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Introduction

@ DNNSs: remarkable performance during model creation
o Image recognition: CIFAR-10 and ImageNet

e Generalization is crucial
e Emerging trend: use replicated test dataset
o Created by closely following methodology and procedures of original
dataset
Challenges:
@ Unexpected accuracy drop on similar test datasets

@ Not entirely explained by generalization shortcomings or dataset
disparities

o Introduce new evaluation framework leveraging uncertainty estimates
generated by models under study

@ Inherent single-label assumption in image recognition

@ Can this help explain the accuracy drop?
@ Propose new evaluation metric taking the multi-label nature of images
into account
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Image recognition
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Replicated datasets
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Accuracy Degradation [2]
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Accuracy degradation
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Accuracy drop [7]

Unexplained and unexpected top-1 accuracy drop of 3-15% for CIFAR and
11-15% for ImageNet on replicated test datasets.
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Accuracy vs. uncertainty relationship
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Observation

Models tend to be less confident and less accurate on ImageNetV2.
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Proposed framework
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Proposed framework

Idea: leverage DNN uncertainty in model assessment
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Proposed framework

Idea: leverage DNN uncertainty in model assessment
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@ Ignores model
uncertainty

@ Leverages model
uncertainty

@ Assumes dataset @ Accounts for differences
characteristics are same in dataset characteristics
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Experimental setup

o ImageNetV1 vs. ImageNetV22
@ 286 pre-trained ImageNet models
o Architectures: ResNet, EficientNet, MobileNet, ConvNeXt v2, ViTs,

2Similar experiments and results are available for CIFAR-10.
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Results
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Leveraging uncertainty leads to significantly lower accuracy gap
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Results
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Observations

o Different test subsets with different accuracies and uncertainty
distributions

@ Yet similar accuracy-uncertainty relationship
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Conclusions

@ Top-1 accuracy gaps are substantially lower than earlier reported.

@ Accuracy-uncertainty profiles are consistent across matched and
unmatched subsets.

@ DNNs demonstrate better robustness on replicated datasets than
earlier reported.

o Test and replicated datasets differ in subtle ways that need further
investigation.
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Single-label Assumption [1]
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Single-label assumption
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Single-label assumption vs. multi-label nature

Since standard evaluation metrics are constrained to a single

ground-thruth label, conventional top-1 metrics will often underestimate
model performance.
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Alternative evaluation methods

o Top-5 accuracy: verifies whether at least one of the 5
highest-ranked predictions matches the ground-truth label but does
not evaluate whether all relevant categories are identified.

@ Real accuracy: expands the ground-truth label set but considers
only the top-ranked prediction.
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Proposed selection mechanism

C: number of classes

Dataset: X = {x1,X2,...,Xn}

Corresponding softmax output: Y = {91,92,...,yn} with §; € R
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Variable top-k selection mechanism

For each datapoint x;, the top-k; predictions are obtained by selecting the
indices corresponding to the highest k; values in y;.
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3There have been attempts to assign multiple labels to ImageNet using Real.
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Proposed evaluation metric

@ Define G subgroups based on the number of ground-truth labels g,
containing N, datapoints

e Datapoints: xg ; with ground-truth labels ygt,- e {0,1}¢
o Predictions §,; € {0,1}¢

@ Subgroup accuracy
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Experimental setup

@ ImageNetV1 vs. ImageNetV2
@ 350 pre-trained ImageNet models

o 100 top performing models (based on top-1 accuracy)
e 250 randomly selected models covering a wide range of architectures:
ResNet, EfficientNet, MobileNet, ConvNeXt, ViTs, ...

@ Three evaluation metrics:
N

1
e Top-1 accuracy: N E I(9; = y£)
i=1

N
1
o Real accuracy: N Z]I(yi € yP"%) with yP** set of plausible labels
i=1
o ASMA
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Results — Top-1 accuracy

Observations

3 050 — ImageNetV1 Dataset
<  ImageNenv2 Datese @ Performance on ImageNetV2
‘a 0.40 — Absolute Difference -
Zos consistently lower
0.20 0
010 — @ Accuracy gap: 6-14%
00 50 100 150 200 250 300

Pre-Trained Models

A. Van Messem Behavior of DNNs on Replicated Datasets 21/26



Results — Real accuracy

Observations
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Results — ASMA

Observations

— ImageNetV1 Dataset
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Conclusions

@ Top-1 accuracy overestimates DNN performance gaps

@ This overestimation is (partially) due to ignoring the multi-label
nature of images

@ Top-1 accuracy masks DNNs with desirable multi-label class
prediction properties
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To conclude
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