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Relaxation of MIP

Simplex Tableau

Columns Corresponding to Columns Corresponding to
Basic Variable rhs Integer Non-Basic Variable Continuous Non-Basic Variable
xB1

= f1 + r1,1x1 · · ·+ r1,k xk + r1,k+1sk+1 · · ·+ r1,nsn

.
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.

.
xBm = fm + rm,1x1 · · ·+ rm,k xk + rm,k+1sk+1 · · ·+ rm,nsn
sBm+1

= fm+1 + rm+1,1x1 · · ·+ rm+1,k xk + rm+1,k+1sk+1 · · ·+ rm+1,nsn

.

.

.

.

.

.

.

.

.
. . .

.

.

.

.

.

.
. . .

.

.

.
sBp = fp + rp,1x1 · · ·+ rp,k xk + rp,k+1sk+1 · · ·+ rpnsn

1 xB1
, ..., xBm ∈ Z+

2 sBm+1
, ..., sBp ∈ R+

3 x1, ..., xk ∈ Z+

4 sk+1, ..., sn ∈ R+

Solution is ‘fractional’, i.e. f1, ..., fm are not all integer.
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Relaxation of MIP

Relaxation Step 1 : Drop Some Constraints
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Basic Variable rhs Integer Non-Basic Variable Continuous Non-Basic Variable
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Relaxation of MIP

Relaxation of Simplex Tableau

Columns Corresponding to Columns Corres ponding to
Basic Variable rhs Integer Non-Basic Variable Continuous Non-Basic Variable
xB1

= f1 + r1,1x1 · · ·+ r1,k xk + r1,k+1sk+1 · · ·+ r1,nsn
xB2

= f2 + r2,1x1 · · ·+ r2,k xk + r2,k+1sk+1 · · ·+ r2,nsn

1 xB1
, xB2

∈ Z+

2 x1, ..., xk ∈ Z+

3 sk+1, ..., sn ∈ R+

(f1, f2) /∈ Z2.
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Relaxation of MIP

Relaxation Step 2 : Drop Integrality Requirement

Columns Corresponding to Columns Corresponding to
Basic Variable rhs Integer Non-Basic Variable Continuous Non-Basic Variable
xB1

= f1 + r1,1x1 · · ·+ r1,k xk + r1,k+1sk+1 · · ·+ r1,nsn
xB2

= f2 + r2,1x1 · · ·+ r2,k xk + r2,k+1sk+1 · · ·+ r2,nsn

1 xB1
, xB2

∈ Z+

2 x1, ..., xk ∈ Z+
Relaxation
→ x1, ..., xk ∈ R+

3 sk+1, ..., sn ∈ R+

(f1, f2) /∈ Z2.
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Relaxation of MIP

Relaxation Step 2 : Drop Integrality Requirement

Columns Corresponding to
Basic Variable rhs Continous Variables
xB1

= f1 + r1,1s1 · · ·+ r1,k sk + r1,k+1sk+1 · · ·+ r1,nsn
xB2

= f2 + r2,1s1 · · ·+ r2,k sk + r2,k+1sk+1 · · ·+ r2,nsn

1 xB1
, xB2

∈ Z+

2 s1, ..., sk , sk+1, ..., sn ∈ R+

(f1, f2) /∈ Z2.
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Continuous Group Relaxation

Continuous Group Relaxation

Basic Variable rhs Columns With Continous Variables
xB1

= f1 + r1,1s1 · · ·+ r1,k sk + r1,k+1sk+1 · · ·+ r1,nsn
xB2

= f2 + r2,1s1 · · ·+ r2,k sk + r2,k+1sk+1 · · ·+ r2,nsn

1 xB1
, xB2

∈ Z+
Relaxation
→ xB1

, xB2
∈ Z

2 s1, ..., sk , sk+1, ..., sn ∈ R+

(f1, f2) /∈ Z2.

The valid inequalities for the above are valid for the original simplex tableau !

Model studied in Andersen, Louveaux, Weismantel, Wolsey, IPCO2007 (for the finite case),
Cornuéjols and Margot, 2009.

Related to Group Relaxation of Gomory and Johnson (1972), Johnson (1974).
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The 2 row-model

The model

„
x1

x2

«
=

„
f1

f2

«
+

nX
j=1

„
r j

1

r j
2

«
sj , x1, x2 ∈ Z, sj ∈ R+

Model studied in [Andersen, Louveaux, Weismantel, Wolsey, IPCO2007] (for the finite
case) and [Cornuéjols, Margot, 2009] (for the infinite case).
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The 2 row-model

The model

„
x1

x2
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=

„
f1

f2

«
+

nX
j=1

„
r j

1

r j
2

«
sj , x1, x2 ∈ Z, sj ∈ R+

The geometry

„
x1

x2

«
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„
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«
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2
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1
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„
−3
2

«
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0
−1
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r

r

r
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3

4

5
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r 1
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The geometry

The projection picture

2s1 + 2s2 + 4s3 + s4 +
12

7
s5 ≥ 1

We project the n + 2-dim space onto
the x-space

The facet is represented by a polygon
Lα

There is no integer point in the
interior of Lα

The coefficients are a ratio of
distances on the figure
α1 α3

The polygon is either a triangle or a
quadrilateral

r

r

r

r
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3
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Looking at two fractional vertices at once

Consider the model

xB1 = f1 + r1,1s1 · · ·+ r1,ksk + r1,k+1sk+1 · · ·+ r1,nsn

xB2 = f2 + r2,1s1 · · ·+ r2,ksk + r2,k+1sk+1 · · ·+ r2,nsn.

We may consider a potential pivot.
For example : s1 enters the basis
In the original full tableau, xBm must leave the basis as s1 takes the value −fm/rm,1.

In the model with 2 rows, we may consider

0 ≤ s1 ≤ u1

(and in this case, u1 = −fm/rm,1.)
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Quentin Louveaux (Université de Liège - Montefiore Institute) Cuts from two adjacent simplex bases August 2009 11 / 27



Looking at two fractional vertices at once

Consider the model

xB1 = f1 + r1,1s1 · · ·+ r1,ksk + r1,k+1sk+1 · · ·+ r1,nsn

xB2 = f2 + r2,1s1 · · ·+ r2,ksk + r2,k+1sk+1 · · ·+ r2,nsn

...
xBm = fm + rm,1s1 · · ·+ rm,ksk + rm,k+1sk+1 · · ·+ rm,nsn

We may consider a potential pivot.
For example : s1 enters the basis
In the original full tableau, xBm must leave the basis as s1 takes the value −fm/rm,1.

In the model with 2 rows, we may consider

0 ≤ s1 ≤ u1

(and in this case, u1 = −fm/rm,1.)
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Updated Two Row Model

The model with bounds

„
x1

x2

«
=

„
f1

f2

«
+
X
j∈U

„
r j

1

r j
2

«
sj +

X
j∈B

„
r j

1

r j
2

«
sj

x1, x2 ∈ Z,
sj ∈ R+ for j ∈ U,

0 ≤ sj ≤ uj for j ∈ B.

Remark : we denote by N := U ∪ B

The model with bounds on the integer variables has been studied by Basu, Conforti,
Cornuéjols, Zambelli [2009], Dey, Wolsey [2009] and Fukasawa, Günlük [2009]
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Characterizing the facets of the model with bounds

Let
P

j∈N βjsj ≥ 1 be a facet-defining inequality for the convex hull of the model.

All coefficients βj 6≥ 0

We can complement continuous variables that have a negative coefficient and writeX
j∈B−

αj(uj − sj) +
X
j∈B+

αjsj +
X
j∈U

αjsj ≥ 1

with αj ≥ 0 for all j

It is as seeing the problem from the vertex f +
P

j∈B−
αjuj and reversing the

direction of the rays in B−
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Facet-defining inequality in standard form

In the following, we assume that every facet considered from the right vertex is in
standard form and can be written X

j∈N

αjsj ≥ 1

with αj ≥ 0 for all j ∈ N.

We can also consider the projection picture similar to the unbounded case !
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Facet-defining inequality in standard form

In the following, we assume that every facet considered from the right vertex is in
standard form and can be written X

j∈N

αjsj ≥ 1

with αj ≥ 0 for all j ∈ N.

We can also consider the projection picture similar to the unbounded case !
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What does carry over from the unbounded to the bounded case ?

r

2r
3r

0r

1

What does carry over

Lα = {x ∈ R2 | ∃s with x = f +
P

j∈N sj r
j , 0 ≤ sj ≤ uj ,

P
j αjsj ≤ 1} is a polygon

The interior of Lα has no integer point

Xα = Lα ∩ Z2 is a triangle or a quadrilateral

What does not carry over

Lα is a triangle or quadrilateral

The vertices of Lα are on the rays (f + λr j) with λ ≥ 0

α can be determined by a system with as many variables as the number of sides of
the polygon (Lα or Xα)

Each integer point has exactly one relevant “vertex”-representation
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The polar system
A facet-defining inequality in standard form is a nonnegative basic feasible solution of the
system in unknowns β X

j∈N

s̄jβj ≥ 1 for all (x̄ , s̄j) ∈ PI

βj ≥ 0 j ∈ U,

where x̄ =
P

j∈N s̄j r
j , x̄ ∈ Z2, 0 ≤ s̄j ≤ uj .
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The polar system
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Obtaining a subsystem from the polar

A facet α ∈ Rn
+ is a basic feasible solution of the polar and therefore satisfies at least n

linearly independent constraints with equality.

Our goal

For a given facet
Pn

j=1 αjsj ≥ 1, we want to find the smallest subsystem of equations
from the polar (or induced by the polar) for which the unique solution is α.
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The linear dependence property

Definition

A subset J ⊆ N has the linear dependence property with respect to α ∈ Rn if for all
λ ∈ R|J|, X

j∈J

λj r
j = 0⇒

X
j∈J

λjαj = 0.

Geometrically

Implication about representations

If x̄ = f +
P

j∈J sj r
j and

P
j∈J sjαj = 1

implies

if x̄ = f +
P

j∈J tj r
j then

P
j∈J tjαj = 1
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Linear dependence property allows us to get rid of some rays

r

Lα f

r 1 r 2

r 3

4
x

Here J = {1, 2, 3, 4} satisfies the linear dependence property wrt. α.
Assume {1, 2, 3, 4} ⊆ U
Any equation of the type

α2s̄2 + αi s̄i = 1

involving r 2 or r 3 can be equivalently replaced by

α2 = σ2
1α1 + σ2

4α4

α3 = σ3
1α1 + σ3

4α4

that we call linear dependence relation.
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Main theorem about reduction of the polar

Theorem

Let
P

j∈N αjsj ≥ 1 be a facet in standard form.
Let X v be the set of extreme points of Xα. α is a nonnegative extreme point of the polar
and is the unique solution of the system in unknowns βX

j∈N

βjs
x
j = 1 for all x ∈ X v One equation corresponding to (1)

one representation for each x

X
k∈I (X )

σk
j βk = βj j ∈ B linear dependence relations for bounded rays j (2)

X
k∈I (X )

σk
j βk = βj j ∈ U linear dependence relations for unbounded rays j (3)

Furthermore the system (1)-(2) (on less variables) is also uniquely solvable
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Quentin Louveaux (Université de Liège - Montefiore Institute) Cuts from two adjacent simplex bases August 2009 20 / 27



Main theorem about reduction of the polar

Theorem

Let
P

j∈N αjsj ≥ 1 be a facet in standard form.
Let X v be the set of extreme points of Xα. α is a nonnegative extreme point of the polar
and is the unique solution of the system in unknowns βX

j∈N

βjs
x
j = 1 for all x ∈ X v One equation corresponding to (1)

one representation for each x

X
k∈I (X )

σk
j βk = βj j ∈ B linear dependence relations for bounded rays j (2)

X
k∈I (X )

σk
j βk = βj j ∈ U linear dependence relations for unbounded rays j (3)

Furthermore the system (1)-(2) (on less variables) is also uniquely solvable
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Geometric study in the case of one upper bound

Henceforth we assume that |B| = 1, and that conej∈U r j = R2 (simplifying assumption).
We denote B := {e}.
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Further restrictions in the size of the minimal uniquely solvable system

Restriction on the number of equations of type (1)

There are two main cases : either 3 or 4 integer points have one equation corresponding
to a tight representation.

Restriction on the number of equations of type (2)

The bounded ray e is involved in either 0 or 1 or 2 linear dependence relations.

If e is involved in 2 linear dependence relations, it must consist of disjoint pairs of
unbounded rays.
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3 integer points and 1 linear dependence relation for the bounded ray

The minimal subsystem is 4× 4
Variables : 3 unbounded rays and 1 bounded ray
Equations : 3 tight representations and 1 linear dependence relation

−1 −0.5 0 0.5 1 1.5 2 2.5 3
−2

−1.5
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e+r3

r3

e
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3 integer points and 2 linear dependence relation for the bounded ray

The minimal subsystem is 5× 5
Variables : 4 unbounded rays and 1 bounded ray
Equations : 3 tight representations and 2 linear dependence relation

−1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
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4 integer points and 0 linear dependence relation for the bounded ray

The minimal subsystem is 4× 4
Variables : 3 unbounded rays and 1 bounded ray
Equations : 4 tight representations
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Lα is now a pentagon !
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4 integer points and 1 linear dependence relation for the bounded ray

The minimal subsystem is 5× 5
Variables : 4 unbounded rays and 1 bounded ray
Equations : 4 tight representations and 1 linear dependence relation
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4 integer points and 2 linear dependence relation for the bounded ray

The minimal subsystem is 6× 6
Variables : 5 unbounded rays and 1 bounded ray
Equations : 4 tight representations and 2 linear dependence relations
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