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Abstract

We define, for an overlay built on top of an ad hoc network, a simple
criterion for neighbourhood: two overlay nodes are neighbours if and
only if there exists a path between them of at most R hops, and R

is called the (overlay) neighbourhood range. A small R may result in
a disconnected overlay, while an unnecessarily large R would generate
extra control traffic. We are interested in the minimum R ensuring
overlay connectivity, the so-called critical R.

We derive a necessary and sufficient condition on R to achieve asymp-
totic connectivity of the overlay almost surely, i.e. connectivity with
probability 1 when the number of overlay nodes tends to infinity, under
the hypothesis that the underlying ad hoc network is itself asymptoti-
cally almost surely connected.

This condition, though asymptotic, sheds some light on the relation
linking the critical R to the number of nodes n, the normalized radio
transmission range r and the overlay density D (i.e., the proportion of
overlay nodes). This condition can be considered as an approximation
when the number of nodes is large enough. Since r is considered as
a function of n, we are able to study the impact of topology control
mechanisms, by showing how the shape of this function impacts the
critical R.
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1. Introduction

In a previous work, we adopted an overlay approach for the introduc-
tion of the active technology in ad hoc networks [Calomme and Leduc,
2004]. The framework proposed allowed active nodes to inject cus-
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tomized routing protocols in the network to communicate all together,
or to use any upper-layer active application, in order to improve the
communication performance.

More generally, as most application of MANETs involve group com-
munication [Mohapatra et al., 2004] and as grouping behaviour of the
mobile users has been observed [Wang and Li, 2002; Tang and Baker,
2000], most wireless ad hoc networks can be seen as composed of one or
several communities. The nodes of these communities can be character-
ized by a common specialized hardware, such as a sensor, or software,
such as an active platform, or share a custom routing protocol or appli-
cation. In all cases, they can use and take advantage of their common
enhanced capabilities if and only if they are able to communicate effi-
ciently through the other nodes, that is if and only if they are organized
as an overlay.

Overlay advantages come however at the expense of the overlays cre-
ation, usage and maintenance, that must be kept moderate. Conse-
quently, a full mesh is probably not the most adapted nor efficient so-
lution for overlay applications. A natural rule of thumb is to admit as
overlay neighbours a set of close overlay nodes, the distance measure
employed being the number of hops. Two approaches are possible. One
can fix the cardinality of the set of neighbours or the maximum number
of hops admitted between overlay neighbours. We adopt the latter one.
In this case, the maximum distance between two neighbours is an inte-
ger value that must be sufficiently high to obtain a connected overlay
but as low as possible to limit the amount of messages generated in the
network by overlay nodes communication.

The parallel with topology control in ad hoc networks is obvious. To
achieve connectivity, each ad hoc node could use its maximum transmis-
sion range, in order to reach many neighbours. However, mobile devices
have a limited amount of battery power. Moreover, this would cre-
ate a lot of interferences, reducing the overall capacity of the network.
With a homogeneous topology control algorithm, all nodes adopt the
same transmitting range value. The critical transmitting range problem
consists of determining the minimum value that generates a connected
network. We have adopted a similar terminology for our problem: the
maximum number of hops allowed between overlay neighbours is called
the neighbourhood range and the determination of its best value the
critical neighbourhood range problem.

This paper is structured as follows. In Sect. 2, we give an overview
on previous related work over the critical transmission range. In Sect.
3, we precisely define the problem studied. In Sect. 4, we present ana-
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lytical results and discuss some of their practical implications. We then
conclude.

2. Related Work

In many realistic scenarios, node positions are not known in advance.
Hence a probabilistic approach is used in every analytical study of the
critical transmission range problem.

First studies of graph connectivity were developed in the context of the
random graphs theory. A random graph is a graph generated by some
random procedure [Bollobas, 1985]. In 1960, Erdos and Rényi [Erdos
and Rényi, 1960] showed that for many monotone-increasing properties
of random graphs, like connectivity, graphs of a size slightly less than a
certain threshold are very unlikely to have the property, whereas graphs
with a few more graph edges are almost certain to have it. This is known
as a phase transition phenomenon.

In classical random graph models, there is no a priori structure. All
vertices are equivalent and there is no correlation between different edges
existence. In ad hoc and sensor networks, nodes are more likely to be di-
rect neighbours if they are located close to each other. Therefore random
geometric graphs are more suited to model them. Random geometric
graphs are constructed by placing points at random according to some
arbitrary specified density function on a d-dimensional Euclidean space
and connecting nearby points [Penrose, 2003]. Some of the geometric
random graphs results can be applied in the study of connectivity in ad
hoc and sensor networks [Penrose, 1999]. Various transition phenomena
can also be observed in geometric random graphs [Krishnamachari et al.,
2001]. Monotone properties for this class of graphs have sharp treshold
[Goel et al., 2004]. Asymptotically, as the network density tends to in-
finity, a critical value transmission range can be established [Gupta and
Kumar, 1999].

We are not aware of any work related to the critical (overlay) neigh-
bourhood range problem. In the following sections, we define it in more
details, and we solve it using known results on the critical transmission
range problem cited above.

3. Problem Definition and Discussion

We are interested in the asymptotic connectivity of overlay graphs
built over asymptotically almost surely (a.a.s.) connected basic graphs.

These notions are defined in the following paragraphs. We then dis-
cuss the implicit assumptions we make in the problem and model spec-
ification.
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Basic and Overlay Graphs

Consider an ad hoc network of n nodes, deployed over a square field of
unitary area, and where each node is assigned a normalized transmission
range of length r. This network is modelled by a random geometric graph
denoted g(n, r) which has the following properties.

The vertices of g are uniformly and independently distributed on the
unitary square. They can either have been disseminated following the
uniform distribution of n points or by a spatial homogeneous Poisson
point process of mean n.

There exists an edge between each pair of vertices if and only if the
Euclidean distance between them is not greater than r.

Let then g(n, r) be a connected graph, D be a real number with
0 ≤ D ≤ 1 and R be an integer with R ≥ 1.

An overlay graph G(n, r,D,R) denotes a graph with the following
properties.

The D parameter represents the overlay nodes density. The number
of vertices of G equals the lowest integer above a proportion D of the
number of vertices of g. These are randomly and uniformly selected in
the vertices set of g, which is called its basic graph.

The parameter R is called the neighbourhood range. There exists an
edge between a pair of vertices (v1, v2) if and only if the shortest path
in g from v1 to v2 contains less than or exactly R hops.

In the following, in conjunction with the ad hoc and sensor networks
terminology, the vertices of an overlay graph will be referred to as overlay
nodes and the vertices of its basic graph as nodes.

Asymptotic Connectivity

Let all graph parameters be a function of the number of nodes. For
example, r(n) can be decreasing when n increases, which is a desired
behaviour for minimizing the capacity loss due to interferences.

A basic graph can be denoted by g(n, r(n) and an overlay graph by
G(n, r(n), D(n), R(n)) or G(g,D(n), R(n)). We may generally simply
write g(n, r), G(n, r,D,R) or, if g(n, r) is given, G(g,D,R).

Definition 1 A graph is connected asymptotically almost surely (a.a.s.)
if and only if the probability that it is connected tends to one as its
number of vertices tends to infinity.

Graph G is connected a.a.s.
⇐⇒

limn→∞ P[G is connected]=1.
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Note that for overlay graphs, the vertices are the overlay nodes. This
means that D(n) must be such that limn→∞ D(n)n = +∞.

Problem and model discussion

Connected basic graph. We consider only connected basic graphs.
This seems reasonable to us as a disconnected basic graph will not pro-
vide connected overlays, whatever the neighbourhood range is, unless all
the overlay nodes are concentrated in a connected part of it.

Asymptotics. Many asymptotic properties of random geometric
graphs have been demonstrated [Penrose, 2003]. In particular, we men-
tioned in Sect. 2 several studies of the asymptotic connectivity of ad hoc
networks, while the connectivity probability of a finite network, because
of its complexity, has been the subject of very few analytical studies
[Desai and Manjunath, 2002].

Our asymptotic results can be seen as approximations of finite (real)
networks when the number of nodes is large. They also shed some light
on the relation linking n, r, D and R to get a connected overlay.

Network density. Asymptotically, the model presented induces that
the overlay nodes geographical density, i.e. the number of overlay nodes
per unit area, tends to infinity. This is why it is only suited to so-called
dense networks. There exists a more general model, covering dense and
sparse networks, that was introduced in [Santi and Blough, 2003], and
for which we present similar results in an extended version of this paper
[Calomme and Leduc, 2006].

Homogeneous transmission range assignment. The transmis-
sion range is represented as a function of the number of nodes. This
allows us to model a possible topology control protocol running on the
ad hoc network, which would reasonably reduce the transmission range
as the number of nodes increases, in order to conserve energy and global
network capacity. We however implicitly limit ourselves to homogeneous
topology control protocols, i.e. protocols which assign the same trans-
mission range to all nodes.

This assumption greatly simplifies further mathematical developments
and seems realistic in the context of our study. A common transmission
range at each node provides some appealing features [Kawadia and Ku-
mar, 2005]. Moreover, a common power is asymptotically nearly optimal
in terms of network capacity [Narayanaswamy et al., 2002].
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4. Mathematical analysis

Known Results on Basic Graphs

Consider a basic graph g(n, r). Let us build a graph g′(n, r′) that has
the same nodes set as g and such that there is an edge between every
pair of nodes. Let Mn denote the longest edge length of the minimal
spanning tree built on g′. In [Penrose, 1997], it is demonstrated that the
graph g(n, r) is connected if and only if r ≥ Mn and

∀α ∈ R : lim
n→+∞

P [nπMn
2 − lnn ≤ α] = exp(−e−α) (1)

This implies directly the following theorem.

Theorem 2 (Asymptotic connectivity of basic graphs)
A graph g(n, r) with

πr2 =
lnn + k(n)

n

is connected a.a.s. if and only if limn→+∞ k(n) = +∞.

The same result was demonstrated by Gupta and Kumar for a uniform
distribution of nodes over the unit disk [Gupta and Kumar, 1999].

Overlay graphs study

We begin with a theorem that sets an upper bound on the asymptotic
number of hops between any pair of nodes, given the distance separating
them and the normalized transmission range used.

Theorem 3 (Asymptotic path length)
Let g be an a.a.s. connected graph and m be a strictly positive integer.

Let n1 and n2 be two nodes of g. If the Euclidean distance between n1

and n2 is strictly less than mr, then there exists a.a.s. a path between
them composed of less than or exactly m hops.

The detailed demonstrations of this theorem and of the next one are
published in the extended version of this paper [Calomme and Leduc,
2006]. We only draw here the sketch of their proof.

Proof 4 (summary) Asymptotic path length

We use a recurrent approach .
If m = 1, then nodes n1 and n2 are physical neighbours and the prop-

erty is valid.
If m > 1, then it can be demonstrated that there exists a.a.s. a node ni

such that the distance between n1 and ni is strictly less than (m−1)r and
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that the distance between ni and n2 is strictly less than r. Consequently,
the property is valid for any m. �

Using the previous theorem, we can derive the main result of this
paper.

Theorem 5 (Asymptotic connectivity of dense overlay graphs)
Consider an overlay graph G(g,D(n), R(n)) with

π(Rr)2 =
ln(dDne) + K(n)

dDne (2)

Assume g(n, r(n)) is a.a.s. connected and limn→+∞ Dn = +∞. G is
a.a.s. connected if and only if limn→+∞ K(n) = +∞.

Proof 6 (summary) Asymptotic connectivity of dense overlay graphs

Let G(n, r,D,R) be an overlay graph.
Consider a graph g′(dDne, Rr) such that the vertices sets of G and g′
are identical.

As the maximal edge length of G equals Rr, its edges set is included
in the edges set of g′. If g′ is not connected, then G neither is.

By definition, any edge (n1, n2) of g′ is shorter than or has length Rr.
If it is strictly shorter than Rr, then, by theorem 3, this edge also exists
in G.
If it has length Rr, then it can be demonstrated that one can find a node
ni such that two edges (n1, ni) and (ni, n2), each strictly shorter than
Rr, belong to G.
Consequently, if there exists a path between two nodes of g′, there also
exists a path between these nodes in G.
If g′ is connected, then G also is.

Applying Theorem 2 to g′, we obtain a necessary and sufficient condition
for the asymptotic connectivity of G. �

Discussion

The following two corollaries are meant to give an insight about the
relationship between the neighbourhood range and the overlay density.
Their proof, quite simple, are given in the extended version of this paper
[Calomme and Leduc, 2006].

For both of them, we consider an overlay graph G(g,D,R) and make
the assumptions that g is a.a.s. connected and that limn→+∞ Dn = +∞.
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Corollary 7 If DR2 ≥ 1 then G is a.a.s. connected.

The sufficient condition R > 1√
D

shows that a decreasing overlay

density does not necessarily make the overlay graph a.a.s. disconnected.
We can for example have D = 1

lnn
and R =

√
lnn. It also confirms the

intuitive idea that the lower D is, the larger R must be.
The advantage of the previous corollary is that we do not need any

information about the basic graph, except that it is a.a.s. connected.
However, lower values for the neighbourhood range could be obtained if
the relationship existing between n and r is known.

Corollary 8 Let πr2n = lnn + k(n) with k(n) � 1. Assume D is
constant and R is an integer with R ≥ 1.

1 If k(n) � lnn, then G is a.a.s. connected for any R.

2 If k(n) ≥ a ln n with a > 0, then G is a.a.s connected for any
R > 1√

D(1+a)
.

3 If k(n) � lnn, then G is a.a.s. connected if and only if R ≥ 1√
D

.

Concerning a basic graph, a function k(n) that grows quickly just
accelerates the convergence of the connectivity probability [Santi and
Blough, 2003]. This function has a stronger impact on the neighbour-
hood range needed for connectivity. For example, for a constant overlay
density D, it decides if R can take any value or must be greater than a
fixed threshold.

In particular, if the transmission range r is kept constant while the
number of nodes grows, we have k(n) � lnn which implies that R = 1
is sufficient to obtain an a.a.s. connected overlay. The overlay nodes do
not need other intermediary nodes to forward their packet for commu-
nicating. The subnetwork composed of the overlay nodes only is a.a.s.
connected. In fact, there is no need for building an overlay in this case;
the overlay nodes can directly use their own routing protocol, with cus-
tomized packet format.

Oppositely, if a topology control protocol is used for optimizing the
transmission range, R = 1 can be too small to make the overlay a.a.s.
connected. In this case, the subnetwork composed of the overlay nodes
only is a.a.s. disconnected. It is necessary for some overlay nodes to
communicate through intermediary non overlay nodes. Overlay tech-
niques are required; the overlay nodes control and data packets must be
encapsulated in packets that can be routed by all nodes.
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5. Conclusions

We first motivated the study of overlays built over ad hoc networks.
We then presented and analyzed the critical neighbourhood range

problem.
In connected networks, as the network gets denser (n → +∞), the

shortest path between any pair of nodes draws close to the straight line.
This sets an upper bound on the number of hops between any pair of
nodes, knowing the distance between them and the nodes normalized
radio transmission range r.

Thanks to this property, that we called the asymptotic path length
theorem, and known work on the critical transmission range problem,
one can derive an analytical solution to the critical neighbourhood range
problem.

The mathematical condition obtained does take into account the po-
tential use of a homogeneous topology control algorithm and allows the
overlay density D to evolve with the number of nodes. In particular, if
D diminishes, they show how a compensation in R can keep the overlay
still connected.

The analysis of these results provides, among others, the following
properties for overlays built on ad hoc networks.

Whatever the characteristics of the underlying network are, an overlay
built on an a.a.s. connected network with DR2 ≥ 1 is asymptotically
almost surely connected.

In many cases, if the relationship between n and r is known, one
can determine a lower value than d 1√

D
e for R, which will still achieve

asymptotic overlay connectivity.
For constant D, depending on the network degree of connectivity,

the minimal value of R for asymptotic overlay connectivity can either
be equal to one, or to a higher fixed threshold, or be an unbounded
function of the number of nodes.

In particular, if D and r are kept constant while the number of nodes
increases, the overlay nodes can asymptotically use their own routing
protocol, bypassing the network routing protocol common to all nodes.

Oppositely, if the transmission range value is optimized, using a topol-
ogy control protocol for the underlay, the network composed only of the
overlay nodes can be a.a.s. disconnected.
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