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ABSTRACT
We describe the development of a multipoint nonparametric quantitative trait loci mapping method

based on the Wilcoxon rank-sum test applicable to outbred half-sib pedigrees. The method has been
evaluated on a simulated dataset and its efficiency compared with interval mapping by using regression.
It was shown that the rank-based approach is slightly inferior to regression when the residual variance is
homoscedastic normal; however, in three out of four other scenarios envisaged, i.e., residual variance
heteroscedastic normal, homoscedastic skewed, and homoscedastic positively kurtosed, the latter outper-
forms the former one. Both methods were applied to a real data set analyzing the effect of bovine
chromosome 6 on milk yield and composition by using a 125-cM map comprising 15 microsatellites and
a granddaughter design counting 1158 Holstein-Friesian sires.

RECENT developments in DNA marker technology, populations, generated as part of the applied progeny-
test breeding design.such as the discovery of microsatellites (Weber

and May 1989), random amplified polymorphic DNA A number of mapping methods have been applied to
such half-sib designs, including single-marker regres-(RAPDs; Williams et al. 1990), and amplified fragment

length polymorphism (AFLPs; Vos et al. 1995) as abun- sion (e.g., Cowan et al. 1990), interval mapping using
regression (e.g., Knott et al. 1996), and maximum like-dant sources of well-dispersed genetic markers, have

boosted the construction of marker maps across a broad lihood methods (e.g., Georges et al. 1995). All these
methods share a common assumption, namely the resid-taxonomic range. Not only are such maps now available

for human and model organisms such as mouse and ual normal distribution and homoscedasiticity of the
analyzed phenotypes or transformations thereof. Theserat but for a number of agriculturally important animal

and plant species as well. approaches therefore are not suitable for phenotypes
that are known not to satisfy this normality assumption.These maps increasingly are applied to locate genes

underlying inheritable phenotypes of interest. Several Moreover, deviations from normality for traits that gen-
erally are assumed to be quasi-normally distributed areof the most relevant phenotypes are continuously dis-

tributed quantitative traits involving multiple polygenes likely to affect the power and robustness of these conven-
tional approaches.or quantitative trait loci (QTL), as well as nongenetic

effects. Experimental back- and intercrosses are often Recently, Kruglyak and Lander (1995a) described
a nonparametric QTL interval mapping approach basedthe preferred design to map QTL. However, in a num-

ber of agriculturally important species (notably cattle on the Wilcoxon rank-sum test applicable in experimen-
tal crosses. This method provided a robust alternativeand pine trees), reproductive cycles and breeding de-
to conventional approaches, applicable to normally dis-signs have led to the generation of extensive half-sib
tributed traits with minimal loss of power and extendingpedigrees that are readily available for QTL mapping.
the scope of QTL mapping to a variety of traits notA well-documented example of this is the so-called
normally distributed, such as counts generated by a Pois-granddaughter design to map genes underlying milk
son process, truncated data, probabilities, and qualita-production in commercial cattle populations (Weller

tive data.et al. 1990). This design takes advantage of the numerous
In this article, we describe the adaptation of thispaternal half-brother pedigrees that exist in dairy cattle

method to half-sib pedigrees in outbred populations
and apply it to milk production in a granddaughter
design. A computer program to implement this ap-
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MATERIALS AND METHODS population frequency of the obliged maternal marker allele
of marker m, given the paternal gamete k.

A QTL interval mapping procedure based on the Wilcoxon All marker phases are a priori considered to be equally likely;
rank-sum test—general principles: To measure the evidence i.e., linkage equilibrium is assumed to be reached between all
in favor of a QTL at a given map position, Kruglyak and markers. The marker phase maximizing the likelihood of the
Lander (1995a) define the following statistic (illustrated for pedigree data is considered the true one and is selected for
an (A 3 B) 3 A backcross), further analysis.

As pointed out by Kruglyak and Lander (1995a),
ZW(s) 5 YW(s)/√kYW(s)2l, (1)

kYW(s)2l 5 1n
3 2 n

3 2 k[1 2 2·P[gi,A(s)|gi,L,gi,R]]2 l. (4)where

YW(s) 5 o
n

i51

[n 1 1 2 2 · rank (i)] While k[1 2 2·P[gi,A(s)|gi,L,gi,R]]2l or the expected value of
[1 2 2·P[gi,A(s)|gi,L,gi,R]]2 over all possible genotypes is com-
puted easily for experimental crosses, its calculation is more·[P[gi,A(s)|gi,L,gi,R] 2 P[gi,B(s)|gi,L,gi,R]], (2)
cumbersome in outbred designs as it will depend on marker

in which n is the number of progeny; rank(i) is the rank by allele frequencies and genotype of the founder sire. The value
phenotype of progeny i; P[gi,A(s)|gi,L,gi,R] is the probability that of k[1 2 2·P[gi,A(s)|gi,L,gi,R]]2l is therefore calculated for each
progeny i has genotype AA at map position (s) given its half-sib pedigree by simulating all possible offspring and calcu-
genotype at the left (gi,L) and right (gi,R) flanking markers; lating a frequency weighted mean of [1 2 2·P[gi,A (s)|gi,L,gi,R]]2.
P[gi,AB(s)|gi,L,gi,R] is the probability that progeny i has genotype Across family analysis: In practice, the available pedigree
AB at map position (s) given its genotype at the left (gi,L) and material is composed most often not of one half-sib pedigree
right (gi,R) flanking markers; and but of a series of such half-sibships, such as in the grand-

daughter design (Weller et al. 1990). In outbred populations,
√kYW (s)2l however, the different sibships cannot be assumed to segregate

for the same QTL or even QTL alleles; i.e., one cannot assumeis the standard deviation of YW(s), expected under the null
locus and allelic homogeneity across families.hypothesis of no QTL over all possible sets of genotypes.

Rather than analyze the pedigrees separately, however, andUnder the null hypothesis of no QTL, ZW is shown to behave
reduce power by multiple testing, the individual ZW(s) scoresasymptotically as a standard normal variable that reduces to
were squared and summed over all k families yielding a x2

a Wilcoxon rank-sum test at the marker positions.
statistic with k degrees of freedom:Adaptation to outbred half-sib designs: The method devel-

oped by Kruglyak and Lander (1995a) for experimental
o

k

j51

[Z W(s)j]2 5 x2
k. (5)crosses was adapted to outbred half-sib designs, e.g., a founder

sire mated to several dams to produce a large paternal half-
Interval mapping by regression: The rank-sum-based ap-sibship. The approach relies on the same Z W(s) statistic. How-

proach (hereafter referred to as method RS) was comparedever, P[gi,A(s)|gi,L,gi,R] (Equation 2) is now defined as the proba-
with interval mapping by using regression (hereafter referredbility that progeny i has inherited QTL allele A from the
to as method MR for multipoint regression; Knott et al. 1996).founder sire—assumed to be heterozygous AB at the QTL—at
For each half-sib family, j, phenotypes were regressed onmap position (s) given its genotype at the left (gi,L) and right
P[gi,A(s)|gi,L,gi,R], calculated as described above, yielding least-(gi,R) flanking markers. Only markers for which the founder
squares estimators of the y intercept, b0j, and the slope, b1j,sire is heterozygous are considered when computing P[gi,A(s)|
the latter being an estimator of the QTL allele substitutiongi,L,gi,R]. Moreover, while the nearest flanking markers contain
effect in the corresponding family, j. The ratioall information needed to compute P[gi,A(s)|gi,L,gi,R] in a given

interval when dealing with experimental crosses, information
from more distant markers is considered in the outbred half- (Rk

j51 SSRj /k)
(Rk

j51 SSEj /(n 2 2k))sib situation, when closer markers are not fully informative.
This occurs in the case of missing genotypes or when the was used to measure the evidence in favor of a segregatingoffspring has the same marker genotype as the sire, and the QTL at chromosome position (s). n is the total number ofdam is either not genotyped or has the same heterozygous observations, k is the number of half-sib families, and SSRjgenotype as well. In the former case, part of the information (sum of squares regression) measures the variability in thecan be recovered by considering marker allele frequencies in phenotype attributed to the segregation of a hypothetical QTLthe population. at position (s) in family j, and SSEj (sum of squares error)Calculation of P[gi,A(s)|gi,L,gi,R] requires knowledge of the measures the residual or unexplained phenotypic variabilitysire’s marker linkage phase. In the absence of grandparental in family j. This ratio can be shown to be distributed as anmarker information, the most likely linkage phase is first esti- F-statistic under the null hypothesis of no QTL at the corre-mated from the marker genotypes of the offspring. This is sponding chromosome position.accomplished by calculating the likelihood of the pedigree Significance thresholds: For both the RS and MR methods,data under the 2x/2 possible phases (assuming x informative chromosome-wise significance thresholds were determinedmarkers) as follows (Georges et al. 1995): from the distribution of the test statistic over 10,000 permuta-

tions (simulated data set) or 100,000 permutations (real data
Li 5 p

n

j51
3o

2x

k51
3P(k|i) p

x

m51

AFMm44, (3) set) of the phenotypes (or ranks) as suggested by Churchill

and Doerge (1995). Phenotypes were permutated within
family. For each permutation, the highest value of the testwhere Li is the likelihood of the pedigree data for linkage

phase i; P n
j51 is the product over all n half-sibs; R 2x

k51 is the sum statistic over the entire chromosome was retained to yield
“chromosome-wise” distributions of the test statistic under theover all possible sire’s gametes k; P(k|i) is the probability of

gamete k given Mendelian laws, phase i, and recombination null hypothesis. For the real data set, a Bonferonni correction
was applied to the chromosome-wise significance level, consid-rates between adjacent markers, u1 to ux; Px

m51 is the product
over all m markers within the synteny group; AFMm is the ering that chromosome 6 represents 1/29 of the bovine au-
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tosomes and that we analyzed the equivalent of three indepen- s2
R 5p2 1 2pqr 1 q 2s.

dent traits (Spelman et al. 1996) to obtain “experiment-wise”
Homoscedastic, skewed residual variance: Skewness was simu-significance thresholds.

lated by assuming a residual effect distributed as a chi-squaredSimulated data set: To test the efficacy of the proposed
distribution with n degrees of freedom, with variance s2

R 5method, we simulated the segregation of a QTL in a grand-
2n and mean n. Individual phenotypic values were generateddaughter design. The pedigree material was composed of two
as the mean of the genotypic class to which the individualpaternal half-sib families of 100 sons, four families of 50 sons,
belongs (QQ 5 a 2 n, Qq 5 0 2 n, or qq 5 2a 2 n) plus aand eight families of 25 sons, quite accurately reflecting a
value drawn from a chi-squared distribution with n degreesreal data set. The 14 respective sires were considered to be
of freedom, obtained by summing n squared values drawnunrelated.
from a standard normal.A QTL was positioned in the center of the fourth interval

Homoscedastic, positive kurtosis: Excess of kurtosis was simu-of a map comprising seven markers spaced 15 recombina-
lated by assuming that the residual effect was distributed astion units apart. Markers were assumed to be polyallic markers a Student’s t -distribution with n degrees of freedom, withwith frequencies randomly assigned from a uniform dis- variance s2

R 5 n/(n 2 2) and mean 0. Individual phenotypictribution and rescaled to sum to unity, yielding a heterozy- values were generated as the mean of the genotypic class togosity of which the individual belongs (QQ 5 a, Qq 5 0, or qq 5 2a)
plus a value drawn from a t -distribution with n degrees of

h 5 1 2 #
1

0

...#
1

0
#

1

0

Rb
i51 p2

i

(R b
i51 pi)2

·dp1·dp2...dpb, freedom, i.e.,

Z/1√x2
n /n2.where pi is the frequency of the ith allele randomly chosen

from the uniform distribution for the locus in question. The
Homoscedastic, negative kurtosis: Negative kurtosis was simu-number of marker alleles was set at four, yielding an expected

lated by assuming that the residual effect was distributed as aheterozygosity of 67%, which is very comparable to what is
hemicircular distribution with mean 0 and variance s2

R 5 r 2/observed in reality with microsatellite markers in cattle popula-
4, where r is the radius of the hemicircle. Individual pheno-tions.
typic values were generated as the mean of the genotypic classThe QTL was assumed to be biallelic with frequencies p 5
to which the individual belongs (QQ 5 a, Qq 5 0, or qq 50.25 (Q) and q 5 0.75 (q), respectively. Founder-sires therefore
2a) plus a value drawn from this hemicircular distribution.had an a priori probability 2pq 5 0.375 to be heterozygous Qq
This was done by determining the value of t such thatfor the QTL. Following Falconer’s notation (Falconer and

MacKay 1996) and assuming additively acting alleles, the aver- 2
p r 2#

t

0

√r 2 2 x 2dx 5 s,age phenotypic values of the QQ, Qq, and qq genotypic classes
were set at 1a, d 5 0, and 2a, respectively. Assuming Hardy-
Weinberg equilibrium, this yields an average effect of an allele where s is a random number between 0 and 1.
substitution, a 5 a, and a variance attributable to the segrega- Figure 1 illustrates the expected phenotypic distributions
tion of the QTL: of offspring from heterozygous founder-sires, Qq, for the five

examined models. Offspring are sorted in two genotypic
s2

QTL 5 2pqa 2. classes depending on the QTL allele transmitted by the sire
(Q or q). Each class therefore comprises two subpopulations:

The value of a was determined such that QQ (25%) and Qq (75%) for the Q class and Qq (25%) and
qq (75%) for the q class.

At least 200 datasets (ranging from 200 to 866) were simu-h2 5
s2

QTL

s2
P

5
s2

QTL

s2
QTL 1 a2

R

5
2pqa 2

2pqa2 1 a2
R lated under each of the five models of residual variation and

analyzed with the RS and MR methods. Permutations were
reached a constant percentage, or used to estimate the significance levels reached for each of

these analyses (Churchill and Doerge 1995). For each rep-
a 5 ! h2 s2

R

2pq(1 2 h2)
. licate, 10,000 permutations were performed and analyzed

with the RS and MR methods to yield a dataset-specific, chro-
mosome-wise distribution of the RS and MR statistics under

h2 was set at 9.4% for all simulations, corresponding to an a the null-hypothesis, allowing us to measure the P value of the
value of 0.5sP. Five scenarios were considered to model the unpermutated data under the null hypothesis of no QTL.
residual variance, s2

R: (1) homoscedastic, normal residual vari- Average P values over replicates were calculated for each of
ance, (2) heteroscedastic, normal residual variance, (3) homo- the five models. For each model, the proportion of datasets
scedastic, skewed, or asymetric residual variance, (4) homo- yielding a P value less than 0.05 (5a) was used to measure
scedastic, positive kurtosis or more peaked around the center the corresponding power (1 2 b) of the RS and MR methods
than the density of the normal curve, and (5) homoscedastic, (Table 1). Within each model, we compared the relative merits
negative kurtosis or flatter around the center than the density of the RS vs. MR methods by applying the Wilcoxon matched
of the normal curve. pairs test on all resulting pairs of P values (Hollander and

Homoscedastic normal residual variance: Individual phenotypic Wolfe 1973). Within each method, the effect of the model
values were generated as the mean of the genotypic class to on the power to detect the QTL was evaluated by using the
which the individual belongs (QQ 5 a, Qq 5 0, or qq 5 2a) Mann-Whitney U test (Hollander and Wolfe 1973), using
plus a value drawn from a normal distribution with mean 0 model 1 as reference.
and variance 1; i.e., s2

R was set at one. Real data set: The realdata set was a Holstein-Friesian grand-
Heteroscedastic normal residual variance: Individual phenotypic daughter design comprising 1158 sons distributed over 29

values were generated as the mean of the genotypic class to paternal half-sib families, partially described in Spelman et al.
which the individual belongs (QQ 5 a, Qq 5 0, or qq 5 2a) (1996). The number of sons per family ranged from 11 to
plus a value drawn from normal distributions with mean 0 153.

All animals were genotyped for a battery of 15 previouslyand variances of s2
R(QQ) 5 1, s2

R(Qq) 5 r, and s2
R(qq) 5 s, such that
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Figure 1.—Phenotypic distributions of offspring from heterozygous Qq sires, sorted according to the QTL allele inherited
from the sire (Q or q), assuming (a) a heteroscedastic normal residual variance (r 5 2; s 5 4); (b) a homoscedastic, skewed
residual variance (x2

8); (c) a homoscedastic, positively kurtosed residual variance (t5); and (d) a homoscedastic, negatively kurtosed
residual variance (hemicircular residual variance). The phenotypic distributions of the q? offspring are shown (thick black lines)
and compared with the corresponding distribution assuming a homoscedastic normal residual variance (thick gray lines). The
corresponding distributions of the Q? offspring are shown as thin lines. Each class therefore comprises two subpopulations: QQ
(25%) and Qq (75%) for the Q? class and Qq (25%) and qq (75%) for the q? class. The differences between the means of the
Q? and q? populations, corresponding to the effect of the Q to q allele substitution, equal 0.5 sP.

described (Kappes et al. 1997) microsatellite markers from measuring of information content, and QTL mapping, were
estimated from the dam population, separately for each pedi-bovine chromosome 6 (Table 2). Genotyping was performed

as described (Georges et al. 1995) or by using the “four dye- gree, as
one lane” technology on an ABI373 or ABI377 sequencer.

p1 5 (1 2 p3) n11/(n11 1 n22)Marker maps were built by using the CRIMAP program
p2 5 (1 2 p3) n22/(n11 1 n22)(Lander and Green 1987) to determine the most likely order
p3 5 (n13 1 n23)/n.and the ANIMAP program to refine the most likely recombina-

tion rates between adjacent markers (Georges et al. 1995). p1 and p2 correspond to the frequencies of two alleles from
Information content along the marker map (Kruglyak and the sire, while p3 is the frequency of all other alleles pooled.

Lander 1995b) was measured as nxy corresponds to the number of sons in the pedigree with
genotype xy, and n equals the total number of sons in thevar[P(gi,A(s)|gi,L,gi,R) 2 P(gi,B(s)|gi,L,gi,R)] pedigree.

5
on

i51 [P(gi,A(s)|gi,L,gi,R) 2 P(gi,B(s)|gi,L,gi,R)]2

n 2 1
,

RESULTS
where n is the total number of sons in the granddaughter

Simulated data: Using the approach described in ma-design (GDD).
QTL mapping was performed for five milk production traits: terials and methods, we simulated GDDs segregating

milk yield (kg), protein yield (kg), fat yield (kg), protein per- for a QTL explaining a fixed 9.4% of the phenotypic
centage, and fat percentage. The phenotypes used for QTL variance (corresponding to a 5 0.5sP) but with five
mapping were deviations of individual daughter yield devia-

alternative residual components: homoscedastic nor-tions from the corresponding average of the parental pre-
mal, heteroscedastic normal, homoscedastic skewed, ho-dicted transmitting abilities (Van Raden and Wiggans 1991).

Marker allele frequencies, required for map construction, moscedastic positive kurtosis, and homoscedastic nega-
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TABLE 1

Comparison of the power and precision of the RS and MR QTL mapping
methods under five models of residual variance

Model 2
Model 1 (r 5 2, s 5 4) Model 3 (x2

8) Model 4 (t 5) Model 5(1⁄2o)

RS MR RS MR RS MR RS MR RS MR

Replicates 866 200 500 200 400
Average P value 0.24 0.23 0.19 0.22 0.20 0.23 0.20 0.25 0.25 0.21
1 2 b (a 5 0.05) 0.34 0.37 0.42 0.35 0.37 0.34 0.38 0.34 0.29 0.34
SD position (cM)a 24.1 22.6 27.1 24.3 21.7 22.8 20.2 20.4 22.1 21.1
RS vs. MRb P , 0.0001 P , 0.05 P , 0.001 P , 0.01 P , 0.0001
Model 1 vs. Model 3 (RS)c P , 0.01 P , 0.05 P , 0.05 P . 0.05
Model 1 vs. Model 3 (MR)c P . 0.05 P . 0.05 P . 0.05 P . 0.05

Model 1 is homoscedastic normal; 2, heteroscedastic normal; 3, homoscedastic skewed; 4, homoscedastic positively kurtosed;
and 5, homoscedastic negatively kurtosed.

a Standard deviation of the most likely QTL position for all simulations with chromosome-wise P values less than 0.05.
b Comparison of P value distribution between methods, within models (Wilcoxon Matched Pairs Test).
c Comparison of P value distribution between models, within methods (RS or MR, Mann-Whitney U test).
RS, rank-sum-based approach; MR, multipoint regression.

tive kurtosis. The generated datasets were all analyzed model (model 5; P 5 0.000001); the loss of power with
the RS method was estimated at 14% at a-value of 0.05.by using both RS and MR methods. Table 1 reports, for

each of the five scenarios, the average P values and For the three remaining scenarios, however, the RS
approach outperformed MR, the gain in power rangingthe associated power at a-value of 0.05, obtained by

permutation as described in materials and methods. from 8 to 20% at a-value of 0.05 (Table 1).
The effect of the model on the power to detect theThe relative merit of the RS and MR methods was

evaluated by using the Wilcoxon matched pairs test as QTL was evaluated by using the Mann-Whitney U test
(see materials and methods), by using model 1 asdescribed in materials and methods. As expected,

multiple regression is superior to the rank-sum ap- reference. Comparisons were performed separately for
the RS and MR approach. Interestingly, MR appears toproach under the basic model of homoscedastic normal

residual variance (P 5 0.000014). The loss of power be quite insensitive to the nonnormality of the residual
variation, as the distribution of P values under the alter-when using the rank-based method is estimated at 8%

at a-value of 0.05. The MR method proved also signifi- native models is never significantly different from those
obtained under the basic model. This is likely due to thecantly superior to the RS method in the negative kurtosis

TABLE 2

Primer pairs used for amplification of BTA6 microsatellite markers

u from previous
Marker UP-Primer (59–39) DN-Primer (59–39) marker

ILSTS090 TAGTACCATACCCAGGTAGG GCCAAAACACACAAGTGTGC 0
URB16 AGCTTTCTCTCACGGGTTTCG CGGACAGGACTGAGCTACTGA 0.219
BM1329 TTGTTTAGGCAAGTCCAAAGTC AACACCGCAGCTTCATCC 0.018
BM143 ACCTGGGAAGCCTCCATATC CTGCAGGCAGATTCTTTATCG 0.142
TGLA37 CATTCCAATCCCCTATCCTGAG TTGAATGATTCTATGAAGACCTGTA 0.061
ILSTS097 AAGAATTCCCGCTCAAGAGC GTCATTTCACCTCTACCTGG 0.105
BM4528 CAGAATCCATACACATGTCAACA AGGAACAGGTATAGGAATATTGGA 0.011
BM4621 CAAATTGACTTATCCTTGGCT TGTAATATCTGGGCTGCATC 0.033
RM028 CTACAGTCATGGGTCTGAAAG ATCTTCAGCCTGGCCTGAGAG 0.023
BM415 GCTACAGCCCTTCTGGTTTG GAGCTAATCACCAACAGCAAG 0.022
KCAS CAGTTACAAACATGTGGTGAGAATA AGAGCTTTGACATACAATAGACAA 0.079
ILSTS087 AGCAGACATGATGACTCAGC CTGCCTCTTTTCTTGAGAGC 0.030
BM4311 TCCACTTCTTCCCTCATCTCC GAAGTATATGTGTGCCTGGCC 0.011
BP7 GACCTTTTCACTGCCCTCTG TTTATTTCTGAGTCTTTGGGGC 0.018
BM2320 GGTTCCCAGCAGCAGTAGAG CCCATGTCTCCCGTTACTTC 0.250
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Figure 2.—Information content (in percentage of the theoretical maximum) map along the length of bovine chromosome
6 when using (111) or ignoring (222) marker allele frequencies. Marker names and corresponding map position in centi-
morgans are shown along the x-axis.

fact that significance levels are deduced from phenotype covers 125 cM (Kosambi) with average interval of 9 cM.
The most likely order was in agreement with Kappes etpermutations rather than from the theoretical distri-

bution of the test statistic. Using RS, on the contrary, al. (1996). The same figure also compares information
content when (1) exploiting marker allele frequencysignificant increases in detection power are observed for

models 2, 3, and 4 (respectively 9, 12, and 23% at a-value estimates to extract information from noninformative
marker genotypes, and (2) when ignoring this informa-of 0.05; Table 1), while the distribution of P values does

not differ significantly between models 1 and 5. tion, i.e., when considering all microsatellite alleles to
be equally frequent in the population. It can be seenEstimates of the precision in the estimation of QTL

positions were also compared. Table 1 shows the that more than 80% of the maximal information is ex-
tracted for the central part of the chromosome; how-standard deviation of the most likely QTL position for

all simulations yielding a signal exceeding the 5% chro- ever, the information content drops at both extremities
of the chromosome. Moreover, the figure shows thatmosome-wise significant threshold. Comparing the dif-

ference between real and estimated position by using information content is improved only marginally by con-
sidering marker allele frequencies. This is especially truethe Mann-Whitney U test, we found no evidence for a

significanteffect either of the statistical method or of the in the central, denser part of the marker map.
Figures 3a and 3b summarize the location score pro-model for the underlying residual variance. In essence,

precision was as poor in all circumstances, standard files obtained for the five different milk production
traits by using both RS and MR approaches. Generallydeviations of the estimated position being 20 to 25 cM.

While the actual position of the QTL was at 62 cM speaking, both methods clearly yield very similar curves
for all traits along the entire chromosome length. Forcounting from the first marker, the estimates ranged

from 0 to 118 cM, i.e., the entire chromosome length. A protein percentage, the location scores maximize at the
same chromosome position (48 cM) using both ap-total of 95% of the estimates were within 43 cM (51.9 s)

from the actual position. proaches. The associated experiment-wise significance
levels are P 5 0.03 for RS and P 5 0.01 for MR, thereforeReal data: Table 2 and Figure 2 show the most likely

marker map as obtained from our genotypes. The map slightly superior for the latter.
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Figure 3.—Location
scores obtained along chro-
mosome 6 for milk (d), fat
(m), and protein (j) yield,
as well as fat (n) and pro-
tein (h) percentage, using
the RS (a) and MR methods
(b). The y-axis corresponds
to the log10 of the inverse of
the corresponding chromo-
some-wise P value as deter-
mined by permutation. Ho-
rizontal bars on the graphs
correspond to 15, 10, 5, and
1% experiment-wise thresh-
olds, obtained by applying
a Bonferroni correction to
the chromosome-wise sig-
nificance levels.

These results are in agreement with the report of a corresponding pedigree material is given in Spelman

et al. (1996).QTL affecting milk production on the centromeric half
of chromosome 6, first identified by Georges et al.
(1995) and later confirmed in independent studies in

DISCUSSION
Holstein-Friesian by Spelman et al. (1996) and Kühn et
al. (1996), in Finnish Ayrshire by Vilkki et al. (1997), In this article, we have adapted a nonparametric QTL

mapping method based on sum of ranks that was de-and in Norwegian Red by Gomez-Raya et al. (1996).
A detailed analysis of this chromosome region in the scribed previously for experimental crosses (Kruglyak
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and Lander 1995a) to outbred half-sib pedigrees. This method allows for missing genotypes in the “dams.” In
such cases, estimates of marker allele frequencies canis particularly relevant for mapping QTL in specific live-

stock and plant species where such pedigrees routinely be used to improve inference about the identity of the
transmitted paternal chromosome. However, it is shownare generated within the context of specific breeding

designs. It extends the scope of QTL mapping in these that when performing multipoint analyses with dense
marker maps, this contributes only a marginal improve-pedigrees to a variety of not normally distributed traits,

including counts generated by a Poisson process, trun- ment of the information content. The benefit of includ-
ing marker allele frequency is therefore doubtful. In-cated data, and probabilities and qualitative data (Krug-

lyak and Lander 1995a). deed, errors in the estimation of the marker allele
frequencies may even cause an increase in type I errorsWe confirm that this approach (the RS method) can

be applied conveniently to normally distributed traits or a loss of power if accounting for inaccuracies in the
frequency estimates (Charlier et al. 1996).with minimal loss of power when compared to paramet-

ric methods. In the simulated example, we noticed a As expected, the precision in the estimation of the
QTL position using both proposed parametric and non-loss of power of 8% at a-value of 5% when compared

to the MR method. When simulating nonnormal or parametric approaches is mediocre. This illustrates the
need to develop alternative strategies for fine-mappingheteroscedastic residuals, however, the RS method out-

performed the MR method in three out of four scenar- QTL in outbred populations.
ios (models 2–4: heteroscedastic normal, homoscedastic We acknowledge the financial support of Holland Genetics, Live-
skewed, and homoscedastic positively kurtosed). Inter- stock Improvement Corporation, the Vlaamse Rundvee Vereniging,

and the Ministère des Classes Moyennes et de l’Agriculture, Belgium.estingly, this was shown not to be due to a loss of power
Continuous support from Nanke den Daas, Brian Wickham, Denisof the MR approach, which proved to be relatively robust
Volckaert, and Pascal Leroy is greatly appreciated. We thankin the scenarios that we simulated, but rather to a gain
Johan van Arendonk, Richard Spelman, Henk Bovenhuis,

of power when applying the RS method. Our interpreta-
Marco Bink, Dave Johnson, and Dorian Garrick for fruitful dis-

tion of this finding is that in the three scenarios where cussions.
RS proved superior to MS, the phenotypic distribution
is characterized by “outlyers” when compared to the
normal distribution (see Figure 1). These outlyers con- LITERATURE CITED
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