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ABSTRACT
A new method for improving the resolution of astronomical images is presented. It is based on the

principle that sampled data cannot be fully deconvolved without violating the sampling theorem. Thus,
the sampled image should be deconvolved not by the total point-spread function but by a narrower
function chosen so that the resolution of the deconvolved image is compatible with the adopted
sampling.

Our deconvolution method gives results that are, in at least some cases, superior to those of other
commonly used techniques : in particular, it does not produce ringing around point sources superposed
on a smooth background. Moreover, it allows researchers to perform accurate astrometry and photo-
metry of crowded Ðelds. These improvements are a consequence of both the correct treatment of
sampling and the recognition that the most probable astronomical image is not a Ñat one.

The method is also well adapted to the optimal combination of di†erent images of the same object, as
can be obtained, e.g., from infrared observations or via adaptive optics techniques.
Subject headings : methods : data analysis È methods : numerical È techniques : image processing

1. DECONVOLUTION

Any recorded image is blurred whenever the instrument
used to obtain it has a Ðnite resolving power : for example,
the image of a point source seen through a telescope has an
angular size that is inversely proportional to the diameter of
the primary mirror. If the instrument is ground based, the
image is additionally degraded by the turbulent motions in
the EarthÏs atmosphere.

Much e†ort is presently devoted to the improvement of
the spatial resolution of astronomical images, either via the
introduction of new observing techniques (e.g., interferome-
try or adaptive optics ; see Mare� chal, &Le� na 1996 ; Enard,
Espiard or via a subsequent numerical processing of1996)
the image (deconvolution). It is, in fact, of major interest to
combine both methods to reach an even better resolution.

An observed image may usually be mathematically
expressed as a convolution of the original light distribution
with the ““ total instrumental proÐle ÏÏÈthe latter being the
image of a point source obtained with the instrument con-
sidered, including the atmospheric perturbation (seeing) if
relevant. The total blurring function is called the point-
spread function (PSF) of the image.

Thus, the imaging equation may be written

d(x) \ t(x)*f (x) ] n(x) , (1)

where f (x) and d(x) are the original and observed light dis-
tributions, t(x) is the total PSF, and n(x) are the measure-
ment errors (noise) a†ecting the data.

In addition, on all modern light detectors (e.g., CCDs
whose pixels have Ðnite dimensions), the observed light dis-
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tribution is sampled, i.e., known only at regularly spaced
sampling points. The imaging equation for a sampled light
distribution then becomes
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The aim of deconvolution may be stated in the following

way : given the observed image, d(x), and the PSF, t(x),
recover the original light distribution, f (x). Being an inverse
problem, deconvolution is also an ill-posed problem, and
no unique solution can be found, especially in the presence
of noise. This is due to the fact that many light distributions
are, after convolution with the PSF, compatible within the
error bars with the observed image. Therefore, regulariza-
tion techniques have to be used in order to select a plausible
solution among the family of possible ones, and a large
variety of deconvolution methods have been proposed,
depending on the way this particular solution is chosen.

A typical method is to minimize the s2 of the di†erences
between the data and the convolved model, with an addi-
tional constraint imposing smoothness of the solution. isf
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where the Ðrst term in the sum is the s2 with the standardp
ideviation of the image intensity measured at the ith sam-

pling point, H is a smoothing function, and j is a Lagrange
parameter that is determined so that the reconstructed
model is statistically compatible with the data (s2^ N).
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maximum entropy method for image deconvolution
& Nityananda & Bryan(Narayan 1986 ; Skilling 1984).

In order to choose the correct answer in the family of
possible solutions to this inverse problem, it is also very
useful to consider any available prior knowledge. One such
prior knowledge is the positivity of the light distribution : no
negative light Ñux can be recorded, so that all solutions with
negative values may be rejected. The maximum entropy
method automatically ensures positivity of the solution.
This is also the case, under certain conditions, for other
popular methods, such as the Richardson-Lucy iterative
algorithm (Richardson 1972 ; Lucy 1974).

Most of the known deconvolution algorithms su†er from
a number of weak points that strongly limit their usefulness.
The two most important problems in this respect are the
following : (1) traditional deconvolution methods tend to
produce artifacts in some instances (e.g., oscillations in the
vicinity of image discontinuities, or around point sources
superposed on a smooth background) ; and (2) the relative
intensities of di†erent parts of the image (e.g., di†erent stars)
are not conserved, thus precluding any photometric mea-
surements. In the next sections, we identify a plausible cause
of these problems and show how to circumvent it.

2. SAMPLING

The sampling theorem et al.(Shannon 1949 ; Press 1989)
determines the maximal sampling interval allowed so that
an entire function can be reconstructed from sampled data.
It states that a function whose Fourier transform is zero at
frequencies larger than a cuto† frequency is fully speciÐedl0by values spaced at equal intervals not exceeding In(2l0)~1.
practice, for functions whose Fourier transform does not
present such a cuto† frequency, may be taken as thel0highest frequency at which the Fourier transform emerges
from the noise.

The imaging instruments are generally designed so that
the sampling theorem is approximately fulÐlled in average
observing conditions. A typical sampling encountered is D2
sampling intervals per full width at half-maximum
(FWHM) of the PSF (this does certainly not ensure good
sampling for high signal-to-noise [S/N] images, but it is
roughly sufficient at low S/N).

The main problem with classical deconvolution algo-
rithms is the following : if the observed data are sampled so
that they just obey the sampling theorem, the deconvolved
data will generally violate that same theorem. Indeed,
increasing the resolution means recovering highest Fourier
frequencies, thus increasing the cuto† frequency, so that the
correct sampling becomes denser.

One might object that some deconvolution algorithms,
which allow a di†erent sampling in the deconvolved image,
could overcome this problem: it would be possible to keep a
correct sampling by shortening the sampling interval. This
is, however, an illusory solution, since the only limit on the
frequency components present in an arbitrary image comes
from the PSF of the instrument used to record it. Removing
the e†ect of the PSF would allow the presence of arbitrary
high-frequency components, and thus an inÐnitely small
sampling interval would have to be used.

This is particularly true if the image contains point
sources, which is generally the case for astronomical images.

Indeed, the angular diameters of most stars are so(>0A.001)
small compared with the sampling interval that they(D0A.1)
may be considered as point sources (““ d-functions ÏÏ). In such
an instance, it would be hopeless to reduce the sampling
interval in an attempt to obtain a good sampling of such
““ d-functions. ÏÏ

This is one of the sources of some of the artifacts present
in the deconvolved images and, in particular, of the
““ ringing ÏÏ around point sources superposed on a di†use
background. The origin of this ““ ringing ÏÏ may be under-
stood in the following way.

Let us assume that we have a continuous (i.e., not
sampled) noise-free image of a Ðeld containing point
sources and observed with an instrument having a known
PSF. For simplicity, we restrict our considerations to one-
dimensional images. If we can perfectly deconvolve this
image, we shall obtain a solution f (x) in which each point
source is represented by a Dirac d-function.

Now, let us assume that we have the same image, but
sampled on N points, with a sampling step *x. The Fourier
transform of its deconvolution may be obtained from the
Fourier transform F(l) of the continuous deconvolution in
the following way : repeat periodically F(l) with the Nyquist
frequency take the sum of all these period-lNy\ (2*x)~1,
ical replicas at each frequency point, isolate one period, and
sample it on N equally spaced frequency points.

Isolating one period means multiplying the Fourier
transform by a rectangular (““ box ÏÏ) function that equals 1
in an interval of length and 0 outside. Now, a convolu-lNytion in the image domain translates into a simple product in
the Fourier domain, and vice versa. This multiplication by a
box function in the Fourier domain is thus equivalent, in
the image domain, to a convolution by the Fourier trans-
form of the box function, which is a function of the form
sin x/x. The solution of the deconvolution problem for a
sampled image with point sources is thus the (sampled) con-
volution of the exact solution f (x) with a function of the
form sin x/x. Each d-function is thus replaced by an oscil-
latory sin x/x function, which explains the ringing.

Another, more intuitive, explanation of the same e†ect is
the following. If a point source is located between two sam-
pling points (as will generally be the case), in order to cor-
rectly reproduce its position, the deconvolution algorithm
will have to distribute its intensity over several sampling
points. But, then, the width of the source will be too large,
and ringing will appear as the algorithm attempts to
decrease the intensity on the edges of the reconstructed
source, in order to keep the convolved model as close as
possible to the observed data.

In fact, it is not possible to correctly reproduce both the
position and the width of a sampled point source. To repro-
duce the zero width, the full signal must be concentrated on
a single sampling point. On the other hand, to reproduce
the position with a precision which is better than the sam-
pling interval, the signal has to be distributed over several
points.

3. SOLUTION

The correct approach to this sampling problem is thus
not to deconvolve with the total PSF, t(x), but rather with a
narrower function, s(x), chosen so that the deconvolved
image has its own PSF, r(x), compatible with the adopted
sampling. These three functions are simply related by
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t(x) \ r(x)*s(x) . (4)

Note that a similar decomposition was proposed, in a
completely di†erent context (reduction of artifacts in
maximum-likelihood reconstructions for emission
tomography), by et al.Snyder (1987).

The shape and width of r(x) can be chosen by the user.
The only constraint is that admits a solutionequation (4)
s(x). The function s(x) by which the observed image has to
be deconvolved is thus obtained as the deconvolution of the
total PSF, t(x), by the Ðnal PSF, r(x). Of course, the sam-
pling interval of the deconvolved image does not need to be
equal to the sampling interval of the original image, so that
r(x) may be much narrower than t(x), even if the original
sampling would not allow it. Choosing a sufficiently narrow
r(x) e†ectively insures that will admit a solutionequation (4)
s(x). Note also that, contrary to other traditional methods
(the success of which depends crucially on the e†ectiveness
of the positivity constraint), we have no positivity con-
straint on the PSFs r(x) and s(x).

Thus, the deconvolution algorithm should not attempt to
determine the light distribution as if it were obtained with
an ideal instrument (e.g., a space telescope with a primary
mirror of inÐnite size). This is forbidden as long as the data
are sampled. Rather, the aim of deconvolution should be to
determine the light distribution as if it were observed with a
better instrument (e.g., a 10 m space telescope).

Deconvolution by s(x) ensures that the solution will not
violate the sampling theorem. It also has a very important
additional advantage : if the image contains point sources,
their shape in the deconvolved image is now precisely
known: it is simply r(x). This is a very strong prior know-
ledge, and it may be used to constrain the solution f (x),
which can now be written

f (x)\ h(x) ] ;
k/1
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where M is the number of point sources, for which anda
k

c
kare free parameters corresponding to their intensities and

positions, and h(x) is the extended component of the solu-
tion, i.e., generally a rather smooth background.

We can use another prior knowledge to constrain the
solution : we know that the background h(x) can also be
written as the convolution of some function h@(x) with the
PSF of the solution r(x) :

h(x)\ r(x)*h@(x) . (6)

However, we cannot use that decomposition directly and
determine h@(x) instead of h(x) because h@(x) might violate
the sampling theorem, even if it does not contain point
sources. Rather, we may use this knowledge to impose
smoothness of h(x) on the scale length of r(x).

So, instead of regularizing the solution by a global func-
tion such as the entropy, we use a function imposing local
smoothness of h(x) on the known scale length. We thus
choose the solution that minimizes the function
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Although the smoothing term in the right-hand side of
will not force h(x) to exactly obeyequation (7) equation (6),

it essentially contains the Fourier components with fre-
quencies higher than those of the deconvolved PSF, r(x).
Minimizing this term will force the background component
to contain only the frequencies compatible with r(x) and,
thus, with the adopted sampling.

One additional improvement may be introduced. In
general, the Lagrange multiplier j is chosen so that s2^ N.
This ensures that the Ðt is statistically correct globally.
However, some regions of the image may be overÐtted, and
others may be underÐtted. In practice, this will generally be
the case : although the residuals will be correct on the
average, they will systematically be too small in some parts
of the image and too large in other parts.

To avoid this problem, one may replace the smoothing
function by
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where is the value at the ith sampling point of a functionj
ij(x) that is chosen so that the residuals of the Ðt are correct

locally, i.e., so that they are statistically distributed with the
correct standard deviation in any subpart of the image.

In practice, an image of the square of the normalized
residuals (observed data minus convolved model, divided
by p) is computed and then smoothed with an appropriate
function, so that any value is replaced by a weighted mean
on a neighborhood containing a few dozens of pixels. The
parameter j is then adjusted until this image is close to 1
everywhere.

4. EXAMPLES

Our deconvolution program implements the ideas
exposed in the preceding section. The light distribution
aimed at is written as the sum of a smooth background plus
a number of point sources. The sampling step of the decon-
volved image is chosen, as well as the Ðnal PSF, r(x), com-
patible with this sampling (in general, we adopt a Gaussian
function, with a few pixels FWHM). Approximate values of
the unknowns are chosen and the function is computed,S2together with its derivatives with respect to all variables.
The minimum of is then searched for, using an algorithmS2derived from the classical conjugate gradient method (Press
et al. The ÐtÏs residuals are then computed, and a1989).
check of their statistical correctness is performed. If this test
is not satisÐed, the Lagrange multiplier j is replaced by a
variable j(x) that is varied until the residuals conform to the
statistical expectations.

The present version of the program runs on PCs and
workstations and can handle images of reasonable size (e.g.,
256 ] 256 pixels) containing up to several hundreds of
stars. The main weakness of the present implementation is
related to the conjugate gradient algorithm, which is not
always able to Ðnd the global minimum of the function,
especially when the number of point sources is large. We are
presently working on a new optimization technique that
would allow our method to be applied to the photometry of
crowded Ðelds with thousands of stars.

It may not seem obvious at Ðrst sight to select the correct
number of point sources to be included in the solution.
However, the algorithm allows to constrain this number in
a very efficient way : if too few point sources are entered, it
will generally be impossible to obtain statistically correct
residuals locally, in all subparts of the image. On the other



No. 1, 1998 DECONVOLUTION WITH CORRECT SAMPLING 475

hand, if too many point sources are considered, the algo-
rithm will attribute either essentially the same position or
negligible intensities to several of them. Our methodology is
thus to model the data with the minimum number of point
sources necessary to yield statistically correct residuals
locally in all subparts of the image, in the sense described at
the end of the preceding section.

(Plate 14) compares the results of our newFigure 1
deconvolution algorithm with those of three classical
methods in the case of a simulated star cluster partly super-
posed on a smooth background (e.g., a distant elliptical
galaxy). The input point sources were selected from the
observed image alone, without any prior knowledge of the
exact solution. It is clear that our result is free from the
artifacts present in the other methods and that it allows an
accurate reconstruction of the original light distribution.
Another important property of our technique is that it
allows, contrary to the other ones, an accurate measure-
ment of the positions and intensities of the point sources.
This point will be discussed more extensively in the next
section.

An application to real astronomical data is shown on
(Plate 15), which displays a mediocre resolutionFigure 2

image of the Cloverleaf, a gravitationally lensed quasar
et al. together with the deconvolved version,(Magain 1988),

using a sampling interval twice as short. The four lensed
images, which were unresolved in the original data, are
completely separated after deconvolution. The deduced
Ñuxes are fully compatible with those measured on higher
resolution images, and, although the original resolution is

only and the pixel size is the deduced image posi-1A.3 0A.35,
tions are accurate to 0A.01.

(Plate 16) illustrates the deconvolution of anFigure 3
image of the compact star cluster Sk 157 in the Small
Magellanic Cloud Magain, & Remy(Heydari-Malayeri,

The original image was obtained with the ESO/MPI1989).
2.2 m telescope at La Silla, in average seeing conditions (1A.1
FWHM). While the original maximum entropy deconvolu-
tion et al. allowed to resolve the(Heydari-Malayeri 1989)
cluster into 12 components, our new algorithm detects,
from the same input data, more than 40 stars in the corre-
sponding area.

Another important application of our algorithm is the
simultaneous deconvolution of di†erent images of the same
Ðeld. These images may be obtained with the same instru-
ment or with di†erent ones. The solution is then a light
distribution that is compatible with all the images con-
sidered. Our technique even allows to let, e.g., the intensities
of the point sources converge to di†erent values in the dif-
ferent images, so that variable objects may be considered.
This technique should be very useful for the photometric
monitoring of variable objects in crowded Ðelds or super-
posed on a di†use background (e.g., Cepheids in distant
galaxies, gravitationally lensed QSOs, etc.).

(Plate 17) illustrates this simultaneous deconvol-Figure 4
ution on simulated images, the Ðrst of which has a good
resolution but a poor S/N (as might be obtained with a
space telescope) and the second one a low resolution and a
high S/N (a typical image from a large ground-based
telescope). Contrary to LucyÏs method &(Lucy 1991 ; Hook
Lucy which is very sensitive to the noise present in1992)
one of the images, our technique allows to reliably recover
both the high resolution of the space image and the hidden
information content of the ground-based one.

In the same spirit, our algorithm is well adapted to the
processing of images obtained with infrared or adaptive
optics techniques. In the latter, numerous short exposures
of the same Ðeld are usually obtained, the shape of the
mirror being continuously adapted to correct for atmo-
spheric distortions. So, the observations consist in a number
of images of the same Ðeld, each of them having its own
PSF. Performing a simple sum results in an image whose
spatial resolution is typical of the average observing condi-
tions, while a simultaneous deconvolution not only allows
to take count of the best conditions but even results in an
improved resolution by optimally combining the informa-
tion content of the di†erent images. A simple illustration of
these considerations is provided by (Plate 18),Figure 5
which shows the simultaneous deconvolution of four
adaptive-opticsÈlike images of the same Ðeld, where the
PSF as well as the image centering vary from one observ-
ation to the other. Of course, the PSF needs to be known
for each individual observation, but only with an accuracy
comparable to that of the observation itself.

5. ASTROMETRIC AND PHOTOMETRIC ACCURACY

Traditional deconvolution methods are notoriously
unable to give photometrically accurate results. Two main
reasons for that are readily identiÐed.

First, as we have already mentioned, these methods gen-
erally produce rings when point sources are superposed on
a di†use background. In fact, these rings tend to appear as
soon as the positivity constraint is inefficient to inhibit
them, that is, as soon as some Ñux is distributed around the
point sources. This is most clearly seen when this Ñux is in
the form of a smooth background, but the e†ect is also
present if the Ñux is distributed among, e.g., a number of
fainter stars. In this case, the rings around the star con-
sidered will interfere with the intensity in the neighboring
sources, and the photometry of the latter ones will be
a†ected.

A second photometric bias comes from the fact that,
among the family of possible solutions to the inverse
problem, most classical algorithms select, in one way or
another, the smoothest one according to some criterion.
These algorithms thus produce images where the peaks cor-
responding to point sources deviate as little as possible with
respect to the backgroundÈprovided, of course, that the
model Ðts the data. This implies a systematic underestimate
of the intensity peaks, and thus, a photometric bias.

An example of these e†ects is illustrated by the deconvol-
ution of an image of two point sources with varying separa-
tion. A simple image was constructed, with two point
sources having an intensity ratio of 0.1, and convolved with
a Gaussian PSF of 7 pixels FWHM, plus some Gaussian
noise so that the peak S/N ratio reaches 100. showsFigure 6
the deduced intensity ratio as a function of the source
separation, as derived after deconvolution with the
maximum entropy method. It clearly shows that the photo-
metry is not preserved, even when the two stars are separat-
ed by nearly 2 FWHMs. For more details on the
photometric accuracy of deconvolution algorithms (in the
special case of HST images), see Busko (1994).

Our algorithm naturally avoids these two biases. Indeed,
the fact that the sampling theorem is obeyed in the decon-
volved image, combined with the fact that no smoothing of
the point sources is attempted, naturally ensure that no
ringing is present around the star peaks and that no bias



476 MAGAIN, COURBIN, & SOHY Vol. 494

FIG. 6.ÈIntensity ratio derived after deconvolution with the maximum
entropy method for a pair of point sources with variable separation. The
true intensity ratio is 0.1, the peak S/N ratio is 100, and the original
resolution is 7 pixels FWHM.

will appear as a consequence of smoothing. This is illus-
trated in which shows the results of a photometricFigure 7,
test applied to a synthetic Ðeld containing 200 stars in a
128 ] 128 pixels image. The positions and central inten-
sities were selected at random, and nearly all the stars are
blended to varying degrees (197 stars out of 200 have the
nearest neighbor within 2 FWHMs). Moreover, these stars
are superposed on a variable background. clearlyFigure 7
shows that no systematic error is present and that the inten-
sities of all but the most severely blended objects are repro-
duced with errors compatible with the photon noise.

illustrates the astrometric accuracy of our algo-Figure 8
rithm. For the brightest stars, the positional accuracy is
generally better than 0.1 pixel, even in very severe blends.
The positions of stars with a blend between 1 and 2 FWHM
is generally accurate within 0.02 pixel at high S/N, and
within 0.1 pixel otherwise.

There exits another deconvolution algorithm that claims
to achieve a high photometric quality, namely, the so-called
two-channel Lucy method & Lucy(Lucy 1994 ; Hook 1994).
Like our algorithm, the two-channel Lucy method is based
on a decomposition of the deconvolved model into point
sources and background.

The main problem with that method is that, contrary to
ours, the total PSF is used in the deconvolution, so that the
sampling problem is avoided only if each point source is
exactly centered on a pixel. To increase the accuracy, the
model can use a Ðner pixel grid than the data. However, in
high S/N cases, the model pixels will generally need to be
very small if high accuracy is aimed at (which is normally
the case in high S/N observations, etc.). As an example, let
us recall that the positions derived from our new algorithm
for the di†erent images of the Cloverleaf gravitational lens

are accurate to which is 1/35 of a data pixel. To(Fig. 2) 0A.01,
achieve the same accuracy with the two channel Lucy algo-
rithm would require each original pixel to be divided in
D35 ] 35 (D1000) Ðner pixels. This would rapidly result in

FIG. 7.ÈPhotometric test performed on a synthetic Ðeld containing 200
stars with random positions and intensities, nearly all blended to various
degrees (see text). The relative errors are plotted against the total intensity
(the latter being on an arbitrary scale, corresponding to an integrated S/N
varying from 10 to 400). Open symbols represent heavily blended stars (the
distance to the nearest neighbor is smaller than the FWHM), Ðlled symbols
correspond to less blended objects. The dashed curves are the theoretical 3
p errors for isolated stars, taking into account the photon noise alone.

huge data frames and computationally intractable prob-
lems.

Another weakness of the two-channel Lucy method is
that the point source positions have to be supplied by the

FIG. 8.ÈAstrometric test performed on the same crowded Ðeld as in
The total error in position (expressed in fractions of a pixel) isFig. 7.

plotted vs. the total intensity. Open symbols represent heavily blended
stars (the distance to the nearest neighbor is smaller than the FWHM),
Ðlled symbols correspond to less blended objects.
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user and cannot be adjusted by the algorithm. So, no
astrometry can be performed, and, moreover, in the case of
high S/N data with many point sources, it might require an
unreasonably large number of trials for the user to Ðnd a
fairly good estimate of the source positions.

Finally, let us note that the user has to choose arbitrarily
not only the number of iterations of the algorithm but also
a scale length for the smoothing of the background com-
ponent. These choices are generally made by looking at the
results. This approach can obviously give nice-looking
results, but their scientiÐc soundness may be questioned.
On the contrary, the scale length for the smoothing of the
background in our method is unambiguously Ðxed by the
PSF r(x) of the deconvolved image.

A comparison of the two-channel Lucy method with our
algorithm is illustrated below by an example that is meant
not to provide a general comparison between the two
methods but only to illustrate some of the points in the
preceding discussion.

(Plate 19) shows the deconvolution of simulatedFigure 9
data containing three point sources superposed on a back-
ground that varies rather fast. The peak S/N of 170 is quite
reasonable for modern CCD detectors. In order to obtain a
satisfactory result with the two-channel Lucy method, each
original pixel was divided into 16 model pixels, and the
positions were adjusted iteratively by the user. In contrast,
when running our algorithm, we kept the same pixel size as
in the data (this is why the results of the two-channel
method seem smoother in The deduced backgroundFig. 9).
light distributions are compared in (Plate 20),Figure 10
which also shows the di†erence between these deduced
backgrounds and the known solution, reconvolved to the
same resolution of 2 pixels FWHM. It is immediately seen
that the residuals are much less important in the case of our
method (largest residual \ 4.8 p, as compared with 14 p
with the Lucy method ; mean variance\ 1.8 p2 instead of
15 p2). The photometry of the point sources is also more
accurate with our method : the mean deviation is 1%, as
compared with 7% with the two-channel method.

6. DISCUSSION

We summarize here some of the reasons why classical
deconvolution algorithms generally give rather disappoint-
ing results and why our method allows to improve the situ-
ation.

A major advantage of our method over traditional ones
comes from the fact that the deconvolved image never vio-
lates the sampling theorem, so that the fastest image varia-
tions may be correctly represented, without the

introduction of spurious rings, or Gibbs oscillations.
An additional drawback of most traditional deconvolu-

tion algorithms lies in their smoothing recipe. For example,
in the maximum entropy method, one assumes that the
most probable image is a perfectly Ñat one. However, the
most probable astronomical image is certainly not a Ñat
one. It would rather look like a dark background with a
number of sharp sources. Trying to smooth the sharp
sources is undesirable and results in poor performance.

The smoothing function used in the classical maximum
entropy method and most of its derivatives is, moreover, a
global function, i.e., a function linking the value of the inten-
sity in a particular pixel to the values in all other pixels,
even very remote ones. Thus, the Ñux distribution in one
part of the image will depend on what is happening in other
remote parts (in astronomical images, this often corre-
sponds to quite di†erent parts of the universe). This link is
obviously not based on physical grounds and is totally
avoided by our smoothing function, which is purely local
and linked to the PSF of the deconvolved image.

Another weakness of the most popular of the classical
methods (e.g., maximum entropy or Richardson-Lucy) is
that the solution depends on the zero point level of the
image : this is due to the fact that the positivity constraint is
essential for their success. Indeed, this positivity constraint
is the main inhibitor of the ringing around point sources : by
forbidding the negative lobes, it automatically reduces the
positive ones since the mean level must be compatible with
the observed data. Adding a constant to the image data
results in a strong degradation of the performance of these
algorithms (which then depend, e.g., on a precise subtrac-
tion of the sky level). On the contrary, our technique is
completely independent of an additive constant, and it is
reliable enough that the positivity constraint, although it
can be used, is not necessary in most cases (it has not been
used in any of the examples shown in this paper).

As can be seen from the above examples and from the
discussion, our new deconvolution technique is well
adapted to the processing of astronomical images. It is
however not restricted to that Ðeld of imaging and, in fact,
should be useful in several other areas where an enhance-
ment of the image resolution is desirable, or where di†erent
images of the same object could be optimally combined.

This work has been supported by contracts ARC 94/99-
178 ““ Action de Recherche Concerte� e de la Communaute�

de Belgique, ÏÏ SC 005 ““ Service Center andFrancÓ aise
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FIG. 1.ÈDeconvolution of a simulated image of a star cluster partly superposed on a background galaxy. Top left : true light distribution with 2 pixels
FWHM resolution ; bottom left : observed image with 6 pixels FWHM and noise ; top middle : Wiener Ðlter deconvolution of the observed image ; bottom
middle : 50 iterations of the accelerated Richardson-Lucy algorithm; top right : maximum entropy deconvolution ; bottom right : deconvolution with our new
algorithm.
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FIG. 3.ÈDeconvolution of an image of the compact star cluster Sk 157 in the Small Magellanic Cloud. L eft : image obtained with the ESO/MPI 2.2 m
telescope at La Silla FWHM); right : deconvolution with our algorithm FWHM).(1A.1 (0A.26
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FIG. 9.ÈDeconvolution of an image containing three point sources superposed on a variable background. Top left : observed image ; top right : deconvolu-
tion with 50 iterations of the accelerated Richardson-Lucy algorithm; bottom left : deconvolution with 1000 iterations of the two-channel Lucy method ;
bottom right : deconvolution with our algorithm.
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FIG. 10.ÈComparison of the background light distributions deduced from the deconvolution of the image in using the two-channel Lucy methodFig. 9,
(top left) and our method (top right). The bottom panels show the square of the di†erence between the deduced background (reconvolved to the same 2 pixels
resolution when necessary) and the exact solution, with the two-channel Lucy method (left) and with our algorithm (right).
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