
An Active Platform as Middleware for Services and
Communities Discovery

Sylvain Martin! and Guy Leduc

Research Unit in Networking, Université de Liège,
Institut Montefiore B28, 4000 Liège 1, Belgium

{martin, leduc}@run.montefiore.ulg.ac.be
http://www.run.montefiore.ulg.ac.be/

Abstract. In an increasing number of cases, network hosts need to locate a ma-
chine based on its role in a service or community rather than based on a well-
known address. We propose and evaluate WASP, a lightweight active platform
where ephemeral state left in the network can help locate service providers such
as request dispatchers or computation aggregators. In an active grid architecture,
WASP can also help locate participants, build and manage overlays.

1 Introduction

In peer-to-peer systems in general and grid computing as a specific case, we are facing
the problem of communities of machines that need to cooperate together without having
any a priori knowledge of their respective existence. Existing schemes often rely on the
existence of some centralizingmachine that swaps peers addresses. With the increase of
service popularity and the decrease of average connection time, keeping these so-called
pong servers scalable is a real challenge.

In this paper, we study a solution based on active networks that will help network
operators and peer-to-peer application designers to introduce aggregators and caches
of pong servers transparently in the network. Our active platform also allows discov-
ery of more generic services and could be used to locate computation dispatchers and
aggregators as well.

1.1 Why Yet Another Active Platform?

Despite an important amount of active network platforms has been proposed and stud-
ied, none has really successfully reached the real-world deployment level. In response
to this reality, WASP (Weightless Active packets for ephemeral State Processing) is
made lightweight enough and resource-friendly so that its presence in the network does
not become a nuisance for network managers. WASP is not built from scratch: it is
an effort to merge the advantage of two recently proposed platforms ESP (Ephemeral
State Processing) and SNAP (Safe and Nimble Active Packets) [5]) that also focus on
! Sylvain Martin is a Research Fellow of the Belgian National Fund for Scientific Research
(FNRS)

safe, flexible and efficient – in a word, practical (cf Moore et al. [2]) – active networks.
Section 2 shows how both computation time, storage and network bandwidth are kept
under low and predictable limits for WASP packets.

Unlike fully-featured active platforms, WASP alone is not able to offer complex
services such as flow transcoding or realtime auction though it can help advertise and
locate such services, helping machines that offer such services (hereafter called service
providers) and machines that use such services (hereafter called end-systems) to build
and manage adequate tunnels and overlays in an automated way, thus providing an
effective support for active grid architectures. We will show in Sect. 3 how WASP can
be used to build such solutions.

The design of our proposed platform is detailed in Sect. 4. In order to evaluate its
performance, we translated ESP instructions into WASP code and compared execution
timings. The results of this evaluation are presented in Sect. 5

1.2 What Slows Down Active Packets

The speed at which our active platformwill be able to process active packets will define
the network locations where it can actually be deployed. Our goal is to offer a solution
that can be running even on a border router in a transit domain, taking advantage of
network processor technologies to achieve high throughput. A simple active packet
crossing an active node will incur different types of time-consuming operations:

Classification Filters should be applied so that the active packet is recognized as such.
Depending on the architecture, this filtering may be based on a dedicated transport
protocol type, the presence of an IP header option, etc.

Delivery After classification, we still have to make the packet available to the com-
ponent that will process it. In the worst case, the whole packet should be copied
into user-space before applicative decoding could be applied. Most performance-
targetted platforms ([3,4]) thus decode and process packets at kernel level.

Decoding Some platforms like ESP [4] and SNAP [5] are able to process the operations
for the packet as soon as it is delivered, but in most of the other frameworks, a data
decoding phase is needed to deserialize objects, strings, lists, etc.

Processing By interpretation or execution of compiled code from a cache. We chose
interpretation since it better fits inherent characteristics of network processors [9].

2 Resource Aware System

2.1 Execution Time

Even if untrusted code cannot perform harmful operations thanks to sandboxing, it is
impractical to detect malicious code that will run silly loop, consuming available CPU
time on routers without performing any ‘useful’ job.

Like in SNAP[5], WASP avoids this by prohibiting backward jumps and providing
only instructions with predictable execution time. Together with in-place processing of
packets at kernel level, this allows our lightweight control tasks to be performed at the
lowest cost for the router.

2.2 Memory and Storage
Most active protocols will need information to be stored temporarily on intermediate
nodes, so that it can be later retrieved by other active packets. It is important for network
availability and performance that this local storage remains easy to manage and can
automatically discard information that is no longer pertinent.

ANTS [1] and many other platforms use soft-state based memory management to
release memory that has not been used by packets for a given amount of time. Unfor-
tunately, soft-state based managers make it hard for the access control to define if there
will be sufficient memory to accept the flow.

Alternatively, ESP [4] proposes the ephemeral state approach, where data are kept
for a constant period, regardless of how frequent the data is referenced during that
period. If, in addition, all the data slots in the store have the same size, collecting free-
for-reuse slots becomes simple enough to execute without disturbing packet forwarding
tasks on the router, and flow access checking simply requires that the router checks how
many different slots are used by the flow. We will call tags these fixed-size data that the
node associates with a key for a fixed amount of time, like in the ESP terminology.

2.3 Network Bandwidth
Taking care of local resources is required to achieve platform safety but not sufficient.
If no restriction is enforced, an ill-intentioned active packet could easily create clones
of itself will all the allowed execution times, and clones of the clones at the next router
so that a single emitted packet will overload the destination (in addition of network
links close to that destination). In the case of the WASP platform, packets do not have
the ability to create child packets unless they are targetted at a multicast address on a
multicast router. All it can do is block the packet or send it back to its source.

3 Service Discovery with WASP
Literature has presented a number of active network-based solutions to various prob-
lems such as real-time auction, hierarchical web caches, video stream filters, reliable
multicast and many more. All these applications can be viewed as applying a custom
service (filtering, merging, splitting of packets) at some strategic points in the network.
It is somehow expected that, sooner or later, network operators will integrate such ser-
vices in their network as their presence could help reduce the required bandwidth. The
behaviour of an active service can thus be seen as follows:
1. identify anchor points in the network (i.e. machines able to host the service),
2. detect at which anchor point(s) service deployment is strategically most useful,
3. route packets requiring the service towards deployed service provider(s) 1,
4. apply merge/split/filter service on packets received by the service provider(s).
In a grid computing environment, those services could for instance consist of col-

lecting available computations sites, routing computations requests towards the closest
(or less loaded) point of presence or even perform distribution/aggregation of computa-
tion requests hierarchically.
1 i.e. “nodes offering the packet filter/split/merge service”, not Internet Service Providers

A

B

service

service

service

A

B

tag advertising A as service provider

tag advertising B as service provider

message carrying advertisements from A

message carrying advertisements from B

wasp-enabled
router

service

Fig. 1. Advertising (left-side) and looking for (right-side) service

3.1 The Managed Dynamic Overlay Alternative

Most existing solutions for such problems, like OPUS [7] or the X-Bone [8], set up an
infrastructure that dynamically creates overlay networks interconnecting end-systems
and intermediate service providers with tunnels in order to obtain the desired logical
topology. Unfortunately, none of these works have suggested a truly scalable and com-
pletely decentralisedmethod for identifying available anchor points in a very large-scale
network. Moreover, maintaining the infrastructure, monitoring the available resources
and expressing applications’ needs in a generic fashion remains a resource-intensive
activity even when hierarchically divided such as in OPUS.

In the following, we will show how, with sensibly less support from all sides, WASP
manages to offer enough information to end-systems and service providers so that they
can take strategic decisions themselves.

3.2 Basis of Service discovery with WASP

The idea behind the WASP platform is to provide a lightweight environment that can
be used for locating the most interesting service provider(s) independently of what the
service will actually do. Once service-providing node(s) have been located, the end-
system can adjust application behaviour so that the applicative flow go through the
discovered provider(s).

When a new applicative flow is initiated, small active packets are used to probe
the network on the route to be taken. Each time such probe crosses a WASP node, it
will lookup the node store to see if it can find advertisements of the expected service,
consisting of the provider address and cost for reaching that provider from the local
node. Depending on the application needs, probes will perform some pre-filtering of the
collected advertisements or simply store them all. Based on this collected knowledge of
the network, the end-system can evaluate the different options and enforce the one that
will result in the best utility.

The same kind of active packets can also be used by the service providers to in-
stall advertisements in routers of the local domain. Again, the programmability of the
advertisement packets allows expression of simple policies such as only keeping the ad-
vertisement(s) of the (k) nearest service provider(s) in a router, and report other service
providers to the advertiser.

Figure 1 illustrates that two-phase process: servers A and B first flood the domain
withWASP packets advertising their presence, avoiding to re-install a tag in a router that
already contains a better tag (e.g. advertising a closer or less loaded service provider).
A source S can then use another WASP packet to record those tags as a list of provider
P and branchpointX information: (Paddr, Xaddr, cost(S, X), cost(X, P)). Note that
by simply changing the program in service advertisement and lookup packets, we are
able to select the service provider that is closest to the source or to the destination, or
to keep only the provider that will lead to smallest path deviation in each domain and
leave final selection to the end systems.

3.3 Flooding Locally

In order to advertise the service, providers have to locate WASP routers in the local
domain and send them WASP packets that will install advertisement tags. We benefit
here from the fact that WASP processing is optional so no overlay of WASP-enabled
routers need to be pre-established. In our previous work [6], we show how knowing
the routing table of the local domain suffices to discover all the active routers of that
domain.

A particularity of ephemeral storage is that the advertising tag will be deleted after
a fixed period τ , regardless of any refresh we could try to perform. Therefore, there
may be a small delay between the moment where a WASP router decides to remove an
advertisement tag and the moment where an advertisement refresh comes. Even if the
server manages to learn precisely the tag’s lifetime τ it cannot completely avoid the risk
that client packets may not see any advertisement. If this risk cannot be afforded, it is
still possible for a service to use two separate keys k1 and k2 that will be refreshed with
a period τ + ε but such as advertisements of k1 and k2 are separated by a delay of e.g.
τ/2. A client that doesn’t find the “primary tag” (referenced by k 1) can then check the
“backup tag” (referenced by k 2) to see whether the service is really missing.

4 The WASP Platform

As we previously said, WASP is derived from ESP router[4]. An ESP node consists
of Ephemeral State Stores (ESS) containing tags that packets access based on 64 bit
keys. Each packet requests the execution of one of the pre-defined operations on certain
tags. Despite operations can be modified a bit (e.g. changing threshold values, selecting
operators, etc), they remain thighly bound to multicast-related applications. It is also a
bit disappointing to see that as soon as one wishes to implement more complex feature
such as reliable flows merging, other very-specific operations need to be added.

The WASP platform thus keeps the overall design of ESP but replaces pre-defined
operations by a virtual processor interpreting a bytecode language inspirated by SNAP

Ephemeral
State
Store

lookup

Acc

Stack

load

store

code

ALU

VPU $packet
variables

@IP
packet
header

@Node-
specific
environment

@interface-
specific
environment

insert

packet-bound resource

node-bound resource

resource with read/write
access from VPU

read-only resource

Fig. 2.WASP Execution Environment

[5]. Another couple of extensions have been brought to ESP in order to allow more
efficient solutions to services and communities discovery and flow management tasks
in general, like the "return" behaviour and protected tags, explained later.

4.1 WASP packets
WASP uses the active packets paradigm: each packet contains its own code and the
data on which it can operate. WASP code and data can be stored in the payload of
an IP packet or it can be piggybacked on another packet as an IP header extension.
The packet’s code consists of up to 256 microbytes for a WASP Virtual Processing
Unit that will eventually lead to a packet control instruction telling whether the packet
should continue towards its destination, return to its source or be dropped. The data
part of the WASP packet is available as a 128 byte of RAM to the VPU during packet
interpretation. Other parts of the packet (code, IP header, payload) are not alterable by
theWASP code and only the IP header is readable. Figure 2 shows how node and packet
storage areas are viewed by WASP code.

4.2 The WASP node
AWASP node has several Ephemeral State Stores that associate 64 bit keys with small,
fixed-size data into tags. Each ESS is bound to a Virtual Processing Unit that processes
the WASP packets on a given location like e.g. “incoming on eth0”. The VPU state is
reset everytime a new packet is processed, which means that all the communications
and exchanges between packets will occur in the ESS associated with the VPU.

Each VPU on the node exports a few information for WASP packets, like its IP
address, netmask, the local node time, etc. Outgoing VPU will also export interface-
related information like queue length and number of packets sent. These environment
variables appear as a bank of read-only memory for the WASP VPU and allow the
WASP programmer to design various monitoring or self-adapting services.

4.3 Super Packets and Protected Tags
In existing applications using ESP router, there’s no need for access control to tags.
It is simply assumed that the each source picks up a random 64 bit word and uses it

Table 1. Relative timings for ESP operations processing in CPU cycles, sorted by ESS accesses

operation ESS WASP, nocache WASP, cached WASP, MAPping native ESP
forward 0 129 123 - -
compare 2 549 543 - 316
count 2 721 592 586 349
collect 4 1245 958 842 633
rchild 6 2058 1845 1509 775
rcollect 8 2980 2394 2020 1091

as a key. Chances that two sources randomly pick the same (publicly available) tag
and send packets over routes that cross the same router (otherwise no collision occurs)
are virtually nul. When using WASP to advertise services, however, participants are
required to use a well-known tag value that both service advertiser and service user will
put in WASP packets. Unfortunately, we cannot safely use public well-known tags as
an attacker could hijack the traffic of a given operator to its own network by advertising
his machine as a proxy on the operator’s network.

To solve such problems, WASP introduces protected tags that can only be modified
by super packets. The node tells whether a tag is protected or not by checking its key
against a specific pattern, and will allow writes to such tags only to packets that are
marked ‘trusted’ in their WASP header. All a network manager will have to do in this
case is (1) filter out WASP super packets at ingress nodes from the outside and (2) use
super packets to advertise services within his own network.

5 Performance Evaluation

These tests are based on the linux module version of ESP software, running on a 1GHz
Pentium 3 machine with default compilation options. Timings were measured using
the internal time stamp counter of the processor, averaging on 1000 tests to avoid any
unwanted side effects of caches, etc. The virtual node state is maintained such that
the same (longest) code sequence is evaluated at each iteration. For each of the five
ESP instructions on that distribution (compare, count, collect, rchild and rcollect), we
wrote an equivalent WASP packet. Note that in order to achieve good performance, it
is usually required to tune packet code so that the data organization better suits the
instruction flow, as illustrated by Table 5.

One key feature for fast interpretation of WASP code will be how good the inter-
preter is at avoiding repetitive access to the ESS, and one way to achieve this is by
caching intermediate results. Tests carried were in favour of very small caches (1 entry)
since more complex policies tend to eat all the cache benefit in their initialization.

Alternatively, we can offer larger values for each key in the ESS. Instead of having
a single 64-bit word, we now allow a whole memory bank of 32 bytes which can be
mapped in the VPU’s memory. In complex operations like rcollect/rchild, the state we
process is no longer atomic, but instead consists of tuples. While ESP then requires one
key per field (and thus one ESS lookup at least per field), WASP allows a few fields to
be grouped together as long as they fit one 32 byte bank.

Our tests with the Pentium-based implementation shows an improvement of 18%
(two variables per bank) to 35% (four variables per bank) in the processing time as
soon as several variables need to be updated, and we expect improvement to be even
more important on saturated ESS storage (e.g. when collisions occur inside of the ESS
hash table).

6 Conclusion and Future Work

We have presented a lightweight active platform that combines advantages of ESP’s
per-node storage and SNAP’s safe and efficient language. Despite its use of a bytecode
interpreter instead of native code, our work still shows execution performance of only
150% to 200% of corresponding native code and is much more generic than the existing
ESP framework.

The proposed platform elegantly solves the problem of locating available third-party
service providers. We also expect that it could also help peers of a community to find
each other, even without the help of a “pong server” and we are investigating the possi-
bility of having private tags that would be restricted to packets from the same ‘protocol’.

Acknowledgment

We would like to address special thanks to Jiangbo Li from Kenneth L. Calvert’s team
for having so kindly replied to all our questions related to ESP.

This work has been partially supported by the Belgian Science Policy in the frame-
work of the IAP program (Motion PS/11 project) and by the E-Next European Network
of Excellence.

References

1. D. Wetherall, A. Whitaker: ANTS - an Active Node Transfer System. version 2.0
http://www.cs.washington.edu/research/networking/ants/

2. J. Moore and S. Nettles: Towards Practical Programmable Packets, In Proc. of the 20th IEEE
INFOCOM. Anchorage, Alaska, April 2001.

3. E. Nygren, S. Garland, and M. Kaashoek: PAN: A High-Performance Active Network Node
Supporting Multiple Mobile Code Systems, In Proc. of IEEE OPENARCH, pp. 78-89, New
York, March 1999.

4. K. Calvert, J. Griffioen and S. Wen: Lightweight Network Support for Scalable End-to-End
Services, in Proc. of ACM SIGCOMM, pp. 265-278 Pittsburg, PA. August 2002.

5. Jonathan T. Moore: Safe and Efficient Active Packets, Technical Report MS-CIS-99-24, Uni-
versity of Pennsylvania, October 1999.

6. S. Martin and G. Leduc: A Dynamic Neighbourhood Discovery Protocol for Active Overlay
Networks, in Proc. of IWAN, pp. 151-162, Kyoto, Japan, December 2003.

7. R. Braynard, D. Kostić et al. Opus: an Overlay Peer Utility Service, in Proc. of the 5th IEEE
OPENARCH, pp 168-178, New York, June 2002.

8. J. Touch and S. Hotz, Dynamic Internet Overlay Deployment and Management Using the
X-Bone in Proc. of ICNP 2000, Osaka Japan, pp. 59-68.

9. Intel Corporation The IXP1200 Hardware Reference Manual, August 2001.

