
3 

A Matlab® Approach for Implementing  
Control Algorithms in Real-Time: RTWT 

Andres Hernandez, Adrian Chavarro and Robin De Keyser 
Ghent University, Dep. Electrical energy, Systems and Automation, Technologiepark 913, 

B-9052 Gent, 
Belgium 

1. Introduction 

The literature about real-time systems presents digital control or computer controlled 
systems as one of its most important practical applications. However, it is very difficult to 
find in these textbooks real-time control aspects (Gambier, 2005). It seems to be more natural 
that these applications should be treated as part of digital control courses. In spite of that, 
control system literature rarely includes extensively the real-time subject and it does 
normally not pay much attention to real-time implementation aspects. Nevertheless, in 
practice there is the requirement for the design of control algorithms which run in the 
specified time without detriment to quality and functionality.  
Thanks to the improvement in some software products, new control algorithms can be 
designed and tested in real life practical applications very quickly with excellent quality, 
giving a new optic to the control engineering courses. Software like Matlab/Simulink with 
its RTW (Real Time Workshop) and the RTWT (Real Time Windows Target) give us the 
opportunity to work from an easy interface and produce good results, while one deals with 
time-critical applications. 
This chapter attempts to give a guide for the implementation of real-time control systems, 
using the RTWT toolbox, as a practical tool for students in control engineering. A digital PID 
controller will be tested in a real-life application (Hernandez et al., 2011), in order to present 
a description of the implementation procedure. 
The outline of the paper is as follows: a brief introduction to the application problem is 
depicted in the next section. Definitions and characteristics of real-time systems are 
described in Section 3. Section 4 treats the implementation of real-time controllers using 
RTWT in Matlab®. Section 5 is devoted to the configuration of RTWT for our specific 
application as an example, including some experimental results. Final conclusions are 
drawn in the last section. 

2. Application description: Lungs function test 

Non-invasive lung function tests are broadly used for assessing respiratory mechanics 
(Northrop, 2002; Oostveen et al., 2003). Contrary to the forced maneuvers from patient side 
and special training for the technical medical staff necessary in spirometry and in body 
plethysmography (Pellegrino et al., 2005), the technique of superimposing air pressure 

www.intechopen.com



 
Engineering Education and Research Using MATLAB 

 

56 

oscillations is simple and requires minimal cooperation from the patient, during tidal 
breathing (Oostveen et al., 2003). Among the air pressure oscillation techniques for lung 
function testing, the most popular one is that of Forced Oscillation Technique (FOT). FOT 
uses a multisine signal to excite the respiratory mechanical properties over a wide range of 
frequencies, usually between 4-48Hz (Oostveen et al., 2003).  
Using measurements of air pressure and air flow, it is possible to extract information 
regarding the human respiratory input impedance. However this is a linear approximation 
of a nonlinear system, hence the output will depend on the input’s amplitude and frequency 
(Schoukens & Pintelon, 2001). It is therefore important to ensure that the desired signal to be 
applied at the patient’s mouth will be delivered by the lung function testing device, without 
introducing distortions and nonlinear effects. Hence, a closed loop control system is 
necessary, to continuously monitor and correct the errors between the desired input signal 
and the one delivered by the device at the patient’s mouth. 
In practice, in order to send a sinusoidal signal of 50 Hz it is necessary to have a sample rate 
of at least 500 Hz, which means 10 samples per sinusoid period. The corresponding 
sampling time is 0.002 seconds, which can be delivered by the DAQcard 6024E used in this 
application. In this particular example, it is not possible to work with Matlab running in 
normal operation, because the delay for calculations in the closed loop is about 14ms, much  
higher than the desired sample rate. A solution to overcome this limitation consists in using 
RTWT to assign some resources of the system exclusively for this task, ensuring the desired 
sampling time. 

3. Definitions and characteristics: Real-time systems  

Nowadays, thanks to the computational and graphical power of modern computers, more 
flexible control systems including higher-level functions and advanced algorithms can be 
implemented successfully in real systems. Furthermore, most current complex control 
systems could not be implemented without the application of digital hardware; moreover 
these systems now contain not only physical components but also algorithms, which must 
be programmed, i.e. software is now included in the control loop. This leads to new aspects 
to take into account by designing control systems. 
When one builds a control algorithm in any programming language, one normally assumes 
that sampling is uniform, periodic and synchronous. However, that is not realistic since the 
control algorithm also consumes some time producing a control or feedback delay (control 
or feedback latency), i.e. a delay between a sampling instant and the instant at which a 
control-signal value is applied to the actuator. Also the computational time of control 
algorithms can change from one sampling instant to other (e.g. hybrid controller with 
controller switching mechanism, event based controllers, adaptive controllers with on-line 
parameter update, etc.). This variation in the delay is called control jitter (according to the 
IEEE, jitter is “the time-related abrupt, spurious variation in the duration of any specified 
related interval”) (Gambier, 2005) 
It is important to clarify also some other aspects about the meaning of ‘real-time’, although it 
is a vast field and therefore a complete discussion about the topic is outside the scope of this 
document. Fast computing aims at getting the results as quickly as possible, while real-time 
computing aims at getting the results at a prescribed point of time within defined time 
tolerances. This idea explains how real-time is not just for fast systems, but for any control 
loop where a task must be achieved in a specific time. 

www.intechopen.com



 
A Matlab® Approach for Implementing Control Algorithms in Real-Time: RTWT 

 

57 

4. Implementation of real-time controllers using RTWT
1
 

4.1 Overview on RTWT 

Real-Time Windows Target™ rapid prototyping software is a PC solution for prototyping 

and testing real-time systems. Real-Time Windows Target software uses a single computer 

as a host and target. On this computer, you use the MATLAB® environment, Simulink® 

software, and Stateflow® software (optional) to create models using Simulink blocks and 

Stateflow diagrams.  

After creating a model and simulating it using Simulink software in normal mode, you can 

generate executable code using RTW and your C/C++ compiler. Then you can run your 

application in real time with Simulink in external mode. 

Integration between Simulink external mode and Real-Time Windows Target software 

allows you to use your Simulink model as a graphical user interface for 

• Signal visualization — Use the same Simulink Scope blocks that you use to visualize 

signals during a non-real-time simulation to visualize signals while running a real-time 

application. 

• Parameter tuning — Use the Block Parameter dialog boxes to change parameters in your 

application while it is running in real time. 

Typical uses for Real-Time Windows Target applications include 

• Real-time control — Create a prototype of automotive, computer peripheral, and 

instrumentation control systems. 

• Real-time hardware-in-the-loop simulation — Create a prototype of controllers connected to 

a physical plant. For example, the physical plant could be an automotive engine. Create 

a prototype of a plant connected to an actual controller. For example, the prototyped 

plant could be an aircraft engine. 

• Education — Teach concepts and procedures for modelling, simulating, testing real-time 

systems, and iterating designs 

4.2 Real time kernel 

Real-Time Windows Target software uses a small real-time kernel to ensure a deterministic 

sampling rate in the application. The real-time kernel runs at CPU ring zero (privileged or 

kernel mode) and uses the PC clock as its primary source of time. Some important aspects 

regarding the kernel operation includes: 

• Timer interrupt — The kernel intercepts the interrupt from the PC clock before the 

Windows® operating system receives it. The kernel then uses the interrupt to trigger the 

execution of the compiled model. As a result, the kernel is able to give the real-time 

application the highest priority available. To achieve precise sampling, the kernel 

reprograms the PC clock to a higher frequency. Because the PC clock is also the primary 

source of time for the Windows operating system, the kernel sends a timer interrupt to 

the operating system at the original interrupt rate. 

• Scheduler — RTWT lets you to work with a single sample rate or with 

multiple/different sampling rates in your model. Each sampling rate is defined like a 

task and is clocked by a simple scheduler that runs the executable. The maximum 

                                                 
1 Parts of the text has been subtracted from the “Real-Time Windows Target User’s Guide”, Copyright 
1999 by The MathWorks, Inc. http://www.mathworks.com/products/rtwt/ 

www.intechopen.com



 
Engineering Education and Research Using MATLAB 

 

58 

number of tasks is 32, and faster tasks have higher priorities than slower tasks. For 

example, a faster task can interrupt a slower task. 

• Communication with hardware — The kernel interfaces and communicates with I/O 

hardware using I/O driver blocks, and it checks for proper installation of the I/O 

board. If the board has been properly installed, the drivers allow your real-time 

application to run.  

• Simulink external mode — Communication between Simulink software and the real-time 

application is through the Simulink external mode interface module. This module talks 

directly to the real-time kernel, and is used to start the real-time application, change 

parameters, and retrieve scope data. 

Opening a dialog box for a source block causes simulation to pause. While simulation is 

paused, you can edit the parameter values. You must close the dialog box to have the 

changes take effect and allow simulation to continue. 

4.3 System concepts 

Non-real time simulation 

When you run your Simulink model using normal mode, Simulink software uses a computed 
time vector to step your model. After the outputs are computed for a given time value, the 
Simulink software immediately repeats the computations for the next time value. This 
process is repeated until it reaches the stop time. 
Because this computed time vector is not connected to a hardware clock, the outputs are 
calculated in non-real-time as fast as your computer can run. The time to run a simulation 
can differ significantly from real time.  

Real time execution 

For real-time execution on your PC, you must use Simulink external mode, Real-Time 
Workshop code generation software, Real-Time Windows Target software, and a C/C++ 
compiler, to produce an executable that the kernel can run in real time. This real-time 
application uses the initial parameters available from your Simulink model at the time of 
code generation. 
If you use continuous-time components in your model and create code with RTW code 
generation software, you must use a fixed-step integration algorithm. Based on your 
selected sample rate, RTWT software uses interrupts to step your application in real time at 
the proper rate. With each new interrupt, the executable computes all of the block outputs 
from your model. 

Development process 

With Real-Time Windows Target rapid prototyping software, one can use a desktop PC 
with the MATLAB environment, Simulink software, Real-Time Workshop code generation 
software, and Real-Time Windows Target software to: 
1. Design a control system — Use the MATLAB environment and Control System Toolbox™ 

software to design and select the system coefficients for your controller. 
2. Create a Simulink model — Use Simulink blocks to graphically model your physical 

system. 
3. Run a simulation in non-real time — Check the behavior of your model before you create 

a real-time application. For example, you can check the stability of your model. 

www.intechopen.com



 
A Matlab® Approach for Implementing Control Algorithms in Real-Time: RTWT 

 

59 

4. Create a real-time application — Real-Time Workshop code generation software creates C 
code from your Simulink model. The C/C++ compiler compiles the C code to an 
executable that runs with the Real-Time Windows Target kernel.  

5. Run an application in real time — Your PC is the target computer to run the real-time 
application. 

6. Analyze and visualize signal data — Use MATLAB functions to plot data saved to the 
MATLAB workspace or a disk. 

Simulink external mode 

External mode requires a communication interface to pass external parameters. On the 
receiving end, the same communications protocol must be used to accept new parameter 
values and insert them in the proper memory locations for use by the real-time application. 
In some Real-Time Workshop targets such as Tornado/VME targets, the communications 
interface uses TCP/IP protocol. In the case of a Real-Time Windows Target application, the 
host computer also serves as the target computer. Therefore, only a virtual device driver is 
needed to exchange parameters between the MATLAB environment, Simulink memory 
space, and memory that is accessible by the real-time application. 
Signal acquisition — You can capture and display signals from your real-time application 
while it is running. Signal data is retrieved from the real-time application and displayed in 
the same Simulink Scope blocks you used for simulating your model. 
Parameter tuning — You can change parameters in your Simulink block diagram and have 
the new parameters passed automatically to the real-time application. Simulink external 
mode changes parameters in your real-time application while it is running in real time. 

Data buffer and transferring data 

At each sample interval of the real-time application, Simulink software stores contiguous 
data points in memory until a data buffer is filled. Once the data buffer is filled, Simulink 
software suspends data capture while the data is transferred back to the MATLAB 
environment through Simulink external mode. Your real-time application, however, 
continues to run. Transfer of data is less critical than maintaining deterministic real-time 
updates at the selected sample interval. Therefore, data transfer runs at a lower priority in 
the remaining CPU time after model computations are performed while waiting for another 
interrupt to trigger the next model update.  
Data captured within one buffer is contiguous. When a buffer of data has been transferred, it 
is immediately plotted in a Simulink Scope block, or it can be saved directly to a MAT-file 
using the data archiving feature of the Simulink external mode. 
With data archiving, each buffer of data can be saved to its own MAT-file. The MAT-file 
names can be automatically incremented, allowing you to capture and automatically store 
many data buffers. Although points within a buffer are contiguous, the time required to 
transfer data back to the Simulink software forces an intermission for data collection until 
the entire buffer has been transferred and may result in lost sample points between data 
buffers. 

4.4 Installation of the software RTWT 

Once Matlab® is installed all Real-Time Windows Target software is copied onto your hard 
drive, but the Real-Time Windows Target kernel is not automatically installed into the 
operating system. You must install the kernel before you can run a Real-Time Windows 

www.intechopen.com



 
Engineering Education and Research Using MATLAB 

 

60 

Target application. Installing the kernel configures it to start running in the background 
each time you start your computer. The kernel installation is done in the workspace by 
typing: 

>> rtwintgt – install 

You can also use the command rtwintgt -setup to install the kernel. The MATLAB 
Command Window displays one of these messages: 

>> You are going to install the Real-Time Windows Target kernel. 
Do you want to proceed? [y] : 

or: 

>> There is a different version of the Real-Time Windows Target kernel installed. 
Do you want to update to the current version? [y] : 

Type y to continue installing the kernel, or n to cancel installation without making any 
change. If you type y, the MATLAB environment installs the kernel and displays the 
message: 

>> The Real-Time Windows Target kernel has been successfully installed. 

If a message appears asking you to restart your computer, do so before attempting to use the 
kernel, or your Real-Time Windows Target model will not run correctly. After installing the 
kernel, verify that it was correctly installed by typing: 

>> rtwho 

The MATLAB Command Window should display a message that shows the kernel version 
number, followed by performance, timeslice, and other information.  

>>Real Time Windows Target version 1.00 (C) The MathWorks, Inc. 1994-2010 
Running on Multiprocessor APIC computer 
MATLAB performance = 98.5% 
Kernel timeslice period = 0.999 ms 

Matlab specifies the performance of the running application on the actual PC and the used 
sampling time. It is desirable to execute your applications near 100% performance, is not 
recommended to use values of performance near to 50% because the switching execution 
time will decrease in the real time windows target in order to attend other programs in the 
Operative system. 
Once the kernel is installed, you can leave it installed. The kernel remains idle after you 
have installed it, which allows the Windows operating system to control the execution of 
any standard Windows based application, including Internet browsers, word processors, the 
MATLAB environment, and so on. The kernel becomes active when you begin execution of 
your model, and becomes idle again after model execution completes. 
The Real-Time Windows Target requires a C compiler which is not included in the 
installation in MATLAB. To choose the compiler to use it is necessary to type the following 
command in the workspace: 

>> mex –setup 

www.intechopen.com



 
A Matlab® Approach for Implementing Control Algorithms in Real-Time: RTWT 

 

61 

The following dialog will appear: 

>> Would you like mex to locate installed compilers [y]/n? y 

Select a compiler: 

[1] Intel Visual Fortran 9.1 (with Microsoft Visual C++ 2005 linker) in 

 C:\Program Files\Intel\Compiler\Fortran\9.1 

[2] Lcc-win32 C 2.4.1 in C:\PROGRA~1\MATLAB\R2007b\sys\lcc 

[3] Microsoft Visual C++ 2005 in 

 C:\Program Files\Microsoft Visual Studio 8 

[0] None 

After you choose your compiler for instance, Compiler: 2, the following dialog will appear: 

>> Please verify your choices: 

 Compiler: Lcc-win32 C 2.4.1 

Location: C:\PROGRA~1\MATLAB\R2007b\sys\lcc 

>> Are these correct?([y]/n): y 

Done . . . 

After you confirm your choice typing y the process finish it. You can use any PC-compatible 

computer that runs Microsoft® Windows XP 32-bit, or Microsoft Windows Vista ™ 32-bit. 

Your computer can be a desktop, laptop, or notebook PC. 

4.5 Hardware I/O boards 

Real-Time Windows Target applications use standard and inexpensive I/O boards for PC-

compatible computers. When running your models in real time, RTWT captures the 

sampled data from one or more input channels, uses the data as inputs to your block 

diagram model, immediately processes the data, and sends it back to the outside world 

through an output channel on your I/O board. 

Real-Time Windows Target software provides a custom Simulink block library. The I/O 

driver block library contains universal drivers for supported I/O boards. These universal 

blocks are configured to operate with the library of supported drivers. This allows easy 

location of driver blocks and easy configuration of I/O boards. You drag and drop an 

universal I/O driver block from the I/O library the same way as you would from a standard 

Simulink block library. And you connect an I/O driver block to your model just as you 

would connect any standard Simulink block. 

You create a real-time application in the same way as you create any other Simulink model, 

by using standard blocks and C-code S-functions. You can add input and output devices to 

your Simulink model by using the I/O driver blocks from the rtwinlib library provided 

with the Real-Time Windows Target software. This library contains the blocks depicted in 

figure 1.  

The Real-Time Windows Target software provides driver blocks for more than 200 I/O 

boards. These driver blocks connect the physical world to your real-time application: 

• Sensors and actuators are connected to I/O boards. 

• I/O boards convert voltages to numerical values and numerical values to voltages. 

• Numerical values are read from or written to I/O boards by the I/O drivers. 

www.intechopen.com



 
Engineering Education and Research Using MATLAB 

 

62 

 

Fig. 1. Library Real Time Windows Target 

5. Application of the real-time control in a lung function test device 

By following the procedure described in section 4.3 the Simulink scheme will be 
implemented and configured. The computer characteristics used in this example are: Intel 
core duo processor of 1.73 GHz with 3Gb of RAM , Windows Xp 32 Bits, and expressCard to 
PCMCIA adapter. 

5.1 Implementing the simulink model 

The communication between the computer running Matlab and the FOT device is made by 
using the National Instruments DAQCard 6024E (which is recognized by Matlab and 
supported for real time applications). The corresponding Simulink model was developed in 
order to send and receive signals to/from the real FOT system, as depicted in figure 2. 
 

 

Fig. 2. Simulink model for the RTWT application 

At this point it is recommendable to create a new folder in your current directory, because 
the compilation procedure creates several files and this will let you work in an orderly 
manner. 
In this application our interest is to test a discrete PID controller; its parameters have been 
previously tuned, and its design will not be presented in detail. 

www.intechopen.com



 
A Matlab® Approach for Implementing Control Algorithms in Real-Time: RTWT 

 

63 

Configuration of the simulation parameters 

Once the model has been created, we must set the simulation parameters. By pressing the 
combination of keys ‘Ctrl+E’ the configuration parameters window will appear (figure 3). 
 

 

Fig. 3. Solver configuration 

The first parameter to configure is the solver. We can choose the stop time of the simulation, 
between a fixed value or to run indefinitely by typing ‘inf’. In this application a stop time of 
40s was chose. In the solver options you can choose between variable or fixed step, in this 
application what we want is to guarantee a fixed sampling time, hence, we choose the type 
‘Fixed-step’ and as solver the ‘discrete (no continuous states)’. 
 

 

Fig. 4. Configuration System Target 

The next step is to configure the target, for this we must select the option ‘Real-time 
Workshop’ as presented in figure 4. The first option to select is the system target file, there 

www.intechopen.com



 
Engineering Education and Research Using MATLAB 

 

64 

are several options available when we press the ‘Browse’ button, however we must select 
‘rtwin.tlc’ which is the Real-Time Windows Target. The language can be selected as C or 
C++, we choose C language by default. We accept these changes and return to our model in 
Simulink. At this point we can choose the simulation as external mode, as depicted in Figure 
5. Remember to save your model by pressing the keys ‘ctrl+S’ 
 

 

Fig. 5. Configuring the simulation in External mode 

Configuring the analog input and output 

After our simulation parameters has been configured, then we can continue with the process 
interfacing. By double clicking in the analog output block in our Simulink model, the 
configuration window will appear as depicted in Figure 6.  In this window we must select 
our hardware board, in this case the National Instruments acquisition board DAQCard-
6024E. The sampling time is selected as ‘Ts’, which can be previously defined in the 
workspace as Ts=0.002. In this step also the output range can be configured, which is in our 
case from -10 V to 10 V. Some initial and final values can be established at this point, for the 
cases when we need that the DAQ board remains with some value after the simulation 
stops. It is possible to test our hardware to verify that there are not communication 
problems between Simulink and our external hardware. By pressing the ‘Board Setup’ button 
a new window will appear, and by pressing the ‘Test’ Button we can test all the inputs and 
outputs available in our board. To configure the analog input the same procedure must be 
followed, the only difference is that you’ll not find the ‘initial’ and ‘final’ value parameters 
available in the analog output. 

Discrete PID configuration 

For this application we have tuned the parameters of a PID controller by means of the KCR 
algorithm (Hernandez et al, 2010); this procedure will not be described here, because our 
interest is to present how to use the Real-Time Windows Target toolbox. 
The discrete PID controller used in this work can be found in the: SimPowerSystems/Extra 
Library/Discrete Control Blocks/Discrete PID Controller (Figure 7). This block implements 
a discrete PID controller, where the Kp, Ki,  Kd and sampling time Ts parameters can be 
configured. There are also some other options available, e.g. the time constant for the 
derivative action or the constraints in the output, which have been selected as 1000 and  
[-1 1] respectively. 

Scope configuration to display and save data 

Until now, the simulation parameters, PID and I/O have been configured; nevertheless, 
another important issue to solve is how to save the data on our hard disk. By double clicking 
 

www.intechopen.com



 
A Matlab® Approach for Implementing Control Algorithms in Real-Time: RTWT 

 

65 

   

Fig. 6. Configuration window Analog input/output 

 

 

Fig. 7. Configuration Window Discrete PID 

www.intechopen.com



 
Engineering Education and Research Using MATLAB 

 

66 

  

Fig. 8. Scope Configuration Window to display and save the data  

 

 

Fig. 9. External mode control panel 

in the scope a new window will appear, there, the sampling will be chosen as 
‘Decimation’=0, this is done to consider this block as an analog block because the triggering 
will not be done by this block. By selecting the next tap ‘Data history’ (Figure 8-right), we 
must avoid to limit the data points and instead of this, we select save data to workspace. We 
type a name for the variable we want to save and then we choose array as data format and 
we press ‘ok’ in all the windows. 
Going back to our Simulink model, we choose in the toolbar the option Tools/External 
Mode Control Panel, a new window will appear as depicted in Figure 9.  
The first step is to press the ‘Signal & Triggering’ button; in this new window we must 
configure the trigger as ‘manual’ and the mode in ‘normal’. The duration is the number of 
samples that you are going to simulate. A very important detail when we choose this value 

www.intechopen.com



 
A Matlab® Approach for Implementing Control Algorithms in Real-Time: RTWT 

 

67 

is to know how much our sampling time is, how long our simulation will be and that Real-
Time Windows Target takes zero as an extra value. By taking this into account it is possible 
to see that in 40s at 2ms sampling time, we need to save 2000 samples, however, taking into 
account the sample at time zero, finally we choose 2001 as parameter.  
After choosing the signal and trigger options, we press the ‘Data Archiving’ button; in this 
new window we have to enable ‘archiving’ and then type de directory where we want to 
save our data and the name of the file (Figure 10). If we have more than one variable to save 
then an array will be saved in this address with the name we chose, the first column is 
always the time vector and the next columns each one of our variables. In this application 
we have used a mux block to put all the measured variables into one scope (see Figure 2), 
however it is also possible to have one scope for each variable. 
 

  

Fig. 10. External Signal & Triggering and External Data Archiving configuration window 

Once the simulink model has been configured, then it has to be saved to accept all the 
changes and then compilate it, by using the combination of keys ctrl+B. 
Once all procedures have been completed, then we can press the button ‘Connect to Target’ 
and then ‘Start Simulation’, to run the simulation as depicted in figure 11. 
 

 

Fig. 11. Run simulation 

5.2 Experimental results 

By using the hardware and software described in section 4, it is possible to do the open loop 
and closed loop identification using the Chirp-TFA algorithm (Ionescu C., et al., 2010). Some 
results are given by means of Bode plots in Figure 12. It can be observed that the bandwidth 
(frequency at -3dB) of the system is about 45Hz. 
In order to be able to follow a reference signal in a closed loop it is necessary that the 
magnitude of the closed loop remains around 0dB and the phase around 0º in the frequency-
range of interest. From the Bode plot in Figure 12-right for the closed loop, we can observe 
that the results are in agreement with the expected bandwidth, and that the controller  
 

www.intechopen.com



 
Engineering Education and Research Using MATLAB 

 

68 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-2

-1

0

1

2

Time [sec]

V
o
lt
a
g

e
 [

V
]

 

 

Reference

Out openloop

Out closedloop

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-2

-1

0

1

2

Time [sec]

V
o

lt
a
g
e
 [

V
]

 

 

Ctrl effort

 

(a) 

0 5 10 15 20 25 30 35 40 45 50
-15

-10

-5

0

5

10
Bode characteristic Closed and Open loop

M
a
g
n
it
u
d
e
 [

d
B

]

 

 
Open loop

Closed loop

0 5 10 15 20 25 30 35 40 45 50
-100

-50

0

50

100

150

P
h
a
s
e
 [

D
e
g
re

e
]

Frequency [Hz]
 

(b) 

Fig. 12. Open and Closed loop characteristics. a) Performance in time. b) Performance in 
frequency 

www.intechopen.com



 
A Matlab® Approach for Implementing Control Algorithms in Real-Time: RTWT 

 

69 

performs satisfactorily. This result is also visible when a comparison in time domain 

between open loop and closed loop is done. The controller avoids distortions and nonlinear 

effects at the output of the lung function device; the desired signal will be successfully 

delivered at the patient’s mouth as depicted in Figure 12-left. 

6. Conclusions 

In this work an interactive and effective tool to design control loops in real-time has been 

presented. A real system was used as an example to discuss the importance of real-time, and 

clarify some fundamental aspects about the meaning of real time in control. An introduction 

to real-time control from an educational and practical point of view has been given. Some 

well-known misconceptions coming from the control system community were discussed. 

The relevance of the real-time implementation has been exposed by implementing the 

closed loop control of a medical device for lung function testing.  

Although Real-Time Windows Target is a good tool to run control algorithms over a higher 

priority than just using a typical m-file algorithm, this tool has two drawbacks: as this is still 

a tool running over Windows, complex algorithms could cause that it cannot ensure a fast 

sampling time, because it depends on the PC characteristics and its performance. Secondly, 

although points within a buffer are contiguous, the time required to transfer data back to the 

Simulink software forces an intermission for data collection until the entire buffer has been 

transferred and may result in lost sample points between data buffers. 

7. References 

Dixon W., Dawson D., Costic B., de Queiroz M., “A MATLAB-based Control Systems 

Laboratory Experience for Undergraduate Students: toward Standardization and 

Shared Resources”, IEEE Transactions on Education, Vol. 45, No. 3, 2002 

Gambier A., “Real-time Control Systems: a Tutorial”, Automation Laboratory, B6 23-29, EG. 

Bauteil C, University of Mannheim, 68131 Mannheim, Germany, 2005 

Hernandez A. , De Keyser R., Ionescu C., “Application of a novel PID Autotuner to a lung 

function testing device, in Proc. of the Int. Conf. on Biomedical Electronics and Devices 

(BIODEVICES 2011), Rome, Italy, 55-61, 2011 

Ionescu C., Robayo F., De Keyser R., Naumovic M., “The Fequency Response Analyse 

revisited”, in Proc. of the IEEE 18th Mediterranean Conference on Control and 

Automation,  Marrakesh, Marocco, 1441-1446, 2010 

Northrop R., “Non-invasive measurements and devices for diagnosis”, CRC Press, 2002 

Oostveen E., Macleod D., Lorino H., Farré R., Hantos Z., Desager K., Marchal F., “The forced 

oscillation technique in clinical practice: methodology, recommendations and 

future developments”, European Respiratory Journal, 22: 1026-1041, 2003 

Pellegrino R., Viegi G., Brusasco V., Crapo R., Burgos F., Casaburi R., Coates A., van der 

Grinten C.P.M., Gustafsson P., Hankinson J., Jensen R., Johnson D.C., McKay R., 

Miller M.R., Navajas D., Pedersen O.F., Wanger J., “Interpretative Strategies for 

Lung Function Tests”. European Respiratory Journal, 26: 948-968, 2005 

“Real-Time Windows Target User’s Guide”, The MathWorks Inc. 

 http://www.mathworks.com/products/rtwt/, 1999 

www.intechopen.com



 
Engineering Education and Research Using MATLAB 

 

70 

Schoukens J., Pintelon R., “System Identification: a Frequency-domain Approach”, (IEEE 

Press, 2001) 

www.intechopen.com



Engineering Education and Research Using MATLAB
Edited by Dr. Ali Assi

ISBN 978-953-307-656-0
Hard cover, 480 pages
Publisher InTech
Published online 10, October, 2011
Published in print edition October, 2011

InTech Europe
University Campus STeP Ri 
Slavka Krautzeka 83/A 
51000 Rijeka, Croatia 
Phone: +385 (51) 770 447 
Fax: +385 (51) 686 166
www.intechopen.com

InTech China
Unit 405, Office Block, Hotel Equatorial Shanghai 
No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 
Fax: +86-21-62489821

MATLAB is a software package used primarily in the field of engineering for signal processing, numerical data
analysis, modeling, programming, simulation, and computer graphic visualization. In the last few years, it has
become widely accepted as an efficient tool, and, therefore, its use has significantly increased in scientific
communities and academic institutions. This book consists of 20 chapters presenting research works using
MATLAB tools. Chapters include techniques for programming and developing Graphical User Interfaces
(GUIs), dynamic systems, electric machines, signal and image processing, power electronics, mixed signal
circuits, genetic programming, digital watermarking, control systems, time-series regression modeling, and
artificial neural networks.

How to reference
In order to correctly reference this scholarly work, feel free to copy and paste the following:

Andres Hernandez, Adrian Chavarro and Robin De Keyser (2011). A Matlab® Approach for Implementing
Control Algorithms in Real-Time: RTWT, Engineering Education and Research Using MATLAB, Dr. Ali Assi
(Ed.), ISBN: 978-953-307-656-0, InTech, Available from: http://www.intechopen.com/books/engineering-
education-and-research-using-matlab/a-matlab-approach-for-implementing-control-algorithms-in-real-time-rtwt


