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ABSTRACT

Combining multiple staining in histopathology is vital to relate
complementary information within a tissue. We present a novel
framework that enables local correspondence in the form of patch
retrieval (CBIR) in multi-stain whole-slide images without the
need for explicit registration. By leveraging foundation models as
meaningful patch encoders, we are able to retrieve an H&E patch
in a dataset of patches extracted from IHC slides. Using Fused
Gromov-Wasserstein optimal transport for weak supervision, we
learn a lightweight correction module that aligns embeddings and
improves retrieval accuracy by up to 30% (depending on patch size
and model), at negligible cost, despite staining and structural varia-
tions. Our method paves the way for efficient multi-stain integration
in digital pathology workflows.

Index Terms— CBIR, histopathology, multi-stain, IHC, anno-
tations, deep learning.

1. INTRODUCTION

Multiple stainings in histopathology reveal complementary pieces of
information that benefit downstream tasks at the expense of a higher
cost in staining and annotation. Recent research aims at facilitating
annotation and data analysis tasks in such multi-stain contexts [1].
With this practical objective in mind, in this paper, we investigate a
novel approach that retrieves patches from one staining to another by
locating in whole-slide images (WSIs) a small region around a query
point (multi-stain content-based image retrieval).

We propose to evaluate, in the multi-stain context, multiple re-
cent foundation models which have been trained independently to
provide concise representations of patches and WSIs. We use these
models as patch encoders, providing an embedding vector to facili-
tate the search. To improve the accuracy of this patch retrieval frame-
work in a multi-stain context, we design correction modules, which
adjust the embeddings from one staining and align them closer to the
embeddings of the other domain, thus avoiding pixel-perfect image-
to-image translation. We propose to build a training set for the cor-
rectors using Fused Gromov Wasserstein (FGW) optimal transport
[2]: this algorithm naturally composes structural interactions be-
tween objects of the same domain and similarities between objects
of different domains to create a globally coherent mapping.

Our contributions are threefold: (1) a cross-stain patch retrieval
framework based on foundation-model embeddings, (2) an OT-based
approach to automatically and efficiently generate noisy supervi-
sion for embedding correction, and (3) a systematic analysis of pa-
rameter effects on retrieval accuracy across stainings on a publicly-
available dataset. Our code is available at https://github.
com/maxime915/cbir-mm-fgw.

The paper is organized as follows. Related works are reviewed
in Section 2. We provide details of our retrieval approach and cor-

rection modules in Section 3. The experimental setup is described
in Section 4 and the results are presented in Section 5. Section 6
synthesizes our main findings and discusses future work directions.

2. RELATED WORKS

Our method borrows ideas from content-based image retrieval for its
structure, image-to-image translation for the correction implementa-
tion, multi-stain image registration, and foundation models.

CBIR is a popular area of research in histopathology [3, 4, 5, 6,
7]. Finding similar patches or WSIs to a given query can help with
diagnosis or annotations [8]. Most of these works, however, either
focus on single-stain datasets or do not assess the cross-stain robust-
ness of these systems. Our contribution with respect to this literature
is to highlight that feature extractors based on foundation models are
not robust for cross-stain retrieval and to propose a lightweight cor-
rection method to improve their performance. Adapting embedding
vectors from one staining is akin to image-to-image translation,
domain adaptation, stain transfer, and multi-modal learning, lead-
ing to many interesting approaches. Multiple approaches [9, 10, 11]
learn a form of H&E to IHC stain translation but require a dataset of
matching patches. We design our approach at multiple resolutions
and on datasets of paired WSIs (not patches), avoiding the need for
matching patches. Madelaine [12] learns a multi-stain representation
in a much more complex setup than our correction modules.

Another related problem is multi-stain image registration,
whose goal is to align WSIs of the same or close sections obtained
with different staining [13, 14, 15]. These methods offer a potential
solution to our problem when the query patch must be retrieved from
a re-stained image of the same section from which it was extracted.
The problem we target, however, is more general. Furthermore,
research is still ongoing on this topic, and the performance and
execution speed of these methods vary significantly [16, 17].

We focus our attention on foundation models suitable for
histopathology images. Multiple models have been designed in
recent years, based on different deep learning models, often provid-
ing support for other modalities (text, videos) depending on their
intended use [18]. They are trained with diverse materials [19].
Although no model dominates across all application scenarios, [20]
has shown that domain-aligned pretraining yields better downstream
performance.

3. METHODS

Our general multi-stain patch retrieval framework is described in
Section 3.1. To overcome the limitation from the difference in stain-
ing, we propose a first correction method, doing a naive correspon-
dence between H&E and PHH3 in Section 3.2. We then propose a
way to improve the multi-stain correspondence in Section 3.3 and its
practical implementation in Section 3.4.

https://github.com/maxime915/cbir-mm-fgw
https://github.com/maxime915/cbir-mm-fgw


Fig. 1. Examples of queries, ground truth, and UNI-2-h results at 500µm. From left to right: query, matching ground truth, first three
patches retrieved without correction, and first three retrieved with FGW correction. Landmarks, when present, are marked with a cross.

3.1. Multi-Stain Content-Based Patch Retrieval

We seek to find an object represented by a query patch Q inside a
database of target patches {Ti}Ni=1, all sharing the same stain, dif-
ferent from that of the query patch. We consider the case where all
patches are square with an imposed size. Rather than working with
pixels, we compute an embedding vector for each patch using a foun-
dation model FM, and use the cosine similarity Scos (i.e., the inner
product of ℓ2-normalized embeddings) to obtain the set Rk(Q) of
the k most similar target patches to Q:

Rk(Q) = Topk{Scos(C(FM(Q)),FM(Ti))}Ni=1.

Differences in staining can substantially degrade retrieval accuracy,
if the embedding FM is not robust to modality shifts. To achieve this
robustness, a correction module C is introduced to align the embed-
ding of the query with the target embeddings. Two instances of this
correction module are proposed below.

3.2. Modality Correction by Embedding Renormalization

To address differences between staining modalities, we first adopt
a simple per-dimension embedding normalization strategy. Query
embeddings are re-centered and rescaled so that their component-
wise means and standard deviations align with those of the target
modality, estimated from randomly sampled patches. Although ef-
fective as a first-order correction, this method ignores correlations
between embedding dimensions and assumes stable semantic mean-
ing of these dimensions across modalities, which is oversimplistic.

3.3. Supervision from Optimal Transport

Building on the idea of matching the distribution of embeddings in
the two modalities from the previous section, we relax the assump-
tion of independence and consider optimal transport to provide a
faithful coupling of the two distributions. To reduce the complexity
of the optimal transport computation, we assume a dataset of paired
(but not necessarily aligned) WSIs of the same tissue. While a high-
resolution registration of the WSIs would yield a similar result, our
approach has the potential to work even in cases where registration
is challenging, and only requires tuning a single hyperparameter: the
number of sampled patches in each image (see below).

We propose the Fused Gromov-Wasserstein Optimal Transport
[2] as it is designed to leverage both intra-domain structural similar-
ity and inter-domain direct similarity when optimizing the mapping
of objects from one domain to another. From n randomly sampled
patches, we use Euclidean distances between patch centers in each
image to provide a global structure, and the embeddings of the foun-
dation model as a base for the similarity. Both metrics are rescaled to
have a maximal value of 1.0, thus making the tradeoff between struc-
tural and direct similarity easier to tweak. Formally, from patches
{xi} in one domain and {yi} unrelated patches in the other domain,
we denote by Dik the rescaled euclidean distance between the two
patches xi and xk in the first image, D′

kj the distance between yj
and yl, and Cij the cosine distance between the embeddings of xi

and yj , the optimal transport plan is given by Equation (1).

T ⋆ = argmin
T

α
∑
ijkl

TijTkl|Dik −D′
jl|

2
+ (1− α)

∑
ij

TijCij ,

(1)
with Tij ≥ 0 and

∑
i Tij =

∑
j Tij = 1/n . From the op-

timal transport plan T ⋆
ij , we associate xi to yj⋆ where j⋆ =

argmaxj Tij , thus yielding n pairs of patches per pair of images
for our supervised dataset. Because this method does not provide
a mapping for a new query, only for the sampled patches, we then
learn a dedicated correction function as sketched in Section 3.4.
The optimization problem in (1) is solved using the Python Optimal
Transport (POT) library [21, 22]. This method does not require
any learning: the mapping is done once for each resolution and all
machine learning happens in Section 3.4.

Depending on the patch size and the number of patches n, it is
possible that some patches do not have a close match in the other im-
age: this is seemingly a limitation of our method. While the match-
ing may not be perfect, we hope that an approximate matching will
be enough to build an effective mapping as described in Section 3.4.
We will check the quality of the matching and its impact on retrieval
performance in Section 5.3.

3.4. Learning a correction function

Relying on the supervised dataset obtained in Section 3.3, we formu-
late the correction as a regression task between the embeddings of
the two modalities. For embeddings with d components, we propose



a residual MLP with two layers of size d and leaky ReLU activations,
initialized with identity weights (Id) and null biases (0d). In addi-
tion, we learn the correction in both directions at the same time and
impose a cycle consistency constraint in both directions (both using
an ℓ2 loss, with a regularization of 0.1), drawing inspiration from
[23]. The objective is minimized using Adam with a weight decay
of 0.01 and a learning rate varying from 10−3 to 10−6 over 200
epochs of cosine annealing. We further split the set of embedding
pairs into a training set used to learn the correction and a validation
set on which we perform early stopping.

4. EXPERIMENTAL PROTOCOL

The quantitative evaluation of CBIR system in general is challeng-
ing, as there is usually no explicit information about which patch
should be retrieved for a given query. Given our multi-stain setting,
we propose here to exploit an existing annotated dataset of paired
multi-stained images. CBIR performance will then be assessed by
using annotations in one stain as queries and measuring the capacity
of the system to retrieve the same annotation in the other stain. The
dataset is described in Section 4.1 and the protocol in Section 4.2.

4.1. Dataset

The HyReCo dataset [1] contains 54 pairs of WSI stained in H&E
and then cleaned and re-stained in PHH3, each with 43 annotations
in the form of matching landmarks in the two images. HyReCo also
contains other WSIs in other IHC stains, but they were discarded as
they contain too few landmarks for evaluation. All images have a
resolution of 0.41 pixels per micron, with dimensions in the order of
104 microns and 105 pixels. The dataset is split such that the first 27
pairs of WSI compose the training set, and the next 11 the test set,
on which we compare our methods.

4.2. Protocol

From a pair of query (here, H&E) and target (here, PHH3) images,
we extract square patches centered around the landmark annotations
in the query image and uniformly tessellate the target image into tiles
of the same size as the query patches. They overlap such that every
vertex or midpoint of a tile in a tiling without overlap becomes the
center of a new tile, thus reducing the worst-case distance from any
point to the center of a tile. In case a tile goes beyond the image, a
black background is used. We ignore the landmarks in the tessella-
tion to avoid introducing an overoptimistic bias. As a consequence,
except by chance, there is no tile extracted from the target image that
matches exactly the query patch.

With this setup, the retrieval method selects the k tiles in the tar-
get images that are the most similar to the patch in the query image.
We measure performance using the top-k accuracy, i.e., the propor-
tion of queries where the landmark is included in at least one of the
k selected tiles. Given the way tiles were extracted, there are always
two tiles that contain each landmark. An example of predictions is
shown in Figure 1.

The foundation models in our study include UNI [24] and
UNI-2, two DINOv2-based models pretrained self-supervised on
histopathology images. UNI-2 uses a multi-stain dataset, while UNI-
1 uses only H&E slides, producing 1536- and 1024-dimensional
embeddings, respectively. We also evaluate Gigapath [25] (H&E
and IHC; 1536-D, Apache 2.0), H-optimus-0 [26] (H&E; 1536-D,
Apache 2.0), and Virchow [27] (H&E; 1280-D, Apache 2.0).

5. RESULTS

Section 5.1 discusses the impact of the stain when the feature ex-
tractors are uncorrected, while Section 5.2 compares the two pro-
posed correction methods to this baseline. Section 5.3 presents ad-
ditional experiments to improve our understanding of the behavior
of the optimal transport correction method. Eventually, Section 5.4
investigates the impact of rotation and displacement on retrieval per-
formance. The main results are collected in Table 1.

5.1. Impact of staining on uncorrected models

To study the impact of the WSI staining on retrieval performance,
we compare the top-1 and top-5 accuracies in the normal case and
in the case where the same H&E WSI is used for both the query and
target patches (resp. the BASE, for baseline, and UM, for unimodal,
columns in Table 1). Table 1 shows a very important gap between
the two for all models and tile sizes, highlighting that cross-stain re-
trieval is very challenging and justifying the need for a correction
method. In the multimodal case, UNI-1 scores higher than other
models for all tile sizes, even UNI-2-h. This might be explained
by their difference in training data. Since UNI-2-h has been trained
on multiple stains data, unlike UNI-1, it might produce more stain-
specific features, which is detrimental for cross-stain CBIR. Unsur-
prisingly, the accuracies increase with the tile size, independently of
the other variables. We also tested VGG as a simpler baseline, which
performed slightly worse than Virchow but omit it from the table for
brevity.

5.2. Correction methods

We compare in Table 1 the correction methods using renormalization
(NORM, Section 3.2) and using FGW pairing (FGW, Section 3.4)
against the baseline without any correction and the uni-modal upper
bound (UM, using H&E as the query and target images). For both
corrections, we extract n = 1000 random patches from each training
image, and fix α = 0.5 (the default) for FGW. While both methods
provide an improvement over the baseline, the correction methods
learned on FGW paired patches fare significantly better than renor-
malization for almost all configurations. The improvement is very
significant for the smallest patches, with a top-1 accuracy jump of
about 40% with respect to BASE and of more than 30% with re-
spect to renormalization. While UNI-1 was the best performer un-
corrected, the combo UNI-2-h + FGW stands out as the best option
overall.

5.3. Evaluating the Optimal Transport Pairing

We would like here to assess the quality of the pairing returned by
the optimal transport method, to better understand the good perfor-
mance observed in the previous subsection. To do so, we extract n
randomly sampled patches in both the H&E WSI and the PHH3 im-
age (as described in Section 3.3) and introduce one additional patch
centered around each landmark in the H&E set, and an equal number
of randomly sampled patches in the PHH3 set. Using the extracted
transport plan, we observe the proportion of H&E landmark patches
that are matched to an PHH3 patch that includes the landmark and
report it as the accuracy of our method. For low enough values of n ,
there might be no patch in the PHH3 set that includes a given land-
mark. As an upper bound, we thus also report the ideal accuracy,
corresponding to the proportion of landmarks in H&E for which the
matching landmark in PHH3 is included in at least one patch. The
results are shown in Table 2 for UNI-2-h. We fix n = 1000 for all



500µm 1000µm 5000µm
GP H-0 U-1 U-2 Vir GP H-0 U-1 U-2 Vir GP H-0 U-1 U-2 Vir

To
p-

1

BASE 21.30 4.94 34.88 25.31 3.70 2.47 17.90 52.47 34.57 6.17 41.98 51.23 79.01 66.67 40.74
NORM 37.04 10.19 42.59 35.49 7.10 11.11 29.01 58.95 44.44 16.36 67.59 64.51 83.95 75.62 55.86
FGW 25.62 33.33 59.26 74.38 35.49 32.72 45.99 71.60 72.84 44.75 68.83 67.90 89.81 83.33 60.49
UM 99.07 95.99 98.46 96.30 78.70 99.38 97.53 99.07 98.46 86.73 99.07 99.69 99.69 99.69 96.30

To
p-

5

BASE 37.65 12.04 51.54 44.44 8.33 9.26 36.73 75.62 58.95 18.52 77.78 83.33 95.37 90.43 75.31
NORM 53.09 22.22 61.73 54.01 15.74 26.54 52.47 79.94 70.37 33.33 88.58 91.67 96.91 93.83 87.35
FGW 40.74 49.38 78.09 90.12 57.10 54.32 69.14 91.05 91.98 71.30 93.52 88.89 98.46 96.91 85.19
UM 100.00 100.00 99.69 100.00 91.98 100.00 99.69 100.00 100.00 97.22 100.00 100.00 100.00 100.00 100.00

Table 1. Top-1 and top-5 accuracies across configurations. The baseline (BASE, no correction) yields the lowest performance, while the
uni-modal setting (UM) achieves the highest. Among correction methods (renormalization: NORM; FGW pairing: FGW), the best result per
model and tile size is underlined, and the best-performing model among gigapath, H-optimus-0, UNI-1, UNI-2-h, and Virchow is shown in
bold. FGW achieves the highest scores at all resolutions. Overall, corrected UNI-1 and UNI-2-h consistently outperform the others.

500µm 1000µm 5000µm

acc(%) 10.86 28.55 82.91
acc⋆(%) 18.38 53.71 100.00

t(s) 0.81 0.77 0.71

Table 2. FOT pairing accuracy using
UNI-2-h.

500µm 1000µm 5000µm

T1 41.67 43.21 80.56
T5 64.20 71.91 95.06

Table 3. Top-1 and top-5 accuracy with
a correction for UNI-2-h trained using a
random pairing.

BASE FGW FGW FGW
Tile size 500µm 1000µm 5000µm

500µm 25.31 74.38 69.14 19.14
1000µm 34.57 57.72 72.84 27.78
5000µm 66.67 71.91 73.15 83.33

Table 4. Top-1 accuracy of UNI-2-h with correctors
obtained at different resolutions.

configurations. Both the expected accuracy (acc(%)) and the accu-
racy of a simulated optimal pairing (acc⋆(%)) increase steadily with
tile size. However, the gap between them remains significant, show-
ing that our method has room for improvement. Note that pairing
patches fully at random would lead to an average accuracy lower
than 2.5% for all patch sizes, meaning that FGW pairing is neverthe-
less much better than random.

To further measure the impact of the FGW pairing, as an ab-
lation experiment, we trained a new correction model using a fully
random pairing of the patches in place of the FGW pairing. Top-1
and top-5 accuracies with this correction model are shown in Table
3. Comparing with the results in Table 1, the FGW pairing consis-
tently scores higher than the random one. Random pairing actually
achieves very close performances to the renormalization correction.
Despite not being perfect, the FGW pairing is nevertheless crucial to
reach optimal performance.

So far, a separate correction module was trained for each patch
size. Hoping to avoid this expense, we investigate the performance
of each size-specific correction module in all three resolutions for
UNI-2-h and compare them against the baseline (no correction,
BASE) using the Top-1 accuracy in Table 4. Unfortunately, chang-
ing the resolution often leads to worse results than the baseline, and
is always significantly worse than the appropriate corrector.

5.4. Studying the impact of rotation and displacement

We introduce small disturbances in the experiment: before extracting
the pixels corresponding to a patch in the H&E image, we apply a
rotation by an angle θ and a small displacement d from the center
of the landmark in a random direction. The landmark coordinates
are kept the same, and we record the top-1 accuracy for angles in
increments of 45° and d ∈ {0, 0.35w, 0.71w} where w is the tile
width. We fix the tile size to 1000µm and use UNI-2-h.

Table 5 shows a notable decrease in accuracy for all non-zero an-
gles without a sharp drop. The drop going from d = 0 to d = 0.35w

d 0 0.35w 0.71w
θ(°) BASE FGW UM BASE FGW UM BASE FGW UM

0 34.57 72.84 98.46 30.25 61.73 82.41 14.20 18.52 19.75
45 29.94 65.58 97.53 26.85 54.94 81.79 11.73 16.67 18.83
90 28.70 55.25 95.68 23.77 46.60 82.10 10.80 16.36 21.60

135 26.54 59.57 95.37 20.99 50.31 80.56 10.19 15.12 18.52
180 29.94 61.42 95.37 25.93 49.38 80.56 11.11 17.28 18.83

Table 5. Top-1 accuracy for UNI-2-h at 1000µm without correction
(BASE), with FGW correction, and in the uni-modal setting (UM).

is significantly lower than the drop going to d = 0.71w , for all ro-
tations. Interestingly, uni-modal retrieval seems to be less affected
by rotations than multi-stain retrieval, while the FGW correction and
the baseline are equally impacted on the other hand.

6. CONCLUSION

In this paper, we investigated the use of foundation models as en-
coders for cross-stain patch retrieval and found that, while they
perform well in single-stain contexts, their representations degrade
notably in multi-stain settings and under orientation changes. These
limitations highlight that current foundation models lack sufficient
stain invariance for reliable multi-stain retrieval. To address this,
we proposed a lightweight correction module integrated into the
retrieval pipeline, effectively reducing the cross-stain performance
gap for multiple foundation models. By leveraging fused Gromov-
Wasserstein optimal transport, we demonstrated that pixel-perfect
aligned images are not required to learn an effective cross-domain
mapping. While the accuracy could be further improved, our find-
ings suggest that patch-level retrieval can serve as an effective
method to help with multi-stain analysis. As future work, we plan
to extend our approach to multiple IHC stains, to improve the OT
pairing accuracy, and to enhance the search accuracy in smaller tiles.
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