Embedded Real-Time MPC implementation using
Rapid Prototyping Tools: a Thermal Process case
study

Gabriel Harja, Andres Hernandez and Robin De Keyser

JToan Nascu

Department of Electrical energy, Systems and Automation Department of Automation, Technical University of Cluj-Napoca

Ghent University, Belgium
Email: Andres.Hernandez@UGent.be

Abstract—Recently, a strong interest has been observed in the
development of new control strategies for solving optimization
problems on embedded devices. Particularly, Model Predictive
Control (MPC) became quite popular nowadays due to its multi-
ple successful implementations in real-life industrial applications.
The aim of this contribution is to provide practical information
throughout the use of VeriStand and CompactRIO as Rapid
Prototyping Tools (RPT) for implementing MPC algorithms from
Matlab/Simulink code. The effectiveness of this tool is tested on a
nonlinear thermal process with variable time delay, in which three
different implementations of MPC to deal with both nonlinear
dynamics and time delay were evaluated.

I. INTRODUCTION

During recent years an extreme evolution in microelectron-
ics and informatics technology was observed, making possible
the development of high performance embedded systems. At
the same time researchers developed each time more complex
and advanced control algorithms which required a high com-
putational demand as it is in many cases required to solve an
optimization problem in real-time, at high accuracy and fast
sample rate. Therefore, many of the scientific contributions
remained just for academia as its implementation was still
limited. In order to close this gap between active research
and real-life implementation, some companies such as Texas
Instruments, dSPACE, Mathworks and National Instruments
(NI), just to mention a few ones, have developed Rapid
Prototyping Tools (RPT) to help engineers to speed up during
the process of implementing control algorithms in embedded
systems. Some of the important characteristics these systems
offer are: fast code generation, flexibility, reliable hardware,
easy access to I/O channels, friendly user interface, data-
logging and application sustainability; the last especially is
needed, as nowadays, big projects require a multidisciplinary
group working for a common objective.

One of the control methodologies which is gaining more
attention from both industry and academia is Model Predictive
Control (MPC). The reason is that MPC can relatively easily
tackle multiple and strongly coupled input-output variables,
it has inherent dead-time compensation, while introducing
feedforward control action in a natural way, allowing the
compensation of measured disturbances. Furthermore, it is
possible to extend the strategy to constrained control problems

978-1-4799-2228-4/13/$31.00 (© 2013 IEEE

Romania
Email: gabrielharja@yahoo.com

(e.g. constraints on manipulated variable, controlled variable or
variation rates of these). This promising control methodology,
however, requires for its implementation a good knowledge of
common languages as C or C++, as mentioned in [1] but also
of specific ones as VHDL for FPGA devices [2]; the choice
between the different languages depends on the target. Lacks
in handling these languages are often obstacles in running the
algorithm on a Real-Time (RT) Target, as a time consuming
operation.

Many processes include time delay phenomena in their in-
ner dynamics, representative examples being found in biology,
chemistry, mechanics, physics, population dynamics, as well
as in engineering sciences. In addition, actuators, sensors, field
networks that are involved in the feedback loops usually also
introduce delays, which are possibly time-varying. Thus there
is an increasing interest in studying time delay systems in all
scientific areas, especially in control engineering [3], [4]. The
presence of time delay (dead time) in the control loop is always
a serious obstacle on the need to a good performance. Hence,
time delay compensators have received a considerable amount
of attention in the literature. The most widely implemented
method in industry is the Smith Predictor (SP) [5] and its
modifications [6]. The general shortcoming of these method-
ologies is that they assume a stable or integrating process with
constant time delay. There are industrial processes involving
transportation of material which is directly depending on the
manipulated variable. Consequently, these processes possess an
inherent variable time delay. The complexity is increased when
considering that real processes are nonlinear and it requires a
nonlinear optimization problem to be solved in real-time.

In this study a nonlinear thermal process with variable time
delay is considered. The first reason is to provide practical
information throughout the use of NI VeriStand as Rapid
Prototyping Tools to easily implement the MPC algorithm
directly from the Matlab/Simulink code to a RT Controller. The
second reason is to provide insight about the benefits of using
MPC to control processes with nonlinearities and variable time
delay. The analysis is built as a comparison between a linear
and a nonlinear MPC and between the MPC with variable cost
horizon and the SP version.

This paper is organized as follows. Section II gives a
brief description of the proposed MPC approaches that will
be used. The process to be controlled is described in Section

Authorized licensed use limited to: University of Liege (ULg). Downloaded on January 19,2026 at 16:46:30 UTC from IEEE Xplore. Restrictions apply.

III. Next the hardware and software tools chosen for the
Rapid Prototyping Process are presented also accompanied
by some guidelines. In Section V real experiments are used
to compare the performance of different control algorithms.
Finally, Section VI summarizes the main conclusions.

II.

Model Predictive Control (MPC) techniques have been
successfully implemented in both academia and industry. In
[7] an introduction to theoretical and practical aspects of the
most commonly used MPC strategies is provided. Among
the different MPC methodologies available in literature, the
Extended Prediction Self-Adaptive Control (EPSAC) proposed
by [8] has been chosen as it presents interesting features,
especially in its nonlinear version (NEPSAC). This sections
offers a brief introduction of this method.

MODEL PREDICTIVE CONTROL

A. EPSAC algorithm

In the EPSAC algorithm, the model output z(t) represents
the effect of the control input u(¢) on the process output y(t).
It can be described by the following equation:

x(t) = fla(t = 1), 2t —2),...,u(t —1),u(t —2),...] (1)

Notice that x(t) represents here the model output, not the state
vector. Also important is the fact that f can be either a linear
or a nonlinear function. The generic model of the EPSAC
algorithm is:
y(t) = o(t) + n(t) @)
where y(¢) is the measured output of the process, z(t) is the
model output and n(t) represents model/process disturbance,
all at discrete-time index t. The disturbance n(t) can be
modeled as coloured noise through a filter with the transfer
function:

n(t)

e(t) 3)

D(q™1)

with e(¢) uncorrelated (white) noise with zero-mean and
C, D monic polynomials in the backward shift operator ¢~ 1.
The disturbance model must be designed to achieve robustness
of the control loop against unmeasured disturbances and mod-
eling errors. A ‘default’ choice to remove steady-state control

offsets is n(t) = ﬁe(t) [9].

A fundamental step in the MPC methodology consists
of the prediction. Using the generic process model (2), the
predicted values of the output are:

y(t + klt) = x(t + k|t) + n(t + klt) “)

for k = Ny ... N5, where N7 and N5 are the minimum and
the maximum prediction horizons. The prediction of the pro-
cess output is based on the measurements available at sampling
instant ¢, {y(¢),y(t—1),...,u(t—1),u(t—2),...} and future
(postulated) values of the input signal {w(t|t), u(t+ 1]¢),...}.
The future response can then be expressed as:

y(t+k|t) = ybase(t+k|t) +yopt(t+k|t) (5)

The two contributing factors have the following origin:

251

o Ypase(t + Kk|t) is the effect of the past inputs
u(t —1),u(t —2)..., a future base control sequence
Upase(t + k|t) (which is pre-specified, ref. section
II-B) and the predicted disturbance n(t + k|t).

o yopt(t + Klt) is the effect of the optimizing control

actions du(t|t), ..., du(t+N,—1|t) with du(t+k|t) =
u(t + k|t) — upase(t + k|t), in a control horizon N,,.

The optimized output can be expressed as the discrete-
time convolution of the unit impulse response coefficients

hi,...,hnN, and unit step response coefficients g1, ..., gn, of
the system as follows:
Yopt (t + k|t) = hpdu(t|t) + hp—10u(t + 1[t) + ... ©)

+ k-, +10u(t + Ny — 1]¢)

Using (5) and (6), the key EPSAC-MPC formulation be-
comes:

Y=Y+GU (7)
where:
Y = [y(t+ Ni|t) ... y(t + Nao|t)]"
?: [ybase(t“!‘Nl‘t)~~-ybase(t+N2|t)]T (8)
U = [bu(t|t) ... ou(t + N, — 1])]"
hny ANy Ny — N +1
G— hn,+1 hny)
hn, hn,—1 IN;—Ny+1

Once the output is predicted, it is possible to optimize the
control signal U by minimizing the cost function:

No

> [t + k) — y(t + k)

k=N1

V(U)

(10)

Notice that the controller cost function (10) can be easily
extended to many alternative cost functions (similar to the
approach in optimal control theory) as described in [8]. The
horizons Ny, No are design parameters and r(t + k|t) is
the desired reference trajectory, chosen here as a 1%¢-order
reference trajectory as specific implementation example:

rt+klt)=ar@t+k—11t) + (1 —a)wlE+kjt) (11
for k = 1... N and initialization r(¢|t) = y(t). The signal
w(t) represents the setpoint and « a design parameter that
plays an important role in tuning the MPC performance [10].
The optimal input solution of the EPSAC algorithm can be
written in matrix form:
U* = [GTG] '[GT(R-Y)] (12)
with R being the vector notation of the reference tra-
jectory, R = [r(t+ Ni|t)...r(t+ NaJt)]" and [GTG] of
dimension N, xN,,. Only the first optimal control input u(t) =
Upase(t/t) + ou(t/t) is applied to the plant and the whole
procedure is repeated again at the next sampling instant ¢ 4 1
(receding horizon strategy).

Authorized licensed use limited to: University of Liege (ULg). Downloaded on January 19,2026 at 16:46:30 UTC from IEEE Xplore. Restrictions apply.

B. NEPSAC algorithm

The calculation of the predicted output with (5) involves the
superposition principle. When a nonlinear system model f].]
is used in (1), above strategy is only valid -from a practical
point of view - if the term y,p:(t + k|t) in (5) is small enough
compared to the term ypqse(t + k|t). When this term would be
zero, the superposition principle would no longer be involved.
The term yop:(t + k[t) will be small if du(t + k|t) is small,
see (6).

This can be realized iteratively, by executing the following
steps at each controller sampling instant:

1) Initialize upqse(t + kt) as: ui,,. (¢t + k[t) = u*(t +
k|t—1), i.e. the optimal control sequence as computed
during the previous sampling instant; in other words:
u*(t+k|t—1) is used as a first estimate for u*(t+k|t).
Calculate du'(t + k|t) using the linear EPSAC algo-
rithm.

Calculate the corresponding /. (t + k[t) with (6)
and compare it to yt, . (t + k[t), which is the result
of uj,,.(t + k|t).

In case ., (t + k|t) is nor small enough compared
10 YL, .. (t+k[t): re-define upqse (t+k|t) as u?, . (t+
klt) = u}, .. (t+k|t) + du'(t + k|t) and go to 2. The
underlying idea is that u}, (¢ + k[t) + ou' (¢t + k|t) -
which is the optimal u* (¢ + k|t) for a linear system
- can act as a second estimate for the optimal u*(¢ 4+
k|t) in case of a nonlinear system.

In case y,(t + k|t) is small enough compared to
Ybase (LHE[): use u(t) = up, (¢ +K|t) +0u’ (L +klt)
as the resulting control action of the current sampling
instant (notice that ¢+ = 1,2,...,) according to the
number of iterations)

2)

3)

4)

5)

This algorithm results after convergence to the optimal so-
lution for the underlying nonlinear predictive control problem.
The number of required iterations depends on how far the
optimal u*(¢ + k|t) is away with respect to u*(t + k[t — 1).
In quasi-steady-state situations, the number of iterations is low
(1...2). On the other hand, during transients the number of
iterations might raise to 10.

III. THERMAL PROCESS

A. Process description

The process considered in this paper consists of a heated
tank of which the level is controlled by a mechanical float
switch, resulting in a constant water volume V., (Fig. 1). A
submerged electrical heater delivers a constant heat flow @,
which causes the liquid to warm up. Temperature control of
the outlet water is achieved by changing the outflow ¢(t) of hot
tank water, which allows an equal amount of cold tap water
to flow in. A variable transport delay, which depends on the
outflow ¢(t) (the manipulated variable), is introduced in the
system by measuring the temperature of the effluent stream at
a distance L from the tank.

The experimental setup - based on ideas presented in [11]
and on the operation of a solar collector field [12]- has been de-
signed and implemented at Ghent University [13], [14]. It has
a tank volume Vg, = 0.9 1, a heat input @ = 2000 W and

252

Vrank
Q E g
Process Tank Sensor:
e Sensor: Ty, (t) Outlettube Tylt) = T(t-Td)

q(t)

. q(t)
= l Pump:Vp . i
L
Sensor: T;(t)
Fig. 1. Representation of the variable time delay process

an outlet tube length L = 16 m (tube volume V3. = 1.65 1).
The flow range is 0.0075 < ¢ < 0.0487 1/s, or equivalently,
0.45 < ¢ < 2.9 1/min.

It is important to notice that by properly choosing the
length of the tube, it is possible to manipulate the value of
the time delay according to:

LS V;tube
T =1 = 0

where S denotes the cross-section of the tube. Therefore, the
time delay can be chosen to be bigger, equal or smaller than
the time constant of the system 7, which is described by the
relationship:

13)

_ Vvtank
q(t)

Notice how an extra difficulty is introduced in the control
problem: we are facing a variable time delay (13) but also
a variable time constant (14) in the system as function of the
manipulated variable ¢(t). This effect is illustrated in Fig. 2 by
the responses of a staircase experiment when V1, = 0.91 and
Viuwvbe = 1.651 (long time delay). Although the steps applied
to the flow are of the same magnitude, these have a different
effect on the temperature depending on the current state of
the system. As an example, it is observed a difference of
the temperature change and the time constant between the
steps applied at 400 and 2800 seconds. During the first step
temperature decreases 16°C' in 235 seconds while during the
second one it decreases only 1.3°C' in 79 seconds.

7(t)

(14)

Accurate flow control is achieved using a peristaltic pump
driven by a 24V DC-motor, that provides linearity between
control voltage and flow. Finally, three Pt100 sensors measure
the temperature of the: (1) hot effluent water Tp:(t), (2)
cold incoming tap water T, (¢) and (3) tank Tyqnk(t). Only
Tout 1s used for identification and control purposes; the other
measurements are used for the analysis of the results.

B. Process modelling

In this contribution the process is modeled as the series
connection of the tank model and tube model, which consists
of process dynamics and time delay. Physical modeling is used
to determine the tank model, while the tube dynamics are
identified experimentally.

Authorized licensed use limited to: University of Liege (ULg). Downloaded on January 19,2026 at 16:46:30 UTC from IEEE Xplore. Restrictions apply.

55

50t
TH

45+
1000*q®)
P

3

Termperature [*C]7 1000°Flow [I/s]

I L L I
1600 2000 2400 2800

Tirne [s]

L
1200

L
800

|
400 3200

Fig. 2. Staircase experiment over the full range of the system.

The mathematical model that describes the relationship
between the outflow ¢(¢) and the tank temperature T}qp(t)
follows from the energy balance equation:

%ﬁ = Q4 pp 4(t) (Tin(t) = Trani(t)) (15)

where p and ¢, are respectively the density and the specific
heat of water, Vi, is the volume in the tank and () is the
constant amount of supplied heat. The small heat losses to the
environment are negligible. Notice that the model is nonlinear,
as ¢(t) is the control input (manipulated variable).

PCp V;Sank

Experimentally, a first order transfer function in the Laplace
domain s has been fitted to the tube dynamics:

T(S) - Kt
Ttank'(s) s+ 1

where T'(t) is a virtual signal which is related to the outlet
temperature by

(16)

Tout(t) =T(t — Ty(t)) an

and Ty(t) represents the variable time delay.

From identification experiments, reasonable results have
been obtained with a constant gain K 0.99 (small heat
loss) and time constant 7+ = 11.1 sec.

The temperature sensor is located in the outlet tube at a
distance L from the tank. Due to the variable flow, the time
the water needs to travel from the tank to the sensor varies as
well and is given by

q(t)dr =LS

t—Ta(t)

(18)

with L the length and S the cross-section of the tube. From a
physical point of view, this is equivalent to filling the tube at
varying flow rates. Discretizing (18) allows the calculation of
the discrete-time variable delay Ny:

Ng
> alt—i)=
i=1

where ¢t now denotes the discrete time index and T the
sampling period. Consequently, at each sampling instant, Ny

LS
T

19)

253

is calculated as the number of flow samples to be summed
before the total sum exceeds LT—S This means that the variable
time delay depends on flows that have been applied in the past

[q(t - 1)7q(t - 2)7 e ~7Q(t - Nd)}

IV. RAPID CONTROL PROTOTYPING TOOLS
A. Hardware

A system that runs the control algorithm loop in Real-
Time is required. Also considering a good and easy connection
with the selected software, described in IV-B, a CompactRIO
controller from National Instruments® is used, consisting of
the following elements: a NI cRio-9074 Integrated 400 MHz
Real-Time Controller, a cRio-9114 reconfigurable chassis, a
NI 9201 12-Bit Analog Voltage Input module and a NI 9263
16-Bit Analog Voltage Output module. Analog Input module
is used to get data from the sensors and through the Analog
Output module the input voltage of the pump is manipulated.
The communication to the target is done by means of ethernet
connection, making possible to access the controller remotely.

B. Software

In the present paper the Real-Time Controller is
programmed with NI VeriStand 2012.! VeriStand is a
configuration-based testing software, allowing to develop, pro-
totype, and test control systems using hardware I/O and
simulation models. Considering their popularity in both in-
dustrial and especially educational environment, MathWorks®
products Matlab and Simulink are used to design, and simulate
the control algorithms.

The process of deploying the VeriStand project in the
target, starts by integrating the m-file code into an embedded
Matlab function in Simulink. In order to read and write values
to external blocks or functions, In and Out Simulink blocks
must be added e.g. to read the setpoint and sensor value and to
apply the control action. Thus, resulting in the scheme depicted
in Fig. 3.

e
T uf——{1
:
O
:
I
-
o e
e
I
.
,‘
DSl
.
L= F——

Embedded
MATLAB Function

Fig. 3. Embedded Matlab Function Block.

In the MPC approach values of the
outputs must be stored in the memory,

previous inputs and
and be shifted each

http://www.ni.com/veristand/

Authorized licensed use limited to: University of Liege (ULg). Downloaded on January 19,2026 at 16:46:30 UTC from IEEE Xplore. Restrictions apply.

sampling time. This is achieved with the GoTo and From
blocks, and then adding a delay of one sample with the Integer
Delay block. Also some parameters needed in the Embedded
Matlab Function must be given as parameters of the block,
for example the G matrix necessary in computing the optimal
input solution in the linear case of MPC.

When installing VeriStand also a NI VeriStand Server is
installed. This is linked with Matlab and is used to transform
the Simulink model into a appropriate format to be then used
in the VeriStand project. A C compiler is necessary in this
process; the conversion can be done by using the options
from Real-Time Workshop subsection of the Configuration
Parameters menu from Simulink. VeriStand offers a user
friendly framework that allows to easily integrate the resulted
model of the controller and link the I/O to the real target ones
in a simple and intuitive way using the ScanEngine custom
device.

In addition to VeriStand there are other useful tools that
provide the possibility to interact in Real-Time with the cRio
Controller, plot signals, log data, give a signal of specified
profile as the input - Stimulus Profile Editor and also to check
the CPU and Memory usage - Distributed System Manager
(DSM). The implementation flow from Simulink model to
deployment on the cRio controller is depicted in Fig. 4.

_—— ——

Ccompiler | Matlab/Simulink !
as 1

I ‘MPC’ Controller

NI Veristand *
| Project

1/o
plot signals
log data
CPU usage

hY

Fig. 4. Implementation flow diagram.

V. EXPLORING MPC IMPLEMENTATION

Having the necessary tools presented in Section IV it
is now possible to test these control algorithms not only
in simulation but also on a real target. Once the project is
deployed, it is rather simple to modify the functionality of
your controller as it is based on Matlab code.

In this section two cases are analized, the first regarding
the performance difference between linear and nonlinear MPC
(EPSAC and NEPSAC) and second related to MPC strategies
to deal with systems with variable time delay, comparing the
MPC with variable cost horizon to MPC with SP version.

A. EPSAC vs NEPSAC

Extended Prediction Self-Adaptive Control (EPSAC) and
Nonlinear EPSAC algorithms were presented in Section II.
Both require a discrete-time model of the system suitable for
prediction. The first bases its prediction on the model (20),

254

the linearization of (15), (16) and (19) around an operating
point [¢* = 0.0231/s, T, = 34.4°C]; while the second one
predicts based on the nonlinear model.

—894

67725
(39.12s + 1)(11.15 + 1)

(20)

Both EPSAC and NEPSAC algorithms are implemented
using a Smith Predictor structure. The controllers have been
tuned using the following parameters: coincidence horizon
(N1...Ny = 20), control horizon (N,, = 1) and o = 0.7. The
performance of the two algorithms resulted from the tests are
presented in Fig. 5. As it can be seen from the plotted results
both controllers perform the same near the operating point
but as the setpoint departs from it, the nonlinear approach
keeps the same response while the performance of the linear
approach decreases. Also regarding the CPU usage it cannot
be seen much difference between these two implementations.
The CPU test was performed using the DSM from VeriStand.

T T
SetPaint
——==—EPSAC
— MNEPSAC

Ternperature [°C]

I ! I !
2000 2500 3000 3500

Time [s]

! !
1000 1500

!
a00

4000

0.03

1

o
o
[

Flow [I/s]

=}
=

Il Il Il 1 Il 1 Il
s00 1000 1500 2000 2500 3000 3500
Tirne [s]

o 4000

Fig. 5. Results of the EPSAC - NEPSAC comparison.

B. Variable Cost Horizons vs Smith Predictor

For a system with time delay, changes in the controlled
variable are noticeable once the time delay has passed. There-
fore, in order to find the optimal control sequence only output
predictions occurring after the time delay should be taken
in the cost function. This means that the minimum costing
horizon N7 should be equal to the time delay plus one. Notice
that for systems with constant time delay the previous will
lead to constant V;... N5 parameters. For a variable time delay
however, the value of N7 (and thus also N3) varies with the
time delay index. This strategy of MPC with variable cost
horizon will be referred to as M PCycp.

The second strategy exploits the structure of the process
model to design a predictive controller with constant design
parameters (N1, N3) as presented in more detail in [14]. The
structure of this control strategy is depicted in Fig. 6.

The model of the process consists of the nonlinear tank
dynamics and the tube dynamics, which are separated from
the variable time delay model. At each sampling instant,
the delay-free model output xz(¢), resulting from the pro-
cess dynamics only, is calculated using the stored values

Authorized licensed use limited to: University of Liege (ULg). Downloaded on January 19,2026 at 16:46:30 UTC from IEEE Xplore. Restrictions apply.

Disturbance

Actual
Process Output

Process
+ y(t)
___________ | .
Process Model dynamics | Delay-free Noise-free
| Model Model 4.
Non-linear tank Linear tube | . Output | Variable | Output - ,)
d t
dynamics dynamics | | |tlme delay| 2(t]t)
(P | Ty —— 4 Estimation
of Noise
x(tlt) n(tt)
- ————— L= 1 et |
I Process Model dynamics | ™ Noise Model i
s Ut ey | [CG D] sy
{iterative m
Pocess| | | |l-———= (=
input =
C 2z *
G| ¢
. Ot ™ Yoe(tHKlt) —
Suop(t+KIt)

Function
L ek

Fig. 6. NEPSAC control structure.

[(t —1),...,u(t — 1),...]. At the same sampling instant, the
variable time delay is computed from (19). Once Ny is known,
2(t— Nd) can be selected out of the stored z-values, such that
z(t) = z(t — Nd).

In this way, the prediction procedure is thoroughly simpli-
fied, resulting in a Smith Predictor-like scheme, with separation
of the tank and tube dynamics on one hand and the varying
time delay on the other hand. In such approach the minimum
prediction horizon is no longer varying and obviously equal to
one; that gives a constant maximum prediction horizon. The
strategy will be referred to as M PCgp.

For both cases analyzed: Smith Predictor and vari-
able cost horizons, the coincidence horizon was the same
(N7...Ny = 20), control horizon N, 1 and « 0.7.
These parameters were chosen considering the thermal plant
specifications and for a sampling time 75 = 4 seconds. Fig. 7
shows the results of the tests. It can be seen that controllers
perform the same in the tested range.

T
SetPoint
— — —NEPSAC Smith Predictor
—— NEPSAC N1 Variable

Ternperature [°C]

L 1
1500 2000

Time [5]

L
500 1000 2500

0.035 T T

003

0.025

Flow [If5]

00z

0015

L I
1500 2000

Time [s]

L
£00 1000

Fig. 7. Results of the NEPSAC N; Variable and Smith Predictor comparison.

In terms of CPU usage (tested with DSM) there was not
noticeable difference between the two approaches. The only
difference is from the implementation point of view. For the
method with N; variable the prediction of the plant, noise and
filtered noise must be performed also during the time delay.

255

This requires longer vectors and it is more sensitive to pro-
gramming errors unlike the Smith Predictor implementation.

VI. CONCLUSION

This paper discussed the use of VeriStand and CompactRIO
as Rapid Prototyping Tools to easily deploy complex control
algorithms directly from Matlab/Simulink code on a real-time
target. There were presented three approaches of the MPC to
control a nonlinear thermal process with variable time delay.
Based on this implementation it was demonstrated that imple-
menting a MPC with variable cost horizon lead to the same
as the Smith Predictor structure although it requires a more
careful implementation. It was also shown the effectiveness
of the NEPSAC to control the system compared to its linear
version EPSAC, without incurring in a higher computational
demand. In order to better compare the algorithms, a further
deeper study regarding the CPU and Memory performance has
to be done.

REFERENCES

[1] J. Currie and D. Wilson, Lightweight model predictive control intended
for embedded applications, in The 9th International Symposium on
Dynamics and Control of Process Systems, Leuven, Belgium, (2010).

[2] H.J. Ferreau, H.G. Bock and M. Diehl, An online active set strategy to
overcome the limitations of explicit MPC, in International Journal of

Robust and Nonlinear Control,18(8),816-830 (2008).

Richard, J.P.,(2003). Time-delay systems: an overview of some recent
advances and open problems, Automatica, 39, pp. 1667-1694.
Normey-Rico, J., and Camacho, E., (2007). Control of Dead-time pro-
cesses, Springer, Berlin.

Smith, O.J.M., (1957). Closer control of loops with dead time, Chemical
Engineering Progress, 53, pp. 217-219.

[3]
[4]
(5]

[6] Palmor, Z.J., (1996). Time-delay compensation - Smith predictor and its
modifications, in: W.S. Levine (Eds.), The control handbook, Boca Raton,

pp. 224-237.

E.F. Camacho and C., Bordons, (2007) Model Predictive Control. ISBN-
13: 978-1852336943, Springer; 2nd ed.

R. De Keyser. A ’Gent’le approach to predictive control, Invited Chapter
in UNESCO Encyclopaedia of Life Support Systems (EoLSS). Article
contribution 6.43.16.1, Eolss Publishers Co Ltd, Oxford, ISBN 0 9542
989 18-26-34 (www.eolss.net), 30p.

J.M. Maciejowski (2002) Predictive Control with Constraints Pearson
Education Limited, Edinburgh.

M. Sanchez and J. Rodellar (1996) Adaptive Predictive Control ISBN
0135148618, Prentice Hall London

Cristea, S. De Prada, C., De Keyser, R., (2005). Predictive control of a
process with variable dead-time, in: Proceedings of the 16th IFAC World
Congress, Prague, Czeck Republic, 2005, CD-ROM.

Normey-Rico, J., Bordons, C., Berenguel, M., and Camacho, E., (1998).
A robust adaptive dead-time compensator with application to a solar
collector field, in: Proceedings of the IFAC-Workshop on Linear Time
Delay Systems (LDTS’98), Grenoble, France, pp. 105-110.

Himpe, S., and Theunynck, V., (2006). Design and Advanced Control
of a Process with Variable Time Delay, Master thesis Ghent University,
Department of Electrical Energy, Systems and Automation.

Sbarciog, M., De Keyser, R., Cristea, S., and De Prada, C., (2008).
Nonlinear predictive control of processes with variable time delay: a

temperature control case study, IEEE - Multi Conference on Systems and
Control, San Antonio USA, ISSN 978-1-4244-2223-4/08, pp. 1001-1006

(7]

(8]

[91
[10]

[11]

[12]

[13]

[14]

Authorized licensed use limited to: University of Liege (ULg). Downloaded on January 19,2026 at 16:46:30 UTC from IEEE Xplore. Restrictions apply.

