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Summary. A new algorithm for the location of a transition-state structure on an 
energy hypersurface is proposed. The method is compared to three other 
quasi-Newton step calculations available in literature. Numerical results derived 
from several examples are compared to those obtained by the two algorithms 
implemented in the Gaussian package. 
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1 Introduction 

According to the idea of McIver and Komornicki [ 1], several attempts have been 
made to solve the problem of locating the transition-state structures. By refer- 
ence to the work of Murrell et al. [2], the transition-state of a chemical reaction 
is assumed to be a stationary point on an energy hypersurface [3], associated to 
an indefinite Hessian matrix with one and only one negative eigenvalue. The 
first-order saddle-point can be interpreted as a maximum along the direction 
defined by the eigenvector corresponding to the negative eigenvalue, and a 
minimum in all the other orthogonal directions. The direction of the negative 
curvature is called the transition vector [4]. In most cases, all its components are 
not known a priori, and hence must be determined in the course of the iterative 
search procedure. 

The purpose of this paper is to propose an algorithm to locate a first-order 
saddle-point and to compare it to the quasi-Newton algorithm of Schlegel [5], 
Baker [6], and Simons et al. [7]. 

Several applications of the new algorithm are described. The selected prob- 
lems deal with simple isomerization reactions as well as with complex intramolec- 
ular rearrangements on a flat surface. The starting geometries are not necessarily 
taken within the quadratic region surrounding the transition structure. All the 
results are compared to those obtained by the two methods available in the 
Gaussian package [8]. 
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2 Quasi-Newton algorithms 

Let us consider the search of a first-order saddle-point of an energy function, 
E ( X ) .  This function of N real variables is assumed to be at least twice continu- 
ously differentiable. The available methods in the literature are related to the 
quasi-Newton algorithm in which the user supplies an initial estimation X ~ of the 
first-order saddle-point. 

As an approximation of the energy function at a point X k, it is pertinent to 
use the energy E k, the gradient vector G k and an approximate Hessian matrix 
H k. A Taylor series second-order expansion in the step direction D: 

E(X k + D) ~ Qk(D) = E k + GkrD + 1D'rHkD (I) 

is thus considered. Given the stationary condition VQ~(D)= 0, the quasi- 
Newton step is equal to: 

D k = - H k - I G  k (2) 

In terms of the eigenvectors V~ and the eigenvalues bf of H k, this step can be 
written as: 

where ¢~~ = V~~G k is the component of G k along the eigenvector Vf. 
For an ab initio SCF function, it is convenient to caleulate the gradient each 

time the energy function is computed. However, the analytical or numerical 
calculation of the second derivative is expensive, about N times the computa- 
tional effort of one gradient evaluation. Thus, an iterative updating of the 
Hessian should be performed using a suitable estimate of the second derivative 
matrix at the beginning of the search process. 

The iterative procedure to locate a saddle-point involves the following steps: 

(a) the choice of a search direetion D ~, 

(b) the scaling the step Euclidean norm [IDkl[ below an upper bound Rmax, 
(c) the calculation of X k + ~ = X k + D k, 

(d) the update of the approximate Hessian matrix H a+ ~ from H k, D k, G a, and 
Gk+l 

To update this matrix, Baker [6] and Simons et al. [7] use the formula of Powell 
[9], while Schlegel [5] applies bis own algorithm. The choiee of the direction D k 
in step (a) and the sealing procedure in step (b) are different in the three 
methods. Yet, all of them use convergence criteria based on the gradient vector 
and on the search direetion length. 

If  the current point X « lies in the region where the Hessian has the required 
unique negative eigenvalue, the quasi-Newton step is a good search direction. 
The first component of D k, in the eigenveetor V basis, is aseendant and all the 
other elements are deseendant. In contrast, if the Hessian has not the expected 
local inertia, then the quasi-Newton step is not the proper one. So, the new point 
X k + ~ has to leave this inadequate loeal area and to reach a region of the surfaee 
characterized by the right inertia property. All the methods discussed in this 
paper apply the quasi-Newton step in the vicinity of the solution. The way the 
algorithms evolve differs mainly from eaeh other when the curvature at point X~ 
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is not the good one. This is one of the main problems involved in an optimiza- 
tion procedure. 

2.1 Algorithm of Schlegel [5] 

The right inertia of the approximate Hessian matrix is obtained by adjusting the 
sign of inadequate eigenvalues. If several negative eigenvalues occur, all of them 
are replaced by their absolute value, except the smallest one. If no negative 
eigenvalue is present, the sign of the least positive eigenvalue is changed. The 
quasi-Newton step is consequently modified as: 

n --k »~_-_ ~,~ ~~ ~4~ 

where Ib;] =]be l, bi < 0 < b ~ < . . .  < b~, 
This can be related to the Greenstadt [10] proposal that is used in a 

minimization process. The main effect of this procedure is to reverse the 
ascendant/descendant character of the search direction. However, in an area 
characterized by a large curvature, the resulting direction is not necessarily the 
opposite of the initial one if the investigated region is far from an extremum and 
thus may be incorrect. This effect is modulated by a scaling factor, implemented 
in the current version of the Gaussian programs. 

If the quasi-Newton search direction of Eq. (4) exceeds the maximum 
allowed step R . . . .  its length is set to Rma x. This requires the addition of a shift 
parameter 2 obtained by the search of an extremum of the quadratic function 
Qk(D) on the sphere with radius Rmax, as proposed by Golab et al. [11]. In 
practice, the shift parameter 2 is obtained by minimizing the function: 

(1[ Dk(~) I[ -- Rmax)2 (5) 

The radius Rma× is updated using a trust region method, as suggested by Fletcher 
[12]. The step direction is: 

» k = _ ~  ä___~,k vk (6) 
ù=, (b~ - ).) 

In the implemented version of the trust region like method, the minimization 
of Eq. (5) is performed by determining the zero of its first derivative using a 
Newton-Raphson procedure. However, the convergence threshold of the 
Newton-Raphson algorithm is guided by a zero value of Eq. (5). Given that the 
minimum of this function is not necessarily associated with a zero function value, 
the procedure may fail (number of iteration steps exceeded in subroutine Redstp). 

Moreover, this Newton-Raphson search of a zero value first derivative implies 
that the parameter 2 lies in the interval ]bi, b2[. Thus concerning Eq. (6), the step 
D k is uphill along the first eigenvector V~ and downhill along all the others. 

2.2 Algorithrn of Simons et al. [7] 

The augmented quasi-Newton step: 

4, Dk= 
/~1 

- -  v~  (7)  



192 P. Culot et al. 

is used by Simons et al. [7] in an uphill walk from a minimum towards a 
first-order saddle-point. This can be achieved by maximizing the quadratic 
approximation Qk(D) along an eigenvector V1 k and minimizing it along the 
others. The selected parameter 2 is that: 

1 k blk < 3~ < ~ b  2 (8)  

This choice guarantees that the step has the same orientation as the gradient in 
the direction V~ and the opposite one along all the other directions. Moreover, 
Qk(Dk) increases in the direction V1 k and decreases along the V~ directions 
(i = 2 . . . . .  N). 

1 k The situation b~ > 5b2 may occur. Hence, a scaling of the coordinate during 
the walk is performed. The question arises as to know what 2 value in the 
desirable range should be selected. If b~ is negative and b~ is positive, then ,~ = 0 
is a "good choice", following Simons et al. [7]. The step is scaled if it exceeds the 
trust radius. In the other cases, the parameter is determined in such a way that 
the augmented quasi-Newton step (7) lies on the boundary of the trust region: 

11 D ( ~ )  Il = Rmax (9) 
However, it may not exist a parameter 2 such that Eq. (9) is verified. The value: 

B 1 k 1 k = 5(b~ + 7b2) (10) 

is then suggested by Simons et al. 
This method attempts to calibrate the scaling procedure on the basis of a 

trust region method. But an arbitrary choice of 2 is to be made that results in a 
truncation of the D k step. The question thus arises in the same term as in the 
Schlegel's algorithm, and the problem might be solved: 

Minimize (HDk(/~)Il - -  R~ax) 2 
1 k subject to b k < ). <~b2 (11) 

In this case, the 2 value is the solution of the minimization problem and thus is 
more suitable than the proposition of Eq. (10). Application of Eq. (7) appears to 
be efficient to leave an inadequate region but the condition on 2 seems to be too 
stringent. 

2.4 Algorithm o f  Baker [6] 

Instead of a quadratic model, a rational mode1 of the energy E ( X )  about X k has 
been proposed by Banerjee et al. [13] and also considered by Baker [6]. This 
rational function known as Padé approximant is also widely applied in inter- 
polation calculations [14]: 

E k + GkrD I r k E ( X  k + D) ~- R k ( D )  = -F ~D H D 
(1 + DrD)  (12) 

Derived from Eq. (12), the augmented quasi-Newton step is given by: 
(H k -- 2I)D k + G k = 0 

with 
(13) 

2 = GkrD k (14) 
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It can be written as: 

where 2 satisfies: 
i= l (bi -- 2) 

((~~)2 (16) 2 
--" ( , ~ - b ~ )  i = 1  

The problem is splitted into a maximization of R~(D) relative to an eigenvector 
V~, with a shift parameter 2p, and into a minimization of  Rk(D) relative to the 
other eigenvectors, with a shift parameter 2n. In terms of the eigenvectors, two 
matrix equations derived from Eqs. (13) and (14) can be written as: (bi, ~,~~o~~ (~~) 

G~ 0 J \ I J = Z ~  (17) 

0 b~ d~ ~ =2n D~ (18) 
~~ . . .  ä~  0 1 

The search direction D k is calculated from both the eigenvector of  Eq. (17) 
corresponding to the highest eigenvalue 2p and the eigenvector of  Eq. (18) 
corresponding to the lowest eigenvalue 2n. However, in practice, D k is not 
calculated in that way. The parameter 2ù is the highest solution of  a quadratic 
equation obtained from Eq. (17). 2~ is obtained iteratively via Eq. (16), and the 
direction D k is calculated from Eq. (15). The step is scaled if it exceeds a fixed 
maximum step length Rmax. The D k step is an uphill walk along V1 ~ and a 
downhill walk along all other eigenvectors if 2p and 2n are positive and negative, 
respectively. 

By definition, this rational approximation leads to conic isocontours of the 
function values which are not necessarily concentric and similar. For example, 
given the function f (X1,  X2) = (X12 + X2 - 11) 2 + (X1 + X2 2 - 7 )  2, four curvature 
environments are displayed in Fig. 2. 

In the D range - 5  to + 5, the rational approximation isocontours of the 
function f (X1 ,  X2) are drawn near (a) a maximum: 1, (b) a minimum: 2, (c) a 
first-order saddle-point: 6, and (d) between a minimum: 2, and a first-order 
saddle-point: 6. Figure 1 displays the isocontours of the analytical function 
calculated on a regular mesh within the range - 5, + 5 of the two variables. The 
two drawings (Fig. la,b) clearly point out the existence of 1 maximum: 1, 4 minima: 
2, 3, 4, 5, and 3 first-order saddle-points: 6, 7, 8, on this analytical surface. Given 
the rational approximation calculated around the X,, )(2 values at the center of  
the pictures (Fig. 2a,b,c,d), the conic eharacteristic of the contours could be useful 
to guide the D k calculation towards the expected first-order saddle-point region. 

3 The proposed quasi-Newton algorithm 

The quadratic model of the energy E(X)  around X k is derived from the truncated 
Taylor series expansion: 

E ( X  ~" + D) ~- Q~'(D) = E k + GkTD + ½D rHkD (19) 
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where E h, G k, and H ~ are the energy, the gradient and the updated matrix using 
Powell's formula [9] at point X k. The confidence in the approximation is 
warranted by a restricted step method, with a trust radius Rmax defined as: 

J[D[12 ~< 2 (20)  Rmax 

The transition structure search is performed via a maximization of the 
quadratic approximation along an eigenvector, V1 k, and a minimization of the 
approximation along the other eigenvectors. Following Simons et al. [7], the 
eigenvector V~, updated at each step, is the eigenvector with the largest overlap 
on the chosen eigenvector at the previous step, V~-~. 

The mathematical formalization of the above considerations can be written 
as: 

where 

Minimize F(D') D" ~ ~ ~ -  1 

subject to D'TD" <~ R kz (21) 

F(D') = Max {Q(D,, D') [ D~ <~ R~ 2 and D~ e ~1} 
Dl 

with D' = (D2, • • •, D,). R~ and R~ are positive scalars. The suggested solution 
of those conditions ean be formulated as an augmented quasi-Newton step with 
a positive shift parameter 2: 

D k = ~~ V k -  ~ ~k V~ (22) 
( b ~ 2 )  i~2~ (b~ + 2-----5 

By comparison with the previous solution of the quadratic approximation gjven 
by Eqs. (6) and (7), and the rational approach of Baker of Eq. (15), D k 
calculation is split into two parts. The first part is relative to the maximization 
of Qk(D) along one direction; the other concerns the minimization in the 
supplementary subspace. 

To solve the Min-Max problem of Eq. (21), the parameter 2 is ¢hosen so that 
the three following conditions are fulfilled: 

(i) the search direction vector lies within a fixed trust region of radius R . . . .  

(il) ( b ~ -  2) is negative to obtain an uphill step along the eigenvector V~, 
Oft) (b~ + 2) is positive to obtain a downhill step along the other eigenvectors 
V~, i = 2  . . . .  ,N. 
Under these conditions, the quadratic approximation increases along the direc- 
tion V~ and decreases along all the other directions. 

If the (approximate) Hessian has the expected structure and if the quasi- 
Newton step lies within the boundary of the trust region, then the quasi-Newton 
step is selected. Otherwise, the step is chosen on the boundary of the trust region, 
with 2 as the solution of." 

IID~(2)112 2 = Rma x (23)  

This step calculation, weil suited to the trust region model, is appropriate for 
a first-order saddle-point search and can be easily generalized to higher order 
saddle-point search. 
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Fig. 2a-d.  Isocontours of 
the rational approximation 
R(D)  of the function 
f ( X  I , X2). a near the 
maximum 1 with X~ = 0.0, 
X 2 = 0.0; b near the 
minimum 2 with X1 = 3.0, 
X 2 = 1.5; e near the 
saddle-point 6 with X~ = 0.0, 
X 2 = 3.0; d between the 
minimum 2 and the saddle- 
point 6 with X 1 = 1.719, 
X z = 2.75 
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4 A n a | y s i s  o f  t h e  n u m e r i c a l  p r o e e d u r e  

The proposed algorithm, called QA, based on the augmented quasi-Newton step 
of Eq. (22), is implemented in the Gaussian package. The flowchart (Fig. 3) 
illustrates the organization of the levels involved in the iterative procedure. 

I. Initialization 
• Choose a guess X ° and an initial trust radius R °. 
• At the point X °, calculate the energy function E °, the gradient vector G °, and 

the Hessian matrix H ° or an approximation of it. 
• Set k = 0. 

2. Eigenvalues and eigenvectors 
• Calculate the eigenvalues b~ and the eigenvectors V~ of H k, i = 1 . . . . .  N. 
• Calculate the components of  the gradient vector G~ in the eigenvector basis, 

i = 1  . . . . .  N. 

3. Choice o f  an eigenveetor 
• Determine the eigenvector along which the energy is to be maximized: V~, 

j • [1, NJ: 
- at the first iteration, the eigenvector is associated with the smallest eigen- 

value, except in the case of  a u s e r  choice; 
- at the subsequent steps, V~ is the eigenvector with the largest overlap on 

the chosen eigenvector at the previous step, V ~ - ' .  
• Determine the inertia of H k = (nR, no ~, nk+ ), where n_,  no, n+ are the num- 

bers of  negative, zero, and positive eigenvalues. 
• Set brei n = min{b~; i ¢j ' ,  i = 1 . . . . .  N}. 

4. Quasi-Newton step 
• I f  ][H~-IGk][ ~< R k and n k_ = 1 then take the quasi-Newton step D e as: 

D~ = ~ a~ k - ~ Vi 
i=l  bi 

• Else select the augmented quasi-Newton step D k as: 
--k 

where the parameter  2 is the zero of the function: 
[IDk(2) II 2 -- R kz 

in the interval ]max{0, b~. -bmiù}, + oo[. 

5. Predietion 
• Calculate the predicted change in energy following the quadratic energy 

function approximation: 
Ce = Qk(Dk) -- E k = GkrD k q- l D k r H k D k  

6. Trust region 
• Calculate the energy E* at the point x k +  D k. 
• Set r = (E* - Ek)/Ce.  
• I f  r ~< rmin or r >1 (2 - -  rmin) then R k+l  = Rk/Se .  
• I f  r >~ %000 and r ~< (2 - rgooa) and D k ~ - H k - ' G  k then R k+ 1 = R k .  (Sc)l~2. 
rrùin = 0.75, %oo« = 0.8 and Sc = 2 are the implemented values. 
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Fig, 3, QA flowchart 

No 

7. Adequation o f  step D Æ 
• I f r < O o r r > 2  

7a, then,  e s t imate  a n e w  D k step at the s a m e  X k c o o r d i n a t e  but  us ing  the 
u p d a t e d  R k + ~ trust radius: 

• X k + l  = X  k, 
• E k + 1 = E k, 
• Set k = k +  1, 
• G o t o  ~ 4 ;  
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7b. else, update the X k vector and the iteration count. 
• Check the four critera on convergence: 

I[Gk]ll ~ el, IIGkHRMS ~ e2 

[[Dk][1 < 5» IIDklIRMS < 54 
• If they are fulfilled, then STOP: X k is a first-order saddle-point. 
• X k + I = X ~ + D  k, 
• E «+~ = E * ,  
• Calculate the gradient vector G ~+1 at X k+ ~. 
• Update the approximate Hessian matrix using the symmetric formula of 

Powell: 
k 1 f (yrDk)(DkDkr)~ H k +1 = H + ~ ~.yDkr + Dky r ~ J 

where y = G k+ 1 _ G k _ HkDk, 
• Set k = k +  1. 
• G o t o  4~ 2. 

5 Appl icat ion  

QA algorithm applications have been compared to the results obtained by the 
procedures TS by Schlegel [5], and EF by Baker [6], implemented in the 
Gaussian packages [8]. The QA subroutines are included in the link 113 of the 
GAUSSIAN 86 version running on a FPS 264 attached processor and the 
GAUSSIAN 88 running on a VAX 11/780. 

In all the analyzed structures, the first estimation of the Hessian matrix is 
computed analytically. A default maximum stepsize or an initial trust radius of 
0.3 Bohr/Radian is considered. The convergence thresholds are kept as the 
standard default values on the maximum and RMS gradients and the maximum 
and RMS displacements are scaled to 450 x 10 -6, 300 × 10 -6, 1800 × 10 -6, 
1200 x 10-6a.u., respectively. The initial starting and final transition state 
internal coordinates as weU as the nurnber of cycles to reach convergence are 
given for each of the selected examples shown below. 

In most cases, convergence using the Schlegel's original algorithm (Eq. (4)) 
requires a greater number of iterations than QA and EF. Moreover, using the 
non-Newton-Raphson scale option (Eqs. (5) and (6)) of the program, the 
walking search diverges and stops within the Redstp procedure (see Sect. 2.1). 

The first two examples, i.e., the acetylene-ethenylidine rearrangement and the 
isomerization of the methoxy radical, are often used in the literature [15] to 
illustrate the different transition state search performance. 

The other examples are related to enzymatic reactions. Several Hessian 
inertia conditions and curvature amplitudes are considered. 

5.1 Acetylene-ethenylidine rearrangement RHF/3-21G 

The initial guess of the geometry optimization is characterized by a higher energy 
value than the energy calculated at the transition-state solution [6]. At the 
starting geometry, the Hessian matrix has the right inertia. The location of the 
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Table 1. Acetylene-ethenylidine rearrangement 
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H 

R ~  v 
R2 

R3 C r 
H C H_------ ~/RI _ 

T2 1"2 

Starting Final 

R1 1.24054 1.247 
R2 1.65694 1.428 
R3 1.06318 1.056 
T1 60.3568 54.2 
T2 150.3568 176.6 
First eigenvalue -0.35638 -0.39251 

Number of iterations TS No NRSCale: failed EF: 7 QA: 10 
TS NRSCale: 21 

equilibrium structure thus requires the decrease of the energy function while the 
required negative eigenvalue is retained. 

Both QA and EF reach this goal after 10 and 7 iterations, respectively (Table 
1). With the default option of GAUSSIAN 88, TS converges to the solution 
within 21 calculations, while Redstp problems occur when the non-Newton- 
Raphson scale option is used. 

5.2 Methoxy radical isomerization RHF/STO-3G 

In this compound, the starting geometry used by Baker et al. [16] is described as 
a "branching" point with one null eigenvalue. On the way to the saddle-point, 
the different algorithms have to force the appearance of one negative eigenvalue. 
In this case, the three results are similar to those obtained with the 
HCCH ~ CCH2 isomerization (Table 2). 

5.3 Formamide OH- complex RHF/STO-3G 

The third example concerns the reaction model of the formamide hydrolysis by 
the hydroxide ion. In view to investigate the mechanism by which an enzyme 
catalyzes chemical reactions, amidic bond cleavage has been intensively studied 
in the gas phase and in aqueous solution by Wiener et al. [17]. 

The first approach proposed by Alagona et al. [18] describes the chemical 
pathway going from a tetrahedral intermediate to a formate-ammonia adduct 
through a four-membered ring transition-state structure. 

For the three analyzed algorithms, the starting internal coordinates are those 
of Alagona et al. At this point, the Hessian matrix has one negative eigenvalue, 
and its associate eigenvector includes the degrees of freedom of the eycle 
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Table 2. Methoxy radical isomerization 
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R2 R 1 

[ 0 ~CT~~--~ 0 H N«-'~ 
Ha T2 Ha 
PI=HCOHa 

Starting Fin'al 

R1 1.423 1.423 
R2 1.484 1.326 
R3 1.087 1.089 
T1 42.7 51.8 
T2 117.5 117.5 
P1 105.4 106.4 
First eigenvalue -0.00969 - 1.36810 

Number of iterations TS No NRSCale: failed EF: 11 QA: 14 
TS NRSCale: 10 

rearrangement. Again, the numerical performance of the three algorithms is in 
agreement with previous results (Table 3). 

5.4 Formamide-water complex RHF/3-21G 

The energy hypersurface generated by the formamide-water complex is very flat. 
In 3-21G [19], one conformational minimum given by Jasien [20] describes a 
hydrogen bond between the carbonyl oxygen of formamide and a water hydro- 
gen. This geometry is used as a starting point on the search towards another 
local minimum with a hydrogen bond between the watet oxygen and the 
formamide hydrogen. So the initial Hessian matrix has only positive eigenvalues 
and the energy function value is lower than the value at the transition state 
structure. TS does not converge to a solution whatever the selected optimization 
options. Both QA and EF reach the transition structure after 9 and 12 iterations 
respectively (Table 4). 

5.5 Methanolysis of protonated methyl-formic-ester RHF/STO-3G 

Given the extremely low curvature of the energy hypersurface, the location of the 
critical points generated by a protonated system is particularly difficult. In the 
reaction studied, a hydrated methanol transfers a proton to the methoxy ester 
group through the flip-flop of the water molecule. Several geometrical arrange- 
ments can be trapped depending on the dihedral angles that defined the six-mem- 
bered ring at the transition state. Two of them have been investigated. In the first 
one (Fig. 4a), QA converges to the solution after 20 iterations. The eigenvector 
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Table 3. Formamide O H -  complex 
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~ ~ 0  

"~~ ~ 0  H T5 RS 

Starting 

R 1  2.1 
R2 1.385 
R3 i .096 
R4 1.035 
R5 1.232 
T1 84.29 
T2 84.94 
T3 126.61 
T4 111.52 
T5 89.47 
First eigenvalue -0.21042 

Final 

2.117 
1.409 
1.028 
1.045 
1.234 

80.2 
91.5 

120.9 
115.3 
90.7 

-0.23683 

Number of iterations TS No NRSCale: failed EF: 10 QA: 10 
TS NRSCale: 15 

Table 4. Formamide-water complex 

o __~____a_~__. T' f -~L=~H 

Starting 

R1 1.2236 
R2 1.0779 
R3 2.8900 
R4 0.9719 
R5 0.9641 
Tl 121.116 
T2 69.890 
T3 49.568 
T4 109.692 
First eigenvalue 0.00894 

Final 

1.221 
1.080 
3.461 
0.973 
0.966 

122.0 
49.4 
25.3 

107.9 
- 0.00045 

Number of iterations TS No NRSCale: failed EF: 12 QA: 9 
TS NRSCale: failed 



204 P. Culot et al. 

H H 

F~H 

yù 
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Fig. 4a-e.  Methanolysis of protonated 
methyl-formic-ester, a QA first transition state; 
b EF transition state; c QA second transition state 

components associated to the -0.00139 eigenvalue weil retain the important 
parameters involved in the cycle reorganization. After 94 iterations, EF con- 
verges to a transition state in which only the torsional angles of the methyl 
rotation are concerned. Hence this critical point resembles a complex between 
protonated ester and the couple methanol-water (Fig. 4b), 

Similar results are obtained using the second conformational geometry (Fig. 
4c) in which mainly the torsional angles of the cycle differ from the preceding 
geometry. The optimization solution is obtained by QA after 64 iterations with 
the right eigenvector components associated to a -0.00107 eigenvalue while, 
after 116 iterations, EF slowly slips again to the previously described complex 
(Fig. 4b). Going from iteration 30 to iteration 70, several negative eigenvalues 
appear and the main components of the first eigenvector combine at once both 
the cycle motion and the methyl rotation. Forcing the algorithm to retain the 
right Hessian inertia, EF selects the methyl rotation components in the eigenvec- 
tor. This numerical behaviour gives rise to a drastic geometric change in the 
conformation of the H30 + entity. 

With respect to the low curvature of the surface, the barrier height deter- 
mined by the two transition states is 0.893 kcal for the first structure and 
3.81 kcal for the second one, respectively. 

6 Conclusion 

This paper deals with algorithms involved in a transition-state structure location 
on an energy hypersurface. Available quadratic and rational models are analyzed 
in detail and a new quasi-Newton method is proposed. Regarding the efficient 
Baker algorithm, this newly developed algorithm solves the problem of step 
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estimation as an augmented quasi-Newton displacement by adding a positive 
shift parameter. 

In practice, the selected examples emphasize the stability of the method using 
Hessian matrix whatsoever its inertia. The efficiency is weil illustrated by the 
18-atom system associated with a very low curvature surface. The convergence in 
those three reactions where covalent bonds are formed and/or broken is remark- 
able. 

Two problems require further investigation. The first one is related to the 
stepsize calibration in order to avoid too long displacement, particularly, on a 
flat hypersurface. The second one is inherent to the matrix inertia. This feature 
is critical when more than one negative eigenvalue occur with a very weak 
absolute value. This nearly rank loss may be caused by redundant geometrical 
parameters or local symmetry conditions. 
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