

Aeromonas spp. as candidate indicator for antimicrobial resistance surveillance in Belgian aquaculture.

M. Keppenne¹, C. Boland², M. Cargnel³, S. Lok Yee Tong⁵, P. Butaye^{4,5}, D. Thiry¹

1. Laboratory of Bacteriology, Department of Infectious and Parasitic Diseases, FARAH, Faculty of Veterinary Medicine, University of Liège, 4000 Liège, Belgium

2. Veterinary Bacteriology Service, Department of Infectious Diseases in Animals, Sciensano, 1050 Brussels, Belgium.

3. Coordination of veterinary activities and veterinary epidemiology, Infectious Diseases in Animals Department, Sciensano, 1050 Brussels, Belgium.

4. Department of Pathobiology, Pharmacology and zoological Medicine, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium.

5. Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong, China.

AMR and AMU in Belgian aquaculture

- **No vaccine for fish:** Farmers rely on antimicrobials to treat fish diseases.
- **No authorized antibiotics in Belgium:** Veterinarians use products intended for other species.
- **No systematic AMR monitoring:** Unlike other livestock sectors, aquaculture lacks regular antimicrobial resistance surveillance.

Objectives

- Recruit participating fish farms
- Isolate *Aeromonas* spp. from fish, water, and sediment.
- Evaluate *Aeromonas* spp. as an **AMR surveillance indicator**.

Recruitment of the fish farms

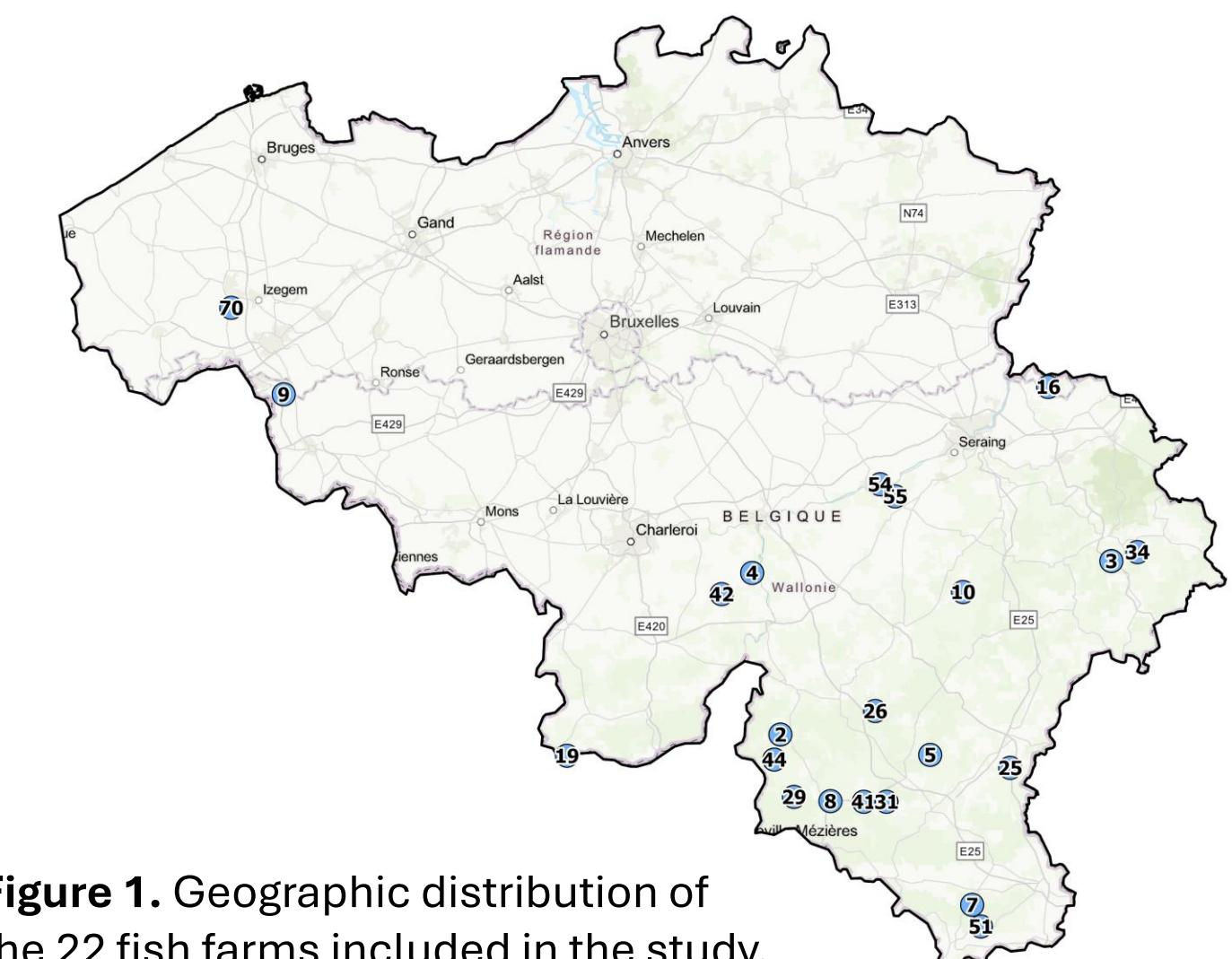


Figure 1. Geographic distribution of the 22 fish farms included in the study.

Isolation of *Aeromonas* spp.

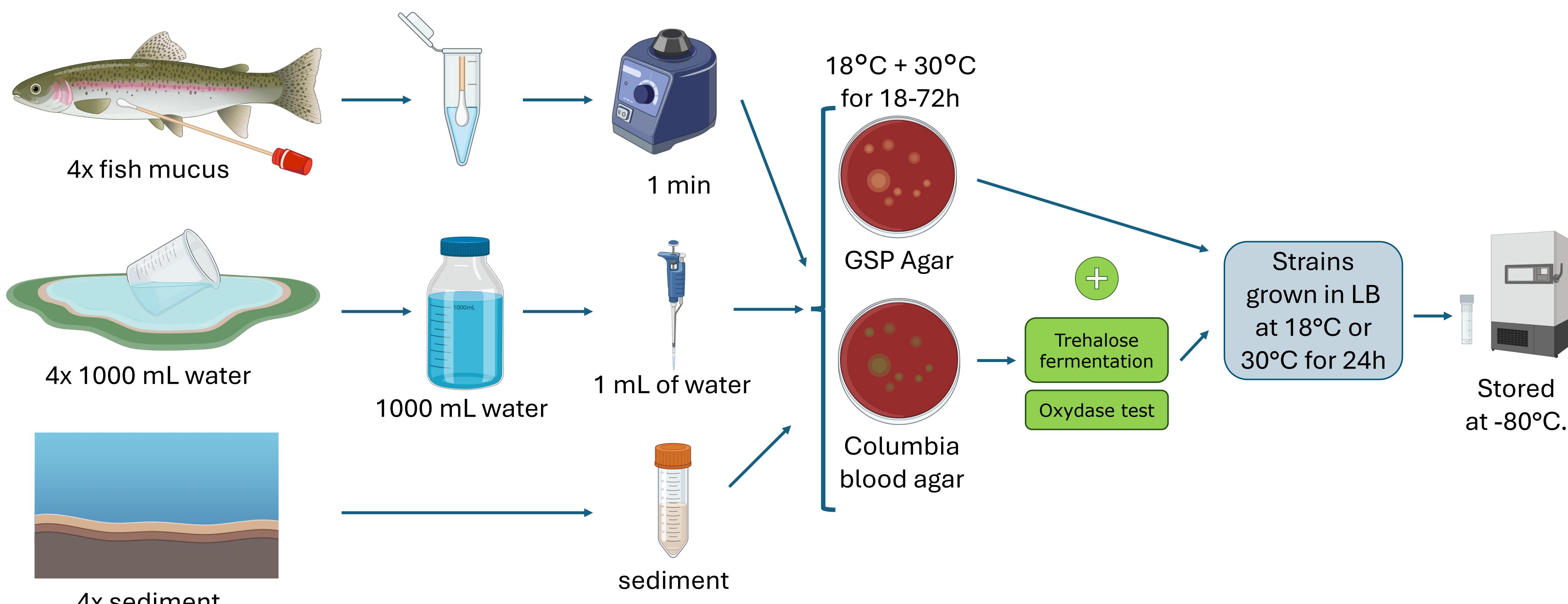


Figure 2. Protocol for the isolation of *Aeromonas* spp.

Methodology:

- 1. Sample collection (Jan-Mar 2025):** 22 farms, 88 fish mucus swabs, 88 water samples, 29 sediment samples.
- 2. Isolation of *Aeromonas* spp.:** Swabs placed in PBS and vortexed. Water (1 mL) and sediment (10 µL) plated directly. Samples plated on GSP and blood agar. Incubated at 18°C & 30°C (18–72h) (Fig.2).
- 3. Colony selection:** Yellow colonies from GSP grown in LB broth. If absent, beta-hemolytic colonies from blood agar used. Preliminary ID: trehalose fermentation + oxidase test.

Identification of the isolated strains

Methodology:

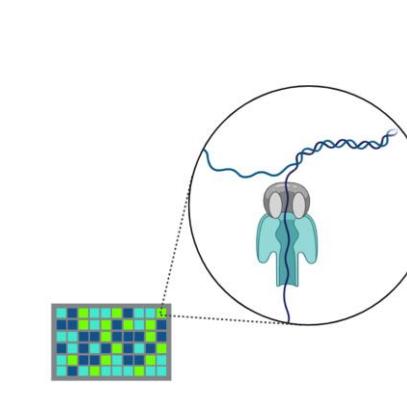
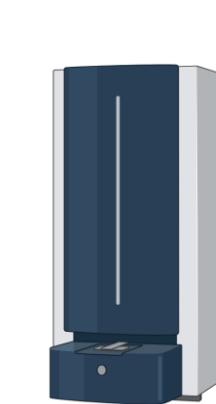
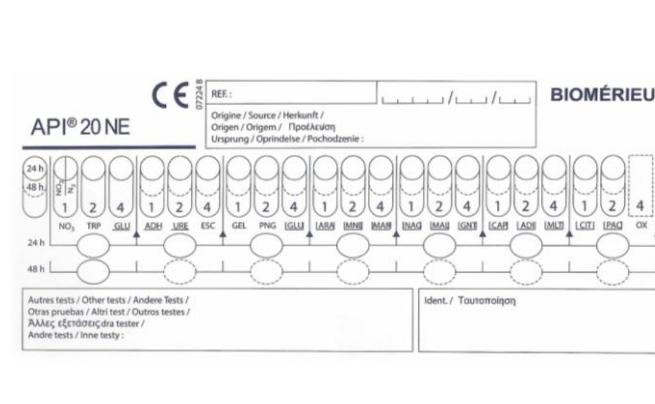



- 1. Selection of Isolates:** Preference given to isolates from fish, water and sediment from the same tank, incubated at 18°C. Alternative samples used when needed.
- 2. Identification:** 35 isolates were identified using API® 20NE test strips (BioMérieux, France) (Table 1):
 - *Aeromonas hydrophila/caviae* (n = 19)
 - *Aeromonas sobria* (n = 2)
 - *Vibrio alginolyticus* (n = 3)
 - *Mannheimia haemolytica* (n = 4)
 - *Brevundimonas vesicularis* (n = 2)
 - *Burkholderia cepacia* (n = 2)
 - *Pseudomonas putida* (n = 1)
 - *Pseudomonas fluorescens* (n = 1)
 - *Ralstonia pickettii* (n = 1)

Table 1: Bacterial identification results obtained using the API® 20NE test strips from samples collected at different fish farms. Isolates were derived from three sample types (fish, water, and sediment), with indication of the sampling date, sample code, and bacterial identification result. The symbol “/” indicates no isolate was recovered. In red: fish farms that import fish. In orange: fish farms that reproduce fish. In red and orange with hatching: fish farms that both import and reproduce fish.

Date	Fish farm	Fish	API20NE identification	Water	API20NE identification	Sediment	API20NE identification
03-12-24	70	70F1	<i>Aeromonas hydrophila/caviae</i> (44,9%)	70W1	<i>Aeromonas hydrophila/caviae</i> (99,5%)	70S1	<i>Aeromonas hydrophila/caviae</i> (99,9%)
08-01-25	55	55F4	Not conclusive	55W4	<i>Aeromonas hydrophila/caviae</i> (97,3%)	55S	<i>Aeromonas hydrophila/caviae</i> (99,9%)
08-01-25	54	54F3	<i>Aeromonas sobria</i> (99,2%)	54W3	Not conclusive	/	/
13-01-25	3	3F2	<i>Brevundimonas vesicularis</i> (91,5%)	3W2	<i>Aeromonas hydrophila/caviae</i> (99,3%)	3S1	<i>Ralstonia pickettii</i>
14-01-25	29	29F1	<i>Aeromonas hydrophila/caviae</i> (90,4%)	29W1	<i>Burkholderia cepacia</i>	29S	<i>Pseudomonas putida</i>
15-01-25	10	10F1	Not yet done	10W1	Not yet done	10S1	Not yet done
20-01-25	19	19F1	<i>Burkholderia cepacia</i> (99,9%)	19W1	<i>Pseudomonas fluorescens</i> (98,6%)	19S1	<i>Aeromonas hydrophila/caviae</i> (99,9%)
23-01-25	41	41F3	Not yet done	41W3	Not yet done	41S1	<i>Aeromonas hydrophila/caviae</i> (99,8%)
24-01-25	26	26F1	<i>Brevundimonas vesicularis</i> (91,5%)	26W1	<i>Aeromonas hydrophila/caviae</i> (99,8%)	26S1	<i>Aeromonas hydrophila/caviae</i> (83,2%)
30-01-25	16	16F1	<i>Aeromonas hydrophila/caviae</i>	16W1	<i>Aeromonas hydrophila/caviae</i> (91,6%)	16S1	Not yet done
03-02-25	51	51F1	Not yet done	51W1	<i>Aeromonas hydrophila/caviae</i> (48,3%)	/	/
04-02-25	9	9F1	<i>Mannheimia haemolytica</i> (86,5%)	9W1	<i>Aeromonas hydrophila/caviae</i> (99,9%)	9S1	<i>Aeromonas sobria</i> (94,8%)
10-02-25	34	34F2	<i>Aeromonas hydrophila/caviae</i> (99,9%)	34W2	<i>Vibrio alginolyticus</i> (70,0%)	/	/
14-02-25	5	5F1	Not yet done	5W1	Not yet done	0	0
24-02-25	42	42F3	<i>Mannheimia haemolytica</i> (86,5%)	42W3	<i>Aeromonas hydrophila/caviae</i> (99,9%)	/	/
27-02-25	44	44F1	Not yet done	0	0	/	/
10-03-25	2	2F1	<i>Aeromonas hydrophila/caviae</i> (99,8%)	2W1	<i>Mannheimia haemolytica</i> (86,5%)	/	/
10-03-25	8	8F1	Not yet done	8W1	Not yet done	/	/
12-03-25	7	7F1	Not yet done	7W1	Not yet done	/	/
29-03-25	31	31F4	<i>Vibrio alginolyticus</i> (70,0%)	31W4	Not conclusive	31S2	<i>Mannheimia haemolytica</i> (86,5%)
29-03-25	25	25F1	Not yet done	25W1	Not yet done	25S1	Not yet done
31-03-25	4	4F4	<i>Vibrio alginolyticus</i> (87,4%)	4W4	<i>Aeromonas hydrophila/caviae</i> (91,5%)	/	/

Conclusion and perspectives

- *Aeromonas* spp. were successfully isolated at both 18°C and 30°C; however, incubation at 18°C was selected for the remainder of the project to preserve the genetic stability of the strains and reduce the risk of stress-induced genetic rearrangements.
- *Aeromonas* spp. were isolated from all three sample types (fish mucus, water, and sediment) with water samples appearing to be the most reliable source for AMR surveillance in aquaculture.
- Future work will include further identification by comparing API® 20NE and MALDI-TOF MS to determine the optimal sample type for *Aeromonas* isolation. In addition, phenotypic and genomic analyses are planned: antimicrobial susceptibility testing using Sensititre™ MIC plates and whole-genome sequencing (WGS) with Nanopore technology to characterize resistance profiles and genetic features.

Contact:
mado.keppenne@uliege.be

LIÈGE université
Médecine Vétérinaire

GHENT
UNIVERSITY

CityU
香港城市大學
City University of Hong Kong

sciensano