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1 Introduction

The verification of infinite-state systems, in particular the reachability anal-
ysis of systems modeled as finite-state machines extended with unbounded
variables, has prompted the development of symbolic data structures for rep-
resenting the sets of values that have to be handled during state-space explo-
ration [2].

A simple representation strategy consists in using finite-state automata: The
values in the considered domain are encoded as words over a given finite
alphabet; a set of values is thus encoded as a language. If this language is
regular, then a finite-state automaton that accepts it forms a representation
of the set [23].

This approach has many advantages: Regular languages are closed under all
usual set-theory operators (intersection, union, complement, Cartesian prod-
uct, projection, . . . ), and automata are easy to manipulate algorithmically.
Deterministic automata can also be reduced to a canonical form, which sim-
plifies comparison operations between sets.

The expressive power of automata is also well suited for verification applica-
tions. In the case of programs manipulating unbounded integer variables, it
is known for a long time that the sets of integers that can be recognized by
a finite-state automaton using the positional encoding of numbers in a base
r > 1 correspond to those definable in an extension of Presburger arithmetic,
i.e., the first-order additive theory of the integers 〈Z,+, <〉 [10]. Furthermore,
the well known Cobham’s theorem characterizes the sets that are representable
by automata in all bases r > 1 as being exactly those that are Presburger-
definable [11,8].

In order to analyze systems relying on integer and real variables, such as
timed or hybrid automata, automata-based representations of numbers can be
generalized to real values [3]. From a theoretical point of view, this amounts to
moving from finite-word to infinite-word automata, which is not problematic.
It has been shown that the sets of reals that can be recognized by infinite-word
automata in a given encoding base are those definable in an extension of the
first-order additive theory of real and integers variables 〈R,Z,+, <〉 [6].

In practice though, handling infinite-word automata can be difficult, espe-
cially if set complementation needs to be performed. It is however known
that, for representing the sets definable in 〈R,Z,+, <〉, the full expressive
power of Büchi automata is not required, and that the much simpler subclass
of weak deterministic automata is sufficient [4]. The advantage is that, from an
algorithmic perspective, handling weak automata is similar to manipulating
finite-word automata.
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A natural question is then to characterize precisely the expressive power of
weak deterministic automata representing sets of real numbers. For a given
encoding base r > 1, it is known that the representable sets form a base-
dependent extension of 〈R,Z,+, <〉. This covers, in particular, all the sets
definable in 〈R,Z,+, <, Pr〉, where Pr is a predicate that checks whether its
argument is a power of r [7].

This article is aimed at characterizing the subsets of R that can be represented
as weak deterministic automata in multiple bases. Our central result is to show
that, for two relatively prime bases r1 and r2, the sets that are simultaneously
recognizable in bases r1 and r2 can be defined in 〈R,Z,+, <〉. As a corollary,
such sets are then representable in any base r > 1.

The intuition behind our proof is the following. First, we reduce the problem
to characterizing the representable subsets of [0, 1]. We then introduce the
notion of interval boundary points, as points with special topological proper-
ties, and establish that a set representable in multiple bases can only contain
finitely many such points. Finally, we show that this property implies that S
is definable in 〈R,Z,+, <〉. The argument used for this last step provides a
description of the internal structure of automata representing sets definable
in 〈R,Z,+, <〉. This result may help to develop efficient data structures for
handling such sets.

2 Representing Sets of Numbers with Automata

In this section, we briefly present the automata-based representations of sets
of integer and real values.

2.1 Number Decision Diagrams

Let r > 1 be an integer base. A natural number x ∈ N can be encoded
positionally in base r by finite words bp−1bp−2 . . . b1b0 over the alphabet Σr =
{0, 1, . . . , r−1}, such that x =

∑p−1
i=0 bir

i. Negative values are encoded by their
r’s-complement, i.e., the encodings of x ∈ Z with x < 0 are formed by the last
p digits of the encodings of rp + x. The length p of the encodings of a number
x ∈ Z is not fixed, but must be non-zero and large enough for −rp−1 ≤ x <
rp−1 to hold. As a consequence, the most significant digit of encodings, called
the sign digit , is equal to r − 1 for strictly negative numbers, and to 0 for
positive numbers. This digit can always be repeated arbitrarily many times
without influencing the encoded value. Each integer thus admits an infinite
number of distinct encodings, differing only in the number of repetitions of
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their sign digit.

This encoding scheme maps a subset S of Z onto a language L over Σr.
This language contains all the encodings of the elements of S, i.e., we have
u · w ∈ L, with u ∈ Σr and w ∈ Σ∗r, iff u · u · w ∈ L. If the language L
is regular, then a finite-state automaton that accepts it is called a Number
Decision Diagram (NDD), and is said to represent, or recognize, the set S.
NDDs can be generalized to representing subsets of Zn, i.e., sets of vectors,
for any n > 0 [10,22,2].

It has been shown [10,20,8] that the subsets of Z recognizable by NDDs in
a base r > 1 are exactly those that can be defined in the first-order theory
〈Z,+, <, Vr〉 where Vr(x) is the function mapping an integer x > 0 to the
greatest power of r dividing it. Moreover, the sets that are recognizable by
NDDs in every base r > 1 have been characterized by Cobham [11] as being
exactly those that are definable in 〈Z,+, <〉, i.e., Presburger arithmetic [16].
This result has been extended to subsets of Zn by Semenov [18].

Computing the intersection, union, complementation, difference and Cartesian
product of sets represented by NDDs reduces to performing the corresponding
operations on the languages accepted by the automata. Projection is more
tricky, as the resulting automaton has to be completed in order to accept
all the encodings of the vectors it recognizes [5]. Finally, since NDDs are
finite-word automata, they can be determinized, as well as minimized into a
canonical form.

2.2 Real Number Automata

Real numbers can also be encoded positionally. Let r > 1 be a base. An
encoding w of a number x ∈ R is an infinite word wI · ? · wF over Σr ∪ {?},
where wI ∈ Σ∗r encodes the integer part xI ∈ Z of x, and wF ∈ Σω

r its fractional
part xF ∈ [0, 1], i.e., we have wF = b1b2b3 . . . with xF = Σi>0bir

−i. Note that
some numbers have two distinct encodings with the same integer-part length.
For example, in base 10, the number 11/2 has the encodings 0+ · 5 · ? · 5 · 0ω

and 0+ · 5 · ? · 4 · 9ω. Such encodings are said to be dual . We denote by Λr

the set of valid prefixes of base-r encodings that include a separator, i.e.,
Λr = {0, r− 1} ·Σ∗r · ? ·Σ∗r. For a word w ∈ Λr ·Σω

r , we denote by [w]r the real
number encoded by w in base r. Similarly, for w ∈ {0, r− 1} ·Σ∗r, [w]r denotes
the integer number encoded by w in base r, i.e., [w]r = [w · ? · 0ω]r.

Similarly to the case of integers, the base-r encoding scheme transforms a set
S ⊆ R into a language L(S) ⊆ Λr · Σω

r . A Real Number Automaton (RNA)
is defined as a Büchi automaton that accepts the language containing all the
base-r encodings of the elements of S. This representation can be generalized
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into Real Vector Automata (RVA), suited for subsets of Rn (n > 0) [3].

The expressiveness of RVA (and RNA) has been studied [6]: The subsets of Rn

that are representable in a base r > 1 are exactly those that are definable in
the first-order theory 〈R,Z,+, <,Xr〉, where Xr(x, u, k) is a base-dependent
predicate that is true iff u is an integer power of r, and there exists an encoding
of x in which the digit at the position specified by u is equal to k. The predicate
Xr can alternatively be replaced by a function Vr analogous to the one defined
in the integer case [7]: We say that x ∈ R divides y ∈ R iff there exists an
integer k such that kx = y. The function Vr is then defined such that Vr(x)
returns the greatest power of r dividing x, if it exists, and 1 otherwise.

2.3 Weak Deterministic RNA

As in the case of integers, applying most set-theory operators to RNA (or
RVA) reduces to carrying out the same operations on their accepted language.
This is somehow problematic, since operations like set complementation are
typically costly and tricky to implement on infinite-word automata [17,12].

In order to alleviate this problem, it has been shown that the full expressive
power of Büchi automata is not needed for representing the subsets of Rn

(n > 0), that are definable in the first-order additive theory 〈R,Z,+, <〉 of
mixed integer and real variables [4]. Such sets can indeed be represented by
weak deterministic RVA, i.e., deterministic RVA such that their set of states
can be partitioned into disjoint subsets Q1, . . . , Qm, where each Qi contains
only either accepting or non-accepting states, and there exists a partial or-
der ≤ on the sets Q1, . . . , Qm such that for every transition (q, a, q′) of the
automaton, with q ∈ Qi and q′ ∈ Qj, we have Qj ≤ Qi. Remark that the
partition {Q1, . . . , Qm} can always be chosen as being the decomposition of
the transition graph of the automaton into its strongly connected components.
In this article, we will call a strongly connected component empty if its states
accept the empty language, universal if its states accept Σω

r , and trivial if it
is acyclic.

As mentioned in [21], weak deterministic automata are infinite-word automata
that can be manipulated essentially in the same way as finite-word ones. There
exist efficient algorithms for applying to weak deterministic RVA all classical
set-theory operators (intersection, union, complement, Cartesian product, pro-
jection, . . . ) [4]. Furthermore, such RVA can be minimized into a canonical
form [15], in which the languages accepted by the automaton states are pair-
wise different. For simplicity sake, we will assume w.l.o.g. that an automaton
in canonical form has a complete transition relation, in the sense that from
each of its states, there exists an outgoing transition labeled by each symbol in
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Fig. 1. RNA representing the set of integer powers of a base r > 2.

the alphabet. Furthermore, we also require that each automaton in canonical
form admits one empty and one universal strongly connected component.

It is worth mentioning that expressiveness of weak deterministic RVA is clearly
not limited to the sets that are definable in the first-order additive theory of
the integers and reals. For instance, the set of (negative and positive) integer
powers of the representation base is recognizable, as illustrated in Figure 1.
(The automaton depicted in this figure is deterministic only when r > 2.)
For any base r > 1, consider now the predicate Pr(x) that holds iff x is an
integer power of r. It has been shown, using a quantifier elimination result for
〈R, 1,+,≤, Pr〉 [19,1], that all the sets definable in 〈R,Z,+, <, Pr〉 can also
be represented by weak deterministic RVA in base r [7].

3 Problem Reduction

In this article, we consider sets S ⊆ R that are simultaneously recognizable by
weak deterministic RNA in two relatively prime bases. We will then tackle the
problem of proving that such sets are definable in 〈R,Z,+, <〉. In this section,
we show that this problem can be reduced from the domain R to the interval
[0, 1].

Let S ⊆ R be a set recognizable by a weak deterministic RNA A, assumed
to be in canonical form, in a base r1 > 1. Each accepting path of A con-
tains exactly one occurrence of the separator symbol ?. With the exception
of those within the empty component, each transition labeled by ? thus links
two distinct strongly connected components of A.

Let Q = {q1, . . . qn} be the set of states ofA that are destinations of transitions
labeled by ?, and from which a non-empty language is accepted. For each
i ∈ [1, . . . , n], we define LI

i as the language of all (finite) words labeling paths
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from the initial state of A to qi, omitting the separator symbol ?. Moreover,
we define LF

i as the language of all (infinite) words that can be accepted from
qi.

The language L accepted by A is thus of the form
⋃n

i=1 L
I
i · ? · LF

i , where for
all i, LI

i ⊆ Σ∗r1
encodes the integer part, and LF

i ⊆ Σω
r1

the fractional part,
of the encodings of numbers x ∈ S. More precisely, for every i, let SI

i ⊆ Z
denote the set encoded by LI

i and let SF
i ⊆ [0, 1] denote the set encoded by

0+ · ? · LF
i . We have S =

⋃n
i=1(S

I
i + SF

i ). Note that each LI
i is recognizable by

a NDD in base r1 and that, similarly, each language of the form 0+ · ? · LF
i is

recognizable by a RNA 3 .

The definition of the sets SI
i and SF

i , for i ∈ [1, . . . , n], relies on the languages
LI

i and LF
i , whose definition depends in turn on the encoding base. We now

show that those sets can also be defined independently from this base. For each
x ∈ Z, we define the set SF (x) = {y ∈ [0, 1] | x+ y ∈ S} of its corresponding
fractional parts in S. Since A is in canonical form, the languages LF

i are
pairwise different, and so are the sets SF

i . Besides, for each i ∈ [1, . . . , n], there
exists xi ∈ Z such that SF

i = SF (xi). This last expression does not involve the
representation base, and makes it possible to define the sets SF

i independently
from this base. Formally, we have {SF

1 , S
F
2 , . . . , S

F
n } = {SF (x) | x ∈ Z}.

Similarly, given a set U ⊆ [0, 1] of fractional parts, we define the set SI(U) =
{x ∈ Z | ∀y ∈ [0, 1] : y ∈ U ⇔ x + y ∈ S} of its corresponding integer parts
in S. The sets SI

i can then be defined independently from the representation
base: We have, for each i ∈ [1, . . . , n], SI

i = SI(SF
i ).

We have thus established that the decomposition of S into S =
⋃n

i=1(S
I
i +SF

i )
is independent from the representation base, and that each set SI

i and each
set SF

i is recognizable in every base in which S is recognizable. Therefore,
if S is recognizable in two relatively prime bases r1 and r2, then so are SI

i

and SF
i for every i. From Cobham’s theorem, each SI

i must then be definable
in 〈Z,+, <〉. In order to show that S is definable in 〈R,Z,+, <〉, it is hence
sufficient to prove that each SF

i is definable in that theory. We have thus
reduced the problem of characterizing the subsets of R that are simultaneously
recognizable in two relatively prime bases to the same problem over the subsets
of [0, 1].

3 In order for such a RNA to recognize all encodings of numbers, it should also
accept the words (r1−1)+ ·? ·(r1−1)ω if 0ω ∈ LF

i , and 0+ ·1 ·? ·0ω if (r1−1)ω ∈ LF
i .
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4 Interval Boundary Points

We now consider a set S ⊆ [0, 1] represented by a weak deterministic RNA A.
We define the interval boundary points of S as points with specific topological
properties, and establish a relation between the existence of such points and
some structures in the transition graph of A.

4.1 Definitions

A neighborhood Nε(x) of a point x ∈ R, with ε > 0, is the set Nε(x) = {y |
|x− y| < ε}. A point x ∈ R is a boundary point of S iff all its neighborhoods
contain points from S as well as from its complement S, i.e., ∀ε > 0 : Nε(x)∩
S 6= ∅ ∧ Nε(x) ∩ S 6= ∅.

A left neighborhood N<
ε (x) of a point x ∈ R, with ε > 0, is the set N<

ε (x) =
{y | x − ε < y < x}. Similarly, a right neighborhood N>

ε (x) of x is defined
as N>

ε (x) = {y | x < y < x + ε}. A boundary point x of S is a left interval
boundary point of S iff it admits a left neighborhood N<

ε (x) that is entirely
contained in either S or S, i.e., ∃ε > 0 : N<

ε (x) ⊆ S ∨ N<
ε (x) ⊆ S. Right

interval boundary points are defined in the same way. A point x ∈ R is an
interval boundary point of S iff it is a left or a right interval boundary point
of S.

Each interval boundary point x of S is thus characterized by its direction (left
or right), its polarity w.r.t. S (i.e., whether x ∈ S or x 6∈ S), and the polarity
of its left or right neighborhoods of sufficiently small size (i.e., whether they
are subsets of S or of S). The possible combinations define eight types of
interval boundary points, that are illustrated in Figure 2.

Remark that a boundary point is not necessarily an interval boundary point.
For instance, in any base r, each point of [0, 1] is a boundary point of the set
of numbers that have an encoding ending in 0ω, but not an interval boundary
point of that set.

4.2 Recognizing Interval Boundary Points

Recall that A is a weak deterministic RNA recognizing a set S ⊆ [0, 1]. Let
r > 1 be the representation base. We assume w.l.o.g. that A is in canonical
form (and thus that its transition relation is complete). Consider a path π of
A that reads an encoding w of a left interval boundary point x of S. This path
eventually reaches a strongly connected component C that it does not leave.
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∩S 6= ∅ ∩S 6= ∅

∩S 6= ∅ ∩S 6= ∅

∩S = ∅

x 6∈ S

⊆ S

x 6∈ S x 6∈ S

⊆ S

x 6∈ S

(4) (7) (8)(3)

∩S = ∅

∩S = ∅

x ∈ S

⊆ S

x ∈ S

(1) (2) (5) (6)

⊆ S

x ∈ S x ∈ S

∩S = ∅

Right interval boundary pointsLeft interval boundary points

(1) x ∈ S ∧ (∃ε > 0)(N<
ε (x) ⊆ S) ∧ (∀ε > 0)(N>

ε (x) * S)

(2) x ∈ S ∧ (∃ε > 0)(N<
ε (x) ⊆ S)

(3) x /∈ S ∧ (∃ε > 0)(N<
ε (x) ⊆ S)

(4) x /∈ S ∧ (∃ε > 0)(N<
ε (x) ⊆ S) ∧ (∀ε > 0)(N>

ε (x) * S)

(5) x ∈ S ∧ (∃ε > 0)(N>
ε (x) ⊆ S) ∧ (∀ε > 0)(N<

ε (x) * S)

(6) x ∈ S ∧ (∃ε > 0)(N>
ε (x) ⊆ S)

(7) x /∈ S ∧ (∃ε > 0)(N>
ε (x) ⊆ S)

(8) x /∈ S ∧ (∃ε > 0)(N>
ε (x) ⊆ S) ∧ (∀ε > 0)(N<

ε (x) * S)

Fig. 2. Types of interval boundary points.

The accepting status of C corresponds to the polarity of x w.r.t. S.

We first consider the case of a component C that is neither empty nor uni-
versal. Since x is a left interval boundary point, all its sufficiently small left
neighborhoods are either subsets of S or subsets of S, depending on the type of
x. Hence, from each state s of C visited infinitely many times by π, its outgoing
transitions labeled by smaller digits than the one read in π must necessarily
lead to either the universal or the empty strongly connected component of A,
i.e., those accepting respectively the languages Σω

r and ∅. (Recall that A is
assumed to be in canonical form.) It follows that, after having reached some
state s in C, the path π follows the transitions within C that are labeled by
the smallest possible digits, hence it eventually cycles through a loop.

In the case where C is empty or universal, a path π recognizing a left interval
boundary point x of S must necessarily read a word ending with 0ω, otherwise
there would exist a left neighborhood of x entirely in S if x ∈ S, or entirely
in S if x 6∈ S.

Similar results hold for right interval boundary points, which are read by paths
that eventually follow the largest possible digits in their terminal strongly
connected component.

As a consequence, every base-r encoding w of an interval boundary point x
of S is necessarily ultimately periodic, i.e., such that w = u · ? · u′ · vω, with
u ∈ {0, r−1}·Σ∗r, u′ ∈ Σ∗r and v ∈ Σ+

r . We then have r|u
′|+|v|x = [u·u′ ·v ·?·vω]r
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and r|u
′|x = [u · u′ · ? · vω]r, from which we get

x =
[u · u′ · v]r − [u · u′]r

r|u′|(r|v| − 1)
.

Besides, each ultimate period v of such encodings can be uniquely determined
from a suitable state of A associated with a direction (left or right). We thus
have the following results.

Theorem 1 Each interval boundary point of a subset of [0, 1] that is recog-
nizable by a weak deterministic RNA is a rational number.

Theorem 2 Let S ⊆ [0, 1] be a set recognizable by a weak deterministic RNA
in a base r > 1. The set of ultimate periods of the base-r encodings of the
interval boundary points of S is finite.

4.3 Recognizing Interval Boundary Points in Multiple Bases

Consider now a set S ⊆ [0, 1] that is simultaneously recognizable by weak
deterministic RNA in two relatively prime bases r1 > 1 and r2 > 1. Let A1

and A2 denote, respectively, such RNA.

Suppose that S has infinitely many interval boundary points. From Theorem 2,
there must exist some ultimate period v ∈ Σ+

r1
such that infinitely many

interval boundary points of S have base-r1 encodings of the form ui · vω, with
∀i : ui ∈ 0+ · ? ·Σ∗r1

. Infinitely many of those encodings are such that ui and v
do not end with the same digit (this restriction expresses that ui is chosen as
small as possible). Furthermore, we can assume that v 6∈ 0∗ if S has infinitely
many left interval boundary points, and that v 6∈ (r − 1)∗ if S has infinitely
many right interval boundary points. It follows that there exists such a word
ui with a length greater than the number of states in A1. The path π of A1

that reads ui · vω thus decomposes into π = π1π2π3, where π2 is cyclic and
reads a word w2 ∈ Σ+

r1
. Thus, from the definitions of the interval boundary

points, there exist w1 ∈ 0+ · ? ·Σ∗r1
and w2, w3 ∈ Σ∗r1

, with |w2| > 0, such that
for every k ≥ 0, the word w1 · (w2)

k · w3 · vω encodes an interval boundary
point of S.

Each word of this form is ultimately periodic, thus it encodes in base r1 a
rational number that can also be encoded by an ultimately periodic word in
base r2. We use the following lemma.

Lemma 3 Let r1 > 1 and r2 > 1 be relatively prime bases, and let w1 ∈
0+ · ? · Σr1 , w2, w3, w4 ∈ Σ∗r1

, with |w2| > 0, |w4| > 0, such that the words
w2 · w3 and w4 do not end with the same digit. The subset of Q encoded in
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base r1 by the language w1 · (w2)
∗ ·w3 · (w4)

ω cannot be encoded in base r2 with
only a finite number of ultimate periods.

PROOF. For every k ≥ 0, we define xk = [w1 · (w2)
k · w3 · (w4)

ω]r1 . The
prefix w1 can be decomposed into w1 = w′1 · ? · w′′1 , with w′1 ∈ {0, r1 − 1} · Σ∗r1

and w′′1 ∈ Σ∗r1
. We have for every k > 0,

r
|w′′

1 |+k|w2|+|w3|+|w4|
1 xk = [w′1 · w′′1 · (w2)

k · w3 · w4 · ? · (w4)
ω]r1 ,

r
|w′′

1 |+k|w2|+|w3|
1 xk = [w′1 · w′′1 · (w2)

k · w3 · ? · (w4)
ω]r1 ,

hence

r
|w′′

1 |+k|w2|+|w3|
1 (r

|w4|
1 − 1)xk = [w′1 · w′′1 · (w2)

k · w3 · w4]r1

− [w′1 · w′′1 · (w2)
k · w3]r1 ,

which gives

xk =
yk

r
|w′′

1 |+k|w2|+|w3|
1 (r

|w4|
1 − 1)

, (1)

with yk = (r
|w4|
1 −1)[w′1 ·w′′1 ·wk

2 ·w3]r1 +[0 ·w4]r1 . Remark that yk is an integer,
but cannot be a multiple of r1. Indeed, we have yk mod r1 = ([0 · w4]r1 − [w′1 ·
w′′1 · wk

2 · w3]r1) mod r1, which is non-zero thanks to the hypothesis on the last
digits of w2 · w3 and w4.

We now develop the expression of yk. For every k > 0, we have

yk = (r
|w4|
1 − 1)

rk|w2|+|w3|
1 [w′1 · w′′1 ]r1 + r

|w3|
1

r
k|w2|
1 − 1

r
|w2|
1 − 1

[0 · w2]r1 + [0 · w3]r1


+ [0 · w4]r1

=
zk

r
|w2|
1 − 1

,

with

zk = ar
k|w2|
1 + b,

a= r
|w3|
1 (r

|w4|
1 − 1)((r

|w2|
1 − 1)[w′1 · w′′1 ]r1 + [0 · w2]r1), and

b=−r|w3|
1 (r

|w4|
1 − 1)[0 · w2]r1 + (r

|w2|
1 − 1)(r

|w4|
1 − 1)[0 · w3]r1

+(r
|w2|
1 − 1)[0 · w4]r1 .
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Substituting in (1), we get

xk =
zk

r
|w′′

1 |+k|w2|+|w3|
1 (r

|w2|
1 − 1)(r

|w4|
1 − 1)

. (2)

Since zk = (r
|w2|
1 −1)yk and yk mod r1 6= 0, we have zk mod r1 6= 0, hence b 6= 0.

Consider a prime factor f of r1, and define l as the greatest integer such that
f l divides b. For every k > l, we have zk mod f l = 0 and zk mod f l+1 =
bmod f l+1 6= 0. It follows that the reduced rational expression of xk, i.e.,
xk = nk/dk with nk, dk ∈ Z, dk > 0 and gcd(nk, dk) = 1, is such that fk−l

divides dk for every k > l. Indeed, the numerator of (2) is not divisible by f l+1

whereas its denominator is divisible by fk+1.

Assume now, by contradiction, that the set {xk | k ≥ 0} can be represented
in base r2 using only a finite number of ultimate periods. Then, there exists
an ultimate period v ∈ Σ+

r2
such that for infinitely many values of k, we have

xk = [u′k · ? · u′′k · vω]r2 ,

with u′k ∈ {0, r2 − 1} · Σ∗r2
and u′′k ∈ Σ∗r2

. We thus have, for these values of k,

r
|u′′

k |+|v|
2 xk = [u′k · u′′k · v · ? · vω]r2 ,

r
|u′′

k |
2 xk = [u′k · u′′k · ? · vω]r2 ,

hence

xk =
[u′k · u′′k · v]r2 − [u′k · u′′k]r2

r
|u′′

k
|

2 (r
|v|
2 − 1)

.

Since (r
|v|
2 − 1) is bounded, and r2 is relatively prime with r1 by hypothesis,

the denominator of this expression can only be divisible by a bounded number
of powers of f , which contradicts our previous result. 2

Together with Theorem 2, this lemma contradicts our assumption that S has
infinitely many interval boundary points. We thus have the following theorem.

Theorem 4 If a set S ⊆ [0, 1] is simultaneously recognizable by weak deter-
ministic RNA in two relatively prime bases, then it has finitely many interval
boundary points.

We therefore call a set that satisfies the hypotheses of Theorem 4 a finite-
boundary set .
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5 Finite-Boundary Sets

Our goal is now to characterize the structure of the transition graph of RNA
that recognize finite-boundary sets. We start by establishing some properties
that hold for all weak deterministic RNA, and then focus on the specific case
of finite-boundary sets.

5.1 Properties of Weak Deterministic RNA

Let A be a weak deterministic RNA, assumed to be in canonical form, rec-
ognizing a subset of [0, 1] in a base r > 1. Consider a strongly connected
component C of A, from which each outgoing transition leads to either the
universal or the empty strongly connected component, i.e., those accepting
respectively the languages Σω

r and ∅.

Lemma 5 Let π be a minimal (resp. maximal) infinite path within C, i.e.,
a path that follows from each visited state the transition of C labeled by the
smallest (resp. largest) possible digit. The destination state of all outgoing
transitions from states visited by π, and that are labeled by a smaller (resp.
larger) digit than the one read in π, is identical.

PROOF. We first study the case of two transitions t1 and t2 originating
from the same state s visited by π, that are respectively labeled by digits d1,
d2 smaller that the digit d read from s in π. Among the digits that satisfy
this condition, one can always find consecutive values, hence it is sufficient to
consider the case where d2 = d1 + 1.

Let σ be a finite path that reaches s from the initial state of A. By appending
to σ suffixes that read d1 · (r − 1)ω and d2 · 0ω, one obtains paths that rec-
ognize dual encodings of the same number, hence these paths must be either
both accepting or both non-accepting. Therefore, t1 and t2 share the same
destination.

Consider now transitions t1 and t2 from distinct states s1 and s2 visited by π,
labeled by smaller digits than those – respectively denoted d1 and d2 – read
in π. We can assume w.l.o.g. that s1 and s2 are consecutive among the states
visited by π that have such outgoing transitions. In other words, the subpath
of π that links s1 to s2 is labeled by a word of the form d1 · 0k, with d1 > 0
and k ≥ 0. The digit d2 is thus the first non-zero digit read by π after d1.

Let σ′ be a finite path that reaches s1 from the initial state of A. Appending
to σ′ suffixes that read (d1 − 1) · (r − 1)ω and d1 · 0ω yields paths that read

13



dual encodings of the same number, hence these paths must be either both
accepting or both non-accepting. The destinations of the transitions that leave
C from s1 and s2 must thus be identical.

The case of maximal paths is handled in the same way. 2

Lemma 6 There exists a state s ∈ C from which either the outgoing tran-
sition labeled by 0, or the one labeled by r − 1, leads to the empty strongly
connected component if C is accepting, and to the universal one if C is non-
accepting.

PROOF. Consider first the case of an accepting component C. By contra-
diction, suppose that from each state s ∈ C, the destinations of the transitions
labeled by 0 and by r − 1 are either states of C, or belong to the universal
strongly connected component.

Since A is in canonical form and the outgoing transitions from C lead, by
hypothesis, to the universal or the empty strongly connected component, there
exists a transition from a state s′ ∈ C labeled by a digit c ∈ Σr, ending in
the empty component. W.l.o.g., we assume that c is the smallest possible
digit that satisfies this condition. By the contradiction hypothesis, we have
c > 0. Hence, for every c′ < c, the destination of the transition originating
from s′ and labeled by c′ is either a state of C, or the universal strongly
connected component. We choose c′ = c − 1, and define w as the label of a
path from the initial state of A to s′. The word w · c · 0ω is not accepted,
since reading c from s leads to the empty component. On the other hand, the
word w · (c− 1) · (r − 1)ω is accepted by A. Indeed, reading c from s leads to
either the universal component, or to a state of C from which, by hypothesis,
(r− 1)ω must be accepted. We thus have a contradiction with the fact that A
accepts all the encodings of the numbers it recognizes.

The proof is similar for the case of a non-accepting component C. 2

The following result now expresses a constraint on the trivial strongly con-
nected components of the fractional part of A (i.e., the part of A reached after
reading one occurrence of the symbol ?).

Lemma 7 From any trivial strongly connected component of the fractional
part of A, there must exist a reachable strongly connected component that is
neither empty, trivial, nor universal.

PROOF. The proof is by contradiction. Let {s} be a trivial strongly con-
nected component of the fractional part of A. Assume that all paths from s

14



eventually reach the universal or the empty strongly connected component, af-
ter passing only through trivial components. As a consequence, the language
accepted from s is of the form L · Σω

r , where L ⊂ Σ∗r is finite. We can re-
quire w.l.o.g. that all words in L share the same length l. Note that L cannot
be empty or equal to Σl

r, since s does not belong to the empty or universal
components.

Each word in Σl
r can be seen as the base-r encoding of an integer in the

interval [0, rl − 1]. Since L is neither empty nor universal, there exist two
words w1, w2 ∈ Σl

r that do not both belong to L or to Σl
r \L, and that encode

two consecutive integers n and n + 1. Then, u · w2 · 0ω and u · w1 · (r − 1)ω

encode the same number in base r, where u is the label of an arbitrary path
from the initial state of A to s. This contradicts the fact that A accepts all
the encodings of the numbers it recognizes. 2

5.2 Properties of RNA Recognizing Finite-Boundary Sets

Theorem 8 Let A be a weak deterministic RNA, supposed to be in canonical
form, recognizing a finite-boundary set S ⊆ [0, 1]. Each non-trivial, non-empty
and non-universal strongly connected component of the fractional part of A
takes the form of a single cycle. Moreover, from each such component, the
only reachable strongly connected components besides itself are the empty or
the universal ones.

PROOF. Let C be a non-empty and non-universal strongly connected com-
ponent of the fractional part of A, from which the only reachable components
(besides itself) are the empty and the universal one. From Lemma 7, C cannot
be trivial. By Lemma 6, there exists a state s ∈ C and a digit d ∈ {0, r − 1}
such that the outgoing transition from s labeled by d leads to the empty
component if C is accepting, and to the universal one otherwise.

Consider first the case where d = 0. The path π from s that stays within C
and follows the transitions with the smallest possible digits is cyclic. From the
definition of the interval boundary points of S, the label of π corresponds to
a suffix of the encoding of a left interval boundary point of S. If on the other
hand d = r − 1, then the path π from s that stays within C and follows the
transitions with the largest possible digits is cyclic as well, and recognizes a
suffix of the encoding of a right interval boundary point of S.

In both cases, if C contains other cycles, or if C is reachable from other non-
trivial strongly connected components in the fractional part of A, then π can
be prefixed by infinitely many reachable paths from an entry state of the
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Fig. 3. Fractional part of an RNA representing a finite-boundary set.

fractional part of A to s. This contradicts the fact that S has only finitely
many interval boundary points. 2

This result characterizes quite precisely the shape of the fractional part of a
weak deterministic RNA recognizing a finite-boundary set: Its transition graph
is first composed of a bottom layer of strongly connected components contain-
ing only the universal and the empty one, and then a (possibly empty) layer
of single-cycle components leading to the bottom layer. Thanks to Lemma 5,
the transitions that leave a single-cycle component with a smaller (or larger)
digit all lead to the same empty or universal component (which may differ for
the smaller and larger cases). Thus, each single-cycle component can simply
be characterized by its label and the polarity of its smaller and greater alter-
natives. Finally, the two layers of non-trivial strongly connected components
can be reached through an acyclic structure of trivial components, such that
from each of them, there is at least one outgoing path leading to a single-cycle
component. This structure is illustrated in Figure 3.

As a consequence, we are now able to describe the language accepted by such
a RNA.

Theorem 9 Let A be a weak deterministic RNA recognizing a finite-boundary
set S ⊆ [0, 1] encoded in a base r > 1. For every word v ∈ Σ+

r , let L<(v)
(resp. L>(v)) denote the language of all the infinite words over Σr that are
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lexicographically smaller (resp. larger) than vω. The language L(A) accepted
by A can be expressed as

L(A) =
⋃
i

L′ · wi · Σω
r ∪

⋃
i

L′ · w′i · (vi)
ω ∪

⋃
i

L′ · w′′i · L<(v′i)

∪
⋃
i

L′ · w′′′i · L>(v′′i ) ∪ L0 ∪ L1,

where each union is finite (and possibly empty), ∀i : wi, w
′
i, w

′′
i , w

′′′
i , vi, v

′
i, v
′′
i ∈

Σ∗r with |vi| > 0, |v′i| > 0, |v′′i | > 0, L′ = 0+ · ?, L0 is either empty or equal to
(r − 1)+ · ? · (r − 1)ω, and L1 is either empty or equal to 0+ · 1 · ? · 0ω.

PROOF. The accepting paths of A end up in either a cyclic component,
or the universal one. There are finitely many cyclic components, and each
of them can only be reached by finitely many prefixes. Hence, the accepting
paths that end up in a cyclic component recognize a language of the form⋃

i L
′ · w′i · (vi)

ω.

We now consider the paths that end up in the universal component. Before
reaching this component, such paths can visit either only trivial components,
or trivial components followed by one single cyclic component. The paths in
the former category recognize a language of the form

⋃
i L
′ · wi · Σω

r . For the
latter case, we know that after leaving a cyclic component labeled by v ∈ Σ+

r ,
the accepting paths read either the words that are smaller than vω, or those
that are larger than vω, or a combination of both. These paths thus recognize
a language of the form

⋃
i L
′ · w′′i · L<(v′i) ∪

⋃
i L
′ · w′′′i · L>(v′′i ).

Finally, the terms L0 and L1 are introduced in order to deal with the dual
encodings of 0 and 1, since A must accept all the encodings of the elements
of S. 2

In the expression given by Theorem 9, each term of the union encodes a subset
of [0, 1] that is definable in 〈R,Z,+, <〉: L′ · wi · Σω

r defines an interval [a, b],
with a, b ∈ Q, the terms L′ ·w′i · (vi)

ω, L0 and L1 correspond to single rational
numbers c ∈ Q, and the languages L′·w′′i ·L<(v′i) and L′·w′′′i ·L>(v′′i ) correspond
respectively to intervals [a, b[ and ]a, b], with a, b ∈ Q. This shows that the set
S ⊆ [0, 1] recognized by A is definable in 〈R,Z,+, <〉. Combining this result
with Theorem 4, as well as the reduction discussed in Section 3, we get our
main result:

Theorem 10 If a set S ⊆ R is simultaneously recognizable by weak determin-
istic RNA in two relatively prime bases, then it is definable in 〈R,Z,+, <〉.

Corollary 11 A set S ⊆ R is recognizable by weak deterministic RNA in
every base r > 1 iff it is definable in 〈R,Z,+, <〉.
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6 Conclusions and Future Work

The main contribution of this work is to show that the subsets of R that
can be recognized by weak deterministic RNA in all integer bases r > 1
are exactly those that are definable in the first-order additive theory of the
real and integer numbers 〈R,Z,+, <〉. Our central result is actually stronger,
stating that recognizability in two relatively prime bases r1 and r2 is sufficient
for forcing definability in 〈R,Z,+, <〉. Using the same argument as in the
proof of Lemma 3, this result can directly be extended to bases r1 and r2
that do not share the same set of prime factors. This differs slightly from
the statement of Cobham’s original theorem, which considers instead bases
that are multiplicatively independent, i.e., that cannot be expressed as integer
powers of the same integer [11,8]. Unfortunately, our approach does not easily
generalize to multiplicatively independent bases, since Lemma 3 then becomes
invalid. This issue will be addressed in a forthcoming article.

Another contribution is a detailed characterization of the transition graph
of weak deterministic RNA that represent subsets of R defined in first-order
additive arithmetic. This characterization could be turned into efficient data
structures for handling such RNA. In particular, since their fractional parts
recognize a finite union of interval and individual rational values, an efficient
representation might be based on symbolic data structures such as BDDs [9]
for handling large but finite enumerations. Another possible application is the
extraction of formulas from automata-based representations of sets [13,14].

Finally, another goal will be to extend our results to sets in higher dimensions,
i.e., to generalize Semenov’s theorem [18] to automata over real vectors.

References

[1] J. Avigad and Y. Yin. Quantifier elimination for the reals with a predicate for
the powers of two. Theoretical Computer Science, 370:48–59, 2007.

[2] B. Boigelot. Symbolic methods for exploring infinite state spaces. PhD thesis,
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[14] J. Leroux. A polynomial time Presburger criterion and synthesis for number
decision diagrams. In Proc. 20th LICS, pages 147–156, Chicago, June 2005.
IEEE Computer Society.
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