
Aperiodic Tiling and Rhythmic Canons: A CP Journey

Guillaume Derval1, Christophe Lecoutre2

1University of Liège, Montefiore Institute, Smart Grids Lab, Liège, Belgium
2Univ. Artois & CNRS, CRIL, Lens, France

gderval@uliege.be, lecoutre@cril.fr

Abstract

The Aperiodic Tiling Complements Problem (ATCP) in-
volves finding the full set of (normalized) aperiodic comple-
ments of a given pattern. This has become a classic problem
in music theory, with some recent attempts to model it using
Integer Linear Programming (ILP) and Boolean Satisfiabil-
ity (SAT) frameworks. In this paper, we develop and compare
different models of ATCP encoded with Constraint Program-
ming (CP). The most effective approach admits two phases: a
first one that allows us to merge (join) several subsets of lin-
ear constraints under the form of tables with large arity, and
a second one that advantageously exploits the generated ta-
bles to discard periodic tiling complements. Our experimental
results show that our approach significantly outperforms the
state-of-the-art, solving every instance of a classical bench-
mark (standard Vuza rhythms for canons with periods set up
to 900) in a time between 5 seconds and 2 minutes (except
the largest instance being solved in 18 minutes).

1 Introduction
The art of composing music undoubtedly dates back a long
way in human evolution. Interestingly, music has a close
relationship with mathematics. While music is not (solely)
the pursuit of mathematical perfection, composers generally
seek (above all) solutions to problems of harmony, melody
and rhythm. For Johann Sebastian Bach, the foundation of
musical creation is the counterpoint. This is the science of
superimposing two (or more) phrases, point-to-point, which
complement each other in their behavior.

Since the advent of the digital world, modern composers
have had access to tools that are, for the most part, beneficial
(and, perhaps, occasionally detrimental). The first example
of the use of computers for musical creation (actually, ran-
dom processes) appears to date back to 1957, when Hiller
and Isaacson introduced the Illiac Suite (a string quartet).
Since then, numerous works have been carried out combin-
ing music and mathematics (and/or computational tasks),
with many interesting questions and problems studied and
disseminated in the literature.

Constraint Programming (CP) has been shown to be an
appropriate technology for the computational modeling of

Copyright © 2026, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

music theories and composition (Pachet and Roy 2001; An-
ders and Miranda 2011; Pachet et al. 2015). This has led
to the development of several systems (Zimmermann 2001;
Truchet and Codognet 2004; Sandred 2010; Anders 2018).

Since Dan Tudor Vuza (1991-93) established the theoret-
ical foundations of Tiling Rhythmic Canons, the computa-
tional aspects of this musical model have been investigated.
In particular, the count of the number of possible rhythmic
patterns that tile the time horizon by translation while avoid-
ing periodicity has been examined. More specifically, the
problem can be stated as follows: given an integer n denot-
ing the time period, we want exactly one of the two possible
voices (denoted A and B) to play at every time instant t in
the integer time interval ranging from 0 to n − 1. A tiling
rhythmic canon is then defined as a pair of sets, A and B,
such that A ⊆ Zn, B ⊆ Zn, and for every t ∈ Zn, there ex-
ists a unique pair, (a, b) ∈ A×B, such that a+b mod n = t,
where Zn = {0, 1, . . . , n− 1}. While it is easy to find tiling
canons in which at least one voice is periodic (i.e., it repeats
a shorter rhythm), the most computationally complex canons
are those in which both voices are aperiodic.

The Aperiodic Tiling Complements Problem (ATCP) in-
volves computing the full set of (normalized) aperiodic com-
plements of a given set (rhythm or inner voice) A. The most
recent approaches to solving the ATCP are based on dif-
ferent paradigms. The first of these is the Fill-Out proce-
dure, which was introduced in (Kolountzakis and Matolcsi
2009): it relies on a heuristic that expands a complement
of the first (inner) voice A step by step. However, a post-
processing step is necessary to discard periodic solutions
and symmetrical solutions. An Integer Linear Programming
(ILP) model was proposed in (Auricchio, Ferrarini, and Lan-
zarotto 2023), based on the polynomial characterization of
tiling canons. As some constraints are dynamically added
when canons are found, no post-processing step is required.
Finally, this ILP model was revisited and an original SAT en-
coding was proposed in (Auricchio et al. 2024). The SAT ap-
proach substantially outperforms the other approaches. Al-
most all instances in a representative benchmark, including
various rhythms and periods, have been solved. With the
most effective SAT model, combined with the right level of
decomposition and parallelization, only 2 instances of this
benchmark remained unsolved within 3 hours, and one in-
stance took 2, 226 seconds.

In this paper, we show how all instances of this bench-
mark can be solved using a CP approach, each in less than
2 minutes (except for a single one in 18 minutes); for some
instances, our approach is at least two orders of magnitude
faster than the state-of-the-art.

2 Problem Description
The rhythmic canons problem can be seen as the problem of
tiling integer intervals. Let n be a positive integer (denoting
the period of a canon), Zn = {0, 1, . . . , n− 1} be the cyclic
group of remainder1 classes modulo n, and Z+

n = Zn \ {0}.
Subsets of Zn are called rhythms. Given two rhythms, A ⊆
Zn, called the inner voice, and B ⊆ Zn, the outer voice,
we want to ensure that they together tile Zn.
Definition 1. Let A,B ⊆ Zn. A and B are said to tile Zn if

∃!(a, b) ∈ A×B : a+ b = z (mod n) ∀z ∈ Zn,

i.e. if every integer is the sum of a single pair of elements in
A and B. Equivalently, A and B tile Zn if

|A| · |B| = |Zn| and A⊕B = Zn.

where A⊕B = {a+ b | a ∈ A, b ∈ B}. If A and B tile Zn,
the tuple (A,B) is said to be a tiling rhythmic canon with
period n.
Example 1. For n = 9 and A = {0, 3, 6}, one can
observe that B = {0, 1, 5} is a tiling complement of
A. This is because A ⊕ B = {0, 3, 6} ⊕ {0, 1, 5} =
{0, 1, 5, 3, 4, 8, 6, 7, 11%9} = {0, 1, 2, 3, 4, 5, 6, 7, 8} = Z9.

Concerning notations, the size of a set (usually, denoted
by a single upper-case letter) will be denoted by the same let-
ter in a monospaced lower-case font. For example, the sizes
of A and B will be denoted by a and b.

In this article, we are interested in finding aperiodic
rhythms. Periodic rhythms are less interesting because they
are less structured and less computationally challenging, as
discussed in (Kolountzakis and Matolcsi 2009). Aperiodic-
ity is defined from the concept of translation. The notation
A + z, where A ⊆ Zn and z is an integer, corresponds to a
translation (everything taken modulo n) defined as follows:

A+ z = {a+ z mod n | a ∈ A}.

Definition 2. A rhythm A ⊆ Zn is periodic modulo a value
z ∈ Z+

n iff A+ z = A, i.e., if translated by z (different from
0), we find A. A rhythm A ⊆ Zn is periodic if there exists
at least one value z ∈ Z+

n such that A is periodic modulo z,
aperiodic otherwise.
Definition 3. A tiling rhythmic canon (A,B) is a Vuza
canon if both A and B are aperiodic.

As indicated in (Auricchio et al. 2024), checking whether
or not a rhythm is periodic is equivalent to checking whether
or not there exists a value d in the set of maximal divisors
of n such that the rhythm is periodic modulo d; this set is
denoted by Dn (or D when the context is unambiguous).
For example, for n = 144, we have Dn = {48, 72} and for
n = 420, we have Dn = {60, 84, 140, 210}.

1Throughout the paper, all operations are performed modulo n.

Another important property is that the tiling property is
invariant under translation. That is, for any integers za, zb,
if A and B tile Zn, then A + za and B + zb tile Zn. This
leads to equivalence classes. For a given inner voice A, an
outer voice B is equivalent to (at most if periodic, exactly if
aperiodic) n other distinct rhythms: its translations. In this
paper, we use multiple equivalence classes, depending on
the context. The first one is an equivalence class where the
representative is defined as the lexicographically smallest el-
ement among all possible translations.

Definition 4. Given A ⊆ Zn, Ã is the lexicographically
smallest element of the translation-based equivalence class
containing A: Ã = minlex{A+k | k ∈ Zn}. If a set A = Ã,
A is said to be l-normalized.

Here, it is assumed that sets are naturally ordered. For n =
9 and A = {0, 1, 5}, we have A + 0 = {0, 1, 5}, A + 4 =
{0, 4, 5}, A+8 = {0, 4, 8}, while all other translations A+
k, for k ∈ Z9 \ {0, 4, 8} do not contain 0 (and so, cannot
be representatives). Hence Ã = A. We also use this second
equivalence class:

Definition 5. Given A ⊆ Zn, Ǎ is the translation of A such
that its additive inverse −Ǎ = {n − a mod n | a ∈ Ǎ}
is the lexicographically largest element of the equivalence
class containing −A: −Ǎ = maxlex{−A+ k | k ∈ Zn}. If
a set A = Ǎ, A is said to be r-normalized.

Note that 0 is always a member of a l- or r-normalized
rhythm. We can now define the subject of our study: model-
ing and solving the Aperiodic Tiling Complements Problem.

Definition 6. Given a period n and a rhythm A ⊆ Zn,
the Aperiodic Tiling Complements Problem (ATCP) involves
finding all normalized aperiodic complements B of A, i.e.,
all rhythms B ⊆ Zn that are both aperiodic and normalized
and such that A and B tile Zn.

The term normalized either indicates l-normalized or r-
normalized. Solving the ATCP by finding all l-normalized
complements B̃ is equivalent up to a translation to finding
all r-normalized complements B̌, and vice versa.

3 The Journey
To solve the ATCP, we opted for constraint programming.
This involved testing various ideas, which resulted in differ-
ent models. Here, we describe this process, the journey to
our final solution, explaining the strengths and limitations of
each new step.

Constraint Programming. Constraint Programming
(CP) is used to model and solve instances of the Constraint
Satisfaction Problem (CSP), which are defined by constraint
networks. A Constraint Network (CN) consists of a finite
set of variables subject to a finite set of constraints. Each
variable x can take a value from a finite set (of integers)
dom(x) called the domain of x. Each constraint c is
specified by a relation that is defined over (the Cartesian
product of the domains of) a subset of variables (called the
scope of the constraint); the arity of a constraint c is the
number of variables involved in c. A solution of a CN is

the assignment of a value to every variable such that all
constraints are satisfied. In the literature, there exist many
forms of constraints with specific semantics; they are called
global constraints. However, CP solvers usually recognize
the same kernel of popular constraints (around 20 global
constraints, including their variants). In our context, we
shall need five global constraints:

• The constraint Sum is certainly the most recurrent con-
straint. Its general form is

∑
i∈1..r ci × xi ⊙ k where ci

is an integer, xi a variable, ⊙ a relational operator (for
example, ≤), and k an integer (limit).

• The constraint AllDifferent is also frequently used,
and well known (Régin 1994; van Hoeve 2001; Gent,
Miguel, and Nightingale 2008). It ensures that the vari-
ables in a specified list must all take different values.

• The constraint Lex (Carlsson and Beldiceanu 2002;
Frisch et al. 2002) ensures that the tuple formed by the
values assigned to the variables of a first list is related
to the tuple formed by the values assigned to the vari-
ables of a second list with respect to a lexicographic order
operator, such as, e.g., <lex. For example the constraint
⟨x1, x2, x3⟩ <lex ⟨y1, y2, y3⟩ is satisfied if x1, x2, y1 are
assigned to 0 and y2 is assigned to 1 (whatever the values
assigned to x3 and y3).

• The constraint NValues (Bessiere et al. 2006), ensures
that the number of distinct values taken by the variables
of a specified list respects a numerical condition. For ex-
ample, NValues(x1, x2, x3, x4) < 2 is satisfied if x1 and
x2 are assigned to 0 while x3 and x4 are assigned to 1.

• The constraint Table is defined by enumerating in a
set the tuples of values that are allowed for a sequence
of variables. Some algorithms for table constraints are
STR2 (Lecoutre 2011) and CT (Demeulenaere et al.
2016; Verhaeghe, Lecoutre, and Schaus 2017).

Experimental Environment. At the time this paper was
written, the state-of-the-art was the SAT approach described
in (Auricchio et al. 2024). We reused their dataset, com-
posed of 36 instances with a time horizon n ranging from 72
to 900. Some of these instances are classical ones by Vuza
(1991-93), Fripertinger (2005), Amiot (2009), Kolountza-
kis and Matolcsi (2009). While introducing successive mod-
els, we compare our experimental results with those in (Au-
ricchio et al. 2024) (denoted by SOTA, standing for state-
of-the-art). In our approach, all models have been written
with the Python library PyCSP3 (Lecoutre and Szczepanski
2020), and all instances are solved with the Java constraint
solver ACE (Lecoutre 2023). From the dataset, we excluded
instance 29, which has trillions of solutions which are obvi-
ously not enumerable in our lifetime.

The machine is powered by an Intel Xeon Gold 6140 CPU
@2.30GHz with 252 GB of RAM. Each solver is given a
single thread.

3.1 First Model with Integer Domains
A straightforward way to start writing a model for the ATCP
(Aperiodic Tiling Complements Problem) is to introduce an
array x of b integer variables that represent the set B that

Instances Solving time (s)

n a # sols Model m1 SOTA

1 72 6 6 2.11 0.00
2 108 6 252 124.10 0.10
3 120 6 18 103.80 0.01
4 120 10 20 7.34 0.01
5 144 6 36 271.20 0.02
6 144 6 8640 11.88
7 144 12 6 11.50 0.00
8 144 12 60 29.00 0.02
9 168 6 54 0.04

10 168 14 42 30.70 0.02
11 180 6 2052 2.84
12 180 6 96 0.07
13 180 10 1800 1.39
14 180 15 120 75.10 0.05

Table 1: Solving times (in seconds) obtained with the first
model and SOTA on the first 14 instances of our benchmark.
Blank values indicate a timeout after 300 seconds.

must be computed: xi ∈ X is the ith value of a normalized
aperiodic tiling complement B of A (which is given as in-
put); we have dom(xi) = Zn,∀i ∈ 1..b. A basic CP model
is then obtained by:

• ensuring that B is the outer voice of a tiling rhythmic
canon with inner voice A by posting a single constraint
AllDifferent on all expressions of the form ai + xj (for
any i and for any j); see Equation (m1.1),

• ensuring that B is an aperiodic rhythm by posting a con-
straint NValues per maximal divisor d of n; see Equation
(m1.2). If there are more than b distinct values, it means
that B is not periodic with respect to the divisor d.

AllDifferent(ai + xj : i ∈ 1..a ∧ j ∈ 1..b) (m1.1)
NValues(x1, . . . , xb, x1 + d, . . . , xb + d) > b ∀d ∈ D (m1.2)
xi ∈ Zn ∀i ∈ 1..b (m1.3)

To ensure normalization (we are looking for l-normalized
rhythms), we need to post some symmetry-breaking con-
straints. This is made possible by introducing first a two-
dimensional array y of variables: yk,i is the ith value of
the kth tiling complement equivalent to x under translation
that contains 0; there are b-1 such translations. We have
dom(yk,i) = Zn,∀k ∈ 1..b-1,∀i ∈ 1..b. Symmetries are
broken by: (i) ensuring values are strictly ordered in x (and,
so, in B), see Equation (m1.4), (ii) computing the transla-
tions of B, see Equations (m1.5) and (m1.6), (iii) ensuring
that B is lexicographically strictly less than any of its trans-
lations, see Equation (m1.7).

xi < xi+1 ∀i ∈ 1..b-1 (m1.4)
yk,1 = n− xk+1 ∧ yk,k+1 = 0 ∀k ∈ 1..b-1 (m1.5)

yk,i = xi + yk,1 ∀k ∈ 1..b-1, (m1.6)
∀i ∈ 2..b | i ̸= k + 1

x ≺lex ⟨yk,k+1, . . . , yk,k+1+b⟩ ∀k ∈ 1..b-1 (m1.7)
yk,i ∈ Zn ∀k ∈ 1..b-1,∀i ∈ 1..b (m1.8)

These constraints imply that x1 = 0, which can then be
added to the model as a redundant (symmetry-breaking)
constraint.

The results obtained using this model for the easiest in-
stances are shown in Table 1. Compared to the SOTA, it
behaves quite poorly since, within 300 seconds, it can only
solve 9 instances out of the 35 instances of the dataset. There
are multiple factors that certainly explain these poor perfor-
mances: (a) the d constraints NValues are costly to prop-
agate, (b) the constraint AllDifferent works best when
the variables nearly form a permutation; here the number of
variables is by far smaller than the number of values (i.e., b
≪ n), (c) there are b2 variables, each with a domain of size
n, for a total of b2 × n values that must be maintained by
the solver.

3.2 Second Model with Binary Representations
In (Auricchio, Ferrarini, and Lanzarotto 2023; Auricchio
et al. 2024), several ILP models and SAT encodings are pro-
posed for the ATCP. The key element of these approaches is
a one-dimensional array y of n variables 0/1 that represents
the characteristic vector of set B: yi is 1 iff i ∈ B; we have
dom(yi) = {0, 1},∀i ∈ 0..n − 1. In this model, there are
thus only 2n values to be maintained by the solver.

Interestingly, it is possible to build a CP model in a much
more direct and easier way than that required for encoding
tiling, aperiodicity and normalization constraints in ILP and
SAT frameworks. Indeed, ensuring both aperiodicity and
normalization is made possible by imposing a lexicographic
order on (inversed) characteristic vectors. More specifically,
this actually corresponds to impose that rev(y) is a Lyndon
word, where a Lyndon word (Lyndon 1954) is a nonempty
string that is strictly smaller in lexicographic order than all
of its rotations (circular shifts) and rev() is a function that
reverses vectors.
Definition 7. A 01-Lyndon word of length n is a vector of
length n containing only values 0 and 1, which is the unique
minimum element in the lexicographical ordering in the mul-
tiset of all its rotations.

For example, 011 is a Lyndon word because 011 <lex 110
and 011 <lex 101. Because a Lyndon word is unique in
the multiset of its rotations, this implies that a Lyndon word
differs from any of its nontrivial rotations, and is therefore
aperiodic. Thus, there is a very interesting link between nor-
malized aperiodic rhythms and Lyndon words.
Proposition 1. A rhythm B ⊆ Zn is both aperiodic and
r-normalized iff rev(B01) is a Lyndon word (of length n)
where B01 is the representation of B as a 01 vector (B01

i =
1 ⇐⇒ i ∈ B).

We omit the formal proof. For our model, ensuring that
rev(y) is a Lyndon word also guarantees that y is the 01
vector of a (r-)normalized aperiodic rhythm. To implement
this, we can post n − 1 constraints Lex. Interestingly, we
can reduce the arity (number of involved variables) of such
constraints as we have the following property:
Proposition 2. A word w is a Lyndon word if and only if it
is lexicographically strictly smaller than any of its suffixes.
Example 2. Given a rhythm B = {0, 2, 3} over Z6, its
01-representation is B01 = [1, 0, 1, 1, 0, 0], and its reverse
is rev(B01) = [0, 0, 1, 1, 0, 1]. If we were to prove that

rev(B01) is a Lyndon word without using Proposition 2, we
would need to check that:

[0, 0, 1, 1, 0, 1] <lex [0, 1, 1, 0, 1, 0]

[0, 0, 1, 1, 0, 1] <lex [1, 1, 0, 1, 0, 0]

[0, 0, 1, 1, 0, 1] <lex [1, 0, 1, 0, 0, 1]

[0, 0, 1, 1, 0, 1] <lex [0, 1, 0, 0, 1, 1]

[0, 0, 1, 1, 0, 1] <lex [1, 0, 0, 1, 1, 0]

With Proposition 2, it is sufficient to check that each prefix of
rev(B01) is strictly smaller than the suffix of the same size:

[0] <lex [1]

[0, 0] <lex [0, 1]

[0, 0, 1] <lex [1, 0, 1]

[0, 0, 1, 1] <lex [1, 1, 0, 1]

[0, 0, 1, 1, 0] <lex [0, 1, 1, 0, 1]

which reduces the number of comparisons.
Moreover, we can derive a property concerning the mini-

mum number of consecutive trailing zeros in any solution.
Theorem 3. Let w be a 01-Lyndon word of size n containing
k (> 0) occurrences of value 1. The first ⌈n−k

k ⌉ values in the
vector (word) are equal to 0 and the last value of the vector
is equal to 1.

Proof. As w is a Lyndon word, the largest consecutive series
(circularly) of 0 must be at the start of the word. Moreover,
it must end with a 1. Note that n − k is the number of 0 in
w. In the worst case, two occurrences of 1 (there are k such
pairs, circularly) must thus be separated by a n−k

k series of
0s. In the case where n−k is not divisible by k, one of these
series of 0 must be longer than the others.

Theorem 3 can be directly applied to our model. The array
of variables y, when the reverse-Lyndon-word property is
enforced, must start with a 1 (B contains 0) and must end
with (at least) ⌈n−b

b ⌉ 0s (B does not contain n − 1, n −
2, . . . , n− ⌈n−b

b ⌉). This leads to the following constraints:
y0 = 1 (m2.1)

yi = 0 ∀i ∈ n− ⌈n− b

b
⌉..n− 1 (m2.2)∑

i∈0..n−1

yi = b (m2.3)

⟨yn−1, . . . , yn−i⟩ <lex ⟨yi−1, . . . , y0⟩ ∀i ∈ 1..n− 1 (m2.4)
yi ∈ {0, 1} ∀i ∈ 0..n− 1 (m2.5)

Tiling remains to be enforced in our model. This can be
done with circulant matrices. Given a period n and a rhythm
A ⊆ Zn, let A01 = ⟨a0, . . . , an−1⟩ be the characteristic
vector of A, where ai = 1 if i ∈ A and ai = 0 if i ̸∈ A . As
shown in (Auricchio et al. 2024), from A01, we can define
the circulant matrix MA ∈ {0, 1}n×n of rhythm A, where
each column of MA is the circular shift of the first column
corresponding to A01 transposed. Thus, the matrix MA is
equal to: 

a0 an−1 an−2 . . . a1

a1 a0 an−1 . . . a2

a2 a1 a0 . . . a3

...
...

...
. . .

...
an−1 an−2 an−3 . . . a0



Instances Solving time (s)

n a # sols Model m1 Model m2 SOTA

1 72 6 6 2.11 0.74 0.00
2 108 6 252 124.10 1.98 0.10
3 120 6 18 103.80 1.91 0.01
4 120 10 20 7.34 1.72 0.01
5 144 6 36 271.20 1.90 0.02
6 144 6 8640 5.43 11.88
7 144 12 6 11.50 1.18 0.00
8 144 12 60 29.00 1.73 0.02
9 168 6 54 1.43 0.04

10 168 14 42 30.70 2.61 0.02
11 180 6 2052 2.13 2.84
12 180 6 96 2.03 0.07
13 180 10 1800 2.72 1.39
14 180 15 120 75.10 4.41 0.05
15 180 6 281232 31.30
16 420 10 720 4.34 2.39
17 420 14 672 5.86 1.73
18 420 15 3120 85.90 8.28
19 420 21 1008 11.50 1.77
20 420 6 864 7.31 5.32
21 420 14 6720 14.23
22 420 15 33480 114.91
23 420 35 840 10.90 0.85
24 420 6 1872 28.20 12.20
25 420 21 10080 18.13
26 420 10 22320 97.23
27 420 35 1120 21.60 1.34
28 420 14 40572 34.20
30 900 75 15600 47.92
32 900 30 15840 252.60 119.02

Table 2: Solving times (in seconds) obtained with the first
model, second model and SOTA on the instances (of our
benchmark) solved by at least one of them before timeout.
Blank values indicate a timeout after 300 seconds.

This circulant matrix MA can be used to impose the tiling
conditions:∑

i∈0..n−1 M
A
ij × yi = 1 j ∈ 0..n− 1 (m2.6)

The full model, using equations (m2.1) to (m2.6), is
named ”Model m2” in the experiments. We show in Table
2 the results of running the model on some instances. It is
more competitive than the previous model compared to the
state of the art, and is even able to solve the instances 15 and
28 while the current SOTA timeouts, but the model is still
slower for most instances.

3.3 Divide & Conquer Model
Although the experimental results obtained from the second
CP model represent a significant improvement on those from
the first model, they are still mixed compared to the SAT ap-
proach. To enhance performance, we propose incorporating
a pre-solving step to break down the problem. This approach
is presented in this section.

Consider the set C of tiling constraints from Equation
(m2.6):

C =

{ ∑
i∈0..n−1

MA
ij × yi = 1 : j ∈ 0..n− 1

}

The scopes (involved variables) of the constraints typi-
cally overlap.
Example 3. For n = 9 and A = {0, 3, 6}, we have A01 =
⟨1, 0, 0, 1, 0, 0, 1, 0, 0⟩, and the following constraints in C:

y0 + y3 + y6 = 1 (c0) y1 + y4 + y7 = 1 (c1)

y2 + y5 + y8 = 1 (c2) y3 + y6 + y0 = 1 (c3)

y4 + y7 + y1 = 1 (c4) y5 + y8 + y2 = 1 (c5)

y6 + y0 + y3 = 1 (c6) y7 + y1 + y4 = 1 (c7)

y8 + y2 + y5 = 1 (c8)

Looking at the scope of these linear constraints, one can
observe that many of them share variables. For this basic ex-
ample, the overlapping of variables is even very particular,
as, for example, the first (c0), fourth (c3), and seventh (c6)
constraints are strictly equivalent.

From this observation, if cj denotes the j−1th linear con-
straint in C obtained from MA (we know that we have n
such constraints), and g is a divisor of n, one can define a
partition of C as follows:

Cg
k = {cj ∈ C | j mod g = k},∀k ∈ 0..g − 1

These g proper subsets of C are called (tiling) constraint
parts hereafter. We refer to g as the gap in C between two
successive constraints that are selected in the same part.
Each constraint part contains n/g constraints. We define as
scp(Cg

k) the (ordered) sequence of variables involved in Cg
k

(i.e., the ordered union of constraint scopes). These con-
straint parts (disjoint subsets of C) have interesting prop-
erties:
• each subset of constraints involves constraints whose

scopes overlap potentially quite greatly, some constraints
even being redundant;

• depending on the partition, little to no variables are
shared between the scopes of the subsets;

• all subsets are equivalent up to a translation: one can pass
from a subset to any other one by a simple bijection ap-
plied to variable indices;

• the number of solutions of each subset of constraints is
limited in practice (at least on classical benchmarks, as
we shall see in our experiments).

Example 4. For Example 3, if g = 3 (a divisor of n =
9), we obtain C3

0 = {c0, c3, c6}, C3
1 = {c1, c4, c7}, and

C3
2 = {c2, c5, c8}. As some linear constraints are identical,

we actually have only one constraint in each part: C3
0 =

{y0 + y3 + y6 = 1}, C3
1 = {y1 + y4 + y7 = 1}, and C3

2 =
{y2 + y5 + y8 = 1}. Here, note that all constraint parts are
independent (i.e., do not share variables) and equivalent (for
example, one can pass from C3

0 to C3
1 simply by increasing

the indices of variables involved in C3
0).

From these observations, we propose a two phase model-
ing/solving process. The first phase involves computing all
solutions of the constraint parts (it suffices to compute the
solutions of the first constraint part, as parts are all equiv-
alent up to the indices of the involved variables). The sec-
ond phase is the reformulation of the second CP model, de-
veloped in Section 3.2, by replacing the n tiling constraints
with n/g table constraints corresponding to the solutions of
the constraint parts. We first discuss the choice of g.

Choice of the Gap g Some choices of g may drastically
decrease the number of constraints and the arity of constraint
parts, and thus both the pre-solving time and the number of
solutions.

While the relationship between A and the optimal choice
of g is complex, we provide two theorems showing that some
choices of g reduce the overlapping existing between the
scopes of constraint parts and that some ATCP instances
can even be optimally divided into constraint parts having
non-overlapping scopes. In the theorems below, we write
A mod g = {a mod g | a ∈ A}.

Theorem 4. If g is a divisor of n such that g > 1 and
|A mod g| < g then the scopes of the constraint parts
Cg

0 , C
g
1 , ... do not contain all the variables:

|scp(Cg
k)| < n ∀k ∈ 0..g − 1

Theorem 5. If g is a divisor of n such that g > 1 and
|A mod g| = 1, then the scopes of the constraint parts
Cg

0 , C
g
1 , ... are disjoint.

We omit the proofs due to a lack of space; they rely on
standard group theory results. The proofs are available in
the supplementary material of this paper.

In the experiments, we systematically choose for each
instance the value g that minimizes |scp(Cg

0)|/|C
g
0 |, with

|scp(Cg
0)| ≠ n. The smallest g is kept in case of ties. This

acts as a proxy to minimize both the number of tuples in T
and the number of table constraints.

First Phase In the first phase of the third CP approach, we
are looking for the solutions Tk of each tiling constraint part
Cg

k (and so, only variables involved in part k are considered,
i.e., scp(Cg

k)). As mentioned previously, the constraint parts
Cg

k are all equivalent up to a translation of the variable in-
dices: the set of solutions (tuples) of one part is valid for the
other parts. We thus drop the subscript and simply write the
set of solutions as T .

In order to further restrict the number of enumerated so-
lutions (in T), we can already exclude some of them that
will never participate in a solution of the complete model
(second phase). For this, we can use the trailing-0s property
derived from Theorem 3: a solution to the complete problem
(model), when using the reverse-Lyndon-word constraint,
must end with at least z = ⌈n−b

b ⌉ 0s. However, because
our objective is to precompute a single (common) set T of
solutions for all constraint parts, we need to be careful. We
cannot systematically enforce yi = 0 if i ≥ n − z. Indeed,
we must take into account the translations. A valid condi-
tion (that can be used when computing T) becomes yi = 0
if n− z ≤ i < n− g.

Example 5. Let us assume that n = 9, g = 3, and z = 2.
Clearly, y8 must be equal to 0 in a solution to the complete
problem (model). The variable y8 in C3

0 corresponds to the
variable y2 in C3

2 , due to the translation; If enforcing y8 = 0
is correct, enforcing y2 = 0 would be an error. The last
g − 1 variables must then be excluded from the trailing-0s
constraints when computing T .

Instances Solving time (s)

n a # sols m2 m3 SOTA

18 420 15 3120 85.90 60.33 8.28
23 420 35 840 10.90 5.86 0.85
27 420 35 1120 21.60 8.39 1.34
32 900 30 15840 252.60 111.20 119.02

Table 3: Solving times (in seconds) obtained with the second
model, third model and SOTA on a selection of instances
where the behaviors of the second and third models differ.

Second Phase After having chosen a value of g, we can
reformulate the set C of n linear constraints used to impose
tiling conditions as a set C ′ of n/g table constraints defined
as follows:

C ′ = {scp(Cg
k) ∈ T : k ∈ 0..n/g − 1}

where T is the set of solutions computed (in the first phase)
for any constraint part Cg

k .
Example 6. For Example 3, we have only 3 solu-
tions for each constraint part, and so we have T =
{(0, 0, 1), (0, 1, 0), (1, 0, 0)}, and C ′ composed of the three
following table constraints:

⟨y0, y3, y6⟩ ∈ T ⟨y1, y4, y7⟩ ∈ T ⟨y2, y5, y8⟩ ∈ T

The “Divide and Conquer” model m3 corresponds to the
“Binary model” m2 of Section 3.2 by replacing Equation
(m2.6) with the following Equation:

scp(Cg
k) ∈ T, ∀k ∈ 0..n/g − 1 (m3.1)

The model m3 has very similar running time compared
to the previous model m2, except in some specific instances
shown in Table 3. The model’s runtime suffers from multi-
ple startup costs (as the two phases must be started indepen-
dently). The improvement obtained via the separation of the
problem in tables is not sufficient to overcome these costs
on small problems.

3.4 Aperiodicity Useful for Divide & Conquer
The previous model does not exploit the information made
available after computing T ; aperiodicity is ignored during
Phase 1. In this section, we explore how to precompute peri-
odicity information for each constraint part Cg

k in Phase 1, in
order to exploit this information in Phase 2. More precisely,
we extend the concept of periodicity to the tuples that are
present in T .
Definition 8. A tuple t = ⟨ti0 , ti1 , . . . , tim−1

⟩ ∈ T associ-
ated with a scope scp(Cg

k) = ⟨yi0 , yi1 , . . . , yim−1
⟩ is peri-

odic with modulo d iff

y(ij+d) mod n ∈ scp(Cg
k) ∧ t(ij+d) mod n = tij ∀j ∈ 0..m− 1

Theorem 6. If all tuples associated with vector y are peri-
odic modulo d, then y is periodic modulo d.

Proof. To each constraint part Cg
k , there is a tuple

tk = ⟨tk,(i0+k) mod n, . . . , tk,(im−1+k) mod n⟩ ∈ T
associated with the vector y and the scope

scp(Cg
k) = ⟨y(i0+k) mod n, . . . , y(im−1+k) mod n⟩ such that

y(ij+k) mod n = tk,(ij+k) mod n∀j ∈ 0..m−1, k ∈ 0..g−1.

As
⋃

k scp(Cg
k) = y (all the variables are in the union of

the scopes), the condition from Definition 8 is met by all
variables - and having y(j+d) mod n = yj ∀j ∈ 0..n − 1 is
the definition or periodicity modulo d.

The interesting result is actually the contrapose of the
last theorem, as we are looking for an aperiodic rhythm: a
rhythm encoded in the vector y is not periodic with mod-
ulo d if at least one of the associated tuple is not periodic
of modulo d. Recall that it is sufficient to test aperiodicity
only for maximal divisor (Auricchio et al. 2024) of n (con-
tained in the set D). We use this result in order to further cut
domains’ sizes during solving.

We introduce a two-dimensional array p of n/g×|D| vari-
ables: pk,l is 1 if the (sub-)tuple chosen from the kth table
constraint (in C ′) is periodic with respect to the lth divisor
in D. This information is precomputed at the end of phase
1 for each tuple of T . More specifically, we transform the
table T into a table T ext where each tuple t ∈ T of length
n/g is extended to become a tuple text of length n/g + |D|
by adding a prefix of length |D| indicating for each divisor
d ∈ D if the (sub-)tuple t is periodic modulo d. We have
T ext = {(ρ(t, d0), ρ(t, d1), . . . , ρ(t, d|D|−1)) ⊕ t | t ∈ T},
where D = {d0, d1, . . . , d|D|−1}, ⊕ denotes the concatena-
tion of tuples, and ρ(t, di) returns 1 if the tuple τ is periodic
of period d, 0 otherwise.

We can now use the results above and enforce that not all
selected tuples (there are g selections to do, one per table
constraint) share the same periodicity:∑

k∈0..g−1 pk,l < g ∀l ∈ 0..d− 1

The extended “Divide and Conquer” model corresponds
to the “Binary model” of Section (3.2) by replacing Equation
(m2.6) with the following Equations:
{pk,0, . . . , pk,d−1} ⊕ scp(Cg

k) ∈ T ext ∀k ∈ 0..n/g − 1 (m4.1)∑
k∈0..g−1 pk,l < n/g ∀l ∈ 0..|D| − 1 (m4.2)

pk,l ∈ {0, 1} ∀k ∈ 0..n/g − 1, (m4.3)
∀l ∈ 0..|D| − 1

Table 4 shows the runtime of the fourth model. While the
Java & Python startup cost still dominates the solving time
for smaller/simpler problems, the model is able to solve all
instances in less than 180 seconds, except instance 33 in
1, 093 seconds, solving 7 instances more than the current
SOTA of (Auricchio et al. 2024). A large part of the solving
time is actually I/O between Python and Java and data pro-
cessing rather than solving; an end-to-end implementation
in a low-level language would be even faster.

To summarize, model m4 outperforms the SOTA, using
a combination of three ideas presented in this paper: (a)
symmetry-breaking via Lyndon word enforcement, (b) di-
vide and conquer via constraint tabling, and (c) computing
periodicity information for the tables.

4 Supplementary Material
Due to length limitations, Table 1, 2, 3, 4 do not present
the whole results for each model. They are available in the

Instances Solving time (s)

n a # sols m3 m4 SOTA

15 180 6 281232 25.93 23.23
18 420 15 3120 60.33 6.47 8.28
19 420 21 1008 7.59 5.12 1.77
20 420 6 864 4.31 3.09 5.32
21 420 14 6720 8.82 14.23
22 420 15 33480 21.56 114.91
23 420 35 840 5.86 4.14 0.85
24 420 6 1872 27.23 3.97 12.20
25 420 21 10080 11.32 18.13
26 420 10 22320 17.80 97.23
27 420 35 1120 8.39 3.81 1.34
28 420 14 40572 35.70 24.50
30 900 75 15600 55.51 47.92
31 900 15 235200 128.67
32 900 30 15840 111.20 32.60 119.02
33 900 10 1302000 1093.80
34 900 45 118080 152.20
35 900 15 123840 119.25
36 900 30 62160 82.16

Table 4: Solving times (in seconds) obtained with the third
model, fourth model and SOTA on a selection of large in-
stances. Blank values indicate a timeout after 300 seconds.
A specific timeout of 2, 000 seconds was used for the most
difficult instance (33).

supplementary material in Table A.1, along with the num-
ber of tuples in T and the chosen g for each instance. Table
A.2 displays the arity and number of constraints obtained
for various values of g on the instances. Table A.3 presents
more detailed information on the runtime of each phase of
model m4. Proofs of Theorems 4 and 5 are also available in
the Supplementary Material. The code to reproduce the ex-
periment is available. It uses Snakemake (Möder et al. 2021)
to allow reproducibility.

5 Conclusion
Constraint Programming remains a tool of choice for declar-
atively modeling (and solving) many combinatorial prob-
lems. In particular, the universal nature of table constraints
is, in some cases, a means of breaking a practical resolu-
tion deadlock. This is what we demonstrate in this article
for the ATCP problem, where a two-step approach allow-
ing table constraints to be generated in preprocessing, along
with the usage of some problem properties, such as Lyndon
words’ properties and aperiodicity constraints, has enabled
us to outperform state-of-the-art approaches to this problem.

Acknowledgments
This work has benefited from the support of the National
Research Agency under France 2030, MAIA Project (ANR-
22-EXES-0009).

References
Amiot, E. 2009. New perspectives on rhythmic canons and
the spectral conjecture. Journal of Mathematics and Music,
3(2): 71–84.

Anders, T. 2018. Compositions created with constraint pro-
gramming. Chapter 10 of the Oxford Handbook of Algorith-
mic Music.
Anders, T.; and Miranda, E. R. 2011. Constraint program-
ming systems for modeling music theories and composition.
ACM Computing Surveys, 43(4): 1–38.
Auricchio, G.; Ferrarini, L.; Gualandi, S.; Lanzarotto, G.;
and Pernazza, L. 2024. Computing aperiodic tiling rhythmic
canons via SAT models. Constraints, 29(3-4): 215–233.
Auricchio, G.; Ferrarini, L.; and Lanzarotto, G. 2023. An
integer linear programming model for tilings. Journal of
Mathematics and Music, 17(3): 514–530.
Bessiere, C.; Hebrard, E.; Hnich, B.; Kiziltan, Z.; and Walsh,
T. 2006. Filtering Algorithms for the NValue Constraint.
Constraints, 11(4): 271–293.
Carlsson, M.; and Beldiceanu, N. 2002. Revisiting the lexi-
cographic ordering constraint. Technical Report T2002-17,
Swedish Institute of Computer Science.
Demeulenaere, J.; Hartert, R.; Lecoutre, C.; Perez, G.; Per-
ron, L.; Régin, J.-C.; and Schaus, P. 2016. Compact-
Table: efficiently Filtering Table Constraints with Reversible
Sparse Bit-Sets. In Proceedings of CP’16, 207–223.
Fripertinger, H. 2005. Remarks on rhythmical canons. In
Proceedings of Colloquium on mathematical music theory,
73–90.
Frisch, A.; Hnich, B.; Kiziltan, Z.; Miguel, I.; and Walsh,
T. 2002. Global constraints for lexicographic orderings. In
Proceedings of CP’02, 93–108.
Gent, I.; Miguel, I.; and Nightingale, P. 2008. Generalised
arc consistency for the AllDifferent constraint: An empirical
survey. Artificial Intelligence, 172(18): 1973–2000.
Hiller, L. A.; and Isaacson, L. M. 1957. Musical composi-
tion with a high speed digital computer. Audio Engineering
Society Convention 9.
Kolountzakis, M. N.; and Matolcsi, M. 2009. lgorithms for
translational tiling Supplementary sets and regular comple-
mentary unending canons (four parts). Journal of Mathe-
matics and Music, 3(2): 85–97.
Lecoutre, C. 2011. STR2: Optimized Simple Tabular Re-
duction for Table Constraints. Constraints, 16(4): 341–371.
Lecoutre, C. 2023. ACE, a generic constraint
solver. Technical Report arXiv:2302.05405, CoRR.
Https://arxiv.org/abs/2302.05405.
Lecoutre, C.; and Szczepanski, N. 2020. PyCSP3:
Modeling Combinatorial Constrained Problems in
Python. Technical Report arXiv:2009.00326, CoRR.
Https://arxiv.org/abs/2009.00326.
Lyndon, R. C. 1954. On Burnside’s problem. Trans. Amer.
Math. Soc., 77: 202–215.
Möder, F.; Jablonski, K.; Letcher, B.; Hall, M.; Tomkins-
Tinch, C.; Sochat, V.; Forster, J.; Lee, S.; Twardziok,
S.; Kanitz, A.; Wilm, A.; Holtgrewe, M.; Rahmann, S.;
Nahnsen, S.; and Köter, J. 2021. Sustainable data analy-
sis with Snakemake [version 1; peer review: 1 approved, 1
approved with reservations]. F1000Research, 10(33).

Pachet, F.; and Roy, P. 2001. Musical harmonization with
constraints: A survey. Constraints, 6(1): 7–19.
Pachet, F.; Roy, P.; Papadopoulos, A.; and Sakellariou, J.
2015. Generating 1/f Noise Sequences as Constraint Sat-
isfaction: The Voss Constraint. In Proceedings of IJCAI’15,
2482–2488.
Régin, J.-C. 1994. A filtering algorithm for constraints of
difference in CSPs. In Proceedings of AAAI’94, 362–367.
Sandred, O. 2010. PWMC, a Constraint-Solving System for
Generating Music Scores. Computer Music Journal, 34(2):
8–24.
Truchet, C.; and Codognet, P. 2004. Musical constraint sat-
isfaction problems solved with adaptive search. Soft Com-
puting, 8(9): 633–640.
van Hoeve, W. 2001. The Alldifferent Constraint: a Survey.
In Proceedings of the Sixth Annual Workshop of the ERCIM
Working Group on Constraints.
Verhaeghe, H.; Lecoutre, C.; and Schaus, P. 2017. Extend-
ing Compact-Table to Negative and Short Tables. In Pro-
ceedings of AAAI’17, 3951–3957.
Vuza, D. 1991-93. Supplementary sets and regular comple-
mentary unending canons (four parts). Perspectives of New
Music.
Zimmermann, D. 2001. Modelling musical structures. Con-
straints, 6(1): 53–83.

