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Geometry of facets in the case of one bound
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Relaxation of MIP

Simplex Tableau

Basic Variable rhs

xBy = fi
XBm = fm
*Bm1 = fm+1
B, = o

++

Columns Corresponding to
Integer Non-Basic Variable

rn,ixi st 1, kXk +
m,1X1 OROE Im, kXk aF
my1,1X1 o+ Iyl ekt
p,1X1 DO o, kXk ar

Columns Corresponding to
Continuous Non-Basic Variable

1, k+15k+1 s 1,nSn
Fm, k+15k+1 st rm,nSn
Imi1,k+15+1 "+ Imt1,nSn
Ip,k+1Sk+1 st rpnSn

Q xs,. - xB, €2+
Q 55,1008, € Ry
e X1y ey Xk € Ly

Q ski1 50 € Ry

Solution is ‘fractional’, i.e. fi, ..

uentin Louveau

., fm are not all integer.

two adjacent simplex bases




Relaxation of MIP

Relaxation Step 1 : Drop Some Constraints

Columns Corresponding to

Columns Corresponding to

Basic Variable rhs Integer Non-Basic Variable Continuous Non-Basic Variable
xB, = i+ naxe o+ %+ ks oo e
XBy = fm + m,1X1 ce 4 Fm,kXk + T, k+15k+1 B fm,nSn
Bl = fmt1  +  rmi11xa ot il kXt Tmilk+1Sk+1 0t fmtd,nsSn
B, = fo +  pax coodr Ip,kXk +  rpkiSkr1 oo+ "pnSn

Q xs,. - xB, €2+

Q sg, y- 58, €Ry

e X1y ey Xk € Ly

Q ski1, 50 ERy

Solution is ‘fractional’, i.e. fi, ..., f; are not all integer.
o & = E E
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Relaxation of MIP

Relaxation of Simplex Tableau

Columns Corresponding to Columns Corres ponding to
Basic Variable rhs Integer Non-Basic Variable Continuous Non-Basic Variable
XBy = i+ naxa -+ n,kXk +  nok1Sk+1 ,nSn
XB, = L+ rnixa -+ 2 kXk +  nkt1Sk41 ot 2,nSn

Q x5, %8, € Zy
Q x1, . x €EZy
© skt1s 50 € Ry

(fi, ) ¢ 72,
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Relaxation of MIP

Relaxation Step 2 : Drop Integrality Requirement

Columns Corresponding to Columns Corresponding to
Basic Variable rhs Integer Non-Basic Variable Continuous Non-Basic Variable
XBy = i 4+ nixa oo+ 1,k Xk +  nk41Sk4r ot 1,nSn
xB, = b + nix o+ 2, kXk + R kt1Sk+1 ot r2,nSn

Q xs,,x8, € 2
Q x1,....x €Ly M X1, ey Xk € Ry

© sci1,- 50 € Ry

(i B) ¢ 72
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Relaxation of MIP

Relaxation Step 2 : Drop Integrality Requirement

Columns Corresponding to
Basic Variable rhs Continous Variables
X, = i + nist oo+ sk +

M k+1Sk+1 ---+ I,nSn
XB, = h + nrisi -+ sk +

. k+1Sk+1 -+ r2.nSn

Q xp,,xp, € Z+
@ 51,5k Skl Sn € Ry

(A R) ¢ 22
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Continuous Group Relaxation

Continuous Group Relaxation

Basic Variable rhs Columns With Continous Variables
xB, = i+ nast o+ nkSk + Fkp1Skel o Monse
XB, = o + nist -+ NSk +  Rkp1Sker ot R2asSh

Relaxati
Q xg,,xg, € Ly “EEEEOR xp ., xp, €L
@ 51,05 Sk Skt1, - Sn € Ry
(f,f) ¢ 72

The valid inequalities for the above are valid for the original simplex tableau!

Model studied in Andersen, Louveaux, Weismantel, Wolsey, IPCO2007 (for the finite case),
Cornuéjols and Margot, 2009.

Related to Group Relaxation of Gomory and Johnson (1972), Johnson (1974).
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The 2 row-model

The model

xx \_ ([ f < r ) )
(2)-(4)5(4)s mmensen

Model studied in [Andersen, Louveaux, Weismantel, Wolsey, IPCO2007] (for the finite
case) and [Cornuéjols, Margot, 2009] (for the infinite case).
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The 2 row-model

The model
X1 .
X2 -

X1, X2 GZ,SJ €R+

The geometry

(2)=(3 )+ (

= N
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The geometry

The projection picture

12
251 + 252 + 4s3 + s + 755 >1

o We project the n + 2-dim space onto

3
the x-space G X,
. . .
2 1
. . . .
f
X1
ré4
. . .
5
. . . .
o
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The geometry

The projection picture

12
251 + 252 + 4s3 + s + 755 >1

o We project the n + 2-dim space onto
the x-space "

@ The facet is represented by a polygon . . .
L 2 1
@
. . .
f
X1
. . .
5

. . . .
v
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The geometry

The projection picture

12
2s1 + 2sp + 4s3 + s4 + 755 >1

o We project the n + 2-dim space onto

the x-space & X,
@ The facet is represented by a polygon . . .
L P2 1
e
@ There is no integer point in the ° ° °
interior of L,
X1
r
. . .
5
. . . .
o’
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The geometry

The projection picture

12
251 +2s) +4s3 + 54+ =S5

7

o We project the n + 2-dim space onto

the x-space

@ The facet is represented by a polygon

Lo

@ There is no integer point in the

interior of L,

@ The coefficients are a ratio of

distances on the figure

X1
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The geometry

The projection picture

12
2s1 + 2sp + 4s3 + s + 755 >1

o We project the n + 2-dim space onto

the x-space &
@ The facet is represented by a polygon . . .
La e i
@ There is no integer point in the ° ° °
interior of L, f
@ The coefficients are a ratio of X,
distances on the figure
o . . 5 .
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The geometry

The projection picture

12
251+ 25 +4s3 + 54+ =S5

7

o We project the n + 2-dim space onto

the x-space

@ The facet is represented by a polygon

Lo

@ There is no integer point in the

interior of L,

@ The coefficients are a ratio of

distances on the figure

a3

X1
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The geometry

The projection picture

12
2s1 +255+4s3+ 53+ —s5 > 1

o We project the n + 2-dim space onto

the x-space "
@ The facet is represented by a polygon

Lo
@ There is no integer point in the

interior of L,

@ The coefficients are a ratio of
distances on the figure

@ The polygon is either a triangle or a
quadrilateral

3
L] L] L]
2 1
L] L] L]
7
X1
. . .
5
o . . o
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Looking at two fractional vertices at once

Consider the model

x, = f + nist -+ xSk + MkriSker o+ MoaSs
xg, = fb + mnist -+ NSk + us1Sk+r o+ 2,050
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Looking at two fractional vertices at once

Consider the model

XB, i + niss -4+ niSk +  NkpiSker o+ MaSa
xg, = fb + mnist -+ NSk + us1Sk+r o+ 2,050

We may consider a potential pivot.
For example : s; enters the basis
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Looking at two fractional vertices at once

Consider the model

xe, = f + nist -+ Sk +  Mk+iSk+r o+ reSs
xs, = h 4+ nisi -+ NSk + k1Sl o+ PaSa
XB, = fm + rmiSt -+ ImkSk +  Fmk+1Sk+1  ccc+  ImnSn

We may consider a potential pivot.
For example : s; enters the basis

In the original full tableau, xg, must leave the basis as s; takes the value —f/rm.1.
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Looking at two fractional vertices at once

Consider the model

XB, i + niss -4+ niSk +  NkpiSker o+ MaSa
xg, = fb + mnist -+ NSk + us1Sk+r o+ 2,050

We may consider a potential pivot.
For example : s; enters the basis
In the original full tableau, xg, must leave the basis as s; takes the value —f/rm.1.

In the model with 2 rows, we may consider

0<s <

(and in this case, u1 = —fun/rm1.)
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Updated Two Row Model

The model with bounds

(2)=(%)=(
X1,X2 € 7,

s € Ry for j e U,
0<s; <ujforjeB.

)2 (1)

[ i

Remark : we denote by N := UU B

The model with bounds on the integer variables has been studied by Basu, Conforti,

Cornuéjols, Zambelli [2009], Dey, Wolsey [2009] and Fukasawa, Giinliik [2009]
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Characterizing the facets of the model with bounds

Let >°,cy 3jsi > 1 be a facet-defining inequality for the convex hull of the model.
o All coefficients 8; 2 0
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Characterizing the facets of the model with bounds

Let ZJ.EN Bjs; > 1 be a facet-defining inequality for the convex hull of the model.
o All coefficients 8; 2 0

@ We can complement continuous variables that have a negative coefficient and write

Doalu—s)+ > sty a5 >1

jeB_ jEB. jeu

with a; > 0 for all j

Quentin Louveaux (Université de Liége - Montefiore In Cuts from two adjacent simplex bases August 2009 13 /27



Characterizing the facets of the model with bounds
Let ZJ.EN Bjs; > 1 be a facet-defining inequality for the convex hull of the model.

o All coefficients 8; 2 0
@ We can complement continuous variables that have a negative coefficient and write

Doalu—s)+ > sty a5 >1

jeB_ jEB. jeu

with a; > 0 for all j
o It is as seeing the problem from the vertex f + 3. 5 «;ju; and reversing the

direction of the rays in B_

.r3 [ ] [}
ro
f ri
[ J [ J [ J
r2
[} [ ] [}

Cuts from two adjacent simplex bases August 2009 13 /27

Quentin Louveaux (Université de Liége - Montefiore In



Characterizing the facets of the model with bounds

Let ZJ.EN Bjs; > 1 be a facet-defining inequality for the convex hull of the model.
o All coefficients 8; 2 0

@ We can complement continuous variables that have a negative coefficient and write
S —s)+ > a5+ > a5 > 1
j€eB_ j€By jeu

with a; > 0 for all j

o It is as seeing the problem from the vertex f + 3. 5 «;ju; and reversing the
direction of the rays in B_
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Facet-defining inequality in standard form

In the following, we assume that every facet considered from the right vertex is in
standard form and can be written
ZO&ij >1

JEN

with a; > 0 for all j € N.
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Facet-defining inequality in standard form

In the following, we assume that every facet considered from the right vertex is in
standard form and can be written
ZO{ij >1

JEN

with a; > 0 for all j € N.

We can also consider the projection picture similar to the unbounded case!
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What does carry over from the unbounded to the bounded case ?

What does carry over
o Lo ={x € R?|3s with x = f + Zjestrj,O <s < u;,> ;a5 < 1} is a polygon
@ The interior of L, has no integer point

® X, = Lo NZ? is a triangle or a quadrilateral

Cuts from two adjacent simplex bases August 2009 15 /27
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What does carry over from the unbounded to the bounded case ?

What does carry over
o Lo ={x € R?|3s with x = f + Zjestrj,O <s < u;,>;a55 < 1} is a polygon
@ The interior of L, has no integer point

e Xo=LoNZ%isa triangle or a quadrilateral

What does not carry over
@ L, is a triangle or quadrilateral
The vertices of L, are on the rays (f + Ar/) with A >0

« can be determined by a system with as many variables as the number of sides of
the polygon (Lo or Xa)

@ Each integer point has exactly one relevant “vertex”-representation

v,
August 2009 15 /27
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The polar system
A facet-defining inequality in standard form is a nonnegative basic feasible solution of the
system in unknowns (3
> §8>1  forall (x,5)€ P
JEN
ﬁj >0 ./ € Ua
§jrj,>'< € ZZ,O <5 < u.

where x =3,
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The polar system

A facet-defining inequality in standard form is a nonnegative basic feasible solution of the
system in unknowns (3

> §8>1  forall (x,5)€ P
JEN
ﬁj 2 0 ./ S Ua

where x =", 5, % € Z2,0 <5 < u;.

jeN
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The polar system

A facet-defining inequality in standard form is a nonnegative basic feasible solution of the

system in unknowns (3
> §8>1  forall (x,5)€ P
JEN
Bj >0 JE Ua

where x =", 5, % € Z2,0 <5 < u;.

jeN

(o)=(3a) (o) rm(%)

61+ 50 > 1
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The polar system

A facet-defining inequality in standard form is a nonnegative basic feasible solution of the
system in unknowns (3

> §8>1  forall (x,5)€ P
jen
Bj >0 J € Ua
where X = >

3 H % 2 . .
jenSir, X € 27,0 < 5 < uj.

(6)- (38 )(3%) 3 (
2B+ 5P >1

Bot+ U +18,>1
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The polar system

A facet-defining inequality in standard form is a nonnegative basic feasible solution of the

system in unknowns (3
> §8>1  forall (x,5)€ P
JEN
Bj >0 JE Ua

where x =", 5, % € Z2,0 <5 < u;.

jeN

2B+ 5P >1
Bo+ 2B+ 5B >1
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Obtaining a subsystem from the polar

A facet a € R} is a basic feasible solution of the polar and therefore satisfies at least n
linearly independent constraints with equality.

Our goal

For a given facet Z}’Zl ajs; > 1, we want to find the smallest subsystem of equations
from the polar (or induced by the polar) for which the unique solution is a.
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The linear dependence property

Definition
A subset J C N has the linear dependence property with respect to a € R” if for all

AeRM,
Z)\jrj:0:>2)\jaj:0.

jeJ jeJ
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The linear dependence property

Definition
A subset J C N has the linear dependence property with respect to a € R” if for all
A eRM,
Z)\jrj =0= Z)\jaj =0,
jed jed
v
Geometrically
ri r2 3
X
ré
/L f }
: .
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The linear dependence property

Definition
A subset J C N has the linear dependence property with respect to a € R” if for all
A eRM,

Z)\jr‘j =0= Z)\jaj =0,

j€d j€Jd

v
Geometrically
ri r2 3
X
ré
/ La f

Implication about representations
If x = f+ZjEJsjrj and >, s =1

implies

ifx=7Ff+>, t;r then djestiog =1
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Linear dependence property allows us to get rid of some rays

rt r3

ré

Here J = {1,2,3, 4} satisfies the linear dependence property wrt. a.
Assume {1,2,3,4} C U
Any equation of the type

% +aisi =1

% can be equivalently replaced by

involving r? or r
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Linear dependence property allows us to get rid of some rays

rt r3

ré

Here J = {1,2,3, 4} satisfies the linear dependence property wrt. a.
Assume {1,2,3,4} C U

Any equation of the type
% +aisi =1

involving r* or r® can be equivalently replaced by
2 2
Q) = 0101 + 040

3 3
a3 = 0101 + 040

that we call linear dependence relation.

Cuts from two adjacent simplex bases August 2009

Quentin Louveaux (Université de Liége - Montefiore In

19 / 27



Main theorem about reduction of the polar

Theorem

Let > .y jsi > 1 be a facet in standard form.
Let X" be the set of extreme points of X,. « is a nonnegative extreme point of the polar
and is the unique solution of the system in unknowns 3

(1)

()

®3)
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Main theorem about reduction of the polar

Theorem

Let > .y jsi > 1 be a facet in standard form.
Let X" be the set of extreme points of X,. « is a nonnegative extreme point of the polar
and is the unique solution of the system in unknowns (3

Zﬂjsf =1 forall x € X¥ One equation corresponding to (1)
jeN

one representation for each x

()

®3)
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Main theorem about reduction of the polar

Theorem

Let > .y jsi > 1 be a facet in standard form.
Let X" be the set of extreme points of X,. « is a nonnegative extreme point of the polar
and is the unique solution of the system in unknowns (3

Zﬂjsf =1 forall x € X¥ One equation corresponding to (1)
jeN

one representation for each x

Z ajkﬂk = /6 Jj € B linear dependence relations for bounded rays j (2)
kEI(X)

®3)
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Main theorem about reduction of the polar

Theorem

Let > .y jsi > 1 be a facet in standard form.
Let X" be the set of extreme points of X,. « is a nonnegative extreme point of the polar
and is the unique solution of the system in unknowns (3

Zﬂjsf =1 forall x € X¥ One equation corresponding to (1)
jeN

one representation for each x

Z ijﬁk = /6 Jj € B linear dependence relations for bounded rays j (2)
keI(X)

Z ajkﬁk =0 Jj € U linear dependence relations for unbounded rays j (3)
kel(X)
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Main theorem about reduction of the polar

Theorem

Let > .y jsi > 1 be a facet in standard form.
Let X" be the set of extreme points of X,. « is a nonnegative extreme point of the polar
and is the unique solution of the system in unknowns (3

Zﬂjsf =1 forall x € X¥ One equation corresponding to (1)
jeN

one representation for each x

Z ijﬁk = /6 Jj € B linear dependence relations for bounded rays j (2)
kEI(X)

®3)

Furthermore the system (1)-(2) (on less variables) is also uniquely solvable
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Geometric study in the case of one upper bound

Henceforth we assume that |B| = 1, and that conejcy ¥ = R? (simplifying assumption).
We denote B := {e}.
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Further restrictions in the size of the minimal uniquely solvable system
Restriction on the number of equations of type (1)
to a tight representation.

There are two main cases : either 3 or 4 integer points have one equation corresponding
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Further restrictions in the size of the minimal uniquely solvable system

Restriction on the number of equations of type (1)

There are two main cases : either 3 or 4 integer points have one equation corresponding
to a tight representation.

Restriction on the number of equations of type (2)
@ The bounded ray e is involved in either 0 or 1 or 2 linear dependence relations.

o If e is involved in 2 linear dependence relations, it must consist of disjoint pairs of
unbounded rays.
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3 integer points and 1 linear dependence relation for the bounded ray

The minimal subsystem is 4 x 4
Variables : 3 unbounded rays and 1 bounded ray
Equations : 3 tight representations and 1 linear dependence relation

0.5
-0.5
-1 ° o °
-1.5
. L " L * L o L )
-1 -0.5 0 0.5 1 15 2 25 3
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3 integer points and 2 linear dependence relation for the bounded ray

The minimal subsystem is 5 x 5
Variables : 4 unbounded rays and 1 bounded ray
Equations : 3 tight representations and 2 linear dependence relation

25

0.5

-1.5
-1.5 -1 -0.5 0 0.5 1 15 2 25
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4 integer points and 0 linear dependence relation for the bounded ray

The minimal subsystem is 4 x 4
Variables : 3 unbounded rays and 1 bounded ray
Equations : 4 tight representations

1.5
1 L] °
0.5
L] L]
-0.5
-1 L] L]
-1.5
2
. L * L " L " L Y
-2 -1.5 -1 -0.5 0 0.5 1 15 2

L is now a pentagon!
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4 integer points and 1 linear dependence relation for the bounded ray

The minimal subsystem is 5 x 5
Variables : 4 unbounded rays and 1 bounded ray
Equations : 4 tight representations and 1 linear dependence relation

0o
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4 integer points and 2 linear dependence relation for the bounded ray

The minimal subsystem is 6 x 6
Variables : 5 unbounded rays and 1 bounded ray
Equations : 4 tight representations and 2 linear dependence relations

° °

25
° °

15
1 L] L]

0.5
° °

-0.5
_ L * L " L * L Y
-1 -0.5 0 0.5 1 1.5 2 25 3
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