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Abstract. We propose a novel distributed algorithm to achieve a weighted
max-min sharing of the network capacity. We present the Weight Pro-
portional Max-Min policy (WPMM) that supports a minimal rate re-
quirement and an optional maximal rate constraint and allocates net-
work bandwidth among all aggregates based on a weight associated with
each one. Our distributed algorithm achieves this policy for IP/MPLS
networks using the RSVP-TE signalling protocol. The algorithm uses
per-LSP accounting in each node to keep track of the state informa-
tion of each LSP. It uses a novel explicit bottleneck link strategy and
a different control architecture in which we update the control packet
in the forward path. Simulations show that these two elements improve
substantially the convergence time compared to the previous algorithms
developed to achieve this policy in the ATM context.

1 Introduction

Traffic engineering aims at using information about traffic entering and leaving
the network to optimize network performance. An ISP using MPLS [10] would
like to optimize the utilization of its available network resources between all the
LSPs. The choice of a network bandwidth sharing policy among competing LSPs
is a key performance issue.

Consider a set of LSPs, each carrying many TCP connections, creating con-
gestion. Without explicit policing, more aggressive LSPs (with more flows) get
more that their fair share, independently of their reservations.

The problem of fair sharing of the network bandwidth has been widely treated
in the past and especially in the ATM context ([5] [8]). The classical max-min rate
allocation has been widely accepted as an optimal network bandwidth sharing
criterion among user traffic flows [1]. Informally, the max-min policy attempts
to maximize the network use allocated to the users with the minimum allocation
[4]-

To provide differential service options, [7] proposes a generic weight pro-
portional network bandwidth sharing policy, also called Weight-Proportional
Max-Min (WPMM). The WPMM policy generalizes the classical max-min by
associating each flow with a generic weight, which is decoupled from its minimum
rate and supports the minimum rate requirement and the peak rate constraint
for each flow.

Since a centralized algorithm for the max-min rate allocation requires global
network information, which is not scalable to flood, we must develop distributed



algorithms to achieve the same rate allocation in the absence of global knowledge
about the network and without synchronisation of different network components.
We focus on an edge-to-edge rate-based feedback control scheme, where special
control packets are used in both forward and backward paths.

Hou, in [7], provides a good distributed solution for computing the WPMM
policy but has two major drawbacks. Firstly, this solution is implemented in
the ATM context and uses a lot of Resource Management (RM) ATM cells that
create a substantial overhead. And secondly, the convergence is usually slow as
illustrated later.

Our proposal solves these two limitations by adding an explicit bottleneck
link information in each control packet and by using a different control packet
update architecture. These two additions addition change radically the dynamics
of the protocol and improve the convergence time by a factor 2 or 3 depending
on the precision (see simulation results).

Another contribution is the adaptation of the solution to the actual MPLS
architecture using the widespread RSVP-TE protocol [2] instead of RM cells.
With our proposed integration in RSVP, we improve the scalability of the pro-
tocol by decreasing the overhead added by control packets.

As a possible application of this work, the weighted max-min fair rate allo-
cated to an LSP could be used by a marker at the ingress router to mark the
traffic using three colours : green (under reserved rate), yellow (between reserved
rate and the fair rate) and red (above the fair rate). In case of congestion, core
routers discard the red packets first and possibly, during transient periods, some
of the yellow packets by using a WRED policy for example. The objective of
the algorithm is to compute the fair rate of each LSP to obtain a network in
which only the red packets are discarded and all the green and yellow packets
successfully get through.

2 The generic weight-proportional allocation policy

A unified definition of the max-min fairness is provided by [9]. Consider a set
X ¢ RY, the definition of the weighted max-min fair vector with respect to set
X is defined as follows :

Definition 1. A vector 7 is "weighted maz-min fair on set X " if and only if
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where w; s the weight associated with the element i

We can use this theoretical definition to share the free bandwith available in
an MPLS network. Our work is based on a previous work in the ATM context
provided by [7]. We adapt their definition to the MPLS context.

An MPLS network is a set of IP/MPLS routers interconnected by a set of
links £. A set of LSPs S traverses one or more links in £ and each LSP s € §



is allocated a fair rate r5. Denote S; the set of LSPs traversing link I € L. The
aggregate allocated rate Fj on link [ in £ is

= Z Ts
s €S

Let C; be the capacity (maximum allowable bandwidth) of link /. A link [ is
saturated or fully utilized if F; = Cj. Denote RR, and MR, the reserved rate
requirement and the maximal rate constraint for each LSP s € S, respectively.
For feasibility, we assume that the sum of all LSPs’ RR requirements traversing
any link does not exceed the link’s capacity, i.e. 3, . 5, BRs < C; foreveryl €
L. This criterion is used by admission control at LSP setup time to determine

whether or not to accept a new LSP on a link.

Definition 2. We say that a rate vectorr = {rs; | s € S} is MPLS feasible
if the following two constraints are satisfied :

RR, <rs < MRs;forall se S
E,<Ciforallle L

In the generic weight-proportional max-min (WPMM) policy, we associate
each LSP s € S with a weight (or priority) ws. Informally, this policy first
allocates to each LSP its RR. Then from the remaining network capacity, it
allocates additional bandwidth for each LSP using a proportional version of the
max-min policy based on each LSP’s weight while satisfying its MR, constraint.
The final bandwidth for each LSP is its RR plus an additional "weighted" max-
min fair share. Formally, this policy is defined as follows and directly derives
from Def 1.

Definition 3 (WPMDM-feasible vector). A rate vector r is weight-proportional
maz-min (WPMM) zf it is MPLS feasible, and for each s € S and every MPLS-
feasible rate vector r in whzch r > rg, there exists some LSP t € S such that

Ta wRRS > ni— RR* and ry > rt

Definition 4 (WPMM-bottleneck link of a LSP). Given an MPLS-feasible
rate vector r, a linkl € L is a WPMM-bottleneck link with respect to r for a LSP
s traversing l if F; = C; and “_w}sz > *uth for all LSP t traversing link I.

The following proposition links the relationship between the above WPMM
policy and the WPMM-bottleneck link definitions.

Proposition 1 (WPMM vector). An MPLS-feasible rate vector r is WPMM
if and only if each LSP has either a WPMM bottleneck link with respect to r or
a rate assignment equal to its MR.

The centralized Water Filling algorithm computes the fair rate for each LSP
according to this policy [4]. This centralized algorithm for the WPMM rate al-
location requires global information which is not scalable to flood. It is intended
to be used as the network bandwidth sharing optimality criterion for our dis-
tributed algorithm, which will be presented in the next section.



3 Proposed distributed WPMM algorithm

In this section, we propose an algorithm that converges to the WPMM policy
quickly through distributed and asynchronous iterations.

3.1 Basic algorithm

Our distributed solution uses the RSVP signalling protocol to convey information
through the network.
The PATH and RESV packets contain the following parameters :

— RR (Reserved Rate?2) : provided at the creation of the LSP

— W (Weight 2) : provided at the creation of the LSP

— ER (Expected Fair Rate) : the fair rate that the network allows for this LSP
— BN (BottleNeck) : id of the LSP’s bottleneck link

Periodically, the ingress sends a PATH packet. Each router in the path com-
putes a local fair share for the LSP and updates the ER and BN fields if its local
fair rate is less than the fair rate present in the PATH packet. Upon receiving a
PATH packet, the egress router sends a RESV packet, initialized with the data
obtained in the PATH, to the ingress router.

In the backward path, each router updates its information with the RESV
parameters (ER,BN). Upon receiving a RESV packet, the ingress obtains the
information about its allowed fair share.

Many prior efforts in ATM networks have been done on the design of ABR
algorithms to achieve the classical max-min ([5] [8]). The work of Charny [6]
was one of the few algorithms that were proven to converge to the max-min
in the ATM context. Hou extends Charny’s technique to support the minimum
rate, peak rate and weight for each flow. Our proposition uses Hou’s work but
improves the performance by modifying the update mechanism. In Hou’s algo-
rithm, the routers update their information in the forward path. So, they cannot
have the information computed by the downstream routers. These routers have
the correct information in the next cycle. In our approach, we update the router
in the backward path, so they have the correct information like the ingress node.
Moreover, we add a new parameter (BN) that conveys explicitly the bottleneck
link in the path. This information improves considerably the convergence time.

The following are the link parameters and variables used by the algorithm.

— L : Set of links
— & = Set of LSPs traversing link [
— FR} : fair rate value of the LSP i € §; as known at link !

% This information is only useful during the establishment of the LSP or when these
values are modified. To reduce the size of RSVP packet, we can remove these pa-
rameters from the refresh RSVP packets.



— BNj : bottleneck link id of the LSP i € & as known at link I (refer to
Definition 4 )

— By : Set of LSPs bottlenecked at link I, i.e. B, = {i | i € S; and BN} =1}

— U : Set of LSPs not bottlenecked at link I, i.e. U = {i | i € S;and BN} # 1}

— Wehave ly UB; = §;

The fair rate of a LSP i is composed of the reserved rate of the LSP (RR?)
and an additional fair share allocated by the network. This additional fair share
is proportional to the weight of the LSP. On a particular link, we can compute
a value ¢; that gives the additional fair share per unit of weight for the LSPs
bottlenecked on this link. Algorithm2 computes ¢ :

Algorithm?2 : Calculation of ¢; (if S; # (%)

FB; :=Ci — ) ics, RR! — Dicu (FR{ — RRY)

FB; if
T%Wi it 70 ()
Yy = (Ci1— es, FRY) (FRi —RRY)
———"L ——— + max;cs, —+—— otherwise
EiESl we 1eor w

The basic case (i.e. B; # ) occurs when some LSPs are bottlenecked on link
I, we compute the free bandwidth on link [ (FB;) by taking the capacity of the
link minus the RR of all LSPs traversing [, minus the additional fair share of
the LSPs not bottlenecked on I. ¢; is equal to the free bandwidth divided by
the sum of the LSP’s weights for each LSP bottlenecked on [, i.e. ; is the free
bandwidth we will allocate to each i € B; per unit of weight.

The second case (i.e. B; = @) occurs when all LSPs are bottlenecked at an-
other link than /. In this case, the value of ¢; is chosen as in [7] and [6] to
achieve convergence.

The fair rate (FR}) of a LSP i bottlenecked on link [ is computed by :
(VieB)) FR! := RR' + ¢ + W'

A key element of the algorithm is the strategy to set the BN} information
correctly. We use the following definition of "bottleneck consistency" :

Definition 5 (Bottleneck-consistent). Let U be the set of LSPs not bottle-
necked at link 1 € L and p; be calculated according to Algorithm2. Uj is bottleneck-
consistent if

(Viel) FR! < RR' + ¢ + W*

This definition derives directly from Definition 4 and means that all LSPs not
bottlenecked at a link must have a bottleneck elsewhere or reach their maximal

3 If there is no LSP using link I (i.e. S; # 0), ¢; := 0o



rate, so that they have an allocated fair rate less that the one proposed by the
current link. If that were not the case, some LSPs in ¢; would have to be moved
to By (i.e. would be bottlenecked at [).

Our algorithm employs per-LSP accounting at each output port of a node.
That is, we maintain a table to keep track of the state information of each
traversing LSP. For each LSP i, we keep FR!, RR!, W' BN;. Based on this
state information, we compute the explicit rate for each LSP to achieve the
WPMM rate allocation.

The following is the node algorithm, with each output port link initialized
with §; := 0 and ¢; := 0.

Algorithm3 : Node behaviour

Upon receipt of a PATH" { Upon Ehe receipt ofia RESV* {
LSPCreationAndTermination(); FR; := BR; BN = BN;
updateER(); updatei, ); .

Forward RESV(i,RR,ER,W,BN)
) }
LSPCreationAndTermination() { updateER() {
if LSP termination then { NER := ¢ W'+ RR!
S =8 — {i}; ER' := max(min(ER, NER), RR');
updateqp; (); if (ER' < ER) then {
} else if LSP creation then { BN :=
B =B U {l}, ER := ERI;
RR' := RR; W' := W, }
updatep;(); Forward PATH(i,RR,W,ER,BN);
}} }

updateqp() {
use Algorithm?2 to calculate ¢;;
if (U # 0) then {
repeat {
// stops when bottleneck-consistency (see Def5) is achieved
Pl =i _ o
p = argmax; ¢ y,(FR; — RR")/W");
if ((FR? — RR?)/W?) > ¢}) then {
Move p from U; to B
use Algorithm?2 to calculate ¢;;
}
} until ((FR} — RR?)/W?) < ;) or (Ur = 0));
}}

The updateg;() procedure will first recompute ¢; based on current values
of FR} and BN} for all i. The next step, i.e. the repeat-until loop, will ensure

4 PATH and RESV packets contains the following parameters (i,RR,W,ER,BN)



that, when it terminates, the set U is bottleneck consistent. To do so, LSPs
not satisfying (FR{ — RR")/W?) < ¢; should be moved from U to B;. At each
iteration, one LSP, say p, such that (FR} — RRP)/W?) = max; ¢ u,(FR} —
RR?)/W?) is removed. The new B; and U; sets may lead to an new ¢;, which
needs to be recalculated. This process ends when either I is empty or U is
bottleneck consistent.

Finally, the edge behaviour is simple. The ingress is responsible for sending
PATH packets and for updating the LSP fair rate information upon the reception
of a RESV packet. In our model, the upstream router of a link computes the
fair rate associated with that link. The ingress thus computes the fair rate of the
first link and so uses the node algorithm defined in Algorithm3.

The Egress behaviour is simple, upon receiving a PATH packet, the egress
sends a RESV packet, initialized with the data obtained in the PATH, to the
upstream node.

The structure of the Algorithm3 guarantees that for every LSP i € S, the fair
rate (FR{) information in each node is MPLS-feasible, i.e. RR? < FR} < MR:.

With our update architecture in the backward path and the explicit bottle-
neck link information, we decrease the convergence time substantially as shown
in the next section.

3.2 Improve algorithm to deal with the RSVP refresh mechanism

The RSVP protocol comes with an optimized mechanism to minimize the pro-
cessing time of the PATH and RESV packets. If two successive PATH (or RESV)
packets are the same, the upstream node only sends a refresh PATH. The down-
stream node refreshes the LSP entry but doesn’t process the whole PATH packet.

Our solution can easily be extended to keep this property. We must develop
a strategy to determine if a node must send a full new PATH or just a refresh
PATH. On each output port, we associate with each LSP 7 a special bit (NRi)
that is set if we must send a full new PATH packet. When some value of an LSP
changes in the output port table, we set this bit for all the LSPs of this table.
When we receive a PATH and we refresh the LSP entry, we clear this bit. (for
more information see [3])

When the system is stable, only refresh RSVP packets are used. With this
improved algorithm, we can keep the advantages of the RSVP refresh mechanism.

The use of RSVP and its refresh mechanism reduce the overhead needed
compared to ATM RM cells. In ATM, one RM cell is send every 32 cells. There-
fore, the overhead introduced by ATM depends on the flow rate. On the other
hand, our scheme introduces a fixed overhead. Finally, the use of the refresh
mechanism reduces the processing needed by the core routers that only need to
refresh the LSP entry in their tables.

4 Simulation results

To compare our solution with Hou’s, we have developed a specific prototype to
simulate the two algorithms. We have implemented Hou’s solution adapted to
the MPLS context (using RSVP mechanism in place of RM cells).



Our simulation process consist of generating network topology and LSPs
on this topology. Next, we add the LSPs one by one and we execute the two
algorithms on this topology.

For simulating the RSVP process, we use the concept of iteration and RSVP-
cycle. A RSVP-cycle consists of the forwarding of a PATH packet along all the
nodes in the path from the ingress to the egress node and the backwarding of a
RESV packet along all nodes from the egress to the ingress node. An iteration
is the execution of an RSVP-cycle for all the LSPs. At the end of each iteration,
we have a vector of LSP fair rates.

We have two possibilities to stop the process. The first is to execute the
iterative process until the mean relative error between the last rate vector and
the WPMM allocation vector (computed a priori using Water Filling algorithm)
is under a fixed precision (e.g 107*). Another possibility is to stop the process
if the mean relative error between two successive rate vectors is under a fixed
precision. The first possibility shows us how our solution reaches the optimum
and with which convergence speed. The second approach shows us how our
algorithm can be used in practice without any a priori knowledge of the WPMM
rate allocation. The simulation in the sequel are based on the first approach.

The simple network configuration we use in our simulation is organized like
the olympic symbol. There are five MPLS routers connected with 7 links of
100Mb/s and 5 LSPs traversing the topology Fig reftopo2a.
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Fig. 1. (a) Network topology (b) LSP configuration

Fig. 1b lists the LSP parameters : RR requirement, MR constraint, weight
and fair rate allocation for each LSP traversing the network configuration. Fig 2a
shows the evolution of the fair rates under Hou’s distributed algorithm. The
rates converge to their optimal WPMM rate listed in Fig 1b. The algorithm
takes 41 iterations before getting sufficiently close to the optimal fair share (i.e.
euclidean distance under 0.01 %). Fig 2b shows the evolution of the fair rates
under our proposed distributed algorithm. Qur solution reaches the optimum in
33 iterations.

Extensive simulation We made extensive simulations on a large number of

complex topologies. We created 63 topologies with 20 to 100 nodes and with 20,
50, 100, 200, 300 and 1000 LSPs. We executed the two solutions with different
levels of precision. With a precision of 10~*, our solution is in general 2.86 times



Evolution of the LSP's fair rates using Hou's solution Evolution of the LSP's fair rates using our solution
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Fig. 2. (a) Hou’s solution (b) our solution on the compler network topology

faster than Hou’s solution. Table 1 presents a short report of the simulation
results.

Precision|Hou’s algorithm |Our algorithm |Gain
0.01 5.46 2.05 2.67
0.001 18.40 6.81 2.70

0.0001 40.43 14.11 2.86

0.00001 66.86 18.98 3.52

Table 1. Average number of iterations on 63 topologies

The number of iterations needed by our solution on large topologies is rela-
tively high but if we look at the number of LSPs that reach their fair share, we
see that after a few iterations 90% of the LSPs have reached them. So only a few
LSPs continue to change. The improved solution adapted to RSVP becomes very
useful and will improve hugely the performance and scalability of the algorithm.

Minimum and average number of L SPs frozen at each iterations
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Fig. 3. Minimum and average LSPs frozen at each iterations

We also executed the simulations on 50 topologies with 100 to 1000 LSPs and
we have plotted the minimum and average percentage of LSPs that have reach
their fair share after each iteration for the two algorithms (Fig 3. The average
and the minimum are cumulative values and so produce monotonically increasing
functions. Normally, at the last iterations, the min and the average values reach
100 %. Hou’s solution takes 84 iterations to converge in the worst case and our



solution takes only 36 iterations. We can also see that Hou’s solution takes 16
iterations to stabilize 90 % of the LSPs while our solution takes only 4.

5 Conclusion

We presented a novel distributed algorithm to achieve the WPMM rate allo-
cations. This solution provides a scalable architecture to share the available
bandwidth among all the LSPs according to their weights. This policy offers an
attractive pricing model to the network service providers wishing to introduce
priority options to users in a usage-based pricing model.

Our algorithm improves considerably the performance by using a new update
plan of the control packet and with the integration of an explicit bottleneck link
marking strategy. The utilization of the RSVP protocol to refresh periodically
the core node information decreases the overhead present in the ATM-ABR
architecture (for more information see [3]).

Our future work will focus on the development of a rigourous convergence
proof as well as executing our algorithm on even more complex topologies. An-
other challenging issue is to improve the weight concept by using utility functions
to describe the traffic. The objectives become to maximize the global utility of
the clients. And finally, we will investigate the integration of this algorithm in a
real Diffserv MPLS network.
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