Available online at www.sciencedirect.com
-

“.* ScienceDirect

GEOMORPHOLOGY

www.elsevier.com/locate/geomorph

ELSEVIER Geomorphology 89 (2007) 391 —404

Mapping landslide susceptibility from small datasets: A case study
in the Pays de Herve (E Belgium)

Alain Demoulin ***, Chang-Jo F. Chung °

* Department of Physical Geography and Quaternary, University of Liége, Sart Tilman, Bll, B-4000, Li¢ge, Belgium
° National Fund for Scientific Research, Belgium
¢ Spatial Data Analysis Laboratory, Geological Survey of Canada, Ottawa, Canada

Received 11 July 2006; received in revised form 21 December 2006; accepted 9 January 2007
Available online 19 January 2007

Abstract

A landslide susceptibility map is proposed for the Pays de Herve (E Belgium), where large landslides affect Cretaceous clay
outcrop areas. Based on a Bayesian approach, this GIS-supported probabilistic map identifies the areas most susceptible to deep
landslides. The database is comprised of the source areas of ten pre-existing landslides (i.e. a sample of 154 grid cells) and of six
environmental data layers, namely lithology, proximity to active faults, slope angle and aspect, elevation and distance to the nearest
valley-floor. A 30-m-resolution DEM from the Belgian National Geographical Institute is used for the analysis. Owing to the small
size of the sample, a special cross-validation procedure of the susceptibility map is performed, which uses in an iterative way each
of the landslides to test the predictive power of the map derived from the other landslides. Four different sets of variables are used
to produce four susceptibility maps, whose prediction curves are compared. While the prediction rates associated with the models
not involving the “proximity to active fault” criterion are comparable to those of the models considering this variable, strong
weaknesses inherent in the fault data on which the latter rely suggest that the final susceptibility map should be based on a model
that excludes any reference to fault. This highlights the difference between a triggering factor and determining factors, and in the
same time broadens the scope of the produced map. A single reactivated slide is also used to test the possibility of predicting future
reactivation of existing landslides in the area. Finally, the need for geomorphological control over the mathematical treatment is
underlined in order to obtain realistic prediction maps.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction senses. This has given rise to innumerable, more or less

meaningful landslide hazard zonation and prediction

In the last three decades, an abundant literature has
been concerned with landslide hazard prediction, using
the concepts of hazard and prediction in many different
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maps (Guzzetti et al., 1999). The definition of hazard
includes several aspects, among which temporal and
spatial probabilities as well as the “intensity” (or mag-
nitude) of landsliding are most important (Varnes, 1984;
Flageollet, 1999). However, as suggested by Einstein
(1997) and reflected in the USGS procedure where slope
stability maps are a distinct part of the hazard zonation
maps (USGS, 1982/83), it is preferable to separate the
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spatial and temporal probability estimates. The former
are related to the particular combinations of “determin-
ing” factors favourable to landsliding, whereas the lat-
ter depend on probability of occurrence of the time-
dependent triggering factors (Leroi, 1997) such as
earthquakes or heavy precipitations.

There are several ways, from purely qualitative to
quantitative, to produce predictive maps that portray the
spatial distribution of landslide hazard (Guzzetti et al.,
1999; Clerici et al.,, 2002; Chung and Fabbri, 2004).
However, they all rely on the basic assumption that “slope
failures in the future will be more likely to occur under the
conditions which led to past and present instability”
(Guzzettietal., 1999, Chung and Fabbri, in press). Mainly
based on field geomorphological evidence, some maps
are either simple inventories of past events (Highland,
1997; Soldati, 1999), often developed in isopleth maps
(Wright et al., 1974; DeGraff, 1985; Guzzetti et al., 1994),
or are direct geomorphological maps of landslide-prone
areas whose quality strongly depends on the investigator’s
ability to identify potential slope failures (Humbert, 1977;
Dumas et al., 1984; Kienholz et al., 1984; Zimmerman
et al., 1986). In order to overcome partly the problem of
subjectivity inherent in geomorphological mapping,
semi-quantitative hazard maps use a more systematic
frame where spatial units of varying nature (catchment
and slope unit) are ranked into classes of relative landslide
susceptibility on the basis of their environmental
characteristics (Hutchinson and Chandler, 1991; Siddle
etal., 1991; Moon etal., 1992; Fell etal., 1996) and where
GIS and statistical analysis may already be invoked
(Carrara et al., 1977, 1991; Irigaray et al., 1999). Such a
statistics-oriented approach finally leads to fully quanti-
tative maps that locate future landslide occurrence as a
result of a GIS-based multivariate statistical analysis
(Rezig et al., 1996; Leroi, 1997). Provided a validation of
the results is carried out, these are objective and
meaningful tools for landslide hazard prediction (Chung
et al., 1995; Chung and Fabbri, 2004, in press).

While a main drawback of the heuristic approach is
its subjective character, it will also happen that a purely
mathematical GIS-based treatment of environmental
variables could be misleading and yield unrealistic
hazard maps. Indeed, the benefit of covering uniformly
and objectively a study area can be counteracted by an
inadequate choice of the predictor variables or by the
errors associated with data manipulation (Guzzetti et al.,
1999). When predicting landslide hazard, a careful
balancing of the geomorphologist’s expertise in the field
and the objectivity of mathematical analysis is thus
highly desirable. The two methods are complementary
and this paper aims to demonstrate how to take advan-

tage of their combination, where a GIS-based probabi-
listic treatment is supported by geomorphological field
considerations. Not only will a geomorphological eval-
uation be given of the mathematically obtained landslide
susceptibility map, but also field evidence will be used
to check input data and probabilities. Our main purpose
is, however, to explore the possibility of building a
susceptibility map in an area where few landslides have
occurred, and especially of validating it. We stress again
that, while we try to predict the spatial distribution of
future landslide occurrences, varying causes (earth-
quake, climate and human influence) may be involved
in their production, which renders temporal estimates of
landslide probability all the more unrealistic, as some of
these causes may change over time.

2. Geomorphological, geological and climatic setting

Several ancient large landslides have recently been
described to the east of Liége, in eastern Belgium
(Demoulin et al., 2003) (Figs. 1 and 2). Radiocarbon
dating suggests that some of them could have appeared
around 150 AD. Reactivation episodes have also been
identified around 400, 700 and 1300 AD, and at least
two landslides are presently active. A number of new
houses were recently built close to, and even on slipped
terrains, two of them being damaged during a reactiva-
tion event in 1998 (Demoulin and Glade, 2005). This
obviously makes sufficient land-planning justification
for analysing the landslide hazard in the area. Further-
more, while it is highly difficult to estimate a return
period for natural reactivations of old landslides, several
observations show that any human intervention on or
close to disturbed slopes can also cause catastrophic
ground displacement (Graulich, 1969).

The study area belongs to the Pays de Herve, a
moderately dissected tableland. Its mean altitude is
250 m, with a relief of 80—100 m and slope angles that
rarely exceed 12°. The ancient landslides occupy a total
area of 0.9 km? and are all located in the central part of
the main E—~W running divide, separating the Meuse and
Vesdre basins, and on a secondary S-striking divide
(Figs. 1 and 3). Most of the landslides started in the
upper part of moderate (4—10°) slopes. They are gen-
erally compound (multiple rotational+translational)
landslides, up to 700 m in width and 400 m in length,
and show steep arcuate head scarps, up to 17 m high.

The geology of the Pays de Herve is characterized by
the extensive preservation of subhorizontal Cretaceous
cover deposits resting on a folded Paleozoic basement.
Whilst the shales of the basement crop out in the valleys,
the Upper Cretaceous cover forms the bulk of the ridges
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Fig. 1. Simplified geological map of the study area and location of the landslides. The landslides are represented in black. HFZ: Hockai fault zone.
The inset locates the study area with respect to the Rhenish shield and the Lower Rhine Embayment (LRE).

(Fig. 1). At its base, the Aachen Formation is mainly
composed of fine sands interlayered with coarse sands
and clays. In the study area, the Aachen sands may be up
to 10 m thick. The overlying Vaals Formation displays
glauconiferous clays and marls. Its maximum thickness
is 25 m in the area affected by landslides. To the east, it
gradually becomes sandier, with some indurated layers.
Resting on the Vaals clays, the chalks of the Gulpen
Formation are well preserved on top of most ridges of
the Pays de Herve. In their upper metres, they are
generally weathered to clay-with-flints and can no
longer be distinguished from the weathered Maastricht

chalks. They display large solution pockets filled with
Oligocene sands and Quaternary loess.

With regard to hydrology, the main aquifer of the
Pays de Herve lies within the Gulpen chalks, but nu-
merous small aquifers may also exist within the Aachen
sands, trapped between the clays resulting from the
Mesozoic weathering of the Paleozoic basement and the
Vaals clays. Moreover, a fissure aquifer is to be found
locally within the fractured Paleozoic shales. Tectoni-
cally, all large landslides of the Pays de Herve are
located within or very close to the La Minerie graben
(Fig. 1). This small NNW-striking graben is limited by
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Fig. 2. Oblique aerial view of a typical landslide of the Pays de Herve
(number 6 in Fig. 3). The bold line follows the top of the headscarp and
the dashed line defines the approximate extent of the landslide.

active faults, namely the Ostende fault segment of the
seismogenic Hockai fault zone. An earthquake of
estimated M,,>6 is suspected to have occurred in the
area in 1692 (Camelbeeck et al., 1999).

All landslides extend mainly in the Vaals clays, but
with a basal shear surface systematically starting at the
level of the underlying Aachen sands. Demoulin et al.
(2003) showed that landsliding was initiated by
carthquake-triggered liquefaction of some layers in the

Toward the Meuse basin
«——

Battice
[ ]

Aachen sands, which first induced the translational
gliding of the lower part of the slope, which in turn
caused retrogressive rotational sliding in the upper part
of the slope. The combined presence of the Aachen
sands and the overlying Vaals clays was thus necessary
for these landslides to occur.

As for the climatic context, the centennial daily
rainfall is 110 mm, without any significant spatial
variation within the study area. In 1998, a daily rainfall
of 126 mm caused only a limited reactivation of two pre-
existing landslides. However, these values cannot be
extrapolated to the time of initiation of the large
landslides (150 AD?). As the climatic influence is here
a temporal much more than a spatial variable, it will not
be included in the hazard analysis.

3. Methodology
3.1. Basic idea of the quantitative model

We assume that the study area is divided with respect
to the occurrence of landslides into two non-overlapping
sub-areas, respectively the “hazard” (denoted by M) and
“non-hazard” (denoted by M) sub-areas. Consider a
pixel (or grid cell) x for which the m predictor variables
(contained in m GIS thematic and continuous layers)

Fig. 3. Digital elevation model of the study area showing the location of the ten landslide scars used in the prediction analysis. The highest elevations

are in white.
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take the respective values xy, -, xx, y1, =, ¥, Where
the first £ values, x;, -+, x; correspond to GIS thematic
data layers and the subsequent / values, y;, -, y,
represent continuous data layers and m=k+h. The
multivariate likelihood ratio function that the pixel x
will belong to the trigger area of a future landslide is
denoted by:

A(-)C:xlf.'axkaylf“7yh> (1)
:f{xla' X1, 7yh|M}
f{xlv' C Xk Yyt 7yh|M}

where f{x1, =, X, yi, 0, v |M} and fixy, o, xp, yi,
=+, yp|M} are read from the multivariate frequency
distribution functions in M, and M, respectively.

Assuming that the m predictor variables are condi-
tionally independent, we get

A xy, XV ) = A ixg) A xg)
XA yr) Xz n) (2)

where the likelihood ratio functions X (x:x;) and X(x:y;)
in Eq. (2) are related with the unknown future landslides
and cannot be obtained without an assumption on the
future landslides. These unknown functions are esti-
mated by substituting the values derived from a set of
past landslides for the future landslides and the estimates
are obtained by:

~

X(X CXL, Xk V1, '7yh) :X(X : X])' ! A()C : xk)
XXXy A ) (3)
where

A

Alx i xy)

__ # of past landslide pixels in x; category of the ith layer

" # of non—landslide pixels in x; category of the ith layer’

_flyM}
My’

withf {mIm} andf {»IM} being the empirical frequen-
cy distribution functions of the j-th continuous data layer
in M and Mrespectively. As an example, two empirical
distribution functions of the single slope angle data layer
in two separate subareas, M, the “trigger areas” of the ten
landslides contained in the sample and M, the remainder
of the study area, are illustrated in Fig. 4a. The two
functions are distinctly different and hence the
corresponding likelihood ratio function of the slope
angle (Fig. 4b) should provide a significant contribution
to the prediction of landslide hazard in the area.
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Fig. 4. Example of the likelihood ration function calculated for the “slope
angle” independent variable. (a) Empirical distribution functions of the
variable in two separate subareas, the “trigger areas” of the ten landslides
included in the sample and the remainder of the study area. (b) The
corresponding likelihood ratio function (Eq. (4)) of slope angles.

For the likelihood ratio function of Eq. (1), the
Bayesian estimator of Eq. (3) is one of the simplest
estimators presented in Chung and Fabbri (2004).
Beyond easy calculation, this Bayesian approach offers
the advantage of yielding significant results already
with small datasets. The estimated likelihood ratio
function of Eq. (1) cannot be directly interpreted as the
actual probability that the pixel will be a part of the
trigger area of a future landslide without several specific
assumptions on the future landslides. Instead, in the
absence of any time dimension, the estimator of Eq. (3)
can be used to describe the relative hazard attached to
the pixel.

Therefore, rather than the values of the estimator of
Eq. (3), we used their ranking to generate a suscepti-
bility map. We sorted all these probabilities (one at each
pixel of the study area) in decreasing order (the pixel
with the largest estimator is given the highest order) and
we replaced each pixel’s estimated probability by its
rank divided by the total number of pixels. The obtained
value was termed “favourability index”. The index value
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of the pixel with the largest estimated probability, the
predicted most hazardous pixel, is thus 1, and the pixel
with the smallest estimate has the value 1/total number
of pixels.

3.2. Cross-validation process

To evaluate the prediction results, we employed the
following three-step procedure (Chung and Fabbri,
2004).

Step 1 We remove one landslide from the dataset as if it

had not yet occurred.

Step 2 Using the remaining landslides, we construct
a prediction model based on the estimator of
Eq. (3).

Step 3 To evaluate the prediction efficiency, we
appraise the favourability indices obtained in
the trigger area of the landslide selected in Step
1 (not used in Step 2). The median index of the
test landslide represents its “individual (spatial)
prediction rate”, indicating how many percents
of the ranked pixels (i.e., of the study area) have
to be retained in order to include 50% of this
landslide in the hazardous area.

This three-step procedure is repeated for each
landslide of the dataset. The prediction rates generated
in Step 3 are then combined in the same manner to
validate the results of the general prediction (Table 1).
Without this kind of cross-validation technique or tests

Table 1
Results of the prediction model a (see caption of Fig. 5)

with independent data, susceptibility maps cannot be
evaluated and therefore would be meaningless. It also
allows us to compare models and to study the
contribution of each input layer or of their combination
to the prediction models. Such a prediction rate is
fundamentally different from the usually reported
success rates which only verify that the landslides of
the dataset are located within the most hazardous zones
of the map identified by the landslides themselves.

4. Input database for the quantitative analysis

The study area covers 177.7 km® and consists of
197,400 (=420 % 470) grid cells with a 30 m resolution. The
spatial database consists of seven layers (variables). They
are (1) the spatial distribution of the scars of 10 large
landslides (with two subsets respectively comprised of the
trigger areas and the deposition areas, from which only the
former are involved in the analysis); one categorical,
qualitative variable: (2) lithology (12 classes); and five
quantitative, continuous variables: (3) distance from active
faults; (4) distance from drainage network; (5) slope aspect;
(6) elevation; and (7) slope angle. The relevance of the
independent variables as predictors may be tested by
comparing their empirical distribution functions in two
separate subareas, respectively the trigger areas of the
landslides included in the dataset and the remainder of the
study area (Fig. 4).

For each layer, one data value is assigned to each pixel.
Whenever we refer to a “future landslide” in this paper, we
assume that it pertains to the same landslide population

A. Cross-validation results

B. Model results

Test landslide number Individual ranking Sindiv. landsl. Fraction of study area Increasing prediction Landslide number
(Fig. 3) m hazardous rate (Fig. 3)
1 0.933 0.071 0.002 0.253 2

2 0.998 0.253 0.013 0.286 3

3 0.987 0.033 0.016 0.448 7

4 0.974 0.078 0.026 0.526 4

5 0.971 0.091 0.027 0.610 10

6 0.915 0.136 0.028 0.656 8

7 0.984 0.162 0.029 0.747 5

8 0.972 0.045 0.067 0.818 1

9 0.895 0.046 0.085 0.955 6

10 0.973 0.084 0.105 1.000 9

A. Results of the cross-validation procedure. The individual ranking values correspond to the median favourability indices (ranked from 1 to 0) of
each landslide successively taken as the test landslide for the validation. Siygiv. 1andst/Stot. 1andsl. denotes the fraction of M (summed trigger areas of the
ten landslides contained in the dataset) corresponding to each test landslide. B. Prediction rate curve associated with the model and displayed in Fig. 6,
directly derived from the values of the cross-validation. The fraction of the study area to be taken as hazardous in order to get a particular prediction
rate equals one minus the ranking (or favourability index) of the related landslide.
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from which the 10 ancient landslides of the dataset had
originated. This implies that we predict only landslides
similar in characteristics and size to the 10 pre-existing
landslides.

4.1. Landslide scars

The inventory of landslides has been carried out
through the analysis of aerial photographs at 1:10,000
(1947) to 1:18,500 (1971) scale. All landslides identified
on the photos have been verified in the field. The 17
confirmed forms have been classified into two types
according to morphological expression and size. The
first type corresponds to extended deep compound block
slides with a steep head scarp, parallel ridges determined
by the upper edge of rotated blocks, and a downslope
hummocky topography generally terminated by a 2—3 m
high scarplet. Ten landslides, with an average size of
7.8 ha, belong to this first group and are used for the
analysis (Fig. 3). Another class collects all small (<2 ha),
shallow or questionable forms which are not considered
for the prediction.

Furthermore, in order to detect the right combination
of landslide-favouring variables, we distinguished
between the upper zones where the landslides started
and the lower zones of deposition. This was done
automatically by assigning to the upper “trigger” zone
the 15% of the pixels with highest elevations for each
landslide. The scars of the 10 large landslides cover 843
pixels. The selected trigger areas consist of 154 pixels,
actually more than 15% due to the distribution of pixel
elevations in each landslide.

4.2. Morphological data

Morphological variables have been obtained from a
DEM produced by the Belgian National Geographical
Institute (IGN) with a resolution of 30 m. This DEM was
built by scanning, vectorising and identifying the
contour lines of the IGN topographic maps at 1:50,000
scale. For this part of Belgium, the accuracy of elevation
data is expected to be 7.8 m. Our experience of com-
parison with GPS data however suggests that semi-
systematic errors can vitiate the contour lines of the
topographic maps by vertically stretching some valleys,
sometimes by much more than 10 m. Fortunately, this
especially affects slopes steeper than 20°, which are
almost absent from the study area, and one may
reasonably expect that the uncertainty on slope values
does not exceed 1°. Three morphological variables
(elevation, slope angle and slope aspect) have been
computed to make as many thematic GIS layers.

4.3. Geological data

The geological data come from the new Belgian
geological maps at 1:25,000 scale, and are expressed in
two GIS layers, one devoted to the bedrock lithology, the
other to active faults. Twelve lithological classes have been
distinguished. The outcrop areas of two of them (“Devo-
nian and lower Carboniferous” and “Tertiary marine sands
and Quaternary deposits”) were excluded from the analysis
because we know that these rocks are unfit to support the
type of landslide we are trying to predict here. Upper
Carboniferous shales, Cretaceous Aachen sands and
Gulpen chalks and present-day alluvial plain deposits
make four further classes. Finally, as all recorded large
landslides occurred in outcrop areas of the Vaals clays but
in a close causal relationship with the presence of the
Aachen sands, we divided the Vaals clays into three
subclasses on the basis of proximity to the Aachen sands:
<300 m, between 300 and 500 m, and >500 m distance to
the outcropping Aachen sands. Since most hillslopes along
the potentially threatened ridges are comprised within a
narrow range of slope angles and the different rock types
correspond to superposed horizontal layers, the proximity
(in the x—y plane) of the Vaals clays to the Aachen sands
basically represents the depth at which the liquefaction-
prone sands are encountered below the clays in a particular
place. The limit distances were chosen according to the
corresponding depth of the top of the sands (300 m
distance =~ 30 m depth) and, secondarily, to the character-
istics of the landslide distribution in the area. Moreover, to
allow for a possible role of the overlying chalk cover in the
landslide distribution, we divided once more the three Vaals
subclasses in two subunits depending on the proximity to
the Gulpen chalks (<500 m and >500 m apart from
Gulpen outcrops). We thus conducted two parallel analyses
using either three subclasses of the Vaals clays (assuming
exclusive Aachen sands co-influence) or six Vaals
subclasses (with additional influence of the Gulpen chalks)
in order to get indications on the landslide mechanism itself
through the comparison of the obtained prediction rates
(see below).

The “distance to active faults” layer has been created in
order to take into account the probable seismic origin of
the landslides. Detailed investigation carried out by
Demoulin et al. (2003) showed that they were most
certainly triggered by an earthquake on the NNW-striking
Ostende segment of the Hockai fault zone (Fig. 1). It is
widely accepted that the main WSW-striking Variscan
thrust faults of the area are now inactive (Fourmarier,
1954). On the contrary, although only the Hockai fault
zone reveals clear signs of Quaternary activity, each of the
numerous NNW-striking normal faults, parallel to the
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border faults of the Lower Rhine rift segment, must be
considered potentially active. We therefore retained only
these normal faults to assign to every pixel of the study
area a value inversely proportional to the distance to the
nearest potentially active structure.

4.4. Hydrological data

In the absence of groundwater data, and since soil
moisture information is more or less useless with respect to
deep landslides, we computed a rather indirect hydrological
variable. Assuming that proximity of a valley floor and,
secondarily, local slope angle of a hillslope element are
good indicators of the local groundwater depth (the higher
on a hillslope a pixel is located, and the steeper its slope
angle, the more chances the groundwater level has to be
deep), we combined both variables to define a proxy
variable (“distance to the nearest valley floor”) which is
supposed to reflect roughly the depth of the aquifer or, in
inverse relationship, the residence time of percolating water
within each pixel before reaching the top of the aquifer.
This variable (D) is computed as

D = D'VF (5)

With Dy=Euclidean distance to the nearest valley
floor axis, and VF (vertical factor)=1+0.02S (S=local

tangent slope gradient). The 0.02 factor has been chosen
empirically to get a reasonable balance between distance
and slope influences on the variable.

5. Results

Though highly probable, the seismic origin of the
pre-existing landslides, and thus the role of active faults
as triggering factor, cannot be definitely proved
(Demoulin et al., 2003). Moreover, one may wonder
whether, beyond the need for the combined occurrence
of the Aachen sands and the Vaals clays, the presence of
an overlying chalk cover had any influence on the
spatial distribution of the landslides. We thus were faced
with the difficulty of choosing the right variables for the
hazard prediction, so that we conducted four analyses
with different sets of variables, either taking into ac-
count or not the “distance from active fault” data layer,
and also considering three or six lithological subclasses
within the Vaals clays outcrop area.

Fig. 5 shows the four maps we obtained, that predict
the relative hazard associated with each pixel. In each
map, the 1% most hazardous pixels have been
distinguished, then slicing of the favourability indices
proceeds by 5% steps towards less hazardous zones, and
non-hazardous areas are coloured in blue tones. The
prediction curves associated with the different models

Fig. 5. Relative landslide susceptibility maps, where the pixels are ranked according to their degree of hazard (joint conditional probability). The 1%
most hazardous pixels have been distinguished in violet, then slicing of the favourability indices proceeds by 5% steps towards less hazardous zones,
and non-hazardous areas appearing in blue tones. The landslides are figured in black, with their trigger area delimited by a bold line. (a) Model using
five layers of geomorphological information (no “fault proximity”) and three lithological subclasses within the Vaals clays outcrop area (see text).
(b) Six layers of geomorphological information (with “fault proximity”) and three lithological subclasses within the Vaals clays outcrop area. (c) Five
layers of geomorphological information (no “fault proximity”) and six lithological subclasses within the Vaals clays outcrop area. (d) Six layers of
geomorphological information (with “fault proximity”) and six lithological subclasses within the Vaals clays outcrop area.
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indicate that, in all cases, the 10% of pixels with the
highest favourability indices suffice to define the areas
where every future landslide is expected to occur
(Fig. 6). This is indeed an unexpectedly high quality
of prediction, probably due to the clear-cut character-
istics of the determining environmental variables and to
the homogeneity of the database.

The two maps generated without using the “distance
from active fault” data layer (Fig. 5a, c¢) allow a good
comparison between the two lithological models
(associating or not the chalk cover to the determining
environment). They show that the 5% most hazardous
pixels are similarly distributed in both cases, this being
still truer at the 1% level. When we test the influence of
the “distance from active fault” variable, we observe a
larger discrepancy between the prediction maps (com-
pare either Fig. 5a and b or c¢ and d). The effect of
removing this variable from the analysis is to spread the
1% most hazardous zone out along the whole length of
the main ridge (especially its northern flank, depicting
so the influence of the gentle dip to NW of the
cretaceous formations). This occurs at the expense of the
faulted areas, namely a small NNW-striking ridge
located immediately to the west of the main cluster of
landslides and aligned with the active Ostende fault, and
another ridge of same orientation coinciding with the
Gulpen fault line (Fig. 1).
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Fig. 6. Prediction rate curves for the four susceptibility maps of Fig. 5
(crosses: model a of Fig. 5; losanges: model b; triangles: model c;
squares: model d). These cumulative plots indicate how many “most
hazardous” percents of the study area have to be taken into account to
predict a given percentage of the future landslides according to each
model and the adopted cross-validation process. For the sake of
comparison, the success rate curve of model a, indicating how well the
landslides used in the prediction are marked as hazardous, is also shown.
Letters in the legend box denote the variables used for each model: 6V —
lithology (12 classes — Vaals clay outcrops distributed in six classes);
3V — lithology (nine classes — Vaals clay outcrops distributed in three
classes); f — distance from active fault; sl — slope angle; as — slope
aspect; el — elevation; dr — distance to drainage network.

The respective prediction rate curves express these
observations in terms of relative quality of the four
tested prediction models (Fig. 6). Although no one of
them differs significantly from the others, the best
prediction overall is obtained from the simplest model,
when the “presence of Gulpen chalk” and “proximity to
active fault” factors are not taken into account.

6. Discussion
6.1. Sample size and prediction rate

In spite of the limited sample size (ten landslides), the
Bayesian estimation delivered satisfying prediction
rates. Note also that, owing to the cross-validation
procedure applied, these rates represent a true predic-
tion, apparently less efficient but much more realistic
than the success rates generally provided. Indeed, the
success rate evaluates how good the fit is between the
predicted hazardous areas and the landslide data used in
the prediction process. It is therefore obviously better
than a prediction rate (Fig. 6) but, basically, it does not
“predict” anything.

Our good results may be explained in two ways.
Firstly, each time we validate the model with a single
landslide, the latter is composed of 15 pixels on average,
which are all tested with their particular set of values of
the predictor variables. Thus, the whole cross-validation
process actually involved 154 individual pixels, a
sample large enough to test the ability of 5—6 variables
to identify areas of slope instability. Secondly, the
narrow definition of our target, i.e. extended deep
landslides requiring very specific, in particular litholog-
ical conditions, increases the goodness of prediction. In
this respect, the high values of the prediction rates
should not be misunderstood. In Fig. 6, on the basis of
the sample and the validation of the results, we may
safely limit the area subject to this type of landslide to
10% of the study area, due to the prevailing role of one
or two predictors. But assume now that, owing to the
improbable occurrence of such landslides in Upper
Carboniferous outcrop areas, we have also excluded all
these areas from the analysis. Then, we would need to
retain a much higher percentage of the remaining pixels
to predict the test landslides, therefore apparently
getting a worse prediction rate. However, almost exactly
the same zones would have been marked as hazardous.

In a landslide susceptibility prediction in W Belgium,
Van den Eeckhaut et al. (2006) used recently a “rare
event logistic regression” model to circumvent the
problem of small datasets. Although they also conclud-
ed that this multivariate model is a useful tool to



400 A. Demoulin, C.-J.F. Chung / Geomorphology 89 (2007) 391-404

delineate hazard zones, their approach was different
from ours in several ways. Firstly, a most commendable
feature was the use of reconstructed pre-landslide
hillslope gradients instead of the current post-landslide
slope angles. Secondly, the logit is the logarithm of the
likelihood ratio function shown in our Eq. (1). The
logistic model in Van den Eeckhaut et al. (2006) and the
estimator used in Eq. (3) here are two different
estimation procedures based on two different assump-
tions (Chung, 2006). In order to interpret the estimate of
the logistic model directly as a probability, Van den
Eeckhaut et al. (2006) proposed several modifications in
the estimation procedure. We do state that a direct
probabilistic interpretation of the likelihood ratio
function for the occurrences of future landslides is
indeed not possible without several specific assumptions
on the landslides. In particular, in the absence of any
time dimension, the estimates of the likelihood ratio
function can only be used to describe the relative level
of the probability of occurrence of future landslides.
Therefore, the assumed main advantage of a rare event
approach, i.e. an improved estimate of the probability of
event occurrences, may appear illusory. Thirdly, this
approach suffers from subjective choices, e.g. in the
selection of data points for the analysis.

6.2. Meaning of the “proximity of Gulpen outcrops”
and “proximity to active fault” parameters and choice
of the final prediction map

At first glance, the spatial distribution of the land-
slides of the Pays de Herve might seem to be partly
dependent on the absence of an overlying chalk cover.
However, a closer look at this distribution only revealed
a weak relationship, which could not be clearly
explained (Demoulin et al.,, 2003). To cover this
uncertainty, we ran two types of models with different
lithological map units. The first type considered that
only the Aachen sands—Vaals clays combination deter-
mined the location of the landslides (Fig. 5a, b) and the
second one included the proximity of the chalk outcrops
in the determining lithological setting (Fig. 5c,d).
Compared pairwise vertically, the prediction maps of
Fig. 5 do not display significant differences in the
distribution of the most hazardous areas. Likewise, the
very similar prediction rate curves obtained for both
types of models (Fig. 6) show that the criterion of
presence or absence of an overlying chalk cover adds no
significant information to the prediction. If the curves
are carefully compared, it even appears that taking into
account the proximity of chalk outcrops slightly
degrades the prediction effectiveness (Fig. 6, middle

of the graph). We thus conclude that the proximity of
chalk plays no noteworthy role in determining the
location of the landslides.

The prediction curves of the hazard models respec-
tively including and ignoring the “active fault” data
layer show that removing this layer from the analysis
does not change the quality of the prediction (Fig. 6).
For instance, in the 3V-type models, to predict 75% of
the future landslide occurrences requires to retain the
~ 3.5% most hazardous pixels of the study area, whether
the variable “distance to active fault” is incorporated or
not. However, the distribution of the predicted 1% of
most hazardous pixels is slightly different in both cases
(Fig. 5a vs. b). In particular, whereas the eastern part of
the NE-trending main ridge is identified as a highly
hazardous area when no fault data are included in the
modelling, in the other case it appears less sensitive than
broader zones centred on the faults.

There are several reasons why the prediction map
obtained without including the “proximity to active
fault” data layer is more meaningful. Firstly, geomor-
phological and seismological observations show that the
Gulpen fault (Fig. 1) and some minor faults included in
the database are by no means so active as the Hockai fault
zone, close to which all large landslides are located. As
far as their trigger role is concerned, it is thus an
oversimplification to put all potentially active faults
within the same data layer. Strictly, one should weight
each fault segment by its estimated seismic activity (e.g.,
its characteristic earthquake magnitude and return
period) in order to eliminate this bias. Unfortunately, in
areas of weak to moderate seismicity, this is totally
unfeasible, thus leading here to a questionable distribu-
tion of the hazardous zones, even though the latter
include all existing landslides. Secondly, the landslides
in the database probably resulted from a particular
combination of seismic and climatic triggers. For
instance, assuming a stronger triggering earthquake
would require applying broader buffers, thus changing
the map units of the “active fault” data layer and the
resulting prediction. Another reason why we prefer the
susceptibility map without using fault data lies in the
long return period of earthquake-triggered landslides
(probably in the order of a few kiloyears), which strongly
reduces the usefulness of the prediction (see below).

Therefore, the proposed prediction map does not
consider the proximity of Gulpen chalk outcrops and
uses no fault data. By excluding fault proximity from the
factors of landsliding, one reinforces the effectiveness of
the search for the characteristic combination of
determining environmental variables favourable to this
type of landslide, whatever its trigger may be (e.g.,
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earthquake, rainfall, human activity, or a combination of
them). Fundamentally, this means separating a causal
factor of landsliding (the rupturing fault) from landslide-
favouring environmental variables. The distinction of
triggering and favouring factors actually depicts the
difference between the spatial and temporal scales of
prediction. Whereas landslide-favouring variables only
determine the most probable location of future land-
slides, triggering factors include also the time dimen-
sion. This is by no means in contradiction with the
introductory statement that slope failures in the future
will be more likely to occur under the conditions which
led to past and present instability. It rather emphasizes
that, if a particular phenomenon, like deep-seated
landslides, may be caused by various triggers, its most
effective spatial prediction depends mainly on the
distribution of the underlying determining conditions.
Accordingly, keeping the “proximity to active fault”
in the set of predictors would mean that it also acts as a
determining variable, e.g. through the presence of fault
damage zones of intensely fractured rocks, which has
been shown not to be the case by the prediction.
Therefore, if we nevertheless want to retain the spatial
information included in a triggering factor as we do in the
models including the “active fault” layer, we restrict the
prediction to landslides resulting from this particular
cause and the susceptibility map is of narrower
application. Conversely, excluding this data layer broad-
ens the scope of the prediction. For instance, from the
land-planner’s viewpoint, neglecting the fault data layer
has the great advantage of better identifying the most
sensitive areas whose topographical, hydrological and
especially lithological conditions also make any human
intervention significantly increase the landslide hazard.

6.3. Temporal aspect of landslide “probability”

We already stressed that our prediction map cannot
provide any reliable probability of a future landslide
occurring in a particular time, due to the extreme
looseness of the temporal constraint. If one seeks to
estimate an “absolute value” of hazard probability, this
could only be done with respect to the database, i.c., in
our case, a limited 10 large catastrophic landslides in a
period of time of 2000 years or more.

Temporally, the computed predictions apply to a
period similar to that covered by the database. This is
useless for land-planning purposes, so that, in order to
obtain probabilities for a more adequate time interval
(50 years for example), we should first make the
assumption that they are temporally linear. For earth-
quake-triggered landslides, this is totally unrealistic at

such a timescale, much smaller than the return period of
local strong earthquakes. The prerequisite is then to
estimate the trigger’s frequency (IUGS Working Group
on Landslides, Committee on Risk Assessment, 1997),
i.c., the recurrence rates of M>5 earthquakes on the
active fault segments located close to landslide-prone
zones in the study area. Not only is this unknown for the
major Hockai fault zone (Fig. 1), but also all other
potentially active faults would obviously display
different recurrence rates for characteristic earthquakes
of different sizes. Similarly, in case of a climatic origin
of the predicted landslides, the return period of rainfall
episodes capable of generating them is all the more
difficult to assess, as their threshold amplitude is ill-
defined and climate oscillations during the last
2000 years also make the precipitation input non-linear.
Finally, all probabilities tentatively computed from a set
of past landslides are unable to account for the possible
superimposed influence of present-day human pertur-
bation of the slopes. Basically, the prediction map
cannot therefore be more than a susceptibility map.

6.4. Predicting reactivation of the existing landslides

Like in other areas of NW Europe (Dewitte et al.,
2006), reactivation of existing landslides is actually the
most probable short-term hazard related to landsliding
in the Pays de Herve. Indeed, Demoulin et al. (2003)
roughly estimated the return period of reactivations at
~400 years against >2000 years for new occurrences of
the predicted type of landslide. However, slide reacti-
vation is a phenomenon distinct from the initiation of a
new landslide, responding to a broader set of possible
causes in a particular environment (i.e. an existing
landslide) and at a different spatial scale. The few
reactivations known in the Pays de Herve range from 0.1
to 2 ha in size and are about one order of magnitude
smaller than the original landslides themselves. As such,
they explicitly need separate consideration.

Based on a single observed present-day large
reactivation (landslide 10 in Fig. 3), we tentatively
explored the possibility of determining which landslides
of the study area are most prone to scarp reactivation.
The present-day displacements in landslide 10 are
mainly triggered by intense rainfall events combined
with human-induced permanent high pore pressure
(Demoulin and Glade, 2005). Using only determining
variables (those involved in the model a presented
above) as predictors and leaving any triggering factor out
of the modelling, we obtained a ranking of all other
landslides assumedly describing their relative suscepti-
bility to reactivation (Table 2). The results basically
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Table 2

Susceptibility to reactivation of the existing landslides of the Pays de Herve

Landslide (Fig. 3) 1 2 3 4 5 6 7 8 9
Ranking 0.937 0.264 0.874 0.305 0.955 0.734 0.954 0.999 0.997

The prediction is based on a single reactivated landslide presently observed (landslide 10 in Fig. 3) and uses five independent determining variables
(lithology, elevation, slope angle, slope aspect and distance to the nearest drainage axis). The values assigned to the landslides describe their ranking
with respect to the whole study area. The closest to 1 a value is, the most reactivation-prone the landslide is predicted. For instance, 0.874 for landslide
3 means that the prediction will hit the landslide (i.e., will describe it as reactivation-prone) provided we consider at least 12.6% (i.e., 1 -0.874) of the

study area as hazardous.

show that landslides 8, 9, 5 and 7 (Fig. 3) are char-
acterized by a natural setting most similar to that of the
reactivated landslide, which would suggest that they are
most prone to reactivation by a similar trigger. This is
unsurprising for landslides 8 and 9, located on the same
ridge flank, very close to landslide 10. The fact that
landslide 5 was precisely the only other (slightly)
reactivated feature in a landsliding event in 1998 and
that landslide 7 was reactivated due to highway
construction works during the sixties (Graulich, 1969)
is more meaningful. But, however good the prediction
may appear, such inferences are disputable on several
levels. Firstly, the basic assumption that the predicted
slope failures should most likely occur under the
conditions which led to past instability might be violated,
since reactivations and original deep-seated landslides
are distinct phenomena possibly determined by different
natural conditions. This is true even though we implicitly
included a specific variable in the reactivation predic-
tion, namely the need for a pre-existing landslide.
Secondly, since the landslide used as input data belongs
to the dataset of the original landslides as well as to that
of the reactivated features, and the modelling involves in
both cases the whole study area and the same predictor
variables, there may be a fundamental confusion
between reactivation and new occurrences. Thirdly, in
the case of reactivation, no validation of the prediction
could be carried out. Fourthly, the relative importance of
natural and human-induced determining factors in
inducing a reactivation is not accounted for by the
modelling, and it might as well be that some human-
induced changes would cause reactivation in whatever
existing landslide. For instance, the bad ranking of
landslide 2 in Table 2 means that the natural conditions to
which the determining variables of the model correspond
are markedly different between landslides 2 and 10, but it
does not rule out that a human-induced change could
play an overwhelming determining role and, if applied to
landslide 2, make it as unstable as landslide 10. The point
is here that a given trigger (e.g., human-induced high
pore pressure) acting in a single place by no means
provides information on which threshold values of the

determining variables have to be exceeded in order to
cause landslide reactivation. Therefore, whereas the
prediction identifies the landslides most likely to be
reactivated in case of a similar triggering, it remains
totally unable to tell that a particular slide is not
especially prone to reactivation.

6.5. Geomorphological control over the statistical
treatment

Beyond their key role in identifying and mapping the
landslides, geomorphologists are closely involved in the
choice of the variables used for the prediction, namely
depending on the type and mechanism of the predicted
features. Unfortunately, some limitations of the data set
sometimes cannot be overcome. In this study for
example, no hydrological field data were available and
the proposed proxy only roughly reflects the real
hydrological conditions. However, significant results
were obtained because the variables most influential on
landsliding are related to lithology and geological
structure and, in this respect, geomorphology was
much more useful than statistics to stress the difficulties
arising from the input data in the “active faults” layer.

The geomorphological control is also needed over
the mathematical procedure itself. The numeric treat-
ment we carried out prescribes that no map unit of any
thematic layer (no category of any thematic variable)
can be ascribed a zero probability, even when no slipped
pixel is found within it. The consequence is that,
although some terrain characteristics make sure that no
landslide of the predicted type will occur in the
concerned areas, they nevertheless lead to unduly high
probabilities of a future slide when associated with other
variables more favourable to landsliding. This is the
reason why we decided to exclude the outcrop areas of
Devonian/lower Carboniferous limestones and sand-
stones, which are unable to support this type of
landslide, from the analysis. Furthermore, if necessary,
geomorphologists can take account of the random
character of conditional probabilities derived from a
limited database by adjusting them following their field
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knowledge, although this introduces subjectivity. In our
study, all higher conditional probabilities derived from
the database appeared realistic. We thus had no reason
for modifying them.

Finally, note that this type of prediction map forecasts
the zones most sensitive to failure but does not reveal
anything on how the initiated landslides will move
downslope and endanger further areas. Although
equally relevant to the hazard prediction, this problem
has to be tackled by other zonation maps requiring a
quite separate procedure.

7. Conclusion

The landslide hazard prediction study conducted in E
Belgium has shown that small datasets can yield
landslide susceptibility maps of significant predictive
power. This results partly from the chosen Bayesian
approach but also from the well-defined environmental
conditions leading to the predicted type of landslide.
The efficiency of the model has been demonstrated by
the successful validation of the results through a proce-
dure especially built up for small samples. However,
when the predicted features may have different
immediate causes, one should carefully avoid including
triggering factors among the predictor variables since
they restrict the scope of the prediction map and convey
often a poorly constrained time dimension. Beyond the
sample size, the reliability of the susceptibility map
fundamentally depends on a good knowledge of which
environmental variables act to determine landsliding
and, of course, on the availability and the quality of the
data. To be reliable or simply useful, the prediction map
must also be appropriately validated.
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