
Unikernels & Memory Deduplication
Gaulthier Gain, Laurent Mathy

gaulthier.gain@uliege.be, laurent.mathy@uliege.be

Montefiore Institute – University of Liège – Belgium

Introduction
The software world faces a dilemma:

Virtual Machines Containers
✓ Strong isolation ✓ Lightweight

✗ Heavyweight ✗ Poor isolation
Solution → Unikernels

Unikernels are specialised, lightweight virtual machines built using
microlibs which are libraries that include only the essential components.

Memory Deduplication

1 Memory deduplication is a
technique to reduce memory
consumption by merging identical
pages to a same frame.

2 In Linux, the Kernel Samepage
Merging (KSM)[1] runs in the
background to scan and merge
identical pages.

0 100 200 300 400 500
Time [s]

0
250
500
750

1000
1250
1500
1750

M
em

or
y

[M
B]

shareable pages
unique pages (unshared)

Figure: Evolution of unshared and shareable
pages when running 1000 different FaaS
unikernels. Unique pages are much more

frequent than shared ones.

Unikernels issues

…
89 bd 48 ff
e8 ca 07 00
00 48 8b 55
7e 48 8d 15
4c 9b 01 00

…

*2 lea 7587(%rip), %rdx
*1 call 1615 <…>

.text 0x1000

0x7000
…

89 bd 48 ff
e8 4f 06 00
00 48 8b 55
7e 48 8d 15
4b 79 01 00

…

*2

*1 0x8000

0x1000.text

ukbus

uknolibcukprocess

uksrand

C
A
L
L*

3

*4 lea 8804(%rip), %rdx
*3 call 1994 <…>

*4

*3

55 48 89 e5
39 45 fc 0f
95 c0 0f b6
c0 c9 c3 55
48 89 e5 48
84 35 1a 00
00 00 00 00
31 37 1a 00

…

55 d0 48 8b
45 d8 48 89
d6 48 89 c7
e8 55 80 48
89 d6 89 c7
e8 1b 04 f9
ff 85 c0 75
10 d4 bf 1a

…

Issue1:
Starts with uksrand

Issue2:
uknolibc code has
different binary

instructions

Issue1:
Starts with ukbus

Issue2:
uknolibc code has
different binary

instructions

pa
ge

 c
on

te
nt

pa
ge

 c
on

te
nt

pa
ge

 c
on

te
nt

pa
ge

 c
on

te
nt

ukbus ukprocess

ukdevuknolibc

ukboot uksched ukboot uksched

ukdevuknolibc

.data

L
E
A*

4

.data

C
A
L
L

Unikernel 1 Unikernel 2

*
1

L
E
A*

2

Figure: Unikernels are too compact. The insertion of library uksrand (a) shifts following
libraries in memory; (b) makes the cross-reference addresses different in instructions
such as call or lea. Both mechanisms concur to prevent memory deduplication.

Solution

We introduce a new methodology based on page alignment[2]:
1 Aligning sections and libraries at the same absolute addresses in the
virtual address space of all instances.

2 Keeping a global map of all libraries used and mapping them to a
specific address between instances.

ukbus

ukdev

uknolibc

ukboot

uksched

ukprocessukprocess

ukbus

ukdev

uknolibc

ukboot

uksched

ukprocess

ukbus

uksrand

ukdev

uknolibc

ukboot

uksched

.data 0x10000 0x10000.data0x10000.data

uksrand

ukringzero page ukring
padding with

zeros

zero page

padding with
zeros

padding with
zeros

.text 0x1000 0x1000.text0x1000.text

Unikernel 1 Unikernel 2 Unikernel 3
Figure: Aligning libraries across several instances.

[1] https://docs.kernel.org/admin-guide/mm/ksm
[2] https://people.montefiore.uliege.be/gain/spacer
[3] https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options
[4] https://firecracker-microvm.github.io

Towards ASLR support

Using fixed absolute addresses
leads to security issues (no ALSR).
Solution: Create a trampoline
table per library which contains
problematic instruction. Such
instructions are replaced by a
relative call/jump to
their new position.

C
A
L
L

L
E
A

ukboot

uknolibc

.text 0x1000

0x10000

Unikernel 2

ukdev

uknolibc
(trp)

ukboot
(trp)

ukdev
(trp)

.data

ukdev (0x2100):
 call rip+1100(0x3200)
 …
ukdev(trp) (0x3200):
 jmp 0x4200
 ret

C
A
L
L

L
E
A

ukdev

ukboot

.text 0x1000

.data 0x9000

Unikernel 1

uknolibc

ukboot
(trp)

ukdev
(trp)

uknolibc
(trp)

padding with
zeros

padding with
zeros

ukdev (0x4100):
 call rip+1100(0x5200)
 …
ukdev(trp) (0x5200):
 jmp 0x1200
 ret

Figure: To support ASLR while sharing
code pages, we add one instance-specific

trampoline table per library.

A first improvement?
• Aligning unikernel libraries may lead up to a 3x reduction in memory
consumption, even when compared to unikernels built with DCE[3].

• Furthermore, the alignment does not introduce significant overhead
in terms of ELF size, nor does it impairs application performance.

• Can we do better?
→ Yes, but we must get rid of KSM.

Memory deduplication at load-time

Merging memory at load-time requires (1) a toolchain, (2) a pool of li-
braries and (3) a custom loader.

Unikernel 2 directory (ASLR)Unikernel 1 directory

Custom loader
(Firecracker) e

Workspace Libraries pool (/dev/shm)

Unikernels loaded
in memory

lib1 … libN

…lib1
(ASLR)

libN
(ASLR)

Aligner*
(Spacer)

② Libs
extractor

① File Des.
generator

③ ELF
minifier

Toolchain *existing work

sources sources

Aligned
unikernel

sources sourcesdesc. .data desc. .data
.tpl{…}

.tpl: trampoline tables

Figure: High-level overview of our
architecture.

• It minimises unikernels by
extracting their libraries and
placing them in a library pool.

• A description file with libraries
and application data is used as
input to a custom loader that
runs multiple unikernels,
sharing common libraries.

lib1 lib2 lib3
Libraries
pool

unikernel address space

mmap()

mmap()

tp
l.l
ib
2

tp
l.l
ib
3

lib2lib3lib1

tp
l.l
ib
1

… …

tp
l.l
ib
3

tp
l.l
ib
1

lib3lib1lib2

tp
l.l
ib
2

… …

unikernel1

unikernel2
unikernel address space

shm_open()

shm_open()

Figure: Libraries are shared via a pool
of libraries.

lib3
.text

.rodata

lib1
.text

.rodata he
ap

st
ac

k

hypervisor address space
unikernel address space

memcpy()

data

Binary file

lib1 lib2 lib3 .data
.tpl{…}

…

tp
l.l
ib
3

tp
l.l
ib
1

desc.

②

①

mmap()
shm_open()

…

③

Figure: Our custom loader based on
Firecracker[4] performs a well-defined

set of operations.

Evaluation

0 5 10 15 20 25 30
Time (s)

0

1000

2000

3000

M
em

or
y

(M
iB

)

DCE (+ksm)
Default (+ksm)
Spacer (+ksm)
Spacer (slt)

Figure: Evolution of the physical memory used by
1000 FaaS unikernels (+hypervisor) being benchmarked.
Our approach achieves the lowest memory consumption.

DCE
 (+ksm)

Default
 (+ksm)

Spacer
 (+ksm)

Spacer-SLT DCE
 (+ksm)
(ASLR)

Default
 (+ksm)
(ASLR)

Spacer
 (+ksm)
(ASLR)

Spacer-SLT
(ASLR)

0

5000

10000

15000

20000

Nu
m

be
r o

f "
tlb

_f
lu

sh
" c

al
ls Firecracker

KSM

Figure: Number of TLB flushes issued by 20
heterogeneous unikernels (monitored at hypervisor and

KSM level).

Conclusion
• Although unikernels are small and have impressive performance
measurements, they show few opportunities for VM page sharing.

• We brought a new methodology that rearranges and inflates
unikernel images memory layout by using libraries alignment.

• We also designed a unikernel loader capable of performing read-only
memory deduplication at load time.

GDD’24 : Grascomp Doctoral Day 2024

https://docs.kernel.org/admin-guide/mm/ksm
https://people.montefiore.uliege.be/gain/spacer
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options
https://firecracker-microvm.github.io

