

Understanding the Behavior of DNNs on Replicated Datasets

Esla T. Anzaku¹, Haohan Wang², Ajiboye Babalola³, Seyed A. Mousavi¹, Wesley De Neve¹, Arnout Van Messeem⁴

¹Ghent University Global Campus, South Korea

²University of Illinois, USA

³George Mason Korea, South Korea

⁴Université de Liège, Belgium

DSSV - July 9, 2025

Introduction

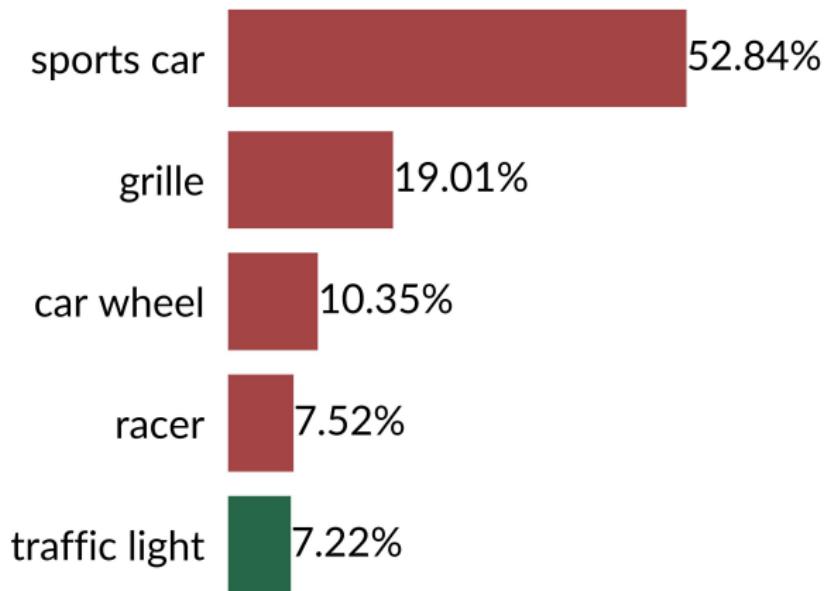
- **DNNs**: remarkable performance during model creation
- **Image recognition**: CIFAR-10 and [ImageNet](#)
- **Generalization** is crucial
- **Emerging trend**: use [replicated](#) test dataset
 - Created by closely following methodology and procedures of original dataset
- **Challenges**:
 - ① Unexpected [accuracy drop](#) on similar test datasets
 - Not entirely explained by generalization shortcomings or dataset disparities
 - Introduce new [evaluation framework](#) leveraging uncertainty estimates generated by models under study
 - ② Inherent [single-label assumption](#) in image recognition
 - Can this help explain the accuracy drop?
 - Propose new [evaluation metric](#) taking the multi-label nature of images into account

Image recognition

Input Image

Ground Truth:
traffic light

Predictions



Replicated datasets

ImageNet-1k Val. Set¹

50,000 images, 1,000 classes
Published in 2009 [4]

CIFAR-10 Test Set

10,000 images, 10 classes
Published in 2009 [5]

ImageNetV2

10,000 images
Published in 2019 [7]

CIFAR 10.1

2,000 images
Published in 2019 [7]

CIFAR 10.2

10,000 images
Published in 2020 [6]

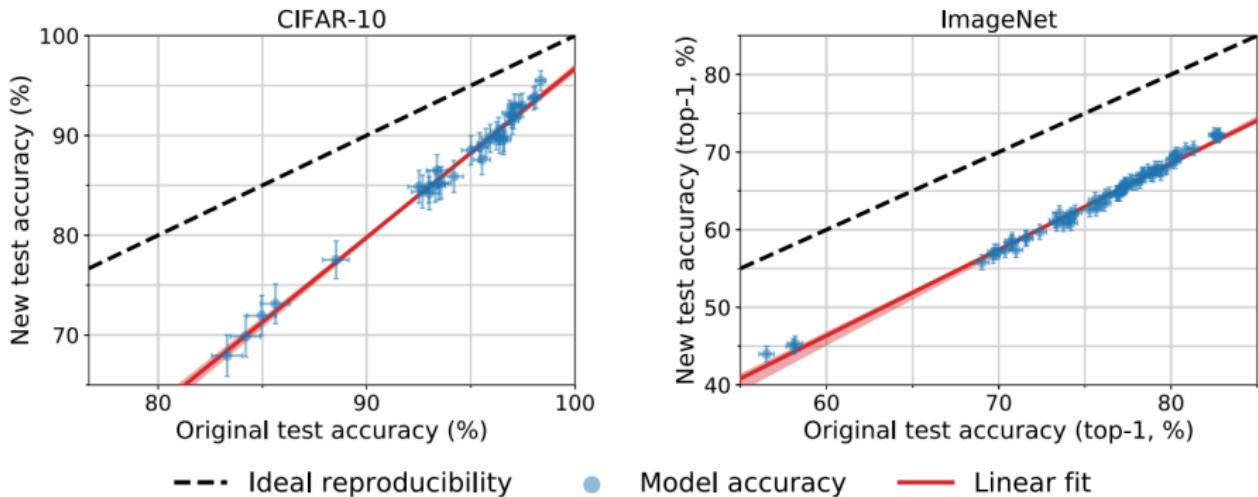
CINIC

90,000 images
Published in 2018 [3]

¹ImageNetV1

Accuracy Degradation [2]

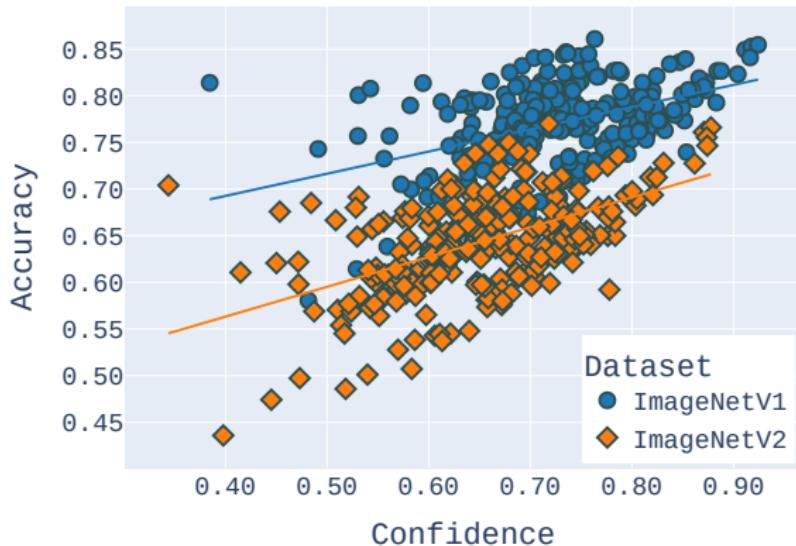
Accuracy degradation



Accuracy drop [7]

Unexplained and unexpected top-1 accuracy drop of 3-15% for CIFAR and 11-15% for ImageNet on replicated test datasets.

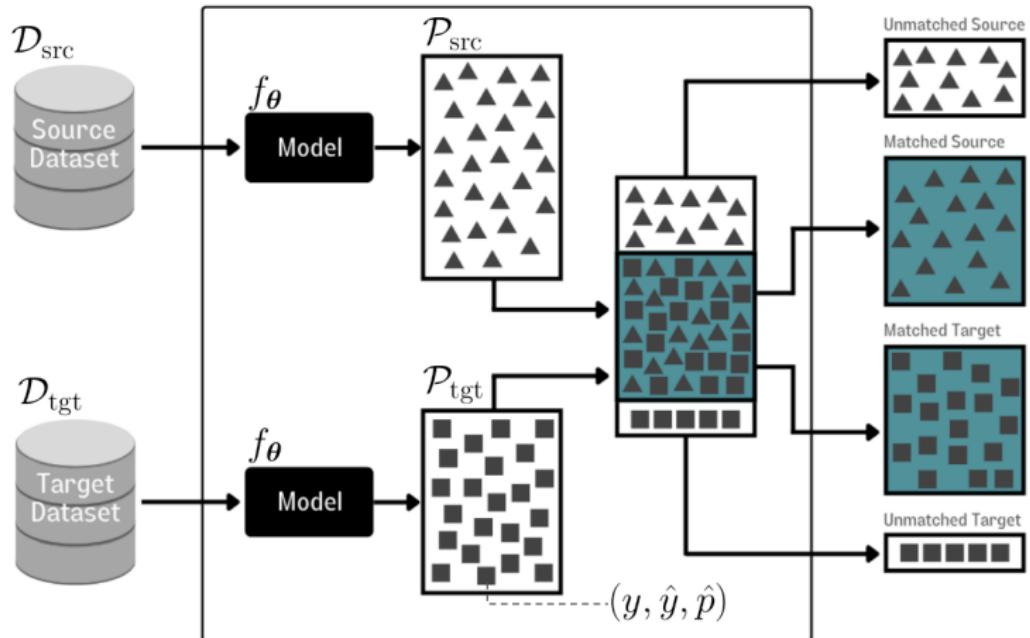
Accuracy vs. uncertainty relationship



Observation

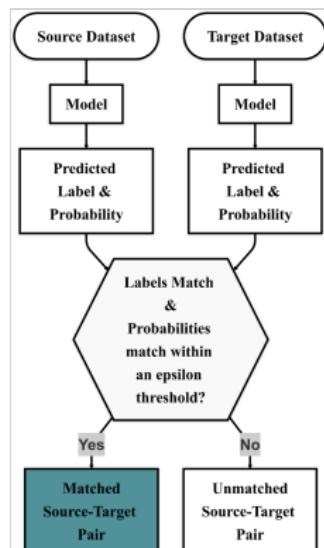
Models tend to be less confident and less accurate on ImageNetV2.

Proposed framework



Proposed framework

Idea: leverage DNN uncertainty in model assessment



① Obtain model predictions

② Match predictions and make subsets

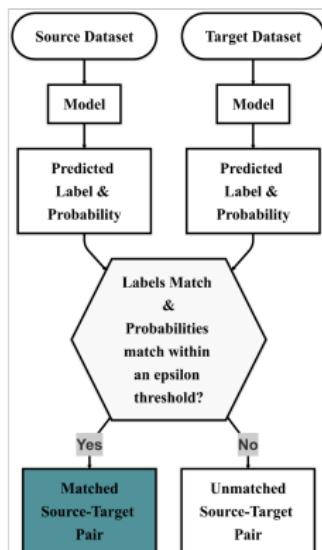
③ Assess test subsets

Model behavior is similar on source and target dataset if

- Accuracy gap on matched subsets is substantially smaller
- All subsets have similar accuracy versus uncertainty relationship

Proposed framework

Idea: leverage DNN uncertainty in model assessment



Conventional accuracy assessment

- Uses all datapoints
- Treats all predictions equally
- Ignores model uncertainty
- Assumes dataset characteristics are same

Proposed evaluation framework

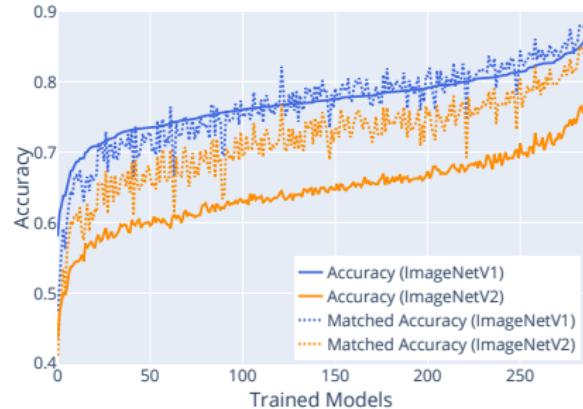
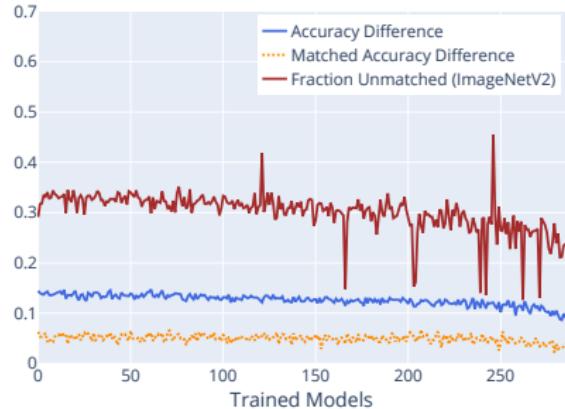
- Matches similar predictions
- Creates fair comparison subsets
- Leverages model uncertainty
- Accounts for differences in dataset characteristics

Experimental setup

- ImageNetV1 vs. ImageNetV2²
- 286 pre-trained ImageNet models
 - Architectures: ResNet, EfficientNet, MobileNet, ConvNeXt v2, ViTs,
...

²Similar experiments and results are available for CIFAR-10.

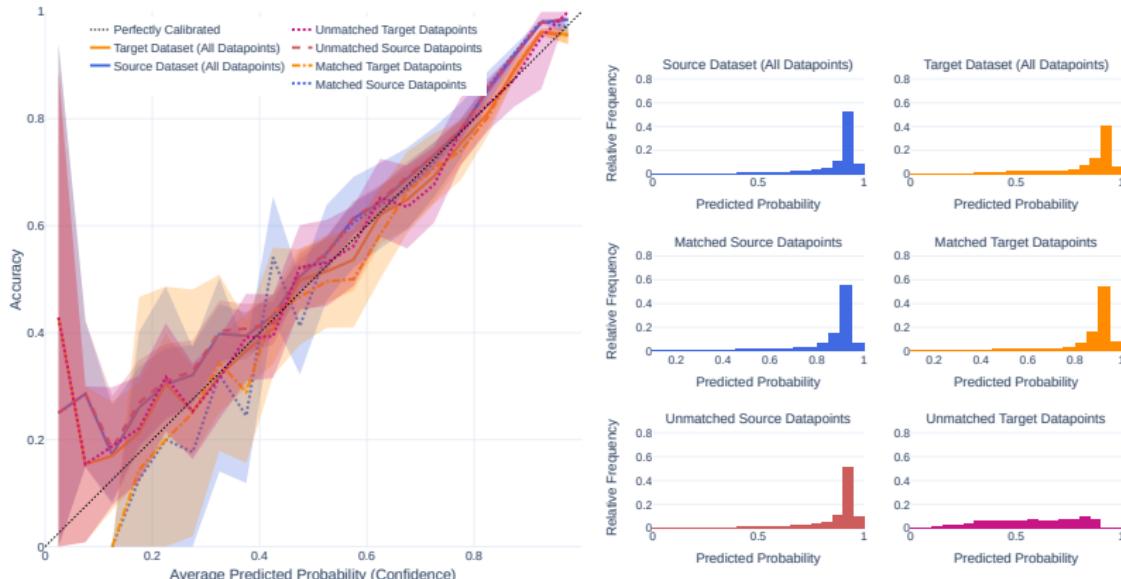
Results



Observation

Leveraging uncertainty leads to significantly lower accuracy gap

Results



Observations

- Different test subsets with different accuracies and uncertainty distributions
- Yet similar accuracy-uncertainty relationship

Conclusions

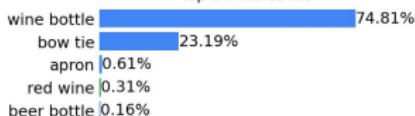
- Top-1 accuracy gaps are substantially lower than earlier reported.
- Accuracy-uncertainty profiles are consistent across matched and unmatched subsets.
- DNNs demonstrate better robustness on replicated datasets than earlier reported.
- Test and replicated datasets differ in subtle ways that need further investigation.

Single-label Assumption [1]

Single-label assumption

Predicted Image

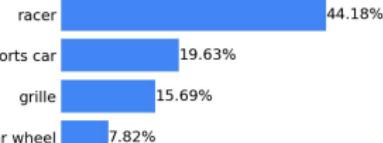
Top-5 Predictions



Ground Truth:
red wine

Predicted Image

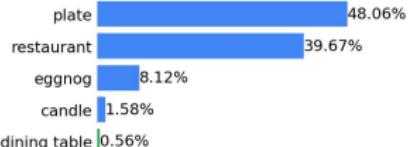
Top 5 Predictions



Ground Truth:
traffic light

Predicted Image

Top-5 Predictions

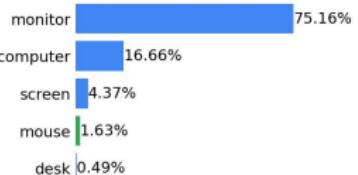


Ground Truth:
dining table

Predicted Image

Ground Truth:
mouse

Top-5 Predictions



Single-label assumption vs. multi-label nature

Since standard evaluation metrics are constrained to a single ground-truth label, conventional top-1 metrics will often underestimate model performance.

Alternative evaluation methods

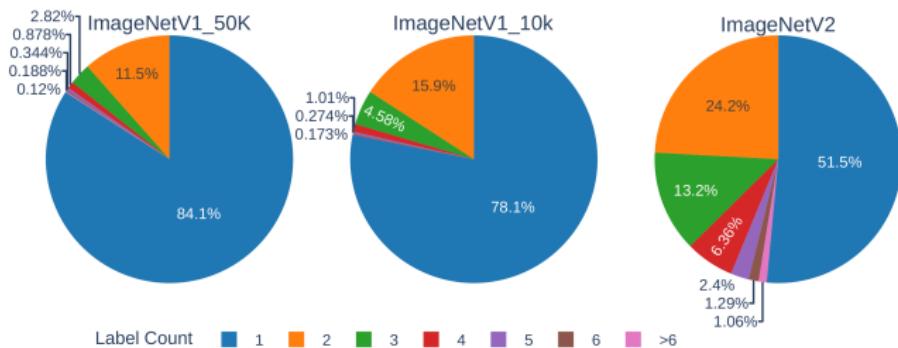
- **Top-5 accuracy:** verifies whether at least one of the 5 highest-ranked predictions matches the ground-truth label **but does not evaluate whether all relevant categories are identified.**
- **ReaL accuracy:** expands the ground-truth label set **but considers only the top-ranked prediction.**

Proposed selection mechanism

- C : number of classes
- Dataset: $\mathbf{X} = \{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_N\}$
- Corresponding softmax output: $\hat{\mathbf{Y}} = \{\hat{\mathbf{y}}_1, \hat{\mathbf{y}}_2, \dots, \hat{\mathbf{y}}_N\}$ with $\hat{\mathbf{y}}_i \in \mathbb{R}^C$
- k_i : number of ground-truth classes for i^{th} image³

Variable top- k selection mechanism

For each datapoint \mathbf{x}_i , the top- k_i predictions are obtained by selecting the indices corresponding to the highest k_i values in $\hat{\mathbf{y}}_i$.



³There have been attempts to assign multiple labels to ImageNet using ReaL.

Proposed evaluation metric

- Define G subgroups based on the number of ground-truth labels g , containing N_g datapoints
- Datapoints: $\mathbf{x}_{g,i}$ with ground-truth labels $\mathbf{y}_{g,i}^{\text{gt}} \in \{0, 1\}^C$
- Predictions $\hat{\mathbf{y}}_{g,i} \in \{0, 1\}^C$
- Subgroup accuracy

$$A_g = \frac{1}{N_g} \sum_{i=1}^{N_g} \frac{1}{C} \sum_{c=1}^C \mathbb{I}(y_{g,i,c}^{\text{gt}} = \hat{y}_{g,i,c})$$

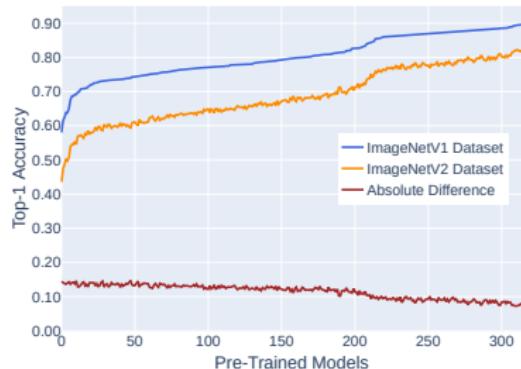
Average Subgroup Multi-label Accuracy (ASMA)

$$\text{ASMA} = \frac{1}{G} \sum_{g=1}^G A_g$$

Experimental setup

- ImageNetV1 vs. ImageNetV2
- 350 pre-trained ImageNet models
 - 100 top performing models (based on top-1 accuracy)
 - 250 randomly selected models covering a wide range of architectures: ResNet, EfficientNet, MobileNet, ConvNeXt, ViTs, ...
- Three evaluation metrics:
 - Top-1 accuracy: $\frac{1}{N} \sum_{i=1}^N \mathbb{I}(\hat{y}_i = y_i^{\text{gt}})$
 - ReaL accuracy: $\frac{1}{N} \sum_{i=1}^N \mathbb{I}(\hat{y}_i \in \mathbf{y}_i^{\text{plaus}})$ with $\mathbf{y}_i^{\text{plaus}}$ set of plausible labels
 - ASMA

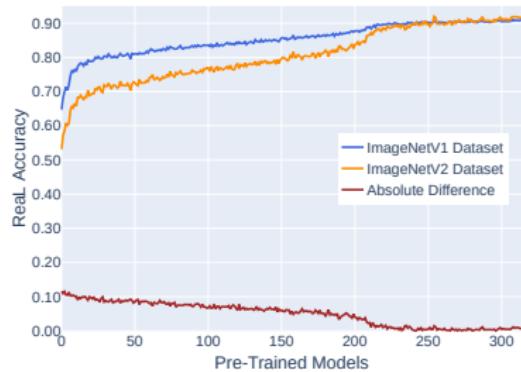
Results – Top-1 accuracy



Observations

- Performance on ImageNetV2 consistently lower
- Accuracy gap: 6-14%

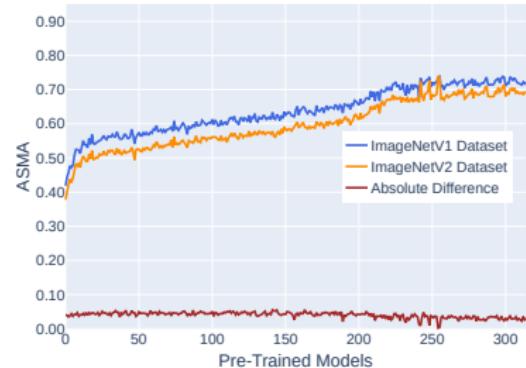
Results – ReAL accuracy



Observations

- Difference between ImageNetV1 and ImageNetV2 lowers noticeably
- For 78 models: gap $< 1\%$
- Accuracy gap: 0-11%

Results – ASMA



Observations

- Difference decreases further
- For 4 models: gap $< 1\%$
- Accuracy gap: 0-6%

Conclusions

- Top-1 accuracy overestimates DNN performance gaps
- This overestimation is (partially) due to ignoring the multi-label nature of images
- Top-1 accuracy masks DNNs with desirable multi-label class prediction properties

To conclude

References

- [1] Esla Timothy Anzaku, Seyed Amir Mousavi, Arnout Van Messe, and Wesley De Neve. The Impact of the Single-Label Assumption in Image Recognition Benchmarking. *arXiv*, arXiv:2412.18409, 2025.
- [2] Esla Timothy. Anzaku, Haohan Wang, Ajiboye Babalola, Arnout Van Messe, and Wesley De Neve. Re-assessing accuracy degradation: a framework for understanding DNN behavior on similar-but-non-identical test datasets. *Machine Learning*, 114(84), 2025.
- [3] Luke N. Darlow, Elliot J. Crowley, Antreas Antoniou, and Amos J. Storkey. CINIC-10 is not ImageNet or CIFAR-10. *arXiv*, arXiv:1810.03505, 2018.
- [4] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A Large-scale Hierarchical Image Database. In *IEEE Conference on Computer Vision and Pattern Recognition*, pages 248–255, 2009.
- [5] Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. CIFAR-10 (Canadian Institute for Advanced Research). 2009.
- [6] Shangyun Lu, Bradley Nott, Aaron Olson, Alberto Todeschini, Puya Vahabi, Carmon Yair, and Ludwig Schmidt. Harder or Different? A Closer Look at Distribution Shift in Dataset Reproduction. In *Uncertainty and Robustness in Deep Learning Workshop (UDL), ICML*, 2020.
- [7] Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and Vaishaal Shankar. Do ImageNet Classifiers Generalize to ImageNet? In Kamalika Chaudhuri and Ruslan Salakhutdinov, editors, *Proceedings of the 36th International Conference on Machine Learning*, volume 97, pages 5389–5400, 2019.