

***Aeromonas* spp. as candidate indicator for antimicrobial resistance surveillance in Belgian aquaculture.**

M. Keppenne¹, C. Boland², M. Cargnel³, S. Lok Yee Tong⁵, P. Butaye^{4,5}, D. Thiry¹

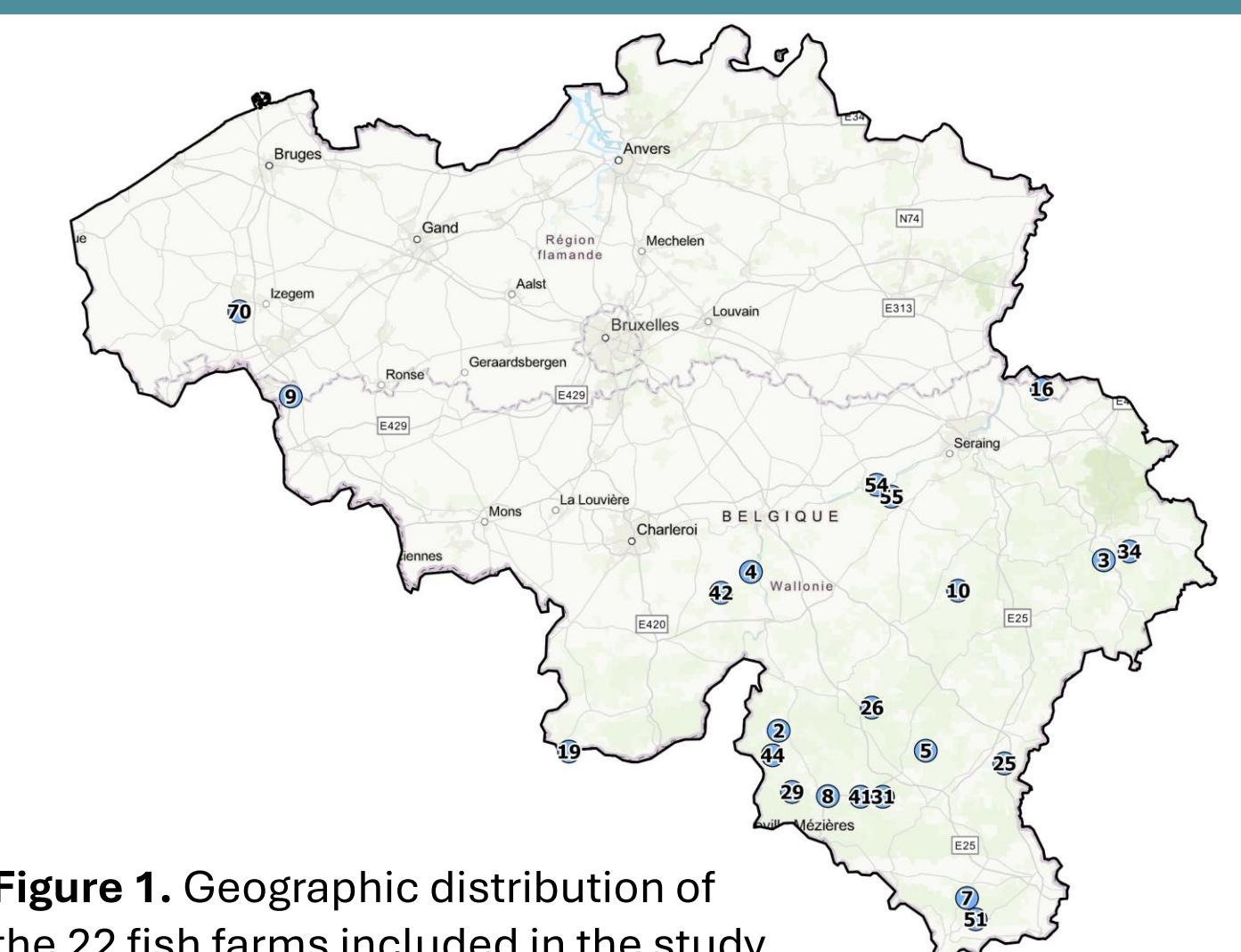
1. Laboratory of Bacteriology, Department of Infectious and Parasitic Diseases, FARAH, Faculty of Veterinary Medicine, University of Liège, 4000 Liège, Belgium

2. Veterinary Bacteriology Service, Department of Infectious Diseases in Animals, Sciensano, 1050 Brussels, Belgium.

3. Coordination of Veterinary Activities and Veterinary Epidemiology, Infectious Diseases in Animals Department, Sciensano, 1050 Brussels, Belgium.

4. Department of Pathobiology, Pharmacology and zoological Medicine, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium.

5. Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong, China.


AMR and AMU in Belgian aquaculture

- **No vaccine for fish:** Farmers rely on antimicrobials to treat fish diseases.
- **No authorized antibiotics in Belgium:** Veterinarians use products intended for other species.
- **No systematic AMR monitoring:** Unlike other livestock sectors, aquaculture lacks regular antimicrobial resistance surveillance.

Objectives

- Recruitement of the fish farms.
- Isolation and identification of *Aeromonas* spp. from fish, water, and sediment samples.

Recruitement of the fish farms

- **22 out of 44 Belgian fish farms** agreed to participate in the study (Fig.1).
- **Sample collection:** Conducted biannually for two years.

Isolation of *Aeromonas* spp.

Methodology:

1. **Sample collection (Jan–Mar 2025):** 22 farms, 88 fish mucus swabs, 88 water samples, 29 sediment samples.
2. **Isolation of *Aeromonas* spp.:** Samples plated on GSP and blood agar. Incubated at 18°C & 30°C (18–72h) (Fig.2).
3. **Colony selection:** Yellow colonies from GSP grown in LB broth.

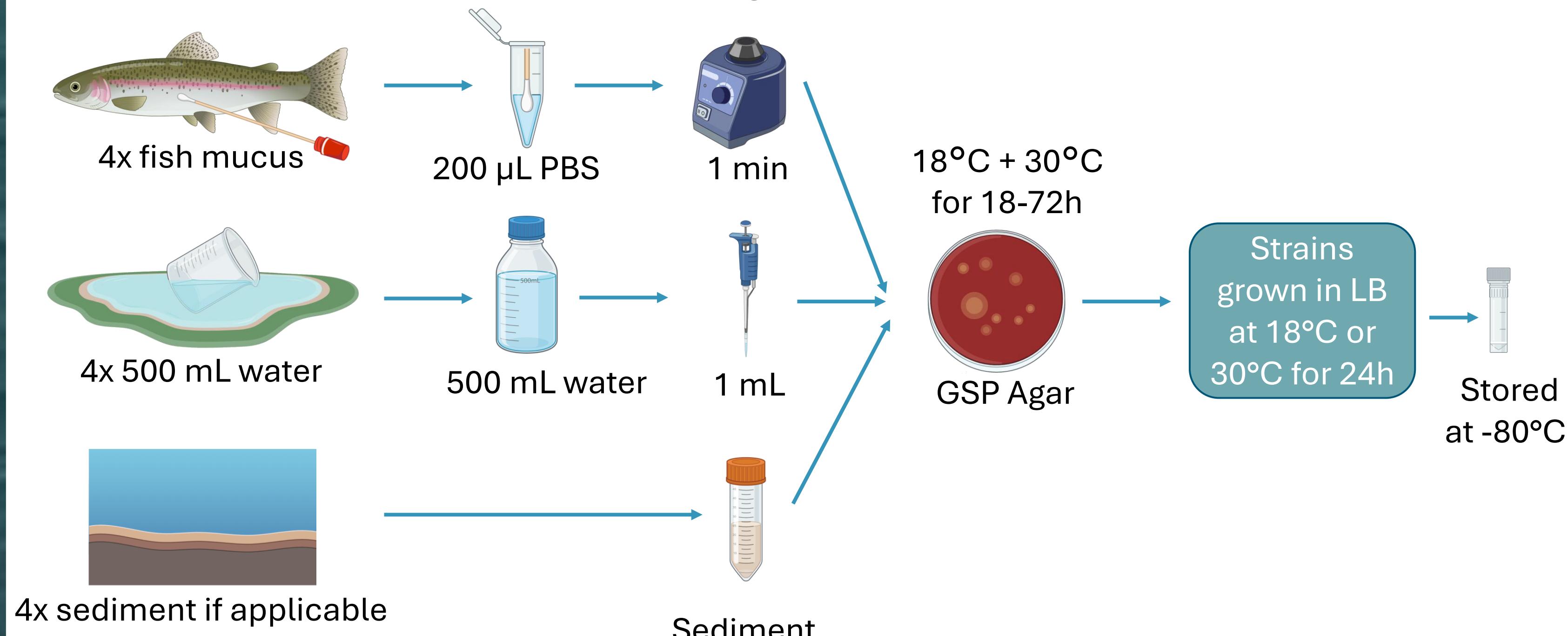


Figure 2. Protocol for the isolation of *Aeromonas* spp.

Results:

Distribution analysis showed water samples yielded the most *Aeromonas* spp. isolates, followed by fish and sediment, highlighting water as the main source (Table 1).

Table 1. Distribution of the total number of bacterial isolates obtained according to incubation temperature (18 °C and 30 °C) and sample type (fish, water, sediment).

T°	Fish	Water	Sed.	Total
18 °C	168	204	70	442
30 °C	133	246	81	460
Total	301	450	151	902

Identification of *Aeromonas* spp.

Table 2. Comparison of bacterial identification results obtained using API 20NE and MALDI-TOF® mass spectrometry for selected isolates. F = Fish, W = Water, S = Sediment.

Sample ID	API 20NE	MALDI-TOF
70 F1 1	<i>Aeromonas hydrophila/caviae</i>	<i>Aeromonas sobria</i>
70 W1 1	<i>Aeromonas hydrophila/caviae</i>	<i>Aeromonas bestiarum</i>
70 S1 1	<i>Aeromonas hydrophila/caviae</i>	<i>Aeromonas veronii</i>
55 W4 1	<i>Aeromonas sobria</i>	<i>Aeromonas hydrophila</i>
55 S1 2	<i>Aeromonas hydrophila/caviae</i>	<i>Aeromonas hydrophila</i>
54 F3 4	<i>Aeromonas sobria</i>	<i>Aeromonas veronii</i>
3 W2 1	<i>Aeromonas hydrophila/caviae</i>	No organism identification possible
29 F1 2	<i>Aeromonas hydrophila/caviae</i>	<i>Aeromonas sobria</i>
19 S1 3	<i>Aeromonas hydrophila/caviae</i>	<i>Aeromonas hydrophila</i>
41 S1 1	<i>Aeromonas hydrophila/caviae</i>	<i>Aeromonas salmonicida</i>
26 W1 1	<i>Aeromonas hydrophila/caviae</i>	<i>Aeromonas veronii</i>
26 S1 1	<i>Aeromonas hydrophila/caviae</i>	<i>Aeromonas eucrenophila</i>
16 F1 2	<i>Aeromonas hydrophila/caviae</i>	<i>Aeromonas sobria</i>
16 W1 1	<i>Aeromonas hydrophila/caviae</i>	<i>Aeromonas eucrenophila</i>
51 W1 2	<i>Aeromonas hydrophila/caviae</i>	<i>Aeromonas encheleia</i>
9 W1 1	<i>Aeromonas hydrophila/caviae</i>	<i>Aeromonas media</i>
9 S1 1	<i>Aeromonas sobria</i>	<i>Aeromonas veronii</i>
34 W2 2	<i>Vibrio alginnolyticus</i>	<i>Aeromonas sobria</i>
42 W3 3	<i>Aeromonas hydrophila/caviae</i>	<i>Aeromonas veronii</i>
2 F1 1	<i>Aeromonas hydrophila/caviae</i>	<i>Aeromonas bestiarum</i>
31 F4 3	<i>Vibrio alginnolyticus</i>	<i>Aeromonas sobria</i>
4 F4 1	<i>Vibrio alginnolyticus</i>	<i>Aeromonas sobria</i>
4 W4 1	<i>Aeromonas hydrophila/caviae</i>	<i>Aeromonas salmonicida</i>

Methodology:

- Identification of bacterial isolates was performed using **API 20NE** (35 isolates) and **MALDI-TOF MS** (376 isolates).
- Comparison of the identification was performed for 20 *Aeromonas* spp. and 3 *Vibrio* isolates identified with API 20NE.

All *Aeromonas* spp.
identified by API were
confirmed by MALDI-TOF.

Three isolates misidentified
as *Vibrio* by API were
reclassified as *Aeromonas*
spp. by MALDI-TOF.

Conclusion and perspectives

- *Aeromonas* spp. were successfully isolated at both 18°C and 30°C; however, incubation at 18°C was selected for the remainder of the project to preserve the genetic stability of the strains and reduce the risk of stress-induced genetic rearrangements.
- *Aeromonas* spp. were isolated from all three sample types (fish mucus, water, and sediment) with water samples appearing to be the most reliable source of *Aeromonas* spp. for AMR surveillance in aquaculture.
- MALDI-TOF provides a faster and more accurate alternative for genus-level identification, though its full potential is currently restricted by incomplete reference databases.
- Future work will include phenotypic and genomic analyses: antimicrobial susceptibility testing using Sensititre™ MIC plates and whole-genome sequencing (WGS) with Nanopore technology to characterize resistance profiles and genetic features.

Acknowledgements

This study was supported by the Federal Public Service through the research project RT 24/01 AquAMR 2.