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Introduction
The software world faces a dilemma:

Virtual Machines Containers
✓ Strong isolation ✓ Lightweight

✗ Heavyweight ✗ Poor isolation
Solution → Unikernels

Unikernels are specialised, lightweight virtual machines built using
microlibs which are libraries that include only the essential components.

Memory Deduplication

1 Memory deduplication is a
technique to reduce memory
consumption by merging identical
pages to a same frame.

2 In Linux, the Kernel Samepage
Merging (KSM)[1] runs in the
background to scan and merge
identical pages.

0 100 200 300 400 500
Time [s]

0
250
500
750

1000
1250
1500
1750

M
em

or
y 

[M
B]

shareable pages
unique pages (unshared)

Figure: Evolution of unshared and shareable
pages when running 1000 different FaaS
unikernels. Unique pages are much more

frequent than shared ones.

Unikernels issues
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Figure: Unikernels are too compact. The insertion of library uksrand (a) shifts following
libraries in memory; (b) makes the cross-reference addresses different in instructions
such as call or lea. Both mechanisms concur to prevent memory deduplication.

Solution

We introduce a new methodology based on page alignment[2]:
1 Aligning sections and libraries at the same absolute addresses in the
virtual address space of all instances.

2 Keeping a global map of all libraries used and mapping them to a
specific address between instances.
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Figure: Aligning libraries across several instances.

[1] https://docs.kernel.org/admin-guide/mm/ksm
[2] https://people.montefiore.uliege.be/gain/spacer
[3] https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options
[4] https://firecracker-microvm.github.io

Towards ASLR support

Using fixed absolute addresses
leads to security issues (no ALSR).
Solution: Create a trampoline
table per library which contains
problematic instruction. Such
instructions are replaced by a
relative call/jump to
their new position.
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Figure: To support ASLR while sharing
code pages, we add one instance-specific

trampoline table per library.

A first improvement?
• Aligning unikernel libraries may lead up to a 3x reduction in memory
consumption, even when compared to unikernels built with DCE[3].

• Furthermore, the alignment does not introduce significant overhead
in terms of ELF size, nor does it impairs application performance.

• Can we do better?
→ Yes, but we must get rid of KSM.

Memory deduplication at load-time

Merging memory at load-time requires (1) a toolchain, (2) a pool of li-
braries and (3) a custom loader.
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Figure: High-level overview of our
architecture.

• It minimises unikernels by
extracting their libraries and
placing them in a library pool.

• A description file with libraries
and application data is used as
input to a custom loader that
runs multiple unikernels,
sharing common libraries.
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Figure: Libraries are shared via a pool
of libraries.
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Firecracker[4] performs a well-defined

set of operations.

Evaluation
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Figure: Evolution of the physical memory used by
1000 FaaS unikernels (+hypervisor) being benchmarked.
Our approach achieves the lowest memory consumption.
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Figure: Number of TLB flushes issued by 20
heterogeneous unikernels (monitored at hypervisor and

KSM level).

Conclusion
• Although unikernels are small and have impressive performance
measurements, they show few opportunities for VM page sharing.

• We brought a new methodology that rearranges and inflates
unikernel images memory layout by using libraries alignment.

• We also designed a unikernel loader capable of performing read-only
memory deduplication at load time.
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