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Introduction

DNNs: remarkable performance during model creation

Image recognition: CIFAR-10 and ImageNet

Generalization is crucial

Emerging trend: use replicated test dataset

Created by closely following methodology and procedures of original
dataset

Challenges:
1 Unexpected accuracy drop on similar test datasets

Not entirely explained by generalization shortcomings or dataset
disparities
Introduce new evaluation framework leveraging uncertainty estimates
generated by models under study

2 Inherent single-label assumption in image recognition

Can this help explain the accuracy drop?
Propose new evaluation metric taking the multi-label nature of images
into account

A. Van Messem Behavior of DNNs on Replicated Datasets 2/26



Image recognition
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Replicated datasets

ImageNet-1k Val. Set1 CIFAR-10 Test Set

50,000 images, 1,000 classes 10,000 images, 10 classes
Published in 2009 [4] Published in 2009 [5]

ImageNetV2 CIFAR 10.1 CIFAR 10.2 CINIC

10,000 images 2,000 images 10,000 images 90,000 images
Published in 2019 [7] Published in 2019 [7] Published in 2020 [6] Published in 2018 [3]

1ImageNetV1
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Accuracy Degradation [2]
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Accuracy degradation

Accuracy drop [7]

Unexplained and unexpected top-1 accuracy drop of 3-15% for CIFAR and
11-15% for ImageNet on replicated test datasets.
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Accuracy vs. uncertainty relationship
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Observation

Models tend to be less confident and less accurate on ImageNetV2.
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Proposed framework
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Proposed framework

Idea: leverage DNN uncertainty in model assessment

1 Obtain model predictions

2 Match predictions and make subsets

3 Assess test subsets
Model behavior is similar on source and target
dataset if

Accuracy gap on matched subsets is substantially
smaller
All subsets have similar accuracy versus
uncertainty relationship
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Proposed framework

Idea: leverage DNN uncertainty in model assessment

Conventional accuracy
assessment

Uses all datapoints

Treats all predictions
equally

Ignores model
uncertainty

Assumes dataset
characteristics are same

Proposed evaluation
framework

Matches similar
predictions

Creates fair comparison
subsets

Leverages model
uncertainty

Accounts for differences
in dataset characteristics

A. Van Messem Behavior of DNNs on Replicated Datasets 10/26



Experimental setup

ImageNetV1 vs. ImageNetV22

286 pre-trained ImageNet models

Architectures: ResNet, EficientNet, MobileNet, ConvNeXt v2, ViTs,
. . .

2Similar experiments and results are available for CIFAR-10.
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Results
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Observation

Leveraging uncertainty leads to significantly lower accuracy gap
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Results
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Observations

Different test subsets with different accuracies and uncertainty
distributions

Yet similar accuracy-uncertainty relationship
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Conclusions

Top-1 accuracy gaps are substantially lower than earlier reported.

Accuracy-uncertainty profiles are consistent across matched and
unmatched subsets.

DNNs demonstrate better robustness on replicated datasets than
earlier reported.

Test and replicated datasets differ in subtle ways that need further
investigation.
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Single-label Assumption [1]
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Single-label assumption

Single-label assumption vs. multi-label nature

Since standard evaluation metrics are constrained to a single
ground-thruth label, conventional top-1 metrics will often underestimate
model performance.
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Alternative evaluation methods

Top-5 accuracy: verifies whether at least one of the 5
highest-ranked predictions matches the ground-truth label but does
not evaluate whether all relevant categories are identified.

ReaL accuracy: expands the ground-truth label set but considers
only the top-ranked prediction.
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Proposed selection mechanism

C : number of classes

Dataset: X = {x1, x2, . . . , xN}
Corresponding softmax output: Ŷ = {ŷ1, ŷ2, . . . , ŷN} with ŷi ∈ RC

ki : number of ground-truth classes for i th image3

Variable top-k selection mechanism

For each datapoint xi , the top-ki predictions are obtained by selecting the
indices corresponding to the highest ki values in ŷi .

3There have been attempts to assign multiple labels to ImageNet using ReaL.
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Proposed evaluation metric

Define G subgroups based on the number of ground-truth labels g ,
containing Ng datapoints

Datapoints: xg ,i with ground-truth labels ygtg ,i ∈ {0, 1}C

Predictions ŷg ,i ∈ {0, 1}C

Subgroup accuracy

Ag =
1

Ng

Ng∑
i=1

1

C

C∑
c=1

I(ygtg ,i ,c = ŷg ,i ,c)

Average Subgroup Multi-label Accuracy (ASMA)

ASMA =
1

G

G∑
g=1

Ag
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Experimental setup

ImageNetV1 vs. ImageNetV2

350 pre-trained ImageNet models

100 top performing models (based on top-1 accuracy)
250 randomly selected models covering a wide range of architectures:
ResNet, EfficientNet, MobileNet, ConvNeXt, ViTs, . . .

Three evaluation metrics:

Top-1 accuracy:
1

N

N∑
i=1

I(ŷi = ygt
i )

ReaL accuracy:
1

N

N∑
i=1

I(ŷi ∈ yplausi ) with yplausi set of plausible labels

ASMA
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Results – Top-1 accuracy
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Performance on ImageNetV2
consistently lower

Accuracy gap: 6-14%

A. Van Messem Behavior of DNNs on Replicated Datasets 21/26



Results – ReaL accuracy
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Observations

Difference between ImageNetV1
and ImageNetV2 lowers noticeably

For 78 models: gap < 1%

Accuracy gap: 0-11%
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Results – ASMA

0 50 100 150 200 250 300
0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

ImageNetV1 Dataset
ImageNetV2 Dataset
Absolute Difference

Pre-Trained Models

A
S

M
A

Observations

Difference decreases further

For 4 models: gap < 1%

Accuracy gap: 0-6%
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Conclusions

Top-1 accuracy overestimates DNN performance gaps

This overestimation is (partially) due to ignoring the multi-label
nature of images

Top-1 accuracy masks DNNs with desirable multi-label class
prediction properties
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To conclude
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