore obtained LLF 
values which indicated that the γ parameter was a significant addition to the model at 
a 1% level of significance using the one-sided likelihood-ratio test recommended in 
Coelli (1995). 

This unusual behaviour of the ML estimator, selecting a γ value from either extreme 
of the sensible range, causes us to treat the results with some caution.  An 
examination of the other parameter estimates does not reveal any dramatic differences 
between the COLS and ML estimates, however the correlations between the technical 
efficiency predictions from the two methods are uniformly bad, being no larger than 
0.1 in absolute value (though the correlation between the output and input ML results 
is equal to 0.907).  The reason(s) for these unusual results are not apparent to us at 
present.  One possibility is that the wide range in scales of operation of the railways 
companies considered, along with the second-order flexibility of the translog 
functional form, have resulted in the ML method adjusting the second order 
coefficients so that the function “bends” at the extremities of the data range to have 
the extreme observations placed quite close to the frontier which results in an 
adjustment to the distribution of the residuals so as to closely resemble a half-normal 
distribution.  Our suspicions are further supported by the observation that when our 
analysis was repeated using the simpler Cobb-Douglas form the same problems did 
not occur.  However, further experimentation using other data sets and perhaps 
simulated data are required for us further investigate this “hunch”.19 

Preferred Results 

Finally, we must address the question of which of our various sets of results do we 
wish to identify as our preferred results for the purpose of discussing the relative 
performance of European railways.  The COLS estimates of the (unrestricted) output 
distance function is selected as the preferred estimates following a process of 
elimination.  The ML estimates are rejected for the reasons outlined earlier.  The 

                                                 
19 Hetemaki (1996), reports similar problems to those discussed here, even though his stochastic 
distance function involves a restricted translog form in which all second order parameters associated 
with inputs are set to zero. 
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production function estimates are rejected because they involve output aggregation.  
The separability and CRS restricted models are rejected on the basis of the likelihood 
ratio tests.  Finally the output distance function is selected over the input distance 
function because it is believed that it would be easier for a railway to expand market 
share rather than to reduce the usage of capital and labour in the short run.  The 
technical efficiency predictions for the output distance function are tabulated in 
column 4 of Table 3.  We observe a mean technical efficiency level of 0.862 and 
mean values for individual companies which range from 0.708 for the United 
Kingdom to 0.957 for Italy. 

It should be stressed, however, that these figures are raw technical efficiency 
estimates which are not adjusted for environmental conditions.  Thus any observed 
differences may be due to either environmental differences or management factors.  
For example, the good performance of Italy in this analysis conflicts with 
observations made in previous analyses.20  Further analysis is obviously required for 
us to be able to disentangle the relative contribution of the above two factors. 

4.  Conclusions 

The first observation that we must reiterate is that we are not confident in our ML 
translog distance function estimates.  All estimated functions either collapsed to an 
average function, where all deviations from the frontier are assumed due to noise, or 
to a full frontier, where all deviations are assumed due to inefficiency.  The reason for 
this problem is suspected to be due to the combined effects of large variability in the 
sample data, along with the flexibility of the translog functional form, but this is yet 
to be confirmed.  We thus confine the remainder of our conclusions to observations 
concerning the COLS results. 

A key conclusion of this paper is that the use of total revenue as a measure of 
aggregate output in an empirical analysis of European railways, even after careful 
deflation, appears fraught with danger.  This is not a terribly surprising result given 
that few publicly owned rail organisations set output prices with market conditions or 
cost recovery notions in mind.  The production function parameter estimates obtained 
using the revenue measure differ substantially from those obtained using the 
multilateral Tornqvist index and the distance function approach, to the extent that the 
first order term associated with capital becomes (significantly) negative in the 
analysis involving the revenue measure.  The differences between the revenue model 
results and those from the other models are further reflected in technical efficiency 
predictions which are found to be essentially orthogonal to the technical efficiency 
predictions obtained from the alternative models.21 

A more positive conclusion that may be derived from our analysis is that the 
multilateral Tornqvist index appears to be a suitable method of aggregating output.  
The results obtained using a single-output production function with aggregate output 
calculated using a multilateral Tornqvist index did not differ substantially from the 
                                                 
20 This may also be due in part to the use of different variables, time periods and estimation methods in 
previous studies. 
21 It should be noted that the problems associated with the use of a revenue measure of aggregate 
output are complicated by exchange rate issues in studies which cross national borders.  A study 
involving data on firms from a single country would not be concerned by such issues but may still be 
influenced by regional price variations and also by the possibility that the output price ratio may not be 
an accurate guide to the slope of the product transformation curve when revenue maximising behaviour 
is not present. 
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output distance function results.  Both the parameter estimates and the technical 
efficiency predictions appear quite similar.  The one obvious difference, however, is 
that the production function results do not provide information on the shape of the 
product transformation curve, since this information is implicitly included in the 
construction of the multilateral Tornqvist output index using the revenue shares. 

Another conclusion that may be derived from our analysis is that parameter estimates 
and technical efficiency predictions are found to be quite insensitive to model 
orientation.  The similarity of results between model orientations tends to suggest that 
the issue of endogeneity is not a serious one in this industry.  Whether this 
observation can be extended to other industries remains to be answered.  Our naive 
view is that we are attempting to find a method of fitting a production technology to a 
scatter of points in R M K+

+  space and that the selection of dimension(s) in which to 
minimise deviations of observed points from the fitted function should not have a 
great influence upon results when the data is not distributed in an abnormal manner. 

A number of tasks are yet to be completed in this paper.  One is to trace out the family 
of production possibility curves implied by our estimated functions to investigate 
their curvature.  Another important task is to evaluate scale economies, curvature and 
monotonicity at each data point.  Furthermore, we must also extend the analysis to 
account for environmental factors, such as network density and average trip length.  
This may be done by either including such variables directly into the various models 
or alternatively by regressing the efficiency predictions upon these factors in a 
second-stage analysis. 

One area of future work that could also of interest would be to obtain input price data 
that would permit us to conduct an analysis of these data using a multi-output cost 
function.  Given that cost-minimising behaviour is not prevalent in most European 
railways, this may permit one to investigate the robustness of the dual cost function 
approach to violations of the required behavioural assumptions. 
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TABLE 1 
Sample descriptive statistics (1) 

Mean values over the period 1979-1983 
_____________________________________________________________________________________________________________________________________ 
 
    Physical outputs  Shares in total revenu Tornqvist Total  Physical inputs      
 Railways Country Passenger- Tonnes-km Passenger Freight output revenue Staff Energy Lines 
   km of freight    index (3)   
_____________________________________________________________________________________________________________________________________ 
 (106km) (106km) (%) (%) (2) (106 ECU) (103) (103KM/h) (km)  
 
 BLS Switzerland 320 261 59.0 41.0 99.7 74.5 1.9 108.0 235 
 BR United-Kingdom 30386 17612 61.6 38.4 8196.6 4031.6 202.4 5308.6 17401 
 CFF Switzerland 11504 6877 48.4 51.6 2071.5 1378.0 37.4 1573.5 2905 
 CFL Luxembourg 226 603 14.3 85.7 159.4 55.2 3.8 70.4 270 
 CH Greece 1946 721 45.8 54.2 360.1 107.3 312.3 184.6 2461 
 CIE Ireland 1236 642 66.1 33.9 279.1 89.2 7.4 154.1 1969 
 CP Portugal 5731 996 85.1 14.9 1098.3 470.6 24.0 409.4 3608 
 DB Germany 44244 60319 46.2 53.8 17014.7 8989.3 312.2 8925.7 28349 
 DSB Denmark 4716 1615 62.6 37.4 906.2 325.1 18.4 605.7 2102 
 FS Italy 45865 17378 68.6 31.4 9660.5 4015.2 217.4( 3797.4 16460 
 NS Netherlands 12 3177 73.3 26.7 2068.7 615.9 27.2 1037.1 2884 
 NSB Norway 2301 2748 43.4 56.6 873.0 151.5 15.7 432.0 4241 
 OBB Austria 7180 10470 39.1 60.9 3057.7 2444.2 69.4 1633.6 5761 
 SJ Sweden 6492 15151 38.6 61.4 3574.6 908.4 32.8 1536.7 11444 
 SNCB Belgium 6900 7577 65.8 34.2 3434.2 1436.1 58.9 1360.4 4257 
 SNCF France 55555 64372 50.2 49.8 20530.4 7353.0 243.7 7340.0 34503 
 VR Finland 3235 8035 26.7 73.2 1964.4 450.3 24.4 583.5 6072 
 
 Mean  15053 12856 52.7 47.3 4410.5 1934.8 77.0 2062.9 8525 
_____________________________________________________________________________________________________________________________________ 
(1) The variables are defined in the Appendix [Source: UIC (1961-1988)].  (2) BLS (1979) = 100.0. 
(3)  In 1980 GDP constant prices and PPP (1 ECU = 1.392 U.S. dollar). 
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TABLE 2 
Estimated parameters for alternative models (1) (2) (3) 

  COLS   ML  
 Total Tornqvist  Distance functions   Distance functions  
  revenue output  Output oriented  Input CRS Output Input 
  aggregation Separable Not separable distance  distance distance 
 (1) (2) (3) (4) (5) (6) (7) (8) 
 α0 - 0.088 ( 1.2) 0.013 ( 0.3) 0.040 ( 2.8) 0.172 ( 2.8) - 0.179 ( 3.3) 0.066 ( 1.5) 0.080 ( 1.2) - 0.506 ( 1.1) 
 α1 -  -  - 0.537 (11.1) - 0.472 (11.1) - 0.324 ( 6.9)  - 0.681 ( 19.6) - 0.398 (17.1) - 0.340 ( 8.2) 
 α2 -  -  - 0.463   - 0.528  - 0.432 (12.2)  - 0.319  - 0.602  - 0.428 (12.2) 
 α11 -  -  0.015 ( 2.2) 0.136 ( 2.2)  0.137 ( 2.2)  0.114 ( 1.8) 0.081 ( 5.7) 0.102 ( 1.9) 
 α22 -  -  0.015  0.136  0.126 ( 2.1)  0.114   0.081  0.052 ( 1.0) 
 α12 -  -  - 0.015  - 0.136  - 0.139 ( 2.5)  - 0.114  - 0.081   - 0.085 ( 1.8) 
 β1 0.910 ( 6.9) 0.497 ( 7.0) 0.421 ( 4.2) 0.497 ( 4.2) 0.274 (3.0)  0.407 ( 5.2) 0.460 ( 6.3) 0.229 ( 3.3) 
 β2 0.522 ( 4.8) 0.396 ( 6.8) 0.512 ( 9.4) 0.410 ( 5.1) 0.356 ( 5.7)  0.580 ( 9.0) 0.472 ( 8.1) 0.418 ( 8.2) 
 β3 - 0.231 ( 3.2) 0.313 ( 8.1) 0.275 ( 7.8) 0.360 ( 4.9) 0.370  0.013  0.315 ( 2.4) 0.353  
 β11 0.287 ( 0.5) - 0.987 ( 3.2) - 0.828 ( 3.1) 0.602 ( 1.2) 1.138 ( 2.6)  - 1.709 ( 4.7) 0.363 ( 1.7) 1.129 ( 2.8) 
 β22 0.750 ( 1.6) - 0.309 ( 1.2) - 0.160 ( 0.6) 0.753 ( 2.0) 1.208 ( 4.0)  - 0.947 ( 3.8) 0.540 ( 1.1) 1.340 ( 4.0) 
 β33 0.889 ( 1.8) 1.159 ( 4.3) 1.226 ( 3.7) 1.687 ( 3.7) 1.382  - 0.468  1.707 ( 4.8) 0.993  
 β12 - 0.429 ( 0.8) 0.688 ( 2.5) 0.671 ( 2.2) - 0.283 ( 0.7) - 0.482 ( 1.3)  1.094 ( 3.9) - 0.017 ( 3.3) - 0.720 ( 1.9) 
 β13 0.062 ( 0.2) - 0.033 ( 0.2) - 0.098 ( 0.6) - 0.558 ( 1.9) - 0.656  0.615  - 0.611 ( 3.1) - 0.409  
 β23 0.600 ( 1.9) 0.601 ( 3.6) - 0.701 ( 4.4) - 0.687 ( 4.5) - 0.726  - 0.147  - 0.667 ( 5.9) - 0.584  
 δ11 -  -  -  - 0.520 ( 2.7) - 0.734 ( 4.6)  0.590 ( 5.5) - 0.381 ( 2.4) - 0.633 ( 4.7) 
 δ12 -  -  -  0.520  0.577 ( 3.4)  - 0.590  0.381  0.485 ( 3.4) 
 δ21 -  -  -  0.478 ( 3.9) 0.398 ( 3.9)  - 0.197 ( 2.1) 0.475 ( 19.0) 0.395 ( 5.1) 
 δ22 -  -  -  - 0.478  - 0.545 ( 4.6)  0.197  - 0.475  - 0.478 ( 4.9) 
 δ31 -  -  -  0.014 ( 0.1) 0.336  - 0.393  - 0.113 ( 0.7) 0.238  
 δ32 -  -  -  - 0.014  0.032  0.393  0.113  - 0.007  
 LLF (d.f.) 5.22  (75) 58.2  (75) 74.5  (73) 86.4 (70) 96.3 (70) 45.0 (75) 96.2 (68) 114.9 (68) 
R2 0.977 0.993 0.996 0.997 0.957 0.957 - - 
max(ε) 0.650 0.261 0.241 0.119 0.328 0.328 - - 
σ2 0.059 0.017 0.012 0.009 0.023 0.023 0.018 ( 9.1) 0.016 ( 8.2) 
γ  - - -  - - 0.996 (24.4) 0.999 (7941) 
________________________________________________________________________________________________________________________________________________ 
(1) T-tests are presented in brackets. (2) All output distance functions parameters have been multiplied by - 1 in order to be comparable with the other results. (3) Underlined 
parameters are calculated by homogeneity conditions.
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TABLE 3 
Technical efficiency for alternative models 

___________________________________________________________________________________________________________________________________________ 
  COLS   ML  
 Total Tornqvist  Distance functions   Distance functions  
Rail- Country revenue output  Output oriented  Input CRS Output Input 
ways  aggregation Separable Not separable distance  distance distance 
 (1) (2) (3) (4) (5) (6) (7) (8) 
___________________________________________________________________________________________________________________________________________ 
 
BLS Switzerland 0.566 0.739 0.760 0.845 0.876 0.609 0.905 0.902 
BR United-Kingdom 0.425 0.640 0.643 0.708 0.727 0.559 0.929 0.946 
CFF Switzerland 0.522 0.803 0.805 0.917 0.946 0.852 0.963 0.968 
CFL Luxembourg 0.488 0.804 0.807 0.866 0.893 0.752 0.895 0.911 
CH Greece 0.417 0.659 0.736 0.796 0.836 0.741 0.935 0.922 
CIE Ireland 0.688 0.852 0.854 0.933 0.948 0.711 0.952 0.960 
CP Portugal 0.700 0.823 0.743 0.868 0.894 0.714 0.941 0.960 
DB Germany 0.589 0.826 0.794 0.869 0.879 0.689 0.884 0.898 
DSB Denmark 0.433 0.700 0.751 0.834 0.896 0.620 0.908 0.934 
FS Italy 0.417 0.904 0.917 0.957 0.973 0.787 0.921 0.921 
NS Netherlands 0.450 0.968 0.948 0.915 0.923 0.875 0.860 0.892 
NSB Norway 0.344 0.711 0.757 0.848 0.879 0.693 0.873 0.895 
OBB Austria 0.834 0.710 0.744 0.834 0.874 0.663 0.869 0.889 
SJ Sweden 0.570 0.752 0.760 0.841 0.872 0.748 0.839 0.864 
SNCB Belgium 0.559 0.684 0.754 0.849 0.898 0.702 0.887 0.922 
SNCF France 0.542 0.751 0.827 0.916 0.938 0.986 0.863 0.886 
VR Finland 0.564 0.865 0.835 0.859 0.890 0.674 0.934 0.935 
 
 Mean 0.536 0.776 0.790 0.862 0.891 0.728 0.903 0.918 
___________________________________________________________________________________________________________________________________________ 
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TABLE 4 
Correlation table of alternative technical efficiency measures 

___________________________________________________________________________________________________________________________________________ 
  COLS   ML  
 Total Tornqvist  Distance functions   Distance functions  
  revenue output  Output oriented  Input CRS Output Input 
  aggregation Separable Not separable distance  distance distance 
 (1) (2) (3) (4) (5) (6) (7) (8) 
___________________________________________________________________________________________________________________________________________ 
 
COLS: Corrected Ordinary Least Squares 
(1) Total revenue 1.000 0.136 0.004 0.178 0.170 - 0.043 0.427 0.302 
(2) Tornqvist output aggregation  1.000 0.892 0.747 0.646 0.469 0.596 0.614 
(3) Output distance - Separable   1.000 0.859 0.788 0.633 0.679 0.681 
(4) Output distance – Not separable    1.000 0.967 0.591 0.873 0.874 
(5) Input distance     1.000 0.523 0.864 0.924 
(6) CRS      1.000 0.493 0.455 
 
MLE: Maximum Likelihood Estimation 
(7) Output distance       1.000 0.908 
(8) Input distance        1.000 
___________________________________________________________________________________________________________________________________________ 
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Data Appendix 
 

The data used in this paper was build on the basis of the International Railways Statistics 
published each year, since1925, by the International Union of Railways (Union International de 
Chemins de fer, UIC). For each input and output variable we indicate the corresponding table 
containing the annual statistics of individual railways. Also we give a summary of the UIC 
description for each of the selected statistics (UIC, 1979-1983)22. 
 

Inputs 
 
Staff Operating and traffic staff  (Table 31) 
 Corresponds to the annual mean staff bound to the Railway by an employment 

contract and working in the following activities : 
 -  central and regional operating and traffic departments; 
 -  stations, halts, stopping points, town offices and signalling installations; 
 - train accompanying and inspection. 
 
Energy  Specific costs and revenue. General operating results for the period  (Table 72) 

Traction power equivalence’s calculated by Gathon (1991) using econometric 
estimation. These equivalence scales are as follows: 1 tonne of coal = 0.73 kW/h; 
and 1 tonne of diesel = 4.48 kW/h.  Compared with calorific equivalence’s, these 
values imply that only 10% and 35% of coal and diesel, respectively, are actually 
transformed into traction power.  

 
Lines Lines (Table 11) 
 Total length (in km) of lines worked at end of the including electrified and non 

electrified lines and broad and narrow gauge lines. Sections permanently out of use 
are excluded. 

 
Outputs 

 
Passenger Revenue-earning passenger traffic (Table 51) 
 Number of passenger kilometres conveyed by rail calculated in accordance with the 

number of tickets sold multiplied by the kilometric distance for each journey of by a 
mean kilometric distance. 

 
Freight Freight traffic (Table 61) 
 Tonnes kilometres of revenue-earning traffic carried by rail obtained by multiplying 

the chargeable weight by the charging distance. This variable includes essentiallly 
full wagonloads as well as express parcels and small traffic (included postal 
packages). 

 
Total General operating results for the period (Table 72) 
revenue Traffic revenue calculated in accordance with the UIC accountancy system. 
 
Shares Specific costs and revenue. General operating results for the period  (Table 72) 
in total 
revenue 
 
The railway companies included in the study are as follows : 
Chemin de fer Bern-Loetshberg-Simplon (BLS, Switzerland); British Railways (BR); Swiss 
Federal Railways (CFF); Luxembourg National Railway Company (CFL); Hellenic Railways 
Organisation (CH); Irish Transport Company (CIE); Portuguese Railways (CP); German 
Federal Railways (DB);  Danish State Railways (DSB); Italian State Railways (FS); 
Netherlands Railways (NS); Norwegian State Railways (NSB); Austrial Federal Railways 
(OBB);  Swedish State Railways (SJ); Belgian National Railway Company (SNCB/NMBS); 

                                                 
22 The authors thank Henry-Jean Gathon  for making available a computer file containing most of the data used 
in this study. 
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French National Railway Company (SNCF) and Finnish State Railways (VR). 
 


