

Geometric study of mixed-integer sets coming from two adjacent simplex bases

Quentin Louveaux

Université de Liège - Montefiore Institute

August 2009

Joint work with Kent Andersen and Robert Weismantel (Magdeburg)

Outline

- Cuts from two rows of the simplex tableau
- Upper bounds on the continuous variables
- Determining a facet with several upper bounds
- Geometry of facets in the case of one bound

Relaxation of MIP

Simplex Tableau

Basic Variable	rhs	Columns Corresponding to Integer Non-Basic Variable				Columns Corresponding to Continuous Non-Basic Variable			
		$r_{1,1}x_1$	$\dots +$	$r_{1,k}x_k$	$+$	$r_{1,k+1}s_{k+1}$	$\dots +$	$r_{1,n}s_n$	
x_{B_1}	$=$	f_1	$+$	$r_{1,1}x_1$	$\dots +$	$r_{1,k}x_k$	$+$	$r_{1,k+1}s_{k+1}$	$\dots +$
\vdots		\vdots		\vdots	\ddots	\vdots		\vdots	\ddots
x_{B_m}	$=$	f_m	$+$	$r_{m,1}x_1$	$\dots +$	$r_{m,k}x_k$	$+$	$r_{m,k+1}s_{k+1}$	$\dots +$
$s_{B_{m+1}}$	$=$	f_{m+1}	$+$	$r_{m+1,1}x_1$	$\dots +$	$r_{m+1,k}x_k$	$+$	$r_{m+1,k+1}s_{k+1}$	$\dots +$
\vdots		\vdots		\vdots	\ddots	\vdots		\vdots	\ddots
s_{B_p}	$=$	f_p	$+$	$r_{p,1}x_1$	$\dots +$	$r_{p,k}x_k$	$+$	$r_{p,k+1}s_{k+1}$	$\dots +$
									$r_{p,n}s_n$

- 1 $x_{B_1}, \dots, x_{B_m} \in \mathbb{Z}_+$
- 2 $s_{B_{m+1}}, \dots, s_{B_p} \in \mathbb{R}_+$
- 3 $x_1, \dots, x_k \in \mathbb{Z}_+$
- 4 $s_{k+1}, \dots, s_n \in \mathbb{R}_+$

Solution is 'fractional', i.e. f_1, \dots, f_m are not all integer.

Relaxation of MIP

Relaxation Step 1 : Drop Some Constraints

Basic Variable	rhs	Columns Corresponding to Integer Non-Basic Variable				Columns Corresponding to Continuous Non-Basic Variable				
x_{B_1}	=	f_1	+	$r_{1,1}x_1$	$\cdots +$	$r_{1,k}x_k$	+	$r_{1,k+1}s_{k+1}$	$\cdots +$	$r_{1,n}s_n$
\vdots		\vdots		\vdots	\ddots	\vdots		\vdots	\ddots	\vdots
x_{B_m}	=	f_m	+	$r_{m,1}x_1$	$\cdots +$	$r_{m,k}x_k$	+	$r_{m,k+1}s_{k+1}$	$\cdots +$	$r_{m,n}s_n$
$s_{B_{m+1}}$	=	f_{m+1}	+	$r_{m+1,1}x_1$	$\cdots +$	$r_{m+1,k}x_k$	+	$r_{m+1,k+1}s_{k+1}$	$\cdots +$	$r_{m+1,n}s_n$
\vdots		\vdots		\vdots	\ddots	\vdots		\vdots	\ddots	\vdots
s_{B_p}	=	f_p	+	$r_{p,1}x_1$	$\cdots +$	$r_{p,k}x_k$	+	$r_{p,k+1}s_{k+1}$	$\cdots +$	$r_{pn}s_n$

- 1 $x_{B_1}, \dots, x_{B_m} \in \mathbb{Z}_+$
- 2 $s_{B_{m+1}}, \dots, s_{B_p} \in \mathbb{R}_+$
- 3 $x_1, \dots, x_k \in \mathbb{Z}_+$
- 4 $s_{k+1}, \dots, s_n \in \mathbb{R}_+$

Solution is 'fractional', i.e. f_1, \dots, f_m are not all integer.

Relaxation of MIP

Relaxation of Simplex Tableau

Basic Variable	rhs	Columns Corresponding to Integer Non-Basic Variable	Columns Corresponding to Continuous Non-Basic Variable
x_{B_1}	$=$	$f_1 + r_{1,1}x_1 + \dots + r_{1,k}x_k$	$+ r_{1,k+1}s_{k+1} + \dots + r_{1,n}s_n$
x_{B_2}	$=$	$f_2 + r_{2,1}x_1 + \dots + r_{2,k}x_k$	$+ r_{2,k+1}s_{k+1} + \dots + r_{2,n}s_n$

- 1 $x_{B_1}, x_{B_2} \in \mathbb{Z}_+$
- 2 $x_1, \dots, x_k \in \mathbb{Z}_+$
- 3 $s_{k+1}, \dots, s_n \in \mathbb{R}_+$

$(f_1, f_2) \notin \mathbb{Z}^2$.

Relaxation of MIP

Relaxation Step 2 : Drop Integrality Requirement

Basic Variable	rhs	Columns Corresponding to Integer Non-Basic Variable	Columns Corresponding to Continuous Non-Basic Variable
x_{B_1}	$= f_1$	$r_{1,1}x_1 + \dots + r_{1,k}x_k$	$r_{1,k+1}s_{k+1} + \dots + r_{1,n}s_n$
x_{B_2}	$= f_2$	$r_{2,1}x_1 + \dots + r_{2,k}x_k$	$r_{2,k+1}s_{k+1} + \dots + r_{2,n}s_n$

- 1 $x_{B_1}, x_{B_2} \in \mathbb{Z}_+$
- 2 $x_1, \dots, x_k \in \mathbb{Z}_+ \xrightarrow{\text{Relaxation}} x_1, \dots, x_k \in \mathbb{R}_+$
- 3 $s_{k+1}, \dots, s_n \in \mathbb{R}_+$

$(f_1, f_2) \notin \mathbb{Z}^2$.

Relaxation Step 2 : Drop Integrality Requirement

Basic Variable	rhs	Columns Corresponding to Continous Variables								
		f_1	$+$	$r_{1,1}s_1$	$\cdots +$	$r_{1,k}s_k$	$+$	$r_{1,k+1}s_{k+1}$	$\cdots +$	$r_{1,n}s_n$
x_{B_1}	$=$									
x_{B_2}	$=$	f_2	$+$	$r_{2,1}s_1$	$\cdots +$	$r_{2,k}s_k$	$+$	$r_{2,k+1}s_{k+1}$	$\cdots +$	$r_{2,n}s_n$

- ① $x_{B_1}, x_{B_2} \in \mathbb{Z}_+$
- ② $s_1, \dots, s_k, s_{k+1}, \dots, s_n \in \mathbb{R}_+$

$$(f_1, f_2) \notin \mathbb{Z}^2.$$

Continuous Group Relaxation

Continuous Group Relaxation

Basic Variable	rhs	Columns With Continuous Variables									
x_{B_1}	=	f_1	+	$r_{1,1}s_1$	$\cdots +$	$r_{1,k}s_k$	+	$r_{1,k+1}s_{k+1}$	$\cdots +$	$r_{1,n}s_n$	
x_{B_2}	=	f_2	+	$r_{2,1}s_1$	$\cdots +$	$r_{2,k}s_k$	+	$r_{2,k+1}s_{k+1}$	$\cdots +$	$r_{2,n}s_n$	

① $x_{B_1}, x_{B_2} \in \mathbb{Z}_+$ $\xrightarrow{\text{Relaxation}}$ $x_{B_1}, x_{B_2} \in \mathbb{Z}$

② $s_1, \dots, s_k, s_{k+1}, \dots, s_n \in \mathbb{R}_+$

$(f_1, f_2) \notin \mathbb{Z}^2$.

The valid inequalities for the above are valid for the original simplex tableau !

Model studied in Andersen, Louveaux, Weismantel, Wolsey, IPCO2007 (for the finite case), Cornuéjols and Margot, 2009.

Related to Group Relaxation of Gomory and Johnson (1972), Johnson (1974).

The 2 row-model

The model

$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} f_1 \\ f_2 \end{pmatrix} + \sum_{j=1}^n \begin{pmatrix} r_1^j \\ r_2^j \end{pmatrix} s_j, \quad x_1, x_2 \in \mathbb{Z}, s_j \in \mathbb{R}_+$$

Model studied in [Andersen, Louveaux, Weismantel, Wolsey, IPCO2007] (for the finite case) and [Cornu  jols, Margot, 2009] (for the infinite case).

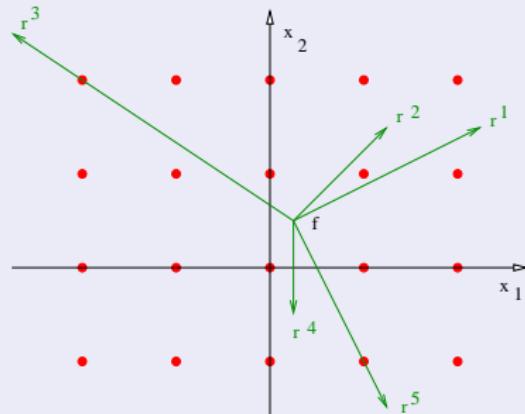
The 2 row-model

The model

$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} f_1 \\ f_2 \end{pmatrix} + \sum_{j=1}^n \begin{pmatrix} r_1^j \\ r_2^j \end{pmatrix} s_j, \quad x_1, x_2 \in \mathbb{Z}, s_j \in \mathbb{R}_+$$

The geometry

$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 1/4 \\ 1/2 \end{pmatrix} + \begin{pmatrix} 2 \\ 1 \end{pmatrix} s_1 + \begin{pmatrix} 1 \\ 1 \end{pmatrix} s_2 + \begin{pmatrix} -3 \\ 2 \end{pmatrix} s_3 + \begin{pmatrix} 0 \\ -1 \end{pmatrix} s_4 + \begin{pmatrix} 1 \\ -2 \end{pmatrix} s_5$$

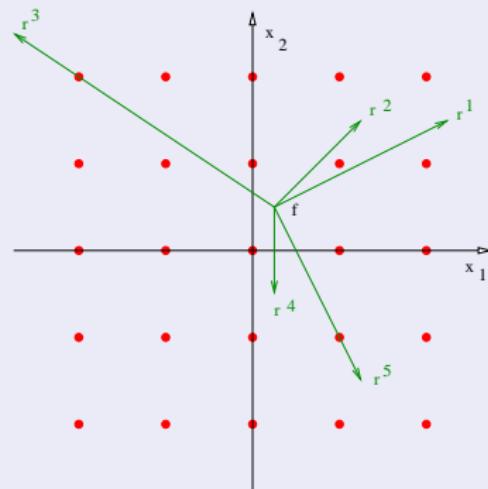


The geometry

The projection picture

$$2s_1 + 2s_2 + 4s_3 + s_4 + \frac{12}{7}s_5 \geq 1$$

- We project the $n + 2$ -dim space onto the x -space
- The facet is represented by a polygon L_α
- There is no integer point in the interior of L_α
- The coefficients are a ratio of distances on the figure
 α_1, α_2
- The polygon is either a triangle or a quadrilateral

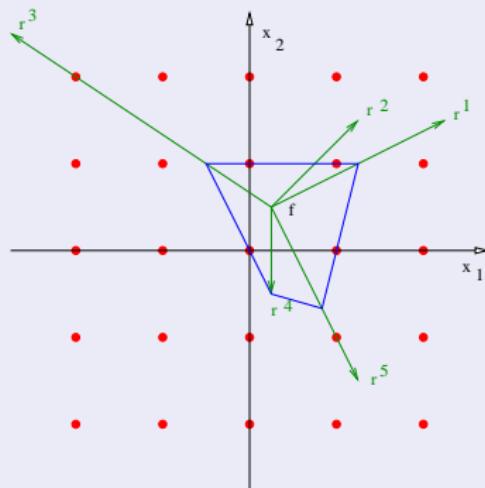


The geometry

The projection picture

$$2s_1 + 2s_2 + 4s_3 + s_4 + \frac{12}{7}s_5 \geq 1$$

- We project the $n + 2$ -dim space onto the x -space
- The facet is represented by a polygon L_α
- There is no integer point in the interior of L_α
- The coefficients are a ratio of distances on the figure
 α_1, α_2
- The polygon is either a **triangle** or a **quadrilateral**

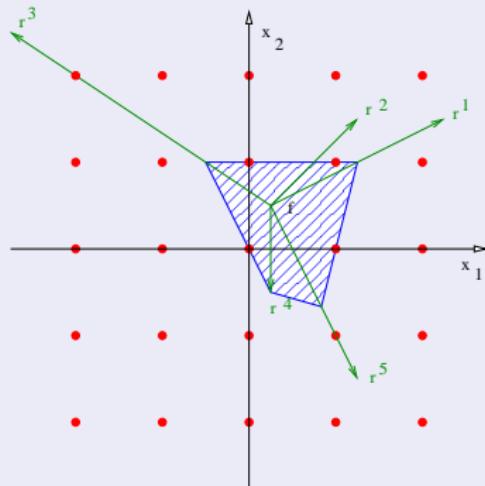


The geometry

The projection picture

$$2s_1 + 2s_2 + 4s_3 + s_4 + \frac{12}{7}s_5 \geq 1$$

- We project the $n + 2$ -dim space onto the x -space
- The facet is represented by a polygon L_α
- There is no integer point in the interior of L_α
- The coefficients are a ratio of distances on the figure
 α_1, α_2
- The polygon is either a **triangle** or a **quadrilateral**

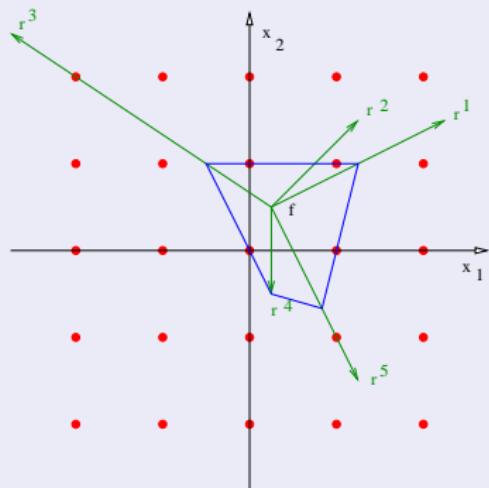


The geometry

The projection picture

$$2s_1 + 2s_2 + 4s_3 + s_4 + \frac{12}{7}s_5 \geq 1$$

- We project the $n + 2$ -dim space onto the x -space
- The facet is represented by a polygon L_α
- There is no integer point in the interior of L_α
- The coefficients are a ratio of distances on the figure
 $\alpha_1 \ \alpha_3$
- The polygon is either a **triangle** or a **quadrilateral**

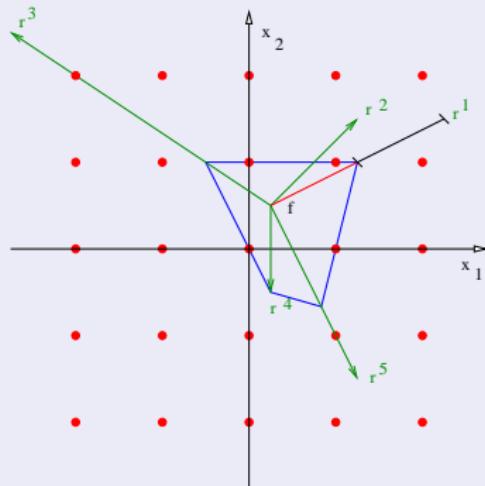


The geometry

The projection picture

$$2s_1 + 2s_2 + 4s_3 + s_4 + \frac{12}{7}s_5 \geq 1$$

- We project the $n + 2$ -dim space onto the x -space
- The facet is represented by a polygon L_α
- There is no integer point in the interior of L_α
- The coefficients are a ratio of distances on the figure
 $\alpha_1 \ \alpha_3$
- The polygon is either a triangle or a quadrilateral

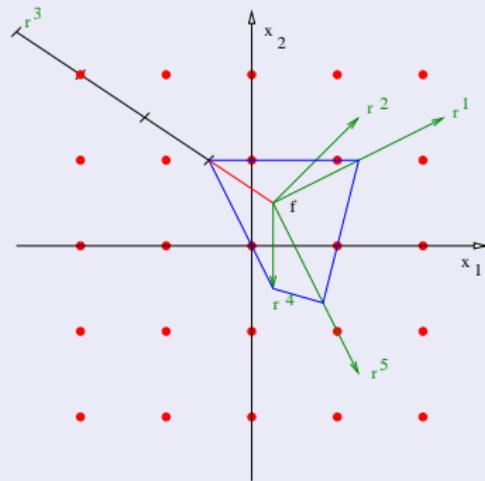


The geometry

The projection picture

$$2s_1 + 2s_2 + 4s_3 + s_4 + \frac{12}{7}s_5 \geq 1$$

- We project the $n + 2$ -dim space onto the x -space
- The facet is represented by a polygon L_α
- There is no integer point in the interior of L_α
- The coefficients are a ratio of distances on the figure
 $\alpha_1 \alpha_3$
- The polygon is either a triangle or a quadrilateral

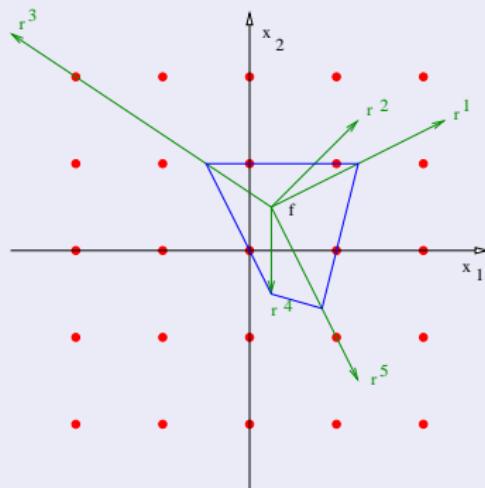


The geometry

The projection picture

$$2s_1 + 2s_2 + 4s_3 + s_4 + \frac{12}{7}s_5 \geq 1$$

- We project the $n + 2$ -dim space onto the x -space
- The facet is represented by a polygon L_α
- There is no integer point in the interior of L_α
- The coefficients are a ratio of distances on the figure
 $\alpha_1 \ \alpha_3$
- The polygon is either a **triangle** or a **quadrilateral**



Looking at two fractional vertices at once

Consider the model

$$\begin{aligned} x_{B_1} &= f_1 + r_{1,1}s_1 + \cdots + r_{1,k}s_k + r_{1,k+1}s_{k+1} + \cdots + r_{1,n}s_n \\ x_{B_2} &= f_2 + r_{2,1}s_1 + \cdots + r_{2,k}s_k + r_{2,k+1}s_{k+1} + \cdots + r_{2,n}s_n. \end{aligned}$$

We may consider a potential pivot.

For example : s_1 enters the basis

In the original full tableau, x_{B_m} must leave the basis as s_1 takes the value $-f_m/r_{m,1}$.

In the model with 2 rows, we may consider

$$0 \leq s_1 \leq u_1$$

(and in this case, $u_1 = -f_m/r_{m,1}$.)

Looking at two fractional vertices at once

Consider the model

$$\begin{aligned} x_{B_1} &= f_1 + r_{1,1}s_1 + \cdots + r_{1,k}s_k + r_{1,k+1}s_{k+1} + \cdots + r_{1,n}s_n \\ x_{B_2} &= f_2 + r_{2,1}s_1 + \cdots + r_{2,k}s_k + r_{2,k+1}s_{k+1} + \cdots + r_{2,n}s_n. \end{aligned}$$

We may consider a potential **pivot**.

For example : s_1 enters the basis

In the original full tableau, x_{B_m} must leave the basis as s_1 takes the value $-f_m/r_{m,1}$.

In the model with 2 rows, we may consider

$$0 \leq s_1 \leq u_1$$

(and in this case, $u_1 = -f_m/r_{m,1}$.)

Looking at two fractional vertices at once

Consider the model

$$\begin{aligned} x_{B_1} &= f_1 + r_{1,1}s_1 + \cdots + r_{1,k}s_k + r_{1,k+1}s_{k+1} + \cdots + r_{1,n}s_n \\ x_{B_2} &= f_2 + r_{2,1}s_1 + \cdots + r_{2,k}s_k + r_{2,k+1}s_{k+1} + \cdots + r_{2,n}s_n \\ &\vdots \\ x_{B_m} &= f_m + r_{m,1}s_1 + \cdots + r_{m,k}s_k + r_{m,k+1}s_{k+1} + \cdots + r_{m,n}s_n \end{aligned}$$

We may consider a potential **pivot**.

For example : s_1 enters the basis

In the original full tableau, x_{B_m} must leave the basis as s_1 takes the value $-f_m/r_{m,1}$.

In the model with 2 rows, we may consider

$$0 \leq s_1 \leq u_1$$

(and in this case, $u_1 = -f_m/r_{m,1}$.)

Looking at two fractional vertices at once

Consider the model

$$\begin{aligned} x_{B_1} &= f_1 + r_{1,1}s_1 + \cdots + r_{1,k}s_k + r_{1,k+1}s_{k+1} + \cdots + r_{1,n}s_n \\ x_{B_2} &= f_2 + r_{2,1}s_1 + \cdots + r_{2,k}s_k + r_{2,k+1}s_{k+1} + \cdots + r_{2,n}s_n. \end{aligned}$$

We may consider a potential **pivot**.

For example : s_1 enters the basis

In the original full tableau, x_{B_m} must leave the basis as s_1 takes the value $-f_m/r_{m,1}$.

In the model with 2 rows, we may consider

$$0 \leq s_1 \leq u_1$$

(and in this case, $u_1 = -f_m/r_{m,1}$.)

Updated Two Row Model

The model with bounds

$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} f_1 \\ f_2 \end{pmatrix} + \sum_{j \in U} \begin{pmatrix} r_1^j \\ r_2^j \end{pmatrix} s_j + \sum_{j \in B} \begin{pmatrix} r_1^j \\ r_2^j \end{pmatrix} s_j$$

$$x_1, x_2 \in \mathbb{Z},$$

$$s_j \in \mathbb{R}_+ \text{ for } j \in U,$$

$$0 \leq s_j \leq u_j \text{ for } j \in B.$$

Remark : we denote by $N := U \cup B$

The model with bounds on the integer variables has been studied by Basu, Conforti, Cornuéjols, Zambelli [2009], Dey, Wolsey [2009] and Fukasawa, Günlük [2009]

Characterizing the facets of the model with bounds

Let $\sum_{j \in N} \beta_j s_j \geq 1$ be a facet-defining inequality for the convex hull of the model.

- All coefficients $\beta_j \not\geq 0$
- We can complement continuous variables that have a negative coefficient and write

$$\sum_{j \in B_-} \alpha_j (u_j - s_j) + \sum_{j \in B_+} \alpha_j s_j + \sum_{j \in U} \alpha_j s_j \geq 1$$

with $\alpha_j \geq 0$ for all j

- It is as seeing the problem from the vertex $f + \sum_{j \in B_-} \alpha_j u_j$ and reversing the direction of the rays in B_-

Characterizing the facets of the model with bounds

Let $\sum_{j \in N} \beta_j s_j \geq 1$ be a facet-defining inequality for the convex hull of the model.

- All coefficients $\beta_j \not\geq 0$
- We can **complement** continuous variables that have a negative coefficient and write

$$\sum_{j \in B_-} \alpha_j (u_j - s_j) + \sum_{j \in B_+} \alpha_j s_j + \sum_{j \in U} \alpha_j s_j \geq 1$$

with $\alpha_j \geq 0$ for all j

- It is as seeing the problem from the vertex $f + \sum_{j \in B_-} \alpha_j u_j$ and reversing the direction of the rays in B_-

Characterizing the facets of the model with bounds

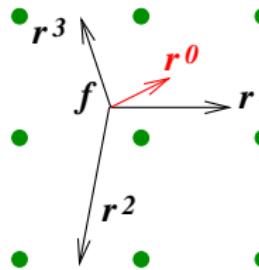
Let $\sum_{j \in N} \beta_j s_j \geq 1$ be a facet-defining inequality for the convex hull of the model.

- All coefficients $\beta_j \not\geq 0$
- We can **complement** continuous variables that have a negative coefficient and write

$$\sum_{j \in B_-} \alpha_j (u_j - s_j) + \sum_{j \in B_+} \alpha_j s_j + \sum_{j \in U} \alpha_j s_j \geq 1$$

with $\alpha_j \geq 0$ for all j

- It is as **seeing the problem from the vertex $f + \sum_{j \in B_-} \alpha_j u_j$ and reversing the direction of the rays in B_-**



Characterizing the facets of the model with bounds

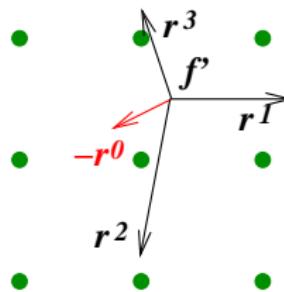
Let $\sum_{j \in N} \beta_j s_j \geq 1$ be a facet-defining inequality for the convex hull of the model.

- All coefficients $\beta_j \not\geq 0$
- We can **complement** continuous variables that have a negative coefficient and write

$$\sum_{j \in B_-} \alpha_j (u_j - s_j) + \sum_{j \in B_+} \alpha_j s_j + \sum_{j \in U} \alpha_j s_j \geq 1$$

with $\alpha_j \geq 0$ for all j

- It is as **seeing the problem from the vertex $f + \sum_{j \in B_-} \alpha_j u_j$ and reversing the direction of the rays in B_-**



Facet-defining inequality in standard form

In the following, we assume that every facet considered **from the right vertex** is in **standard form** and can be written

$$\sum_{j \in N} \alpha_j s_j \geq 1$$

with $\alpha_j \geq 0$ for all $j \in N$.

We can also consider the **projection picture** similar to the unbounded case!

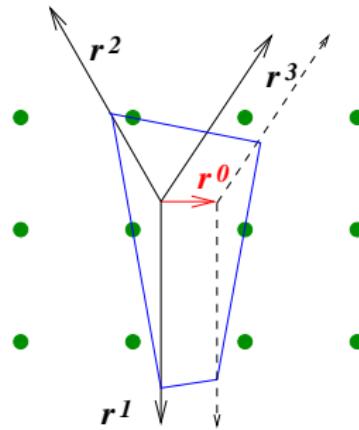
Facet-defining inequality in standard form

In the following, we assume that every facet considered **from the right vertex** is in **standard form** and can be written

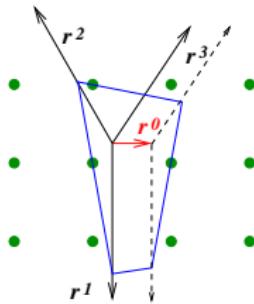
$$\sum_{j \in N} \alpha_j s_j \geq 1$$

with $\alpha_j \geq 0$ for all $j \in N$.

We can also consider the **projection picture** similar to the unbounded case !



What does carry over from the unbounded to the bounded case?



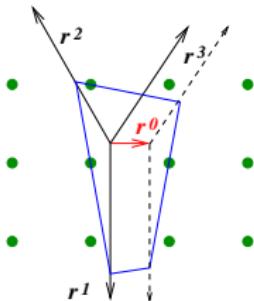
What does carry over

- $L_\alpha = \{x \in \mathbb{R}^2 \mid \exists s \text{ with } x = f + \sum_{j \in N} s_j r^j, 0 \leq s_j \leq u_j, \sum_j \alpha_j s_j \leq 1\}$ is a polygon
- The interior of L_α has no integer point
- $X_\alpha = L_\alpha \cap \mathbb{Z}^2$ is a **triangle** or a **quadrilateral**

What does not carry over

- L_α is a triangle or quadrilateral
- The vertices of L_α are on the rays $(f + \lambda r^j)$ with $\lambda \geq 0$
- α can be determined by a system with as many variables as the number of sides of the polygon (L_α or X_α)
- Each integer point has exactly one relevant “vertex”-representation

What does carry over from the unbounded to the bounded case?



What does carry over

- $L_\alpha = \{x \in \mathbb{R}^2 \mid \exists s \text{ with } x = f + \sum_{j \in N} s_j r^j, 0 \leq s_j \leq u_j, \sum_j \alpha_j s_j \leq 1\}$ is a polygon
- The interior of L_α has no integer point
- $X_\alpha = L_\alpha \cap \mathbb{Z}^2$ is a triangle or a quadrilateral

What does not carry over

- L_α is a triangle or quadrilateral
- The vertices of L_α are on the rays $(f + \lambda r^j)$ with $\lambda \geq 0$
- α can be determined by a system with as many variables as the number of sides of the polygon (L_α or X_α)
- Each integer point has exactly one relevant "vertex"-representation

The polar system

A facet-defining inequality in standard form is a **nonnegative** basic feasible solution of the system in unknowns β

$$\sum_{j \in N} \bar{s}_j \beta_j \geq 1 \quad \text{for all } (\bar{x}, \bar{s}_j) \in P_I$$
$$\beta_j \geq 0 \quad j \in U,$$

where $\bar{x} = \sum_{j \in N} \bar{s}_j r^j$, $\bar{x} \in \mathbb{Z}^2$, $0 \leq \bar{s}_j \leq u_j$.

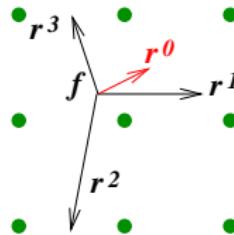
The polar system

A facet-defining inequality in standard form is a **nonnegative** basic feasible solution of the system in unknowns β

$$\sum_{j \in N} \bar{s}_j \beta_j \geq 1 \quad \text{for all } (\bar{x}, \bar{s}_j) \in P_I$$

$$\beta_j \geq 0 \quad j \in U,$$

where $\bar{x} = \sum_{j \in N} \bar{s}_j r^j$, $\bar{x} \in \mathbb{Z}^2$, $0 \leq \bar{s}_j \leq u_j$.



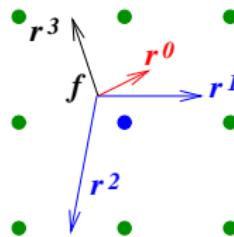
The polar system

A facet-defining inequality in standard form is a **nonnegative** basic feasible solution of the system in unknowns β

$$\sum_{j \in N} \bar{s}_j \beta_j \geq 1 \quad \text{for all } (\bar{x}, \bar{s}_j) \in P_I$$

$$\beta_j \geq 0 \quad j \in U,$$

where $\bar{x} = \sum_{j \in N} \bar{s}_j r^j$, $\bar{x} \in \mathbb{Z}^2$, $0 \leq \bar{s}_j \leq u_j$.



$$\begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 3/4 \\ 1/4 \end{pmatrix} + \frac{3}{10} \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \frac{1}{20} \begin{pmatrix} -1 \\ -5 \end{pmatrix}$$
$$\frac{3}{10} \beta_1 + \frac{1}{20} \beta_2 \geq 1$$

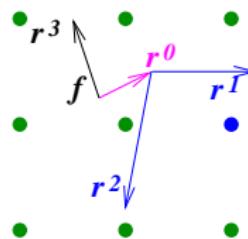
The polar system

A facet-defining inequality in standard form is a **nonnegative** basic feasible solution of the system in unknowns β

$$\sum_{j \in N} \bar{s}_j \beta_j \geq 1 \quad \text{for all } (\bar{x}, \bar{s}_j) \in P_I$$

$$\beta_j \geq 0 \quad j \in U,$$

where $\bar{x} = \sum_{j \in N} \bar{s}_j r^j$, $\bar{x} \in \mathbb{Z}^2$, $0 \leq \bar{s}_j \leq u_j$.



$$\begin{pmatrix} 2 \\ 0 \end{pmatrix} = \begin{pmatrix} 3/4 \\ 1/4 \end{pmatrix} + \begin{pmatrix} 1/2 \\ 1/4 \end{pmatrix} + \frac{17}{20} \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \frac{1}{10} \begin{pmatrix} -1 \\ -5 \end{pmatrix}$$

$$\beta_0 + \frac{17}{20} \beta_1 + \frac{1}{10} \beta_2 \geq 1$$

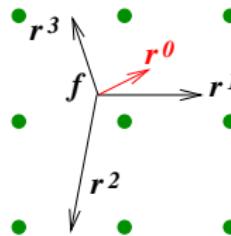
The polar system

A facet-defining inequality in standard form is a **nonnegative** basic feasible solution of the system in unknowns β

$$\sum_{j \in N} \bar{s}_j \beta_j \geq 1 \quad \text{for all } (\bar{x}, \bar{s}_j) \in P_I$$

$$\beta_j \geq 0 \quad j \in U,$$

where $\bar{x} = \sum_{j \in N} \bar{s}_j r^j$, $\bar{x} \in \mathbb{Z}^2$, $0 \leq \bar{s}_j \leq u_j$.



$$\begin{aligned} \frac{3}{10} \beta_1 + \frac{1}{20} \beta_2 &\geq 1 \\ \beta_0 + \frac{11}{20} \beta_1 + \frac{1}{10} \beta_2 &\geq 1 \end{aligned}$$

⋮

Obtaining a subsystem from the polar

A facet $\alpha \in \mathbb{R}_+^n$ is a **basic feasible solution** of the polar and therefore satisfies at least **n linearly independent constraints with equality**.

Our goal

For a given facet $\sum_{j=1}^n \alpha_j s_j \geq 1$, we want to find the **smallest subsystem** of equations from the polar (or induced by the polar) for which **the unique solution** is α .

The linear dependence property

Definition

A subset $J \subseteq N$ has **the linear dependence property** with respect to $\alpha \in \mathbb{R}^n$ if for all $\lambda \in \mathbb{R}^{|J|}$,

$$\sum_{j \in J} \lambda_j r^j = 0 \Rightarrow \sum_{j \in J} \lambda_j \alpha_j = 0.$$

Geometrically

Implication about representations

If $\bar{x} = f + \sum_{j \in J} s_j r^j$ and $\sum_{j \in J} s_j \alpha_j = 1$

implies

if $\bar{x} = f + \sum_{j \in J} t_j r^j$ then $\sum_{j \in J} t_j \alpha_j = 1$

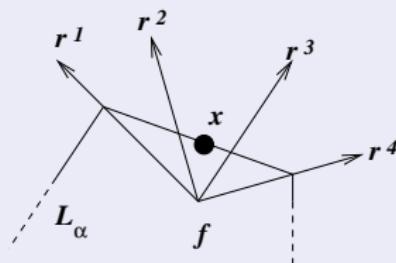
The linear dependence property

Definition

A subset $J \subseteq N$ has the linear dependence property with respect to $\alpha \in \mathbb{R}^n$ if for all $\lambda \in \mathbb{R}^{|J|}$,

$$\sum_{j \in J} \lambda_j r^j = 0 \Rightarrow \sum_{j \in J} \lambda_j \alpha_j = 0.$$

Geometrically



Implication about representations

If $\bar{x} = f + \sum_{j \in J} s_j r^j$ and $\sum_{j \in J} s_j \alpha_j = 1$

implies

if $\bar{x} = f + \sum_{j \in J} t_j r^j$ then $\sum_{j \in J} t_j \alpha_j = 1$

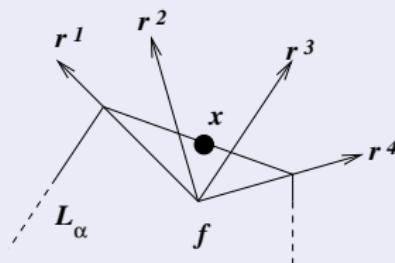
The linear dependence property

Definition

A subset $J \subseteq N$ has the linear dependence property with respect to $\alpha \in \mathbb{R}^n$ if for all $\lambda \in \mathbb{R}^{|J|}$,

$$\sum_{j \in J} \lambda_j r^j = 0 \Rightarrow \sum_{j \in J} \lambda_j \alpha_j = 0.$$

Geometrically



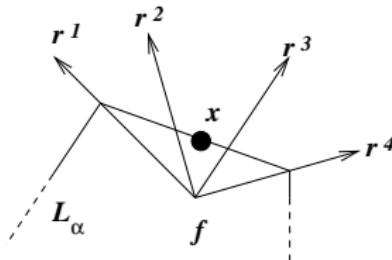
Implication about representations

If $\bar{x} = f + \sum_{j \in J} s_j r^j$ and $\sum_{j \in J} s_j \alpha_j = 1$

implies

if $\bar{x} = f + \sum_{j \in J} t_j r^j$ then $\sum_{j \in J} t_j \alpha_j = 1$

Linear dependence property allows us to get rid of some rays



Here $J = \{1, 2, 3, 4\}$ satisfies the linear dependence property wrt. α .

Assume $\{1, 2, 3, 4\} \subseteq U$

Any equation of the type

$$\alpha_2 \bar{s}_2 + \alpha_i \bar{s}_i = 1$$

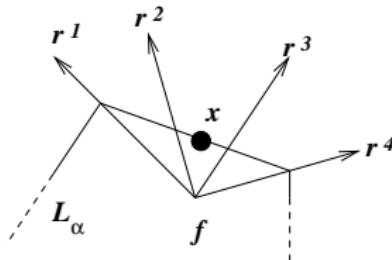
involving r^2 or r^3 can be equivalently replaced by

$$\alpha_2 = \sigma_1^2 \alpha_1 + \sigma_4^2 \alpha_4$$

$$\alpha_3 = \sigma_1^3 \alpha_1 + \sigma_4^3 \alpha_4$$

that we call linear dependence relation.

Linear dependence property allows us to get rid of some rays



Here $J = \{1, 2, 3, 4\}$ satisfies the linear dependence property wrt. α .

Assume $\{1, 2, 3, 4\} \subseteq U$

Any equation of the type

$$\alpha_2 \bar{s}_2 + \alpha_i \bar{s}_i = 1$$

involving r^2 or r^3 can be equivalently replaced by

$$\alpha_2 = \sigma_1^2 \alpha_1 + \sigma_4^2 \alpha_4$$

$$\alpha_3 = \sigma_1^3 \alpha_1 + \sigma_4^3 \alpha_4$$

that we call linear dependence relation.

Main theorem about reduction of the polar

Theorem

Let $\sum_{j \in N} \alpha_j s_j \geq 1$ be a facet in **standard form**.

Let X^\vee be the set of **extreme points** of X_α . α is a nonnegative extreme point of the polar and is the **unique solution** of the system in unknowns β

$$\sum_{j \in N} \beta_j s_j^x = 1 \quad \text{for all } x \in X^\vee \quad \text{One equation corresponding to} \quad (1)$$

one representation for each x

$$\sum_{k \in I(X)} \sigma_j^k \beta_k = \beta_j \quad j \in B \quad \text{linear dependence relations for bounded rays } j \quad (2)$$

$$\sum_{k \in I(X)} \sigma_j^k \beta_k = \beta_j \quad j \in U \quad \text{linear dependence relations for unbounded rays } j \quad (3)$$

Furthermore the system (1)-(2) (on less variables) is also **uniquely solvable**

Main theorem about reduction of the polar

Theorem

Let $\sum_{j \in N} \alpha_j s_j \geq 1$ be a facet in **standard form**.

Let X^\vee be the set of **extreme points** of X_α . α is a nonnegative extreme point of the polar and is the **unique solution** of the system in unknowns β

$$\sum_{j \in N} \beta_j s_j^x = 1 \quad \text{for all } x \in X^\vee \quad \text{One equation corresponding to} \quad (1)$$

one representation for each x

$$\sum_{k \in I(X)} \sigma_j^k \beta_k = \beta_j \quad j \in B \quad \text{linear dependence relations for bounded rays } j \quad (2)$$

$$\sum_{k \in I(X)} \sigma_j^k \beta_k = \beta_j \quad j \in U \quad \text{linear dependence relations for unbounded rays } j \quad (3)$$

Furthermore the system (1)-(2) (on less variables) is also **uniquely solvable**

Main theorem about reduction of the polar

Theorem

Let $\sum_{j \in N} \alpha_j s_j \geq 1$ be a facet in **standard form**.

Let X^\vee be the set of **extreme points** of X_α . α is a nonnegative extreme point of the polar and is the **unique solution** of the system in unknowns β

$$\sum_{j \in N} \beta_j s_j^x = 1 \quad \text{for all } x \in X^\vee \quad \text{One equation corresponding to} \quad (1)$$

one representation for each x

$$\sum_{k \in I(X)} \sigma_j^k \beta_k = \beta_j \quad j \in B \quad \text{linear dependence relations for bounded rays } j \quad (2)$$

$$\sum_{k \in I(X)} \sigma_j^k \beta_k = \beta_j \quad j \in U \quad \text{linear dependence relations for unbounded rays } j \quad (3)$$

Furthermore the system (1)-(2) (on less variables) is also **uniquely solvable**

Main theorem about reduction of the polar

Theorem

Let $\sum_{j \in N} \alpha_j s_j \geq 1$ be a facet in **standard form**.

Let X^\vee be the set of **extreme points** of X_α . α is a nonnegative extreme point of the polar and is the **unique solution** of the system in unknowns β

$$\sum_{j \in N} \beta_j s_j^x = 1 \quad \text{for all } x \in X^\vee \quad \text{One equation corresponding to} \quad (1)$$

one representation for each x

$$\sum_{k \in I(X)} \sigma_j^k \beta_k = \beta_j \quad j \in B \quad \text{linear dependence relations for bounded rays } j \quad (2)$$

$$\sum_{k \in I(X)} \sigma_j^k \beta_k = \beta_j \quad j \in U \quad \text{linear dependence relations for unbounded rays } j \quad (3)$$

Furthermore the system (1)-(2) (on less variables) is also **uniquely solvable**

Main theorem about reduction of the polar

Theorem

Let $\sum_{j \in N} \alpha_j s_j \geq 1$ be a facet in **standard form**.

Let X^\vee be the set of **extreme points** of X_α . α is a nonnegative extreme point of the polar and is the **unique solution** of the system in unknowns β

$$\sum_{j \in N} \beta_j s_j^x = 1 \quad \text{for all } x \in X^\vee \quad \text{One equation corresponding to} \quad (1)$$

one representation for each x

$$\sum_{k \in I(X)} \sigma_j^k \beta_k = \beta_j \quad j \in B \quad \text{linear dependence relations for bounded rays } j \quad (2)$$

$$\sum_{k \in I(X)} \sigma_j^k \beta_k = \beta_j \quad j \in U \quad \text{linear dependence relations for unbounded rays } j \quad (3)$$

Furthermore the system (1)-(2) (on less variables) is also **uniquely solvable**

Geometric study in the case of **one upper bound**

Henceforth we assume that $|B| = 1$, and that $\text{cone}_{j \in U} r^j = \mathbb{R}^2$ (simplifying assumption). We denote $B := \{e\}$.

Restriction on the number of equations of type (1)

There are two **main cases** : either 3 or 4 integer points have one equation corresponding to a tight representation.

Restriction on the number of equations of type (2)

- The bounded ray e is involved in either 0 or 1 or 2 linear dependence relations.
- If e is involved in 2 linear dependence relations, it must consist of disjoint pairs of unbounded rays.

Restriction on the number of equations of type (1)

There are two **main cases** : either **3** or **4** integer points have one equation corresponding to a tight representation.

Restriction on the number of equations of type (2)

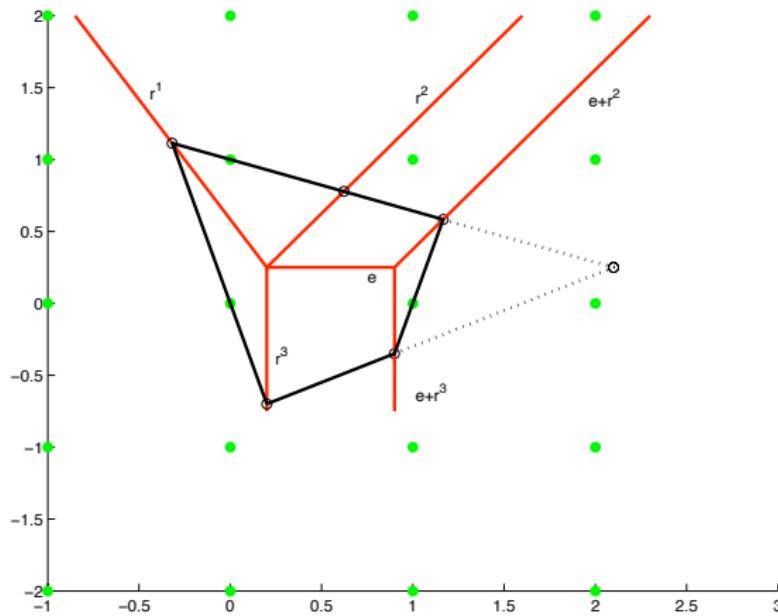
- The bounded ray e is involved in either **0** or **1** or **2** linear dependence relations.
- If e is involved in 2 linear dependence relations, it must consist of **disjoint pairs** of unbounded rays.

3 integer points and 1 linear dependence relation for the bounded ray

The minimal subsystem is 4×4

Variables : 3 unbounded rays and 1 bounded ray

Equations : 3 tight representations and 1 linear dependence relation

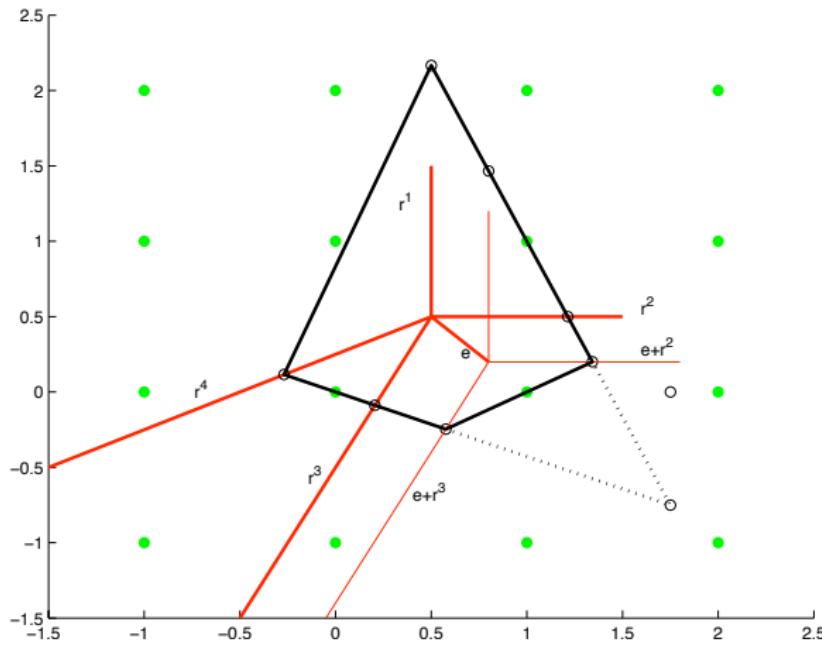


3 integer points and 2 linear dependence relation for the bounded ray

The minimal subsystem is 5×5

Variables : 4 unbounded rays and 1 bounded ray

Equations : 3 tight representations and 2 linear dependence relation

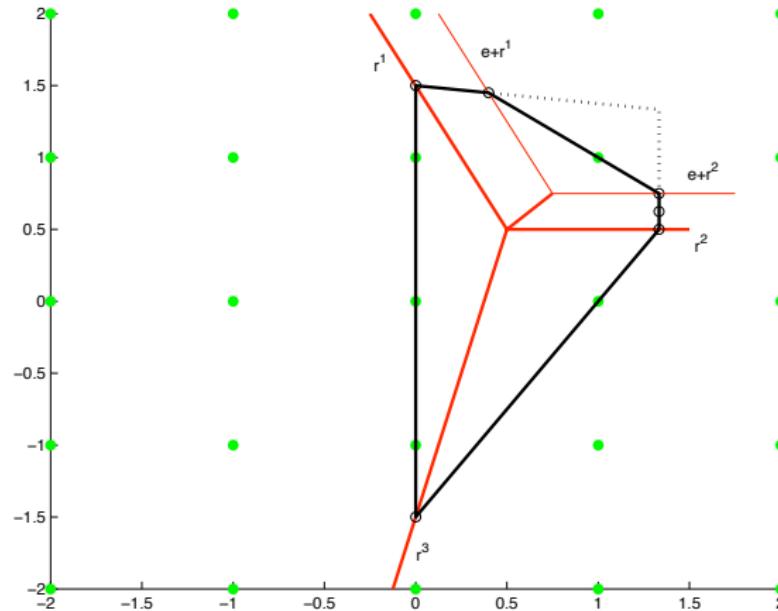


4 integer points and 0 linear dependence relation for the bounded ray

The minimal subsystem is 4×4

Variables : 3 unbounded rays and 1 bounded ray

Equations : 4 tight representations



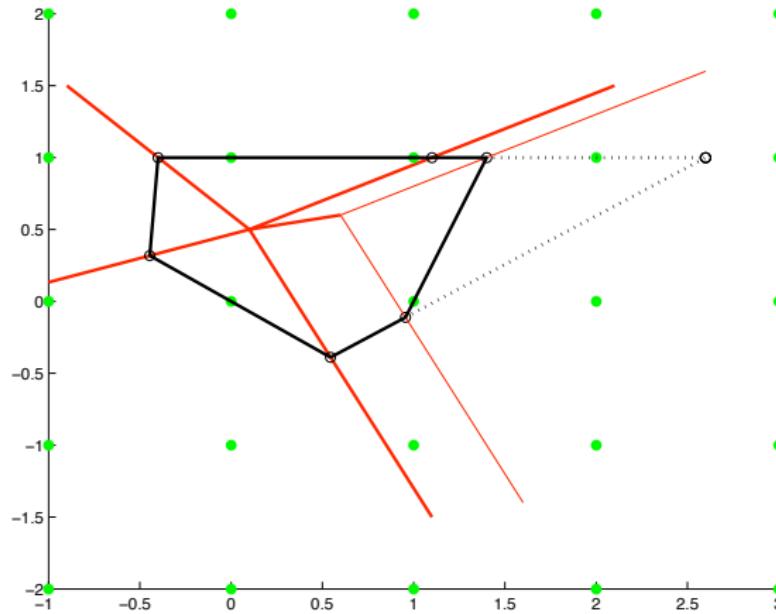
L_α is now a pentagon !

4 integer points and 1 linear dependence relation for the bounded ray

The minimal subsystem is 5×5

Variables : 4 unbounded rays and 1 bounded ray

Equations : 4 tight representations and 1 linear dependence relation



4 integer points and 2 linear dependence relation for the bounded ray

The minimal subsystem is 6×6

Variables : 5 unbounded rays and 1 bounded ray

Equations : 4 tight representations and 2 linear dependence relations

