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Abstract

Tissue-resident and recruited macrophages are integral to organ development, homeostasis,
immunity and disease pathogenesis. Their remarkable diversity arises from distinct
developmental origins, differentiation trajectories and microenvironmental cues that shape
their identity and function. Central to these processes is transcriptional regulation. In this
review, we provide a comprehensive overview of the transcription factor (TF) networks that
orchestrate resident tissue macrophage (RTM) differentiation from progenitor cells, imprint
core macrophage identity, and drive tissue-specific functions. We first delineate the
collaborative roles of lineage-determining TFs, such as PU.1 and C/EBPs, which prime
macrophage progenitors for commitment. We then examine identity-imprinting TFs that
establish and maintain the core macrophage program, and tissue-specific TFs that allow
integration of local niche signals to tailor RTM phenotypes across organs. While the focus is
on RTMs at steady state, we also highlight how RTMs can undergo transcriptional
reprogramming upon tissue perturbation, and how newly recruited macrophages may engage

distinct regulatory circuits upon entering diseased tissues, with tumors serving as an example.
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Abbreviations

AM

BM

alveolar macrophage

bone marrow

BMDM bone marrow-derived macrophage

C/EBP CCAAT/enhancer binding protein

CNS

DC

DM

EMP

GBM

HSC

kb

KC

KIf

LC

LDTF

LPM

LXR

MafB

MG

MITF

central nervous system

dendritic cell

dermal macrophage

erythro-myeloid progenitor
glioblastoma

hematopoietic stem cell

inhibitor of DNA

Interferon regulatory factor

interstitial macrophage

kilo base

kupffer cell

krippel-like factor

langerhans cell

lineage-determining transcription factor
large peritoneal macrophage

liver X receptor

Maf basic leucine zipper transcription factor B
microglia

macrophage identity imprinting transcription factor
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MMM marginal metallophilic macrophage

Mo monocyte

MZM marginal zone macrophage

PAP  pulmonary alveolar proteinosis

pre-Mac pre-macrophage

PU.1 purine-rich box1

RBC red blood cell

RFTF  RTM function-imprinting transcription factor
RITF  RTM identity-imprinting transcription factor
RPM red pulp macrophage

RTM resident tissue macrophage

Salll  Spalt like transcription factor 1

SPM  small peritoneal macrophage

TAM tumor-associated macrophage

TF transcription factor
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Introduction

More than a century ago, Elie Metchenikoff described macrophages as phagocytic cells
(termed phagocytes) able to recognize, ingest and digest foreign particles as well as dead host
cells through a process called phagocytosis (1). Apart from their well-studied role in host
defense and clearance of dying cells, it is now clear that resident tissue macrophages (RTMs)
are an integral part of the tissues in which they reside, where they play key roles in tissue
development, homeostasis, metabolism and repair (2). RTMs derive from the embryo and
seed most tissues before birth, where they are thought to exert specific functions inherent to
the tissue of residence (3,4). After birth, bone marrow (BM)-derived monocytes can also
contribute to the RTM pool in proportions that depend on the accessibility of the niche and
the level of perturbations they are exposed to. Interestingly, BM-derived RTMs can exhibit
similar characteristics as their embryonic-derived counterparts in terms of self-maintenance,
genetic profile, functional specification and spatial tissue distribution (5,6), supporting that
key identity features of RTMs can be determined by specific cues arising from the tissues in
which they reside (i.e. the macrophage niche) (7). Besides homeostatic RTMs, non-
homeostatic macrophages can differentiate from monocytes and establish in tissues when
homeostasis is broken (e.g., following tissue damage, during infection, cancer) and contribute
to a wide array of disease-related processes. They can adopt different identities that depend
on the diseased tissue microenvironment, the extent and the phase of inflammation, their
activation state and the time spent in the tissue (2,8-10).

A central mechanism by which macrophages acquire and maintain their identity is via
transcriptional regulation. Indeed, transcription factors (TFs) can act as molecular switches
that integrate external and internal signals, in concert with epigenetic modifications, to
orchestrate cell fate decisions. In the context of macrophage biology, TFs not only dictate
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macrophage lineage specification during embryogenesis and postnatal hematopoiesis, but
also the adaptation of these cells to their local microenvironment and their functional
identity. Understanding how TFs coordinate macrophage differentiation and function is
therefore crucial to decipher the mechanisms that govern macrophage diversity across
tissues and contexts.

Macrophage development is governed by three sets of distinct TFs: macrophage lineage-
determining, macrophage identity-imprinting and tissue specific macrophage identity-
imprinting TFs (Figure 1). These three groups of TFs form a collaborative-hierarchal network
that controls RTM differentiation and specialization. First, macrophage lineage-determining
TFs collaboratively bind and open chromatin regions in macrophages progenitors (priming).
Next, macrophage identity-imprinting TFs bind these primed genomic regions to establish a
core macrophage program in pre-macrophages. Finally, macrophage function-imprinting TFs
integrate microenvironmental cues and adapt the core program to perform tissue- or niche-
specific functions.

In this review, we aim to provide an updated overview on the transcriptional pathways that
govern the different stages of macrophage development, from lineage specification to
functional specification. A deeper understanding of the hierarchical TF network involved in
these processes will pave the way for macrophage-targeted strategies to promote health and

target diseases where macrophage (dys)functions have been implicated.

Macrophage lineage-determining transcription factors

RTMs develop in embryo and adults in a series of consecutive waves of differentiation (11).
At embryonic developmental day 7.0 (E7.0), erythro-myeloid progenitors (EMPs) are formed
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from blood islands and capillary endothelia in the yolk sac. EMPs give rise to pre-macrophages
(pre-Macs), that from E8.5-9.5 seed developing organs and differentiate into RTMs (12,13).
At E10.0-10.5, hematopoietic stem cells (HSC) arise from the hemogenic endothelium in the
aorta-gonad-mesonephros from where they seed the fetal liver at E11.5 (14-16). Within the
fetal liver, HSCs undergo significant expansion and give rise to different leucocyte lineages.
Before birth, HSCs migrate to the BM where they are maintained during life and constantly
give rise to the pool of circulating monocytes (17). After birth, circulating monocytes also
contribute to the RTM compartment at rates depending on the tissue of residence and the
nature and level of perturbations (18). During the different stages of development, the fate

of macrophage progenitors is committed by macrophage lineage-determining TFs.

The Ets-domain transcription factor Purine-rich box1 (PU.1; encoded by Spil) is considered
a master regulator of macrophage development and hematopoiesis in general. EMPs, yolk
sac-derived and fetal monocyte-derived RTMs are absent in embryos of Spil-deficient mice.
In addition, Spil~~ mice also lack T and B cells and die at E18.5, suggesting that PU.1 plays a
major role in the commitment to both myeloid and lymphoid progenitors (19). DeKoter and
Singh found that PU.1 could control myeloid or lymphoid progenitor fate in a concentration-
dependent manner (20). Low levels of PU.1 protein drives B cell development, while a high
concentration promotes macrophage differentiation and inhibits B cell formation. In
macrophage progenitors, PU.1 binds to the low-affinity binding sites only when its
concentration surpasses a specific threshold. PU.1 binding initiates nucleosome remodeling
resulting in open and active chromatin regions (21). Macrophage lineage fate is also
determined by the collaborative binding of PU.1, the CCAAT/enhancer binding proteins

(C/EBPs; C/EBPa and C/EBPB), and activator protein 1 (AP1) to open and activate
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macrophage-specific enhancers (21). c-Myb is a master regulator of hematopoiesis. While late
yolk sac—derived EMPs express c-Myb (22), genetic studies indicate that this expression
reflects their contribution to erythroid and other non-macrophage lineages. Indeed, Myb~~
embryos lack late EMP-derived lineages but still generate normal tissue-resident
macrophages (12,23). Consistently, Myb-deficient iPSC lines can differentiate into
macrophages, whereas Spil-deficient lines cannot, supporting that PU.1 but not c-Myb as a
non-redundant regulator of macrophage development (24). Thus, although c-Myb expression
is detected in EMPs, current evidence does not support a functional requirement for
macrophage differentiation. The TF Zeb2 is highly expressed in the hemogenic endothelium
of the aorta-gonad-mesonephros where embryonic HSC are formed and its expression is
maintained in adult HSCs (25). The lack of Zeb2 does not affect the migration of HSCs to the
fetal liver, however, Zeb2-deficient HSCs are unable to further differentiate into fetal
monocytes. In addition, inducible deletion of Zeb2 in adult mice with an Mx1¢ system results
in a reduction of B cell, dendritic cells and monocytes (26-28). Mice lacking an enhancer
located 165 kilobases (kb) upstream of the Zeb2 transcriptional start site (Zeb22-16%), have
reduced numbers of monocytes while RTM counts remained unaffected (29). However, RTMs
in Zeb22-16> mice are entirely from embryonic origin, suggesting that embryonic expression of

Zeb2 depends on the alternative +164-kb Zeb2 enhancer.

In conclusion, each differentiation wave giving rise to RTMs at different stages of
development are controlled by distinct TF that establish macrophage fate. However, in all
developmental stages, PU.1 plays a central role by acting as a pioneer that actively opens up
the chromatin at promoters and enhancers (poising), allowing the binding of additional TFs

that initiate and control the expression of genes involved in macrophage differentiation.
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Macrophage identity-imprinting transcription factors

RTMs are a heterogenous population with specific characteristics and functions inherent to
their tissue of residence. However, independent of their origin and tissue location, RTMs are
characterized by a core macrophage program that distinguishes them from other
mononuclear phagocytes (30,31). Such core macrophage program maintains macrophage
survival, notably trough the expression of Csf1r (encoding the Csfl receptor), and establishes
core functions, including efferocytosis (Timd4, Mertk and Sirpa, involved in apoptotic cell
clearance), non-opsonic phagocytosis (Cd14, Cd36, Clec7a and Mrc1, necessary for the direct
recognition of foreign particles), opsonic receptor-dependent phagocytosis (Fcgrl [coding for
CD64]), Fcgr3, Fcgrd and Itgam [coding for CD11b], essential for the ingestion of opsonized
pathogens) and complement-dependent tissue immunity (C1gb, C1qc and C3arl, encoding
key components of the complement pathway) (13,32). Of note, the establishment of this core
macrophage program is initiated early in macrophage progenitors upon tissue seeding and is

driven by a shared set of macrophage identity-imprinting TF (13,33—35).

Discovered in 1994 (36), Maf basic leucine zipper transcription factor B (MafB) is highly
expressed in myelomonocytic cells, including macrophages, and can contribute to monocytic
differentiation (37-39). Moreover, overexpression of MafB in transformed chicken
myeloblasts results in the formation of macrophages, suggesting that MafB is specific and
essential for macrophage development (38). Different studies using reporter mice, lineage-
tracing and transcriptome analyses found that MafB was highly expressed in RTMs,
distinguishing them from other mononuclear phagocytes, including dendritic cells (DCs) and

9
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monocytes (30,37,40-42). Yet, surprisingly, alveolar macrophages do not express MafB. In
RTMs, MafB can regulate F4/80 expression (40) and is involved in actin remodeling (43). In
addition, MafB is thought to play a key role in efferocytosis by directly regulating the
expression C1g complement genes (C1ga, C1gb, C1qgc) (44). MafB, in concert with c-Maf, can
also negatively control proliferation of differentiated macrophages by repressing the
expression of self-renewal genes such as Myc, KIf2 and Klf4 (42,45). MafB can indeed directly
inhibit active enhancers that drive the self-renewal program in RTM. In self-maintaining RTM,
such as AM that do not express MafB, it has been suggested that the absence of MafB would
stop the inhibition of self-renewal genes and allowing RTM to re-enter cell cycle (42).
However, other RTM known to self-maintain through proliferation, including Kupffer cells
(KCs) and MG, express high levels of MafB. In the lung, monocytes seeding an empty
interstitial macrophage (IM) niche can undergo a proliferation stage before differentiating in
IM, a transition that is regulated by MafB (35). Of note, expression of the core macrophage
genes CD64 and MerTK is substantially reduced in Mafb-deficient IM. In humans, Goudot et
al have shown that MAFB is highly expressed in monocyte-derived macrophages compared
to monocyte-derived DCs, while knockdown of MAFB favors mo-DC differentiation (46). Even
though it has been established that most RTM highly express MafB, the precise role of MafB

in imprinting macrophage identity remains unclear and would require more investigations.

While other macrophage identity-imprinting TFs have been proposed, including Zeb2, Batf3
and Irf8, their precise roles in macrophage differentiation and core functions are less clear
(13). For instance, Zeb2 expression, which is conserved in many RTMs, is required to imprint
tissue-specific identities and functions rather than a general macrophage identity (31).

Noteworthy, this was demonstrated by Cre-mediated deletion of Zeb2 using Cre lines that are
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more specific for terminally differentiated macrophages such as Clec4f<"¢ and Itgax“ for KCs
and AMs, respectively. Targeting Zeb2 during macrophage differentiation by using mice that
express Cre in macrophage progenitors (e.g. Lyz2¢¢ or Ms4a3¢¢) could provide more insight
on the role of Zeb2 as macrophage identity-imprinting TF.

Arguably, much remains to be explored regarding the transcriptional regulation of

macrophage core functions, particularly in defining the precise role of various TFs.

Tissue-specific macrophage identity-imprinting transcription factors

The tissue microenvironment is considered as a major determinant of RTM remarkable
functional diversity, which is thought to be controlled by dedicated TFs driving transcriptional
modules responsible for RTM specification (47—49) (Figure 2). In this section, we detail key
TFs involved in shaping the identity and function of RTMs across different organs, including
the peritoneum, liver, lung, brain, spleen, and skin, illustrating how niche-derived signals

converge on unique transcriptional programs to guide RTM specification.

Serous cavity macrophages

Two distinct RTM subsets have been identified in the peritoneal cavity: small peritoneal
macrophages (SPM) and large peritoneal macrophages (LPM). LPM are primarily
embryonically derived and express prototypical macrophage markers including F4/80 and
MerTK, while the monocyte-derived SPMs are characterized by the expression of MHC-II,
CD11c and CD226 (50-52). Both subsets express high levels of the TF CebpB. Notably,
Cebpb™~ mice exhibit increased numbers of SPMs but lack LPMs, while other RTM subsets in
the spleen, kidney, mesenteric lymph nodes, and liver are unaffected (53). Interestingly, wild-

11
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type SPMs transferred into Cebpb-deficient mice can differentiate into LPMs, highlighting an
intrinsic role for Cebpp in LPM identity (53). SPMs selectively express high levels of the TF
Interferon regulatory factor 4 (Irf4) in comparison with LPMs and RTMs form the spleen, lung
and brain (52). In the absence of Irf4, SPM numbers are reduced, and the expression of the
SPM identity gene Cd226 is lost (52). Compared to other RTMs, LPMs are characterized by the
expression of the TF Gata6 (30,54-56) and Gatab6 reporter mice have been used to study LPM
function (57). LPMs numbers are reduced in myeloid specific Gata6-deficient mice and Gata6
plays a key role in LPM localization, proliferation, survival and functional maturation (54-56).
Gatab directly regulates the expression of a number of LPM identity genes including Tgfb1,
Cd62p, Cd49f, and Cd73 (55). Interestingly, ex vivo cultured LPM rapidly lose the expression
of Gata6, which can be partially rescued by the addition of peritoneal lavage fluid or retinoic
acid (RA) (55,56). RA, produced from vitamin A by peritoneal adipose tissue (55), can be taken
up by LPMs and induces Gata6 via binding to the RA nuclear receptor B (RARPB), resulting in
the formation of a heterodimer complex with the retinoid X receptor (RXR) binding to RA
response element (47). Another key TF, Kriippel-like factor 2 (KIf2), is highly expressed in LPM.
Mice lacking KIf2 lack LPM, and KIf2-deficient bone marrow-derived macrophages (BMDMs)
fail to acquire the expression of LPM identity genes, including Icam2, Timd4, Cebpb, Mertk,
and Gata6, when transferred into the peritoneal cavity (58). Interestingly, in LPM, KIf2 binds
to promoters and enhancers of Cebpb, Gata6 and genes encoding the retinoic acid receptors
(Rara, Rarg, and Rxra), and its overexpression in BMDMs induces LPM identity in vitro. In
humans, transcriptional profiling has revealed that peritoneal macrophages also comprise
distinct subsets, although they differ from their murine counterparts. GATA6* macrophages,

abundant in mice, are far less prominent in adult humans and virtually absent in children (51).
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2 262 Instead, Irf4-dependent mouse SPM transcriptionally correspond with human
5

6 263 CD1c*CD14*CD64* peritoneal cells that express features of both macrophages and DCs.

7

8 264

9

10 i

11 265  Liver macrophages

12

13 266  The liver hosts the largest population of RTM in the body, consisting mostly of KCs, alongside
267  smaller populations of lipid-associated macrophages and capsule macrophages (59). KCs
18 268 reside in centrilobular and periportal regions, in close contact with sinusoidal endothelial
20 969 cells. KCs are involved in the clearance of foreign particles, pathogens and apoptotic cells, as
23 270 well as the metabolism of iron, bilirubin and cholesterol. During KC differentiation, pre-
25 271 Mac/monocytes start expressing the transcriptional regulators /d1 and /d3, and the TFs Irf7,
28 272  Nrlh3and Spic upon entering the fetal liver, suggesting their role in imprinting of KC-specific
30 273  identity (13). Genetic deletion of inhibitor of DNA 3 (Id3) results in reduced numbers of KC,
33 274  while MG and kidney resident macrophages remain unaffected (13). Compared to other RTM
35 275  subsets, the motif of liver X receptor-a (LXRa, encoded by Nr1h3) is enriched in KCs (48) and
276  even though the number of KCs is not affected in Nrih3-deficient mice, the expression of
40 277 many KC identity genes including Clec4f, Tim4, Cdh5 and Folr2 are significantly reduced in
42 278  Nrih37- KCs (31). The groups of Glass and Guilliams independently showed that KC identity
45 279 isinduced and maintained by Notch ligand DII4 and Bmp9 produced by sinusoidal endothelial
47 280 cells and hepatic stellate cells, respectively, and endogenous derived LXR ligands (33,34,59).
5o 281 Interaction of DIl4 with the Notch receptor on results in the activation of PU.1 and
52 282  recombination signal binding protein for immunoglobulin kappa J (RBPJ) poised enhancers,
55 283 allowing the expression of KC identity specific TFs including Nr1h3 and Spic (34). These TFs
57 284 reprogram the KC enhancer landscape so that other signal-dependent TF such as Bmp9

285 induced Smads can drive the expression of KC-specific genes. Of note, interactions of
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differentiating KC with hepatocytes induces Id3 expression (33). Human KCs also specifically

express high levels of NR1H3 and SPIC, consistent with findings in mice (60).

Lung macrophages

Two main RTM populations have been identified in the lung: AM and IM (8). By definition, IM
are located in the lung interstitium, while AM reside in the airway lumen. The main function
of AMs is the phagocytosis of pathogens and dust particles entering the lungs through
inhalation, and clearing lipoprotein-containing alveolar surfactant. Pparg is expressed in fetal
liver pre-Mac/monocytes that seed the alveoli and its expression is maintained in
differentiated AMs (13,61). Pparg-deficient mice have reduced numbers of AM, and develop
pulmonary alveolar proteinosis (PAP)—a condition characterized by surfactant accumulation
due to the lack of AM (61-63). In contrast, Ppary is not implicated in the development of RTMs
in the peritoneum, liver, brain, heart, kidneys, intestine and fat (63). In humans, it has been
shown that PAP is caused by mutations in the CSF2 receptor subunit o or B (64). Moreover,
Csf27/~ or Csf2rb”~ mice lack AM and develop PAP (5,64,65). Csf2 is mainly produced by
alveolar type Il epithelial cells (65), while AMs themselves produce Tgff in an autocrine
manner (66). Mice deficient for the TgfP receptor Il (Tgfbr2) have decreased numbers of AMs
and have an increased levels of surfactant protein in the bronchioalveolar lavage (66).
Interestingly, stimulation of BM-derived monocytes (67) or fetal monocytes (63,66) with Csf2
or TgfP induces the expression of Ppary. Additional TFs shown to be involved in AM identity
are Bach2, CebppB, Egr2 and KIf4. Mice with a genetic deletion for Bach2 develop PAP-like
accumulation of surfactant proteins, independently of the Csf2—Ppary signaling axis (68).
Apart from the previously mentioned reduction in LPMs, Cebpb™~ mice also have significantly

lower AMs numbers (53). Compared to other RTM, Egr2 is highly expressed in AM and
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condtional deletion of Egr2 results in the loss of AM-specific identity (69). In addition, EGR2
expression in AMs is induced by TgfB and Csf2 in a Ppary—dependent manner. Like Ppary,
compared to other RTM, KIf4 is also exclusively expressed in differentiating AMs (13). A recent
publication found a reduction in both frequency and number of AMs in KIf4-deficient mice,
while other myeloid cells remained unaffected (58). Moreover, AMs lacking KIf4 express lower
levels of AM markers CD11c, SiglecF, CD169, CD206 and PD-L1, and AM identity genes Car4,
Epcam and Mrcl. In humans, AMs display a transcriptional profile broadly conserved with

their murine counterparts, including high expression of PPARG and KLF4 (70,71).

IM are slowly replaced by monocytes in adults (35,72—74) and encompass two main subsets,
namely CD206~ (Lyvel°MHCIIM) IM and CD206* (Lyvel"MHCII®) IM, which exhibit gene
expression profiles and phenotypes, and occupy distinct niches (72,73,75,76). IM are thought
to exert immunoregulatory functions during allergic asthma (74,77-79), to modulate
inflammatory responses upon exposure to bleomycin (72), influenza virus (76) or bacteria
(74), to coordinate the organization of tertiary lymphoid structures (75) and, more recently,
to prevent premature aging of the lung (67). Compared to other lung mononuclear
phagocytes, IMs show high expression and activity of the TF MafB (8,35). IM numbers and the
expression IM identity genes (Pf4, Tmem119, Apoe, C1q, Cd63) were significantly lower in
Mafb-deficient mice, although it remains unclear whether this this reflects general or IM-
specific effects. We recently found that Tgff31, released from blood vessel endothelial cells,
could act in concert with Csf-1 to trigger MafB, the IM identity markers Tmem119, Cx3crl and
Clgs, as well as IM development from monocytes (67). We have generated a transcriptomic
atlas of IM subset differentiation and found that c-Maf was specifically expressed in the along

the lineage giving rise to CD206* IM (35), and Maf-deficient IMs exhibited decreased
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expression of the CD206* IM identity genes Folr2 and Pf4. A recent study proposed the
existence of 10 distinct IM subsets, each defined by chemokine expression and potentially

governed by distinct TF networks, although this would require further formal validation (75).

Brain macrophages

MG, the predominant population of RTM of the central nervous system (CNS), are
embryonically derived and are involved in maintaining CNS homeostasis by continuously
surveying neuronal synapses and contributing to the development of neural circuits via
synaptic pruning (80). In addition to MG, the CNS harbors other long-lived resident
macrophages, collectively referred to as border-associated macrophages (BAMs). BAMs are
located at the interfaces of the CNS, including the meninges, perivascular spaces, and choroid
plexus, where they act as sentinels regulating barrier integrity, cerebrospinal fluid dynamics,
and immune cell trafficking. The Spalt like transcription factor 1 (Sall1) is specifically expressed
in MG (13,48) and Sall1-deficient MG have a lower expression of MG signature genes, while
the expression of other RTM specific identity genes was higher in Sall1-deficient MG (81).
These observations suggest a key role for Salll in MG identity imprinting. Recently, the group
of Glass identified a super enhancer located 300 kb upstream of the Salll transcription start
site which regulates the expression of Salll in MG (82). This study also showed that Salll
actively primes enhancers of MG specific genes to allow binding of Smad4, which in turn
drives the expression of these genes. In addition, Smad4 also regulates the expression of Salll
by binding to the Salll super enhancer. Tgfp signaling is thought to plays a critical role in MG
identity (81,83), possibly by directly activating Smad4 and inducing Salll (82). In parallel, Irf8
is indispensable for MG development and maintenance. Irf8/~ mice exhibit markedly reduced

microglial numbers and impaired maturation (84). Mechanistically, Irf8 cooperates with PU.1
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to shape the microglial enhancer landscape and promote the expression of MG-specific genes
such as Cx3crl, Salll, Trem2, and P2ry12 (85—-87). Furthermore, compared MG during
embryogenesis and in neonates MafB is highly expressed in adult MG. Deletion of MafB in
MG revealed a reduced expression of genes associated with the late adult stage of MG
development, such as Ctsh and Pmepal, highlighting its role in maintaining MG homeostasis
(88). Similar to their murine counterparts, human microglia exhibit a gene regulatory network

dominated by SALL1 and IRF8 (60).

Splenic macrophages

The spleen consists of white pulp and the red pulp, separated by the marginal zone. The red
pulp harbors RPMs, which can degrade senescent red blood cells (RBCs) and recycle Heme-
associated iron, while marginal zone macrophages (MZMs) and marginal metallophilic
macrophages (MMMs) are located in the marginal zone (89). RPM exclusively express the TF
Spi-C (48,90,91), and Spic”~ mice lack RPM, while monocytes and other RTM counts remain
unaffected (90,91). Of note, senescent RBCs are normally captured in spleens of Spic”~ mice,
but fail to be cleared by RPMs resulting in Heme-bound iron accumulation localized
specifically in the red pulp (91). In monocytes, Spi-C expression is inhibited by the
transcriptional repressor Bachl (90), but upon erythrophagocytosis, heme release results in
heme-dependent Bachl proteasomal degradation, enabling Spi-C expression (78)(90). 1133
together with heme induce the expression of Spi-C in BMDMs (92). Moreover, mice lacking
1133 or its receptor ll1rl1 have reduced numbers of RPM, and exhibit impaired iron recycling
and elevated iron accumulation in the spleen. The TF Gata6 is downregulated in //1rl/1-
deficient RPMs, suggesting that Gataé6 is involved in the differentiation of monocytes to RPMs.

Noteworthy, RBCs serve as a main source of 1133. RPM also express Ppary and Pparg-deficient
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mice have reduced numbers of RPMs (61). The nuclear receptor LXRa is essential for the
differentiation of macrophages in the marginal zone of the spleen as LXR-deficient mice lack

MZM and MMM (93).

Skin macrophages

The skin consists of three layers: the epidermis, an outermost layer of stratified epithelium;
the dermis, the middle connective tissue—rich layer; and the hypodermis, a bottom layer
composed mainly of adipose tissue. Langerhans cells (LCs), which are embryonically derived
and reside in the epidermis, act as antigen-presenting cells and were long considered a subset
of dendritic cells. In contrast, the dermis harbors several macrophage populations. Early
studies identified two main subsets of dermal macrophages (DMs), MHC-II" and MHC-II* DMs
(94). Recent single-cell and fate-mapping studies have refined our understanding of DMs
(72,95,96). DMs can be segregated into distinct transcriptionally defined subsets based on
anatomical localization and functional specialization. Lyve1"MHC-II"°Cx3cr1'c DMs (MHC-II-
DMs) reside in close association with blood vessels and are therefore termed perivascular
macrophages (72). In contrast, Lyve1°MHC-II"Cx3cr1h DMs (MHC-II* DMs) sit near sensory
nerve fibers (95), and sensory neurons can shape the identity of these MHC-1I* DMs through
TgfB signaling (96). In turn, MHC-II* DMs contribute to nerve regeneration after injury,
highlighting the reciprocal communication between the nervous system and DMs (95). During
LC differentiation, macrophage progenitors that seed the skin in both humans and mice highly
express RUNX3/Runx3 (13,60), and Runx37 mice are deficient for LCs (97). TgfB induces the
expression of Runx3 and, Tgfb”~ mice also lack LCs (97,98). Furthermore, TgfB signaling
regulates the expression of /d2, and LCs are absent in /d27~ mice, suggesting that TgfP plays

a key role in LC differentiation and maintenance.
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Beyond steady-state: macrophage transcriptional dynamics during tissue
perturbation

In disease contexts such as infection, injury or cancer, RTMs can undergo transcriptional
reprogramming in response to altered environmental cues, leading to functional adaptations
that may support either recovery or pathology. In parallel, circulating monocytes can be
recruited into the affected tissue, where they differentiate into macrophages. Such recruited
cells exhibit high plasticity, enabling them to integrate a wide array of local signals, including
inflammatory mediators, stress responses, oxygen and nutrient availability, as well as niche-
derived factors (2,99-102). Accordingly, the transcriptional regulation of monocyte-to-
macrophage differentiation is thought to be finely tuned in a spatially and temporally dynamic
manner, tailored to the nature and evolution of the perturbation. While this review does not
aim to provide an exhaustive overview of macrophage dynamics in disease, we discuss a few
examples of resident and recruited tumor-associated macrophage (TAM) transcriptional
(re)programming to illustrate how transcriptional regulators can shape macrophage identity
and function in tumors (10,103).

TAMs are the most abundant cell type in glioblastoma (GBM), the most aggressive tumor in
the central nervous system, and they encompass a heterogeneous mixture of recruited
macrophages and transcriptionally reprogrammed MG (104,105). In both in vitro and in vivo
mouse models of GBM, GBM-initiating cells can specifically activate mTOR signaling in MG,
but not in BMDMs. Such mTOR activation enhances the activity of Stat3 and NF-kB, driving
MG toward an immunosuppressive state. As a result, MG can limit the infiltration,
proliferation, and activity of effector T cells within the tumor, helping the tumor escape
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immune surveillance and supporting its growth (106). Inhibiting the mTOR pathway or its
downstream effectors Stat3 and NF-kB in MG may thus recondition them toward a more pro-
inflammatory, anti-tumor state. In addition, MG that engulf glioblastoma-derived
extracellular vesicles undergo profound transcriptional changes, notably marked by the
downregulation of homeostatic signaling pathways such as Tgf and Smad3 (107). In human
mesenchymal GBM, TAMs that promote tumor progression are suggested to be regulated by
TFs including Ppary, Spil, and Batf (108). Similarly, in melanoma brain metastasis, MG
undergo RELA/NF-kB—dependent transcriptional reprogramming that supports metastatic
progression, and targeting this pathway has been shown to enhance antitumor immunity and
improve responses to immunotherapy (109). These findings highlight the extensive
transcriptional reprogramming of MG in tumors and the potential of targeting specific TFs to
redirect their function in the tumor microenvironment.

In the liver, specific targeting of KCs resulted in higher tumor engraftment in the liver and
metastasis, and the expression of KC-intrinsic Id3 was shown to control tumor cell
phagocytosis by KCs and a KC peritumoural niche orchestrating anti-tumor immunity (110).
Analyses of human liver metastases supported high ID3 expression and engulfment of tumor
material by peritumoral liver KCs, supporting the translational relevance of these findings
(110). In a model of liver metastasis, loss of resident KCs within tumors impaired cancer
control (26), and bacterial-mediated in situ gene editing to simultaneously disrupt c-Maf and
MafB in KCs promoted their expansion and reprogramming, leading to improved control of
metastatic liver cancer (111).

Several TFs have also emerged as regulators of recruited TAMs. Among these, c-Maf has
been shown to drive an immunosuppressive phenotype in BMDMs and is highly expressed in

TAMs sorted from subcutaneous Lewis Lung Carcinoma tumors and in tumor-infiltrating
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monocytes and macrophages from non-small cell lung cancer patients (112). Knockdown of
c-Maf reduced the tumor-promoting activities of TAMs, and c-Maf conditional deletion in lung
myeloid cells using the Lyz2-Cre driver line triggered delayed tumor growth and enhanced
antitumor immunity in the same model (112). Notably, pharmacological inhibition of c-Maf
using a small molecule inhibitor showed some therapeutic benefit for overcoming resistance
to anti-PD1 treatment. In a pancreatic ductal adenocarcinoma model, monocytes were shown
to differentiate into a transient TAM population that could generate transcriptionally,
phenotypically and spatially distinct TAM subsets (103). One of these subsets, enriched in
hypoxic tumor regions, was regulated by c-Maf and associated with poor patient prognosis,
although c-Maf deletion did not affect tumor growth in mice (103). Similarly, in lung
adenocarcinoma, a high density of c-Maf-positive macrophages correlated with poor
prognosis (113).

The transcription factors Irf8 and Ets2 were also predicted to be active in c-Maf-dependent
monocyte-derived TAMs in pancreatic cancer (103). Irf8 has been shown to drive an antigen-
presenting cell program in TAMs recruited to a mouse mammary tumor virus—polyoma
middle tumor-antigen breast cancer model, thereby promoting cytotoxic T cell exhaustion
and tumor progression. Deletion of Irf8 in TAMs prevented cytotoxic T lymphocyte exhaustion
and led to reduced tumor growth (114). In the same spontaneous model, as well as in
additional orthotopic models, myeloid-specific deletion of Ets2 resulted in decreased lung
metastasis. Mechanistically, Ets2 was found to repress a transcriptional program that includes
several well-characterized inhibitors of angiogenesis (114). Together, these findings illustrate
how transcriptional regulators such as c-Maf, Irf8, and Ets2 cooperate to shape the pro-

tumoral functions of recruited TAMs through distinct but complementary mechanisms.
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Conclusion

Macrophages exhibit extraordinary diversity in origin, phenotype, and function. Central to
this diversity is a dynamic and hierarchical network of TFs that orchestrates macrophage
development, core macrophage programs and macrophage subset functional specification.
From homeostasis to responses in disease contexts, TFs act as critical molecular integrators
of environmental signals, directing context-specific gene expression programs. Future efforts
to unravel how individual and combinatorial TF activities regulate macrophage states will
deepen our understanding of macrophage biology but also inform innovative strategies to

modulate macrophage functions in health and disease.
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Figure legends

Figure 1. Collaborative-hierarchal model of TF binding during macrophage development. In
macrophage progenitors, LDTFs bind cooperatively to actively open chromatin and
poise/prime enhancers of macrophage specific genes. When macrophage progenitors seed
the tissue, MITFs are recruited to poised enhancers to rapidly initiate a core macrophage
program common to most macrophages. Local niche-derived factors than activate RITFs and
RFTFs to adapt this core macrophage program and to imprint tissue specific RTM identity and
function. EMP, erythro-myeloid progenitor; HSC, hematopoietic stem cell; LDTF, lineage-
determining transcription factor; Mac, macrophage; MITF, macrophage identity imprinting
transcription factor; Mo, monocyte; pre-Mac, pre-macrophage; RTM, resident tissue
macrophage; RITF, RTM identity-imprinting transcription factor; RFTF, RTM function-

imprinting transcription factor. Figure was created in BioRender.
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Figure 2. Transcriptional regulation of tissue specific macrophage identity and function. AM,
alveolar macrophage; BAM, border associated macrophage; DM, dermal macrophage; IM,
interstitial macrophage; KC, Kupffer cell; LC, Langerhans cell; LDTF, lineage-determining
transcription factor; LPM, large peritoneal macrophage; Mac, macrophage; MG, microglia;
MITF, macrophage identity imprinting transcription factor; MMM, marginal metallophilic
macrophage; Mo, monocyte; MZM, marginal zone macrophage; pre-Mac, pre-macrophage;
RTM, resident tissue macrophage; RITF, RTM identity-imprinting transcription factor; RFTF,
RTM function-imprinting transcription factor; RPM, red pulp macrophage; SPM, small

peritoneal macrophage. Figure was created in BioRender.
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