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Abstract—Public speaking often triggers strong emotional
responses that influence both the speaker’s performance and the
audience’s reactions. By immersing users in realistic speaking
contexts in front of a virtual audience, Virtual Reality (VR)
constitutes an effective training solution for such skills. To
enable the development of responsive virtual agents, this work-in-
progress presents research aimed at designing a Speech Emotion
Recognition (SER) system compatible with VR environments.
The prediction of ten emotions is targeted using various machine
learning approaches, relying solely on the speaker’s speech signal.
To train the models, a bilingual acted corpus was used. Thanks
to a perceptual validation study, the corpus was annotated with
the emotions human raters effectively perceived. The proposed
methodology is presented along with preliminary results.

Index Terms—speech emotion recognition, emotions, affective
computing, virtual reality, public speaking

I. INTRODUCTION

Speaking in front of an audience, whatever its size or the
associated context, can be stressful for many people. Such
situations often trigger strong emotional reactions [13], with
speakers experiencing fluctuations between anxiety and self-
confidence [18]. These emotions evolve dynamically through-
out the speech, as they are strongly influenced by the audi-
ence’s reactions [19] [26]. The ability to regulate one’s feelings
is essential, not only for traditional public speaking tasks
but also for situations that require persuasion, empathy, or
support towards others. In professional interactions, expressing
positive emotions such as happiness or confidence can enhance
persuasiveness and credibility, and can even become a strategic
argument [28] [33]. In the healthcare sector, showing empathy
and maintaining supportive interactions with patients can even
contribute to the recovery process [14] [31]. Conversely,
feelings such as anger or fear may be deliberately masked
to preserve positive impressions, thereby fostering workers’
well-being by helping them avoid conflicts [20]. During crisis
communication, emotional regulation is crucial for strengthen-
ing message clarity [7] and reducing adverse effects [32]. In all
these contexts, emotional regulation shapes how the speaker
is perceived, thereby strongly influencing social relationships.

Thanks to its immersive capabilities, Virtual Reality (VR)
offers a particularly promising solution for training these skills
[3] [27]. Indeed, VR enables users to immerse themselves
in 3D environments that replicate various public speaking

2771-7453/26/$31.00 ©2026 IEEE
DOI 10.1109/AIxVR67263.2026.00028

3™ Vanmechelen Thibaud

168

4" Schyns Michagl
HEC Liege
University of Liege
Liege, Belgium
m.schyns @uliege.be

HEC Liege
University of Liege
Liege, Belgium

contexts, allowing them to practice in front of a virtual
audience [21] [24] [26]. However, to realistically replicate real-
life presentations and improve training effectiveness, systems
should integrate a responsive audience that behaves realisti-
cally throughout the presentation [6]. This requires real-time
detection of the speaker’s emotional state and performance,
which determines the audience reactions [9]. While emotions
are expressed through multiple modalities, including facial ex-
pressions [17], physiological responses [25], linguistic content,
and paralinguistic cues [15] [23], most of these indicators
cannot be tracked with a standard VR headset. In fact, few
VR devices integrate facial tracking, and external sensors are
required for physiological monitoring. In any case, the trackers
are often not sufficiently precise for accurate emotional anal-
ysis. In contrast, the user’s speech remains accessible during
VR immersion and constitutes a powerful and reliable source
of information for emotion detection [2] [11].

The present work addresses this objective by developing
a Speech Emotion Recognition (SER) system designed for
VR public speaking training that relies exclusively on acoustic
cues. By focusing on prosodic and spectral properties rather
than lexical content, this approach aims to achieve generaliza-
tion across public speaking contexts. The following sections
present the proposed methodology and preliminary results. The
emotional corpus used to train the machine learning algorithms
is also introduced, and an analysis of the extracted acoustic
features is conducted to guide feature selection.

II. SPEECH EMOTION RECOGNITION

Multiple frameworks have been proposed to describe human
emotions [2]. Some define them as discrete categories, such as
fear, anger, sadness, happiness, disgust, and surprise [8] [29].
In contrast, others describe emotions as continuous variations
within a multidimensional space [12], typically along valence,
arousal, and dominance axes [30]. Both approaches have
guided the development of SER models.

In speech, emotions are expressed through multiple cues, in-
cluding linguistic, contextual, and acoustic ones. Among these,
prosodic features, such as pitch, intensity, speech rate, and
voice quality, play a key role in conveying emotions [11]. For
instance, higher pitch and energy are typically associated with
high-arousal emotions such as anger or happiness, whereas



lower pitch and intensity are characteristic of fear or sadness
[4]. These paralinguistic cues provide a solid basis for emo-
tion detection, making them even more relevant when other
modalities (e.g. nonverbal and physiological) are unavailable
or of insufficient quality, as is the case in most VR headsets.
Moreover, the extraction and analysis of such features have
been facilitated by dedicated toolkits, like openSMILE [11],
which enable reliable analysis of voice signals.

The extraction of acoustic features has supported a wide
range of SER systems [2]. Approaches based on Support
Vector Machines (SVMs), k-Nearest Neighbors (KNNs), or
Random Forests (RFs) demonstrated that acoustic features
could reliably predict emotions [2]. More recently, deep learn-
ing architectures and transformer-based representations, such
as HuBERT [1], have further advanced SER performance [5].
Despite these improvements, several challenges remain [2].
Emotion expression and perception indeed vary between indi-
viduals [10], cultures [16], and languages [22], complicating
the generalization. Moreover, faster and more effective SER
systems are needed, primarily by using more accurate data
[2]. An outstanding issue is that most existing SER systems
are trained on acted emotions, which may not reflect how
people effectively perceive them. However, in communicative
contexts, such as public speaking, vocal cues may be inter-
preted differently by different listeners [10]. To address these
limitations, the present work proposes a perceptually oriented
approach in which models are trained not to recognize acted
emotions but emotions as perceived by human raters, thereby
supporting realistic audience design in VR.

ITI. EVE CORPUS

Developing SER systems requires access to high-quality
annotated emotional corpora for model training. Due to the
lack of freely available databases with the properties needed
for this project, the Emotional Validated Expressions (EVE)
corpus has been created [10]. EVE is an audiovisual, bilingual
acted corpus comprising 8,200 recordings, equally distributed
between French and English. For each language, ten actors
expressed ten distinct emotions through ten phonetically bal-
anced sentences. This database covers a wide range of affective
states, including the six basic Ekman emotions (i.e., anger,
disgust, fear, happiness, sadness, and surprise) [8], as well
as four additional ones particularly relevant to public speak-
ing contexts (i.e., confusion, contempt, empathy, and self-
confidence) [10]. Although highly relevant, these emotions
constitute more complex affective states than those described
by Ekman. Each actor had two trials to portray these emotions,
at two distinct arousal levels (i.e., low and high), yielding
4,000 emotional recordings per language. A neutral condition
was also recorded for each actor, adding 100 (i.e., 10 actors
x 10 sentences) recordings per language. Finally, the dataset
comprises 3 h 46 min 50 s of English recordings and 4 h
03 min 45 s of French recordings, with file durations ranging
from 2 to 8.12 s and from 2.06 to 11.6 s, respectively [10].

As presented in [10], the EVE corpus stands out from exist-
ing emotional databases for its inclusion of French recordings,
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its diversity of emotions, and, most importantly, its validation
through a perceptual study. In fact, a large-scale study was
carried out involving 1,200 participants, who evaluated 2,000
audio recordings per language (i.e., the second trial for each
emotion). Participants were asked to (1) identify the perceived
emotion for each recording, (2) rate their confidence, and
(3) optionally indicate emotions they hesitated between. This
perceptual validation study provides valuable insight into how
affective states are actually perceived by human audiences,
rather than how actors intended them. This is particularly rel-
evant as perception matters more than the speaker’s intentions
during public speaking tasks. The present work then relies on
this emotional corpus.

IV. METHODOLOGY

Given the limitations of VR headset tracking, the SER
system will focus exclusively on acoustic features. Accord-
ingly, only the audio recordings from the EVE corpus and
their associated perceptual evaluations will be used. Two
separate models will first be developed for French and English,
although a multilingual approach is considered for future work.

A. Features extraction and analysis

Acoustic features were extracted using the GeMAPS config-
uration proposed by openSMILE [11]. This set of 62 prosodic
and spectral features includes frequency-related parameters
(i.e., Pitch, Jitter, Formant frequencies), energy-related pa-
rameters (i.e., Shimmer, Loudness, Harmonics-to-Noise Ratio
(HNR)), spectral measures (i.e., Alpha Ratio, Hammarberg
Index, Formant relative energy, Harmonic differences), and
temporal features (i.e., loudness peak rate, voiced and unvoiced
regions information). From these acoustic measures, a range
of derived functionals (e.g. mean, standard deviation, and
percentiles) were computed to provide further information.
This complete set of parameters can then be used to repre-
sent the prosodic energy, voice quality, and spectral structure
associated with emotional expressions. The extraction process
was applied to the 2,000 evaluated audio recordings for each
language in the EVE database. To handle redundancy among
the extracted variables, correlation matrices and Principal
Component Analysis (PCA) were used to evaluate feature
interdependence and structure (see Section V). These analyses
will guide the selection of a reduced and interpretable subset
of features. Through this dimensionality reduction, the aim is
to improve the model’s efficiency while minimizing the risk of
overfitting [2], especially given the moderate dataset size (i.e.,
2,000 labeled recordings per language). Indeed, as highlighted
in [2], carefully selecting the feature set used for SER greatly
influences the obtained results.

B. Labeling approaches

Rather than using acted emotions, the present study relies
on perceptual soft labels, derived from the participants’ evalu-
ations of the EVE corpus. As previously mentioned, listeners
identified the perceived emotion for each audio recording and
indicated their level of confidence in that assessment, thereby



providing the basis for the corpus annotation. In that context,
the labeling process requires particular attention due to the
uneven distribution of perceived emotions among participants.
A first option would be to use all individual responses from the
perceptual study, assigning a single perception value to each
participant-recording pair. While this increases the amount of
data, it also introduces conflicting information, since a single
recording may be associated with multiple perceived emotions
across participants. Despite the size advantage associated
with this approach, it was still excluded from the analysis
but will be considered in future work. Instead, to better
reflect the variability in human emotion detection, probability
vectors were derived from the perceptual data and assigned
to each recording, resulting in probability distributions over
the ten considered emotions (i.e., soft labels). Each sample
thus corresponds to a single audio file from which openS-
MILE features were extracted, paired with a single soft-label
distribution, even though individual participant ratings may
differ. Similarly, the confidence scores were used to adjust
these distributions, giving more weight to judgments with
greater confidence. This strategy was preferred over a single-
label approach based on the most recognized emotion. Such
a simplification would result in a loss of information about
the complexity of human perception and was therefore not
adopted. Instead, learning from these distributions enables
the model to approximate how listeners actually perceive
emotions.

C. Labels description

Three types of soft labels were then considered. The first
soft labels type corresponds to raw-votes, obtained by nor-
malizing the frequency of each perceived emotion across
participants. Each recording is thus represented by a ten-
dimensional probability vector that directly reflects the distri-
bution of judgments. A more straightforward approach would
have been to assign each audio file to the most commonly
perceived emotion (i.e., the distribution’s mode). Whereas this
single-label approach was excluded from this analysis, the
mode can still be extracted from the predicted distribution
vector to obtain a single emotion as output. The second label
type incorporates individual confidence weighting, where each
participant’s vote is weighted by their self-reported confidence.
This approach gives the more confidently selected emotions a
greater influence on the final probability distribution, thereby
reducing the impact of uncertain responses. The third soft-
label approach uses average-confidence weighting, where each
emotion’s weight is the average confidence across all listen-
ers who selected it for that recording. This approach gives
greater weight to emotions that are consistently judged across
listeners. These approaches will be considered and compared.

V. FEATURES SELECTION
A. Correlation analysis

First, correlation matrices were computed for the extracted
openSMILE acoustic features from each recording, both in
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French and English. This highlighted patterns across lan-
guages, with strong dependencies (|rr| > .8) observed within
feature families (i.e., between basic acoustic features and
their derived functionals) [11]. Overall, 38 features in English
and 42 in French showed at least one strong correlation
(Ir] > .8) with another feature, indicating redundancy within
the GeMAPS set. FO-related measures and loudness statistics
showed the highest within-family correlations, suggesting that
they capture similar information. In contrast, cross-family
correlations were generally weak, confirming that distinct fam-
ilies convey complementary information. Only a few strong
correlations between families emerged, notably between pitch
and voice-quality descriptors (e.g. FO and HNR), as well
as between pitch and spectral slope measures (e.g. FO and
spectral slope). In summary, this correlation structure supports
a reduction strategy that preserves informative features from
each family, while minimizing redundancy associated with
highly correlated functionals.

B. Principal Component Analysis

Principal Component Analysis (PCA) was also applied to
the acoustic features. In the English dataset, the first two
principal components accounted for 20.1% and 12.8% of the
total variance, respectively. PC1 was mainly associated with
voice quality and prosodic energy features, as reflected by the
strong influence of loudness-related and FO features, whereas
PC2 was associated with spectral-formant characteristics (i.e.,
HNR, F3 frequency, shimmer, and F1-F2 amplitude ratios).
In the French dataset, the first two principal components
accounted for 23.1% and 11.7%. PC1 showed a pattern similar
to that in English, being mainly influenced by loudness,
spectral balance (e.g. alpha ratio, Hammarberg Index), and
pitch, whereas PC2 was influenced by formant amplitude and
frequency parameters (e.g. F1-F3 amplitudes and frequencies).
This reveals an overall similar structure between the datasets,
with subtle linguistic differences in acoustic information. Fur-
thermore, in both datasets, most of the relevant information
was captured in the first 19 components, accounting for about
88% of the total variance. Moreover, 90% was reached with
23 components in English and 21 in French. Based on these
results, the feature space was reduced to 19 representative
variables per language, preserving most of the variance while
minimizing redundancy among correlated features.

C. Acoustic similarity between emotions

In addition, the acoustic similarity between emotions was
examined to determine whether some are closely related,
which could explain perceptual confusions. To this end, Eu-
clidean distances between the centroid representations of each
emotion were computed. The similarities among emotions
were then analyzed using hierarchical clustering and Classical
Multidimensional Scaling (MDS) to visualize relationships
among emotion categories. Mean inter-emotion distances in-
dicated a moderate level of acoustic separability (EN = 2.40
+ 0.82; FR = 2.92 + 0.99), suggesting a partial overlap
between emotions. In both languages, self-confidence, disgust,



and contempt formed consistently close clusters, while anger
versus surprise, and sadness versus empathy showed the most
significant differences, reflecting distinct acoustic profiles. The
proximity of self-confidence, disgust, and contempt in both
French and English datasets can induce frequent perceptual
confusions. This reflected that self-confidence and contempt,
two complex emotions considered in the EVE corpus, may
be linked to disgust, as complex emotions are composed
of multiple basic affective states. These observations will
inform future analyses examining the grouping of acoustically
similar emotions and their influence on model performance.
In summary, these analyses identified redundant features and
acoustically similar emotions, which will inform both feature
selection and emotion labeling strategy.

VI. EMOTION RECOGNITION METHODS

Several supervised machine learning models were trained
and compared to predict emotion perception from acoustic
cues. Baseline regression approaches, such as Ridge Regres-
sion, Random Forests (RFs), k-Nearest Neighbors (KNNs),
and Linear Support Vector Regression (SVR), were first imple-
mented to establish performance benchmarks. As the system’s
objective is to predict distributions over emotions rather than
a single emotion, regression was preferred over classification
methods to reflect the inherent variability of human perception.
More complex architectures, such as Multilayer Perceptrons
(MLPs), will then be explored given their ability to capture
nonlinear relationships between acoustic features and emo-
tions. A more advanced transformer-based approach will also
be tested, relying on the HuBERT model [1].

For both languages, the dataset was split into training
(70%), validation (15%), and test (15%) subsets. An actor-
independent split ensured generalization to unseen speakers,
with an even distribution across emotions. Feature normaliza-
tion was applied using training data to prevent data leakage.

Model performance will be assessed using mean squared
error and cosine similarity, computed on predicted emotion
distributions to evaluate how closely they approach human
perception (i.e., soft labels). The percentage of correctly pre-
dicted emotions will also be calculated to measure how often
the emotion with the highest predicted probability matches
the one most frequently reported by participants. To ensure
comparability across label formulations, all MLPs will be
evaluated on an identical test set, using the raw-votes label
type. All models were initially trained on the complete set of
62 acoustic features, separately for French and English. The
reduced feature sets identified through PCA and correlation
analyses will later be used to improve model efficiency. An
emotion-grouping approach will also be considered to group
emotions that are likely to be mistaken for one another. The
MLP architecture will be optimized by varying the number of
hidden layers and the number of neurons per layer. All models
will be implemented in Python using the PyTorch library.

In short, model performance will be analyzed across lan-
guages, labeling approaches, and various feature sets to obtain
an effective SER system. These analyses are ongoing.
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VII. DISCUSSION AND CONCLUSION

The proposed soft-label approach offers a realistic way to
replicate human emotion perception. Rather than associat-
ing each recording with a single emotion, the model aims
to predict probability distributions that reflect the inherent
uncertainty and variability. This is particularly relevant for
VR-based public speaking training systems, where emotion
prediction can drive the real-time behavior of embodied vir-
tual audiences. By enabling responsive and realistic audience
reactions, this approach supports immersion, social presence,
and training effectiveness [6].

Several directions will be pursued to extend this study.
Feature reduction techniques will be explored to determine
whether smaller feature sets can achieve comparable or im-
proved performance. In parallel, emotion grouping strategies
will be investigated from both acoustic and perceptual per-
spectives (i.e., based on frequently confused emotions in the
EVE corpus) [10]. As the SER system targets both French-
and English-speaking users, multilingual modeling will also
be considered. Model architectures will be further refined to
include advanced approaches, such as HuBERT. Finally, the
model will be assessed across multiple corpora, including a
comparison between acted and perceived emotion annotations
within the EVE dataset.

The MLP trained on soft labels with confidence weighting
is expected to achieve the best performance, as this strategy
reduces annotation noise by weighting emotion judgments ac-
cording to listener confidence and, thus, their reliability. Deep
learning architectures should also better capture the complex
relationship between acoustic features and emotions. However,
it will be necessary to check whether such improvements
reflect better predictions or result from smoother distribution
shapes. Performances are expected to be consistent across
French and English, supporting future work on multilingual
SER models.

While feature pruning has been completed, extensive work
remains to develop models that are sufficiently accurate and
fast for real-time use in VR applications. Several VR public
speaking environments have already been created, simulating a
range of situations (e.g., classroom, courtroom, job interview).
Therefore, the next step is to integrate the proposed SER
system into these environments to drive virtual audiences’
behavior. By mapping the predicted emotion probability distri-
butions to virtual agents, the audience will be able to respond
dynamically and realistically to the speaker’s emotions. Such
emotionally responsive audiences are expected to enhance
realism, immersion, and social presence, while also allowing
the audience’s behavior to influence the speaker’s emotional
state [6] [26], as in real public speaking situations. This
interaction is essential for creating training environments that
effectively prepare users for real-world speaking scenarios.
Although this constitutes a primary application, the approach
could be extended to other interactive systems, such as virtual
assistants or social VR applications requiring emotionally
adaptive behavior.
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