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Abstract—Unikernels are specialized, single-address-space op-
erating systems (OSes) tailored to specific applications. They
offer strong isolation, low memory/disk footprints, and fast
startup times-making them well-suited for cloud and serverless
computing. However, deploying many of them at scale in cloud
environments introduces new challenges. In particular, managing
library updates and versioning in statically linked unikernels is
difficult due to their tightly coupled structure. Unlike dynamically
linked binaries, statically linked unikernels lack built-in version-
ing mechanisms. Consequently, even minor library changes result
in entirely new memory layouts, which can significantly increase
memory consumption when multiple instances run concurrently.

We present Spacer-A, a framework that improves memory
sharing across statically linked unikernels with different library
versions. Spacer-A uses differential analysis and library align-
ment to enable page-level sharing via memory deduplication
scanners or a custom loader backed by a shared library pool. Our
evaluation with Unikraft shows that Spacer-A reduces memory
consumption and boot overhead while maintaining compatibility
across versions. The framework integrates into existing unikernel
build pipelines with minimal changes and is released as open
source.

Index Terms—Unikernels, versioning, statically-linked, library-
os, virtualization, cloud-computing

I. INTRODUCTION

Cloud services are increasingly built from composable,
loosely coupled microservices, enabling independent develop-
ment, testing, and deployment. In such architectures, a single
client request can trigger a chain of dependent microservices.
Serverless computing, or Function-as-a-Service (FaaS) [1], [2],
is well suited to this model due to its event-driven execution,
fine-grained billing, and elastic scalability, simplifying appli-
cation management and enabling function chaining.

However, key challenges in serverless platforms include
cold-start latency—the delay during the first invocation of a
function as its execution environment is initialized—and mem-
ory overhead, particularly when running multiple applications
concurrently. Both issues can significantly degrade application
responsiveness, especially under bursty or latency-sensitive
workloads.

Unikernels offer a promising solution to these challenges
in serverless computing. Built on the concept of library
OSes—where applications are linked with only the OS compo-
nents they require [3]-[7]—unikernels are specialized, single-
address-space operating systems tailored to specific applica-
tions. By compiling applications into minimal, self-contained
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images with only the necessary libraries and drivers, uniker-
nels achieve fast boot times and exhibit extremely low memory
and storage footprints. Their lightweight architecture makes
them well-suited for serverless environments that demand
rapid autoscaling and low-latency startup, often outperforming
traditional virtual machines (VMs) and containers [8]-[13].

This efficiency has made unikernels increasingly attractive
for cloud computing, where fast instantiation, low resource
usage, and strong isolation are essential for cloud-native work-
loads. Some unikernel projects, such as Unikraft [12], have
developed dedicated cloud platforms like KraftCloud [14].
Others—such as OSv [10], MirageOS [8], NanoVMs [15], and
Rumprun [16]—offer support for deployment on mainstream
cloud providers including AWS [17], Microsoft Azure [18],
and Google Cloud [19].

Most unikernel projects follow a statically linked
model [12], [16], [20], [21], embedding all dependencies
directly into the binary at compile time. This approach offers
ease of deployment, high performance and strong isolation
but introduces new challenges in memory deduplication and
library versioning—particularly in multi-tenant environments
where different versions of the same application or
dependency may coexist. Indeed, in practice, many third-party
dependencies are infrequently updated by developers [22],
[23], leading to a situation where multiple versions of the
same library must be supported simultaneously on a given
server. This creates challenges in memory management: when
unikernels are statically compiled with slightly different
versions of the same library, even minor updates can lead to
diverging memory layouts. Changes such as added, modified,
or removed functions result in unique memory pages across
versions, thereby complicating deduplication efforts. Even
with runtime memory deduplication scanners like Kernel
Same-Page Merging (KSM) [24], these differences prevent the
effective merging of different pages, leading to higher-than-
expected memory consumption. Moreover, KSM’s approach
also introduces additional drawbacks, including high CPU
overhead and/or slow convergence times [24]-[26]. Although
load-time memory deduplication [27] using a custom loader
can mitigate the runtime overhead of a memory scanner, it
faces the same limitations in handling layout discrepancies,
ultimately failing to achieve optimal memory efficiency.

Another challenge involves dynamically scaling new library
updates and versioning. In traditional systems with dynamic



linking, multiple library versions can coexist, allowing devel-
opers to update or maintain applications independently of each
other [28]. In static linking, all libraries are fixed at compile
time, with each unikernel embedding its own static copy of
the required libraries. Even minor changes between library
versions can lead to significant variations in memory layouts,
extending beyond the modified library code and affecting
the entire unikernel structure. For example, if a unikernel
using the first version of a library is already running and
another unikernel with a slightly updated library version is
started, the memory layout may differ significantly. Despite
sharing much of the same codebase, these minor differences
prevent efficient reuse of memory and both unikernels need
to be recompiled to match a uniform memory layout. The
static linking model, while beneficial for unikernel isolation
and performance, inherently limits opportunities for memory
deduplication across different versions in cloud environments.

To address these issues, we propose Spacer-A, an extension
of Spacer [29]. Spacer-A is designed to improve memory
efficiency across statically linked unikernels with varying
library versions. It leverages library alignment and differential
analysis to detect and align common libraries at the page level.
This enables sharing of identical pages across unikernels, even
when they are built with different versions of the same library.
In addition, it allows new unikernel instances to be launched
without recompiling existing ones while achieving optimal
memory reduction. Spacer-A performs binary rewriting prior
to unikernel execution, avoiding any runtime overhead. While
our current implementation targets Unikraft [12], the approach
is generic and could be applied to other unikernel code bases
with minimal modifications.

Our main contributions are as follows: (1) We introduce a
novel methodology based on page alignment and differential
analysis that reduces memory consumption (regarding frame
usage) when multiple unikernels with different library versions
run on the same machine. (2) From this approach, we derive
Spacer-A, a proof-of-concept toolset that integrates into exist-
ing build pipelines and enables the creation of unikernels that
maintain retro-compatibility across library versions. (3) We
provide a performance evaluation of Spacer-A, comparing our
approach to other configurations, including DCE-optimized
images. (4) We discuss the limitations of Spacer-A and
identify some possible areas for improvement.

Spacer-A and its benchmarks are publicly available at:
https://github.com/gaulthiergain/Spacer-delta.

II. BACKGROUND

This section outlines the unikernel building and loading
process, explores memory deduplication challenges, and in-
troduces Spacer—a library alignment technique that improves
memory deduplication efficiency in cloud environments.

A. Unikernels

There exist two main categories of unikernels [20]:
Language-based and POSIX-compliant unikernels. (1) The

former are associated with a particular programming lan-
guage and require rewriting each application using the given
language platform’s APL In this category, we find Mi-
rageOS [8] (OCaml), HaLVM [30] (Haskell), Erlang on
Xen [31], ClickOS [9] (Click Modular Router) and run-
time.js [32]. (2) The second category of unikernels aims at
maintaining POSIX compatibility with existing applications
by providing a larger code base. As a result, this type of
unikernel offers a more straightforward approach to migrate
existing applications, as they only require compilation from
source code. OSv [10], IncludeOS [11], HermiTux [21] and
Unikraft [12] are examples of this second category.

For POSIX-compliant and statically linked unikernels, all
necessary libraries and application code are compiled into
a single executable image. When the unikernel needs to be
loaded, the hypervisor allocates anonymous virtual memory
and maps each segment of the unikernel’s ELF file to the
designated memory space with appropriate protections. Once
loaded, the hypervisor interacts with the unikernel via the
Kernel-based Virtual Machine (KVM) [33] interface to man-
age low-level hardware operations.

B. Memory Deduplication

Memory deduplication is a memory saving mechanism that
consists of identifying identical pages and merging them into
a single copy, improving efficiency and lowering costs in
cloud environments. It can be performed at runtime using a
background scanner or at load-time via a custom loader with
a shared library pool. One common runtime method is Kernel
Same-page Merging (KSM) [24], which maps identical pages
to a single frame. KSM uses red-black trees to manage page
states: a stable tree for merged pages and an unstable tree
for potential candidates. Memory deduplication can also be
performed at load-time using a custom loader that leverages
mmap to map shared memory regions. This approach relies
on a pool of libraries (which are in /dev/shm) extracted
beforehand from unikernel binaries, enabling these libraries
to be shared across multiple unikernels when new instances
are starting [27].

C. Aligning libraries with Spacer

While unikernels offer excellent performance and efficiency,
their specialized nature presents challenges in cloud environ-
ments hosting multiple instances. Specifically, variations in
library sets cause (a) library shifts relative to page boundaries,
and (b) address-specific instructions like CALL or LEA that
differ between instances. These two limit the effectiveness of
the memory deduplication process between unikernels.

To address these challenges, the Spacer [29] tool was
developed. Spacer aligns libraries across unikernel instances
by assigning each library to a page-aligned absolute address.
It analyzes all unikernels in a workspace and generates custom
linker scripts to relink each unikernel accordingly. When a
library is unused in a given instance, Spacer inserts zero-
filled pages to preserve alignment. To support security features
like ASLR, Spacer employs trampoline tables that handle



problematic instructions (e.g., CALL, LEA) referencing other
sections or libraries. These are patched via binary rewriting,
allowing identical libraries to be mapped at different locations
across instances.

While Spacer introduces slight per-instance memory over-
head, it significantly increases page sharing and reduces total
memory usage when running multiple unikernel instances
concurrently on a server.

III. PROBLEM STATEMENT AND SOLUTION

This section highlights the challenges associated with li-
brary versioning in statically linked unikernels and presents
step-by-step solutions to address them.

Unikernels leverage the concept of a library OSes [3]-
[7], where operating system functionality is modularized into
independent libraries. These libraries may exist in multiple
versions, each introducing different functions and symbols.
Without optimization, the choice of library versions can sig-
nificantly affect memory consumption. For instance, consider
two statically linked unikernel instances using various versions
of the same library (e.g., uklibV@v1 and uklibV @v2). When
these unikernels are loaded into memory, their .text sec-
tions—which store binary instructions—are distributed across
multiple memory pages (each page is either depicted as a
grey or a red box in Figure 1). A critical issue arises due
to library misalignment. Adding a new single function, such
as £4, in the second version of the library shifts all subsequent
code. This misalignment propagates through memory, affect-
ing not only the modified library but also other libraries within
the unikernel. In addition, different cross-references (such as
CALL instructions) also make memory pages differ between
instances. This default behaviour is illustrated in Figure 1.
Similar misalignment issues can also occur in other memory
sections, such as .data, further exacerbating the problem.
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Fig. 1. Using multiple versions of the same library prevents memory
deduplication across instances. Each page can store library code and is either
shared (grey rectangle) or unshared (red rectangle).

Alignment (used by Spacer [29]) could be thought of as
a potential solution. Aligning all libraries at the same fixed
absolute addresses may ensure that identical pages are created
across instances for the other libraries. These identical pages
can then be efficiently shared using a memory deduplication

mechanism, such as Kernel Same-page Merging (KSM) [24],
or through a custom loader [27], significantly reducing mem-
ory usage. However, alignment becomes insufficient when han-
dling various modifications between instances. For example,
in the more complex and real scenario illustrated in Figure 2,
uklibV@v?2 introduces significant changes compared to its
previous version. Functions are removed, their order is altered
(e.g., new functions are inserted before existing ones), and
some are modified. In such cases, alignment alone cannot
resolve these differences, resulting in non-identical memory
pages across instances and reducing the effectiveness of
memory deduplication. Furthermore, if libraries call functions
from the versioned library at different addresses, they will
also remain unshared due to mismatched cross-references (not
illustrated in the figures in this section). Although the diagram
illustrates this issue with only three pages, the impact can scale
significantly, involving hundreds or even thousands of pages if
the library is larger and/or if multiple versions and instances
are in use.
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Fig. 2. Alignment becomes insufficient when handling various modifications
between instances: functions may be added, removed, or altered. This results
in differences in memory pages across instances and prevents effective
memory sharing.

A simple approach could involve tracking the functions
of a versioned library used across instances and organizing
them in a specific order for each version, as done by Spacer
for libraries [29]. Common functions would be placed at the
beginning, followed by subsets of common functions, and
finally, unique functions at the end of the library. Although
promising, this approach faces challenges in achieving an
optimal placement of functions when dealing with multiple
instances and varying subsets of common functions. The
presence of different subsets leads to significant complexity
and numerous pages to manage across different instances.
This concept is illustrated in Figure 3, where each function is
assigned a fraction of a page. Functions are arranged based on
their occurrences. For example, in the first unikernel, £1 and
£5, common to all three instances, are grouped onto the same
page. Next, £2, present in two instances, is spread across two
pages followed by £4. Finally, £ 3, unique to the first instance,
is placed individually. With this approach, only two pages
(green boxes) are identical and can be merged into a single



frame. The other pages are mapped to unique frames, requiring
a total of 7 frames. Several variations of this method exist;
some involve optimization techniques, such as bin-packing
approaches [34]. However, these methods demand significant
computational resources and become impractical when dealing
with many versions and/or instances, making them unsuitable
for library versioning. Another possible strategy is aligning
each unique function to a separate page. However, this leads to
significant internal fragmentation when functions are smaller
than the page size (e.g., 4KB). Additionally, it increases the
number of page faults, further reducing efficiency. Ultimately,
none of these approaches effectively handles dynamic changes
with instances, leaving the problem unresolved.
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Fig. 3. Tracking all functions used across instances and arranging them in
a specific order (per occurrence) for each version is not optimal. With this
approach, only two pages (green boxes) are identical and can be merged into
a single frame. The other pages (red boxes) are mapped to unique frames,
requiring a total of 7 frames.

As previously mentioned, our goal is to maximize shared
memory pages across instances while minimizing overall
memory usage. Since the previously mentioned methods re-
main suboptimal, a new approach is required. To achieve this,
we adopt a refined method that ensures backward compatibility
between versions. In this strategy, called Spacer-A, each new
library version is a delta of the previous version(s) reusing
existing symbols and functions. The new version introduces
modified variants of existing ones as well as new ones and
places them at the beginning of a page. Figure 4 illustrates our
method of preserving all pre-defined functions across instances
by using the same library configuration as in the previous
setup. For example, the second instance reuses functions
defined in the first instance and introduces £3’, £6 and £7,
which are aligned to a new page. Although this approach
increases the total number of pages, it significantly reduces the
required memory frames due to memory deduplication. In this
example, only 4 memory frames are necessary, offering sub-
stantial memory savings compared to the previous approach.

Additional steps are required to manage various library
versions and maximize memory sharing. Placing dynamically
versioned libraries may overlap with adjacent pages containing
code or data, risking memory overwrites and unikernel crashes.
Each new version or delta is positioned in the memory region
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Fig. 4. Our approach leverages version backward compatibility by treating
each new library version as a delta of the previous one. Existing functions
remain fixed, while new functions are dynamically added to each instance,
with the new library version aligned to page boundaries. Thanks to memory
deduplication, only 4 frames are required.

between the heap and the stack to avoid these conflicts.
Similarly, sections such as .data, .rodata (read-only data), and
.bss (uninitialized data) are carefully organized to ensure no
overlaps, maintaining memory integrity and stability. However,
some configurations may still result in differences between in-
stances. For example, if a function £1 calls £2 in one instance
and then calls £2’ in another, this creates a variation in the
call instruction, making the corresponding memory pages non-
shareable. To address this issue, trampoline tables (.zpl) are
used [29]. These tables store the differing instructions (e.g.,
CALL, JMP, or LEA) that cannot be shared between instances.
The original instruction is replaced with a CALL or JMP
pointing to its new location within the trampoline tables [35].
Although these tables are not shared across instances, the
library code pages remain shared.
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Fig. 5. The final representation of our approach to handling dynamically new
instances and versions. Each new version (delta from the previous ones) is
positioned between the heap and the stack. In addition, trampoline tables are
used to isolate problematic instructions improving the sharing.

Additionally, trampoline tables are employed to handle



problematic instructions in other libraries referencing func-
tions or data from the versioned library (or libraries). Figure 5
illustrates the final memory layout of this approach, with the
trampoline tables for other libraries omitted for clarity.

IV. ARCHITECTURE AND IMPLEMENTATION

This section introduces the architecture designed to support
versioning. Our implementation is based on Unikraft [12],
[36], an open-source and actively maintained platform that
supports a wide range of libraries. While our approach lever-
ages Unikraft, the toolset can be seamlessly adapted to other
library OSes and unikernels with minimal adjustments.

The versioning workflow, illustrated in Figure 6, consists of
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Fig. 6. Supporting versioning involves four key steps: (1) Object files
compilation with specific flags, (2) Delta generation via a specific tool, (3)
Unikernel linking, and (4) Binary rewriting to include the required trampoline
tables. Finally, the unikernel is launched using the Firecracker hypervisor.

(1) Object files compilation: The library code must be
first compiled with specific compiler flags (-fdata-sections
and -ffunction-sections) to produce a temporary object file.
These flags ensure that each function and data element in
the source file is placed in a separate ELF section, essential
for subsequent processing in our architecture. The underlying
build system can be easily extended to include these flags [37].
(2) Delta generation: The temporary object file, along with all
previous versions (also in object file format), is processed by
a custom tool we developed called the A-versioner. This tool
generates a new object file containing the delta relative to the
previous library versions and can adjust symbols from previous
object files, as detailed in Section IV-A. In addition, the A-
versioner also produces a linker script specifying alignment
rules for the libraries which is used in the next step. (3)
Unikernel linking: The unikernel ELF file is generated by the
linker, which combines the newly created object file with all
other object files. This process is guided by a linker script [38],
which specifies the locations of libraries and ensures proper
integration. (4) Binary rewriting: The final step involves binary
rewriting to isolate differing instructions into page-aligned
trampoline tables. For this purpose, we leverage the binary
rewriting tool developed by the Spacer authors [29]. The

default behaviour of this tool was to replace instructions that
reference addresses from other libraries into trampoline tables.
We modify this behaviour to add trampoline tables for libraries
that request services from libraries that are/could be versioned.

Once the processed binaries are ready, they can be seam-
lessly deployed to cloud platforms. Spacer-A maintains the
standard ELF format, simply extending it with additional code
and data sections to support versioning. This ensures full
compatibility with existing hypervisors like Firecracker [39].

Spacer-A is also designed for effortless integration
into existing software pipelines. The delta-processing
phase—including binary alignment and rewriting—is
performed entirely offline during the build process, introducing
no runtime overhead. This offline approach makes Spacer-A
particularly well-suited for automated CI/CD workflows.

Finally, the tool operates at the object file level and is
compiler-agnostic', requiring no modifications to the compiler
or linker. This design enables seamless integration with exist-
ing build systems. Further implementation details are provided
in Section VI-A.

A. The A-versioner tool

As previously mentioned, backward compatibility with ear-
lier versions is leveraged to dynamically support newer ones.
To generate library deltas, we developed a custom tool called
A-versioner, which processes ELF-format object files com-
piled with specific compiler flags. Introduced in Step 2 of
Figure 6, this tool is written in C++ and relies on the ELFIO
library [40] to parse and manipulate ELF files. It employs
various data structures to efficiently manage symbols, sections,
and relocation information.

The tool generates a final object file (which is a delta of
the previous version) through the following steps: (1) Parsing
and processing object files: It processes the input object files
by extracting ELF metadata, including symbols, sections, and
relocations. (2) Mapping information: For each function, the
tool associates its corresponding symbol and relocations while
identifying the content of the .data, .rodata, and .bss sections
manipulated by the function. The use of specific compiler
flags (-fdata-sections and -ffunction-sections) simplifies this
process, as each function is placed in its own .text section
with a corresponding .rela.text section containing its reloca-
tions. This contrasts with the original representation, where
all functions and relocations are aggregated. (3) Identifying
new and modified functions: The tool determines whether a
function is new or modified by analyzing its symbol and
name. It compares function sizes (from the symbol table) and,
when multiple functions share the same name and size, uses
hash values to compare their bodies. A function is marked as
modified if its size or hash values differ. Additionally, if the
content of any .data, .rodata, or .bss section manipulated by
the function differs, the function is also considered modified.

(4) Adding unique elements to the new object file: New and
modified functions are added to the newly generated object

'Supposing -fdata-sections and -ffunction-sections (or equivalent) are avail-
able.
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Fig. 7. Example of a simplified ELF representation of a lib versioned with
our approach.

file through the following steps: (4.a) The symbol table is
updated with the name of each new or modified function
and its associated section. The symbol name is marked as
strong (default value) [41] so that it can override a previous
symbol of the same name during linking. Symbols with the
same name from other objects are updated in the previous
object files to be weak. (4.b) The content of the .data, .rodata,
and .bss sections manipulated by the function (analysed via
the relocations) is added to the corresponding sections in
the resulting object file. (4.c) All the relocations associated
with the function are updated and added to the object file.
During this process, fields such as the addend and value [41]
are recomputed to account for potential changes in offsets
due to the addition/modification of content. We follow the
same approach for handling relocations associated with the
rodata and .data sections. (5) Object file generation: When all
previous operations are finished, the object file containing the
delta of all previous functions is generated. Figure 7 provides a
simplified representation of different versions. In this example,
only new and/or modified functions (£2, £4) are added to the
symbol and section tables. The corresponding .data and .bss
sections are updated to reflect these changes. Relocations (not
shown here) are also updated accordingly.

V. EVALUATION

This section presents the experimental results, highlighting
on memory savings achieved through our versioning approach,
called Spacer-A. Experiments were conducted using Fire-
cracker with KSM, or a custom loader based on Firecracker
that performs memory deduplication at load-time. Although
we rely on KSM for evaluation?, our approach is agnostic
to the underlying memory deduplication mechanism, as long
as it supports page sharing. For KSM configurations, we
used the default settings [43], which have a slight impact on
performance [24].

We evaluated memory consumption, ELF file sizes, and
application performance, using both traditional applications

2The default memory scanner in Linux kernel. Other scanners like
UKSM [26], can provide better memory reduction but are obsolete [42].

ported to unikernels and unikernels designed for lambda
functions. We evaluated four configurations: (1) the Default
Unikraft setup (without any optimization), (2) Dead Code
Elimination (DCE) [44] to minimize unikernel size, and our
versioning approach, Spacer-A, which has two variants: (3)
Spacer-A using KSM and (4) Spacer-A (loader), which relies
on a custom loader and a library pool for memory deduplica-
tion at load-time.

For certain experiments, we also present the ASLR variants.
To implement ASLR, we adopted an approach similar to
Spacer [29], which involves randomizing the memory layout
during the linking stage using linker scripts [38]. In all ASLR
configurations, the libraries were rearranged, and a random
offset was introduced between each library, resulting in varied
images. All these operations were performed offline, before
executing the unikernels. Unlike vanilla versions, which in-
clude trampoline tables only for libraries that request services
from versioned libraries, ASLR approaches require a dedicated
trampoline table for each library. This results in an increased
number and larger overall size of trampoline tables.

To manage different library versions, we rely on
GitHub [45], where each library version is associated with
a specific tag. The extent of changes between versions can
vary widely depending on the developers’ contributions. A
new version might introduce substantial modifications, such
as a completely restructured code architecture, or minimal
adjustments, such as a simple bug fix in a function. For all
libraries we tested, we cloned their GitHub repositories and
checked some versions sequentially?, in chronological order.
We build a unikernel for the DCE and Default configurations
for each version. Additionally, we employ the A-versioner tool
to implement the approach detailed in Section IV for Spacer-A
configurations. Table I represents the different libraries tested
and their associated commits.

TABLE 1
LIBRARY VERSIONED AND THEIR RESPECTIVE COMMITS (CLONED FROM
GITHUB).
Library [[ commits (oldest to Tatest)
lib-sqlite [46] 6b54e32, fcd4deal, 2c6d801, 1da038f, 9927df2,

8dbe27e, d87000c, 60d9e2a

09fb6¢e, 986d5c5, 1eOfcfe, 25¢72e6, 2d6b260
a5f8efl, 5900336, 04fad4f, dc93f53, 2d070a4,
Ofebe9a, 2eedb3f, 3229ec6, 6¢5955f, 9cbe052
4922433, 2dd7129, 955a702, bf7c1f6, €2705f9d

lib-pcre [47]
lib-python [48]
lib-nginx [49]
lib-pthread [50]

Our evaluation aimed to address the following research
questions, with a particular focus on deployment in cloud
environments: (1) Impact on memory and scalability (Sec-
tion V-A): How effective is Spacer-A in reducing memory
usage and improving scalability compared to conventional
methods for versioning libraries in statically linked unikernels?
(2) Impact on Disk Usage (Section V-B): What is the impact
of Spacer-A on disk space consumption? (3) Impact on
Performance (Section V-C): Does Spacer-A affect execution

3We skip versions that do not introduce any changes to the underlying
codebase.



performance, and is it suitable for latency-sensitive cloud
workloads?

To answer these questions, we assessed overall memory
usage (unikernel + hypervisor), disk usage, and performance
metrics such as total execution time. All experiments were
conducted on a Debian 11 server running Linux kernel 6.1
with GCC 10.2.1 (GNU Id 2.43.50), equipped with 32 GB of
RAM and an Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
(16 cores). We used Unikraft Enceladus 0.8.0 with Firecracker
support [51] as the unikernel framework.

A. Memory usage

In the first experiment, we aimed to demonstrate that
Spacer-A has lower memory consumption compared to the
Default configuration and the DCE approach while providing
dynamic scalability. To achieve this, we built Nginx uniker-
nels, each using a different version of lib-sqlite [46]. We
conducted the experiments using both the vanilla and ASLR-
based versions. We aimed to demonstrate our experiment
using a library that struck a balance between being neither
too small (e.g., a single function) nor excessively large (e.g.,
comprehensive libraries like Python [48] or Go [52]). This
choice allowed us to focus on a practical middle ground,
ensuring meaningful observations without the overhead of
extreme cases. Similar patterns can be observed across various
versioned libraries, supporting our findings’ generalizability.
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Fig. 8. 8 Nginx unikernel instances, each using a different version of lib-sqlite,
are launched every 10 seconds. Compared to other configurations, Spacer-A
can result in a reduction up to 2.8 in memory consumption.

As shown in Figure 8, a new unikernel instance was
launched every 10 seconds, starting at time 0, creating a
dynamic scenario where new instances were continuously
added while the previous ones remained active. For each
KSM setup, a small memory peak appears whenever a new
instance is launched, which is reduced as the memory scanner
merges pages. For vanilla versions, Spacer-A (+KSM) can
achieve significant memory savings, with a 2.5x reduction
compared to DCE and a 2.8x reduction compared to the
Default configuration. For Spacer-A (loader), memory pages
are merged directly at load-time (via the custom loader and

the pool of libraries), eliminating the peaks observed for
KSM configurations. However, because this setup merges
only read-only pages (code and read-only data) to mitigate
Copy-On-Write (CoW) attacks [53]-[56], the overall memory
consumption is slightly higher (1.4x) than Spacer-A (+KSM).

For ASLR-based versions, similar observations apply, ex-
cept that the average memory usage is higher across all
configurations. This increase is attributed to reduced sharing
opportunities. In the Default and DCE configurations, ASLR
results in pages containing code being treated as different
due to variations in library locations and resulting address
differences. For Spacer-A, the higher memory usage stems
from indirection tables and non-shareable (read-only) data,
as library shuffling leads to different data/rodata relocations.
Compared to DCE and Default, Spacer-A (+KSM) can respec-
tively lead to a 1.8x and a 2X memory reduction.

B. Filesize

We then evaluated the impact of versioning on the unikernel
size by analyzing the corresponding ELF files. This experiment
was conducted using the same setup described in the previous
section, with the disk usage of each configuration measured.
Figure 9 illustrates the ELF sizes for the DCE, Default,
and Spacer-A unikernels, as well as their respective ASLR

variants.
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Fig. 9. The disk space occupied by 8 Nginx unikernel instances, each with
a different version of SQLite, is significantly impacted by Spacer-A without
a custom loader. However, integrating a custom loader and a shared library
pool achieves optimal file size reduction.

The first observation indicates that using Spacer-A (+KSM)
has a significant impact on file size. This increase is primarily
due to the inclusion of all (previous) versions of a library
within a single binary file, a design choice aimed for maxi-
mizing memory sharing. Consequently, this approach leads to
substantial growth in ELF file sizes. Compared to DCE, which
significantly prunes large monolithic libraries (e.g., libc), and
the Default configuration, Spacer-A (+KSM) exhibits file size
inflations of 1.6x and 1.3x, respectively. Performing ASLR
at link time introduces an additional increase in size across all
KSM-based configurations. This is an artefact of the ASLR
implementation, which relies on linker scripts. For ASLR
setups, .text sections are no longer consolidated into a single
entry but are divided into multiple entries, with one per library.
As a result, the number of entries in the header string table
increases, leading to a larger overall size. For the Spacer-A
(ASLR) variant, this increase is further amplified by including



all trampoline tables, which are generated for each library.
An important observation concerns the trade-off between file
size and memory consumption. While DCE unikernels achieve
notable disk space savings, this advantage is negated upon
instantiation in memory, where Spacer-A variants exhibit
reduced memory consumption, as illustrated in Figure 8.
Using a custom loader and a common library pool further
optimizes file size reduction. By extracting common libraries
(code and read-only data) into a shared pool4, this approach
significantly minimizes the total file size. For vanilla versions,
this method achieves a 3x reduction compared to DCE, a
3.6x reduction compared to Default, and a 4.8x reduction
compared to Spacer-A (+KSM). For ASLR-enabled versions,
however, the reduction is smaller due to trampoline tables and
non-shareable read-only data caused by distinct relocations.
Nevertheless, the custom loader approach still results in a 2.2 x
reduction compared to DCE and 2.6x and 3.9x reductions
compared to Default and Spacer-A (+KSM), respectively.

C. Performance

Finally, we conducted a series of performance tests to verify
that our approach does not introduce performance degrada-
tion compared to existing methods. Given the complexity
of performance testing—often influenced by factors such as
memory allocators and workload characteristics—we focused
on analyzing the total execution time, encompassing the create,
boot, run, shutdown, and destroy stages of unikernels.

For the following experiments, we selected both short-lived
and long-lived workloads, focusing on six applications, each
with five different versions of a specific library. Three of the
applications are short-lived: (1) A modified Nginx with full
IwIP support (network stack), which is stopped just before
the accept () function to simulate an ephemeral unikernel
(using lib-nginx as the versioned library). (2) A PCRE-based
unikernel that processes a 6MiB text file and returns matches
for specific patterns (using lib-pcre as the versioned library).
(3) A FaaS-based unikernel using Python that sorts a list of
26 elements and returns the result (using lib-python as the
versioned library). The remaining three applications are long-
lived: (4) A parallel 15001500 matrix multiplier that saves
the result in a file (using lib-pthread as the versioned library).
(5) The SQLite speed test [57] unikernel (using lib-sqlite as
the versioned library). (6) The same Python FaaS function
as before, but this time operating on a list containing 26
elements. These three long-lived unikernels exhibit different
memory usage behaviors. The SQLite test allocates a signif-
icant amount of memory, with a high degree of intra-sharing
(i.e., self-sharing), primarily from heap allocations. In contrast,
the matrix test shows minimal intra-sharing but still allocates
some heap memory for matrix computations. The Python test
has a larger codebase but allocates relatively less memory for
list manipulation.

Two scenarios were considered for each unikernel: (1) a
static approach, where each version is executed individually

4A description file containing the list of libraries per unikernel is also
provided to the custom loader to load only the required libraries.

in standalone mode, and (2) a dynamic scenario, where new
versions are continuously added while the previous ones
remain active (modified to stay idle if their execution is short).
The newly added instance is the one being benchmarked.
We used the perf [58] tool to measure performance on the
benchmarked instances, repeating the experiments 30 times.
For Figures 10 and 11, we isolated a single CPU core using
isolcpu and ran the benchmarked instance while pinning it to
that core.

We begin by analyzing the first scenario in Figure 10,
initially focusing on KSM-based configurations. For these
configurations, we observe that Spacer-A (+KSM), with or
without ASLR, introduces a slight execution-time overhead.
This overhead arises because these unikernels must load
additional pages (including trampoline tables) and because
KSM needs to scan, and merge if applicable, a higher number
of pages (for intra-unikernel memory deduplication).

In contrast, DCE unikernels achieve the fastest execution
times, as they require fewer pages to load. For Default and
DCE configurations, ASLR also has a minor performance
impact due to the introduction of random offsets between
different libraries. These offsets increase the overall size of
the unikernel, leading to more memory pages that must be
loaded, thus extending the loading time. Compared to DCE
and Default, alignment optimizations do not improve execution
time for Spacer-A (+KSM) and its ASLR variant.
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Fig. 10. Total execution time of several applications/versions using five

different versions of a specific library, executed in standalone mode. Spacer-A
configuration, combined with a custom loader, yields the best performance.

Using Spacer-A with a custom loader changes the status
quo, yielding better performance than KSM-based configu-
rations. This improvement is due to the library pool, which
preloads the code and read-only data of libraries into memory.
By reducing page faults, this approach minimizes delays as-
sociated with on-demand memory access. For ASLR-enabled
unikernels, the impact of Spacer-A is slightly impacted. Tram-
poline tables and non-relocatable .rodata sections introduce
additional page faults when loaded into memory. Nevertheless,
the combination of Spacer-A and a custom loader consistently
outperforms KSM-based configurations, as the scanning and
merging process of the memory daemon consumes CPU



cycles.

This performance advantage is particularly marked in long-
lived unikernels, where KSM has sufficient time to analyze
and merge identical pages. In contrast, short-lived unikernels
experience minimal impact from KSM, as the time required
for memory deduplication is too short to be entirely effective.
However, even for short-lived unikernels, fully parsing the
ELF file and loading the unikernel into memory—requiring
I/O operations and unnecessary data copying to allocate
frames—negatively affects execution time. For this experi-
ment, Spacer-A (loader) can achieve execution time improve-
ments of 7%, 9%, and 12% compared to DCE, Default,
and Spacer-A (+KSM), respectively. Although ASLR-based
unikernels introduce slight overhead, the same performance
trends are observed for Spacer-A (loader), demonstrating its
effectiveness even with ASLR.

In the dynamic scenario, the results illustrated in Figure 11
offer interesting insights. For long-lived unikernels, we ob-
serve greater variations in total execution time with KSM-
based configurations. This is due to the increasing number of
pages that need to be scanned and merged as more uniker-
nels run concurrently. As additional instances are introduced,
KSM cannot fully exploit merging opportunities due to its
default configuration, which prioritizes CPU efficiency over
optimal memory reduction. Consequently, the last instances
experience less interference from KSM, resulting in a lower
impact on unikernel performance. This is especially relevant
for the SQLite speedtest, which often allocates memory for
all its subtests, resulting in a large number of pages to scan.
Since Spacer-A (loader) does not rely on KSM, there is an
insignificant variation in the total execution time.
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Fig. 11. Total execution time of several unikernels using five different versions
of a specific library, executed with previous versions on different cores.
Spacer-A (loader) loader, still yields the best performance.

For the final experiment, we aimed to analyze the effect of
dynamically adding new benchmarked instances to the same
core while keeping the previous ones active. We used the same
setup as before, but instead of running instances on different
cores, all instances were run on the same isolated core. We
use the SQLite speed test unikernel (using lib-sqlite as the
versioned library). Results are shown in Figure 12.
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Fig. 12. Total execution time of five unikernels using different versions of
lib-sqlite in the SQLite speed test. Spacer-A with a custom loader achieves
the best performance.

In this scenario, the total execution time is significantly
affected by the concurrent execution of multiple versions on
the same CPU core. For all KSM-based configurations, even
Spacer-A, no cache effect is observed on the performance
since the underlying binaries for the different versions are
different. As for the experiment depicted in Figure 11, there
is also an increase in the number of concurrently running
instances which leads to a proportional rise in the number
of pages. However, because all instances are executed on
the same core, the extended run-time allows KSM to merge
and scan more pages, amplifying its impact and resulting in
a performance penalty for configurations using KSM. This
penalty is mitigated by using Spacer-A with a custom loader
and a library pool, which yields a performance improvement of
up to 6% compared to other configurations. This enhancement
is primarily attributed to the library pool, which reduces I/O
operations and avoids KSM overhead. The performance gap
would be even wider when compared to a more aggressive
KSM configuration.

Spacer-A enables optimal memory sharing, leading to im-
proved memory reduction. When combined with a custom
loader that performs memory deduplication at load time, it
can further minimize filesize and enhance performance.

VI. DISCUSSION

This section discusses various technical aspects of our
implementation and explores potential adaptations to existing
systems.

A. Integration and orchestration

Our system operates directly on object files, offering a
compiler-agnostic design—assuming support for flags such
as -fdata-sections and -ffunction-sections or their equivalents.
This approach avoids any need to heavily modify existing
toolchains, making it well-suited for integration into cloud
development workflows, including CI/CD pipelines and build
environments.

While versioning could alternatively be implemented at
the compiler level—allowing tighter integration by embed-
ding deltas directly into the ELF during compilation—such
approaches typically require custom toolchains or plugins.
Similarly, integrating binary rewriting into the linking or
compilation stages may reduce processing steps, but again at
the cost of modifying existing toolchains. These requirements



can hinder widespread adoption, as they often necessitate
ecosystem modifications. In contrast, by operating at the object
file level, our system remains lightweight and broadly flexible.

B. Dynamic Library versioning

While dynamic linking provides transparent memory shar-
ing, it is generally less suited and less commonly used
in unikernel environments. Unikernels are statically linked
by design to ensure a minimal footprint, strong isolation,
and fast startup [12], [15], [16], [20], [21]. Although some
unikernels support dynamic linking [15], [59] it introduces
additional runtime complexity, overhead, and potential security
risks. Furthermore, dynamic linking typically manages major
versions by requiring separate copies of library files for
each major version, which means that entire symbol sets
and code are loaded independently for each version. This
can increase memory usage when multiple major versions
coexist. In contrast, our approach retains the benefits of static
linking while enabling memory sharing across different library
versions through fine-grained differential analysis and page-
level alignment—avoiding full duplication and significantly
reducing memory overhead. Nevertheless, Spacer-A has the
potential to be extended to dynamic libraries.

VII. RELATED WORK

This section provides an overview of related work in the
fields of versioning, unikernels, memory deduplication, and
dynamic software updates, with a particular emphasis on their
applications in cloud computing environments. It also out-
lines how these existing approaches differ from our proposed
methodology.

Several unikernel frameworks, such as HermitCore [60]
and Unikraft [12], have explored static linking optimizations
to reduce cold start latency and resource footprints—key
requirements for cloud-native systems. However, they do not
offer systematic solutions for handling library versioning or
library deduplication across multiple instances. Techniques
like Spacer [29] improve memory efficiency in cloud scenarios
by aligning library code across several unikernels to maxi-
mize sharing via memory deduplication. Nonetheless, Spacer
focuses primarily on memory layout alignment and does not
tackle broader challenges such as API evolution, backward
compatibility, or multi-version coexistence on a same server.
Solutions like KylinX [61] and Nephele [62] introduce mech-
anisms such as pVM forking and VM/unikernel cloning,
aimed at reducing memory usage and improving deployment
flexibility in cloud-based infrastructures. However, these rely
on Xen [63] hypervisor modifications and still lack support for
fine-grained versioning. While some unikernel projects [59]
rely on dynamic loading, they do not address versioning in the
context of statically linked unikernels. IncludeOS [11] offers
“LiveUpdate” to enable low-downtime updates, yet it does
not have a focus on memory optimization. Other projects,
such as ulO [64]—which enables on-demand extensibility
via a VirtlO-based file system interface—and SURE [65]—a
unikernel-based serverless framework for fast, secure function

startup—Ileverage the unikernel model but do not address fine-
grained versioning.

Snapshot-based update approaches like SEUSS [66] and
SAND [67] facilitate quick restores in cloud environments
but do not handle ongoing versioning needs. Similarly, while
tools such as Ksplice [68], MVEDSUA [69], and Jvolve [70]
support live updates at the object or bytecode level, they are
primarily designed for traditional operating systems and do not
target unikernels or memory deduplication as core concerns.

VIII. CONCLUSION

Managing library updates and versioning in statically linked
unikernels remains a significant challenge in cloud environ-
ments due to their compact structure and lack of built-in
versioning mechanisms. Even minor library changes often
result in entirely new memory layouts, leading to increased
memory consumption when deploying multiple unikernel in-
stances concurrently. To address these challenges, we intro-
duced Spacer-A, a framework designed to optimize library
versioning and memory efficiency in statically linked uniker-
nels. By leveraging library alignment and a novel represen-
tation based on differential analysis between library versions,
Spacer-A preserves memory layout consistency and enables
efficient page-level sharing. Combined with the Kernel Same-
Page Merging (KSM) and/or a custom loader, the framework
effectively reduces memory overhead in dense deployment
scenarios.

Our evaluation demonstrates that Spacer-A can achieve
significant improvements in execution time, memory usage,
and disk footprint, proving its practicality and efficiency. Its
seamless integration with Unikraft and minimal adaptation
needs for other unikernels make it a practical and versatile
solution for cloud-native workloads. Spacer-A is available as
an open-source project on GitHub, inviting further exploration
and collaboration within the unikernel community.

IX. FUTURE WORK

We envision several future directions to extend Spacer-A:
(1) Handling additional languages: Currently, our system is
exclusively focused on the C programming language. We have
conducted several tests to validate its functionality within this
scope. Future work will expand support to include languages
like C++, Go and Rust. Furthermore, we plan to explore and
analyze the applicability of our approach to interpreted lan-
guages such as Python in subsequent studies. (2) Snapshoting:
Versioning can be effectively combined with snapshotting. The
general idea is to maintain a base snapshot of a specific uniker-
nel on disk, which can be instantiated into different versions.
This enables efficient state preservation and restoration for
any version of the libraries within the snapshot. (3) Dynamic
Software Updating: A last potential research direction includes
developing mechanisms to dynamically patch the unikernel at
runtime by applying deltas in the virtual memory. These efforts
will pave the way for seamless and adaptive updates tailored
to Spacer-A’s architecture.



[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(1]

(12]

[13]

[14]
[15]

[16]

[17]
(18]

[19]

REFERENCES

G. McGrath and P. R. Brenner, “Serverless computing: Design, imple-
mentation, and performance,” in 2017 IEEE 37th International Confer-
ence on Distributed Computing Systems Workshops (ICDCSW), 2017,
pp- 405-410.

P. Castro, V. Ishakian, V. Muthusamy, and A. Slominski, “The rise of
serverless computing,” Commun. ACM, vol. 62, no. 12, p. 44-54, Nov.
2019.

T. Anderson, “The case for application-specific operating systems,” in
Proceedings Third Workshop on Workstation Operating Systems. Los
Alamitos, CA, USA: IEEE Computer Society, Apr. 1992, pp. 92,93,94.
D. R. Engler, M. F. Kaashoek, and J. O’Toole, “Exokernel: an oper-
ating system architecture for application-level resource management,”
SIGOPS Oper. Syst. Rev., vol. 29, no. 5, p. 251-266, Dec. 1995.

I. M. Leslie, D. McAuley, R. Black, T. Roscoe, P. Barham, D. Evers,
R. Fairbairns, and E. Hyden, “The design and implementation of an
operating system to support distributed multimedia applications,” I[EEE
J.Sel. A. Commun., vol. 14, no. 7, p. 1280-1297, Sep. 1996.

D. E. Porter, S. Boyd-Wickizer, J. Howell, R. Olinsky, and G. C.
Hunt, “Rethinking the library os from the top down,” in Proceedings
of the Sixteenth International Conference on Architectural Support for
Programming Languages and Operating Systems, ser. ASPLOS XVI.
New York, NY, USA: Association for Computing Machinery, 2011, p.
291-304.

I. Zhang, A. Raybuck, P. Patel, K. Olynyk, J. Nelson, O. S. N. Leija,
A. Martinez, J. Liu, A. K. Simpson, S. Jayakar, P. H. Penna, M. De-
moulin, P. Choudhury, and A. Badam, “The demikernel datapath os
architecture for microsecond-scale datacenter systems,” in Proceedings
of the ACM SIGOPS 28th Symposium on Operating Systems Principles,
ser. SOSP ’21. New York, NY, USA: Association for Computing
Machinery, 2021, p. 195-211.

A. Madhavapeddy, R. Mortier, C. Rotsos, D. Scott, B. Singh, T. Gazag-
naire, S. Smith, S. Hand, and J. Crowcroft, “Unikernels: library operating
systems for the cloud,” SIGARCH Comput. Archit. News, vol. 41, no. 1,
p- 461472, Mar. 2013.

J. Martins, M. Ahmed, C. Raiciu, V. Olteanu, M. Honda, R. Bifulco,
and F. Huici, “Clickos and the art of network function virtualization,”
in Proceedings of the 11th USENIX Conference on Networked Systems
Design and Implementation, ser. NSDI’14. USA: USENIX Association,
2014, p. 459-473.

A. Kivity, D. Laor, G. Costa, P. Enberg, N. Har’El, D. Marti, and
V. Zolotarov, “Osv: optimizing the operating system for virtual ma-
chines,” in Proceedings of the 2014 USENIX Conference on USENIX
Annual Technical Conference, ser. USENIX ATC’14. USA: USENIX
Association, 2014, p. 61-72.

A. Bratterud, A.-A. Walla, H. Haugerud, P. E. Engelstad, and K. Beg-
num, “Includeos: A minimal, resource efficient unikernel for cloud
services,” in Proceedings of the 2015 IEEE 7th International Confer-
ence on Cloud Computing Technology and Science (CloudCom), ser.
CLOUDCOM ’15. USA: IEEE Computer Society, 2015, p. 250-257.
S. Kuenzer, V.-A. Biadoiu, H. Lefeuvre, S. Santhanam, A. Jung, G. Gain,
C. Soldani, C. Lupu, c. Teodorescu, C. Raducanu, C. Banu, L. Mathy,
R. Deaconescu, C. Raiciu, and F. Huici, “Unikraft: fast, specialized
unikernels the easy way,” in Proceedings of the Sixteenth European
Conference on Computer Systems, ser. EuroSys "21.  New York, NY,
USA: Association for Computing Machinery, 2021, p. 376-394.

F. Moebius, T. Pfandzelter, and D. Bermbach, “Are Unikernels Ready
for Serverless on the Edge?” in 2024 IEEE International Conference on
Cloud Engineering (IC2E). Los Alamitos, CA, USA: IEEE Computer
Society, Sep. 2024, pp. 133-143.

The Unikraft Authors, “Kraftcloud: True serverless,” https://unikraft.
cloud, accessed 19/05/2025.

The NanoVMS Authors, “Nanovms,” https://nanovms.com, accessed
19/05/2025.

A. Kantee, “Flexible operating system internals: The design and imple-
mentation of the anykernel and rump kernels,” Ph.D. dissertation, Aalto
University, Finland, 2012.

Amazon, “Amazon Web Services (AWS),” https://aws.amazon.com, ac-
cessed 19/05/2025.

Microsoft, “Microsoft Azure,” https://azure.microsoft.com/, accessed
19/05/2025.
Google, “Google Cloud,” https://cloud.google.com/, accessed
19/05/2025.

[20]

[21]

[22]

[23]

[24]

[25]

[26]

(271
[28]

[29]

[34]
(35]
[36]
[37]

(38]

(391

[40]
[41]
[42]
[43]

[44]

[45]

Unikernels, “Unikernels - rethinking cloud infrastructure,” http://
unikernel.org, accessed 19/05/2025.

P. Olivier, D. Chiba, S. Lankes, C. Min, and B. Ravindran, “A
binary-compatible unikernel,” in Proceedings of the 15th ACM SIG-
PLAN/SIGOPS International Conference on Virtual Execution Environ-
ments, ser. VEE 2019. New York, NY, USA: Association for Computing
Machinery, 2019, p. 59-73.

I. Pashchenko, D.-L. Vu, and F. Massacci, “A qualitative study of
dependency management and its security implications,” in Proceedings
of the 2020 ACM SIGSAC Conference on Computer and Communica-
tions Security, ser. CCS ’20. New York, NY, USA: Association for
Computing Machinery, 2020, p. 1513-1531.

R. G. Kula, D. M. German, A. Ouni, T. Ishio, and K. Inoue, “Do
developers update their library dependencies?” Empirical Softw. Engg.,
vol. 23, no. 1, p. 384-417, Feb. 2018.

A. Arcangeli, I. Eidus, and C. Wright, “Increasing memory density by
using ksm,” in Proceedings of the 2009 Linux Symposium. Montréal,
Canada: The Linux Kernel Organization, 2009, pp. 19-28.

K. Miller, F. Franz, M. Rittinghaus, M. Hillenbrand, and F. Bellosa,
“X1h: more effective memory deduplication scanners through cross-layer
hints,” in Proceedings of the 2013 USENIX Conference on Annual Tech-
nical Conference, ser. USENIX ATC’13. USA: USENIX Association,
2013, p. 279-290.

N. Xia, C. Tian, Y. Luo, H. Liu, and X. Wang, “Uksm: swift memory
deduplication via hierarchical and adaptive memory region distilling,”
in Proceedings of the 16th USENIX Conference on File and Storage
Technologies, ser. FAST’18.  USA: USENIX Association, 2018, p.
325-339.

G. Gain, “Spacer-slt,” unpublished, 2024.

U. Drepper, “How To Write Shared Libraries,” Structure, vol. 16, p.
2009, 2006.

G. Gain, C. Soldani, F. Huici, and L. Mathy, “Want more unikernels?
inflate them!” in Proceedings of the 13th Symposium on Cloud Comput-
ing, ser. SOCC ’22. New York, NY, USA: Association for Computing
Machinery, 2022, p. 510-525.

A. Wick and A. Chaudhry, “Cyberchaff: Halvm unikernels protecting
corporate networks,” http://unikernel.org/blog/2016/halvm-cyberchaff,
accessed 19/05/2025.

Cloudozer, “Erlang on xen,” https://github.com/cloudozer/ling, accessed
19/05/2025.

S. Iefremov, D. Bjorklund, and A. Abreu, “Javascript library operating
system for the cloud.” http://runtimejs.org/, accessed 19/05/2025.

Open Virtualization Alliance (OVA), “Kernel-based virtual machine,”
https://www.redhat.com/en/topics/virtualization/what-is-KVM, accessed
19/05/2025.

C. C. Lee and D. T. Lee, “A simple on-line bin-packing algorithm,” J.
ACM, vol. 32, no. 3, p. 562-572, Jul. 1985.

Intel, Intel 64 and IA-32 Architectures Software Developer’s Manual -
Volume 3B, Intel Corporation, May 2019.

The Unikraft Authors, “Unikraft,” https://github.com/unikraft/unikraft/,
accessed 19/05/2025.

The GNU Project, “Gnu project - gnu coding standards,” https://www.
gnu.org/prep/standards/standards.txt, accessed 19/05/2025.

The GNU Project (Free Software Foundation), “Binutils - gnu project
- free software foundation,” https://www.gnu.org/software/binutils/, ac-
cessed 19/05/2025.

A. Agache, M. Brooker, A. lordache, A. Liguori, R. Neugebauer,
P. Piwonka, and D.-M. Popa, “Firecracker: Lightweight virtualization
for serverless applications,” in /7th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 20).  Santa Clara, CA:
USENIX Association, Feb. 2020, pp. 419-434.

S. Lamikhov, “Elfio - c++ library for reading and generating elf files,”
https://github.com/serge 1/ELFIO.

TIS Committee, Tool Interface Standard (TIS) Executable and Linking
Format (ELF) Specification (Version 1.2), TIS Committee, 1995.

L. Zarnowiecki, “The ultra kernel samepage merging (uksm),” https:
//github.com/dolohow/uksm, accessed 19/05/2025.

Red Hat, “Kernel same-page merging,” https://docs.kernel.org/
admin-guide/mm/ksm.html, accessed 19/05/2025.

The GNU Project, “Optimize options (using the gnu compiler collec-
tion (gecc)),” https://gce.gnu.org/onlinedocs/gec/Optimize-Options.html,
accessed 19/05/2025.

GitHub, “Github,” https://github.com, accessed 19/05/2025.



[46]

(471
(48]
[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

(571

[58]

[59]

[60]

[61]

The SQLite Consortium, “The sqlite amalgamation mirror with
cmake,” https://github.com/gaulthiergain/sqlite-amalgamation, accessed
19/05/2025.

P. Hazel and Z. Herczeg, “Pcre - perl compatible regular expressions,”
https://github.com/gaulthiergain/lib-pcre, accessed 19/05/2025.

The Unikraft Authors, “Unikraft port of python 3,” https://github.com/
unikraft/lib-python3/, accessed 19/05/2025.

W. Reese, “Nginx: the high-performance web server and reverse proxy,”
Linux Journal, vol. 2008, no. 173, p. 2, 2008.

The Unikraft Authors, “Unikraft port of pthread-embedded, an embed-
ded pthread library,” https://github.com/unikraft/lib-pthread-embedded,
accessed 19/05/2025.

A. Topala, “Unikraft with firecracker-mmio-0.8 support.” 2020,
https://github.com/Krechals/unikraft/tree/firecracker-mmio- 0.8, accessed
19/05/2025.

The Go Authors, “The go programming language,” https://go.dev, ac-
cessed 19/05/2025.

E. Bosman, K. Razavi, H. Bos, and C. Giuffrida, “Dedup est machina:
Memory deduplication as an advanced exploitation vector,” in Proceed-
ings - 2016 IEEE Symposium on Security and Privacy, SP 2016. New
York, NY, USA: IEEE, Aug. 2016, pp. 987-1004.

D. Alam, M. Zaman, T. Farah, R. Rahman, and M. S. Hosain, “Study of
the dirty copy on write, a linux kernel memory allocation vulnerability,”
in 2017 International Conference on Consumer Electronics and Devices
(ICCED). New York, NY, USA: IEEE, 2017, pp. 40-45.

K. Suzaki, K. Iijima, T. Yagi, and C. Artho, “Memory deduplication
as a threat to the guest 0s,” in Proceedings of the Fourth European
Workshop on System Security, ser. EUROSEC *11. New York, NY,
USA: Association for Computing Machinery, 2011.

J. Xiao, Z. Xu, H. Huang, and H. Wang, “Security implications of
memory deduplication in a virtualized environment,” in 2013 43rd
Annual IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN), 2013, pp. 1-12.

The SQLite Development Team, “Sqlite speedtest (speedtestl.c),” https:
//github.com/sqlite/sqlite/blob/master/test/speedtestl.c.

B. Gregg, “The perf tool.” https://github.com/brendangregg/pert-tools,
accessed 19/05/2025.

D. Williams, R. Koller, M. Lucina, and N. Prakash, “Unikernels as
processes,” in Proceedings of the ACM Symposium on Cloud Computing,
ser. SoOCC ’18. New York, NY, USA: Association for Computing
Machinery, 2018, p. 199-211.

S. Lankes, S. Pickartz, and J. Breitbart, “Hermitcore: A unikernel
for extreme scale computing,” in Proceedings of the 6th International
Workshop on Runtime and Operating Systems for Supercomputers,
ser. ROSS "16. New York, NY, USA: Association for Computing
Machinery, 2016.

Y. Zhang, J. Crowcroft, D. Li, C. Zhang, H. Li, Y. Wang, K. Yu,
Y. Xiong, and G. Chen, “KylinX: A dynamic library operating system for

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

simplified and efficient cloud virtualization,” in 2018 USENIX Annual
Technical Conference (USENIX ATC 18). Boston, MA: USENIX
Association, Jul. 2018, pp. 173-186.

C. Lupu, A. Albiundefinedoru, R. Nichita, D.-F. Blanzeanu, M. Pogo-
naru, R. Deaconescu, and C. Raiciu, “Nephele: Extending virtualization
environments for cloning unikernel-based vms,” in Proceedings of the
Eighteenth European Conference on Computer Systems, ser. EuroSys
’23. New York, NY, USA: Association for Computing Machinery,
2023, p. 574-589.

P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neuge-
bauer, 1. Pratt, and A. Warfield, “Xen and the art of virtualization,”
SIGOPS Oper. Syst. Rev., vol. 37, no. 5, p. 164-177, oct 2003.

M. Misono, P. Okelmann, C. Mainas, and P. Bhatotia, “uio: Lightweight
and extensible unikernels,” in Proceedings of the 2024 ACM Symposium
on Cloud Computing, ser. SOCC *24. New York, NY, USA: Association
for Computing Machinery, 2024, p. 580-599.

F. Parola, S. Qi, A. B. Narappa, K. K. Ramakrishnan, and F. Risso,
“Sure: Secure unikernels make serverless computing rapid and efficient,”
in Proceedings of the 2024 ACM Symposium on Cloud Computing,
ser. SoOCC ’24. New York, NY, USA: Association for Computing
Machinery, 2024, p. 668—-688.

J. Cadden, T. Unger, Y. Awad, H. Dong, O. Krieger, and J. Appavoo,
“Seuss: skip redundant paths to make serverless fast,” in Proceedings of
the Fifteenth European Conference on Computer Systems, ser. EuroSys
’20.  New York, NY, USA: Association for Computing Machinery,
2020.

I. E. Akkus, R. Chen, I. Rimac, M. Stein, K. Satzke, A. Beck, P. Aditya,
and V. Hilt, “SAND: Towards High-Performance serverless computing,”
in 2018 USENIX Annual Technical Conference (USENIX ATC 18).
Boston, MA: USENIX Association, Jul. 2018, pp. 923-935.

J. Arnold and M. F. Kaashoek, “Ksplice: automatic rebootless kernel
updates,” in Proceedings of the 4th ACM European Conference on
Computer Systems, ser. EuroSys *09. New York, NY, USA: Association
for Computing Machinery, 2009, p. 187-198.

L. Pina, A. Andronidis, M. Hicks, and C. Cadar, “Mvedsua: Higher
availability dynamic software updates via multi-version execution,” in
Proceedings of the Twenty-Fourth International Conference on Archi-
tectural Support for Programming Languages and Operating Systems,
ser. ASPLOS ’19. New York, NY, USA: Association for Computing
Machinery, 2019, p. 573-585.

S. Subramanian, M. Hicks, and K. S. McKinley, “Dynamic software
updates: a vm-centric approach,” in Proceedings of the 30th ACM
SIGPLAN Conference on Programming Language Design and Imple-
mentation, ser. PLDI ’09. New York, NY, USA: Association for
Computing Machinery, 2009, p. 1-12.



