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Abstract— This paper presents the development and 

validation of a specifications based PID autotuner. The 

performance of the autotuned PID is compared to that of a PID 

controller which is designed using a computer-assisted design 

tool assuming the availability of a full process model. An 

illustrative example in simulation of a high-order system, for 

which a simple PID controller may not be an optimal choice, 

proves that the proposed algorithm works well. Additionally, 

the algorithm has been tested on three real-life setups: a 

coupled water tank process, a poorly damped 

electromechanical system and a variable time delay thermal 

process. Again, the autotuned PID performed equally well as 

the model based PID. 

I. INTRODUCTION 

Along the many decades in the history of control, the 

inventions based on feedback control had a crucial impact in 

the mechanical, scientific, electrical, aerospace, and 

information revolutions [1]. Experience has shown that 

progress in automatic control is reported more by solving 

concrete process-oriented control problems, rather than 

developing firstly the new control principles. It is hard to 

imagine the 21
st
 century without the reverse parking aid 

system based on inner control loops of the steering wheel 

and gear-box in our zero emission cars. Despite the glorious 

and pioneering landmarks from the past, controller design is 

nowadays still an art, as much as a science. Tuning 

controllers for optimal closed loop performance depends 

heavily on the process to be controlled and identification is 

still a burden for the control engineer and remains a 

significant time-consuming task. 

To simplify this task, PID controllers can incorporate 

autotuning capabilities, which reduce the start-up period [2]. 

The autotuners are equipped with a mechanism capable of 

automatically computing a reasonable set of parameters 

when the regulator is connected to the process. Autotuning is 

a very desirable feature and almost every industrial PID 

controller provides it nowadays. These features provide 

easy-to-use controller tuning and have proven to be well 

accepted among process engineers [3]. 

For the automatic tuning of the PID controllers, several 

methods have been proposed. Some of these methods are 

based on identification of one point of the process frequency 

response, while others are based on the knowledge of some 

characteristic parameters of the open-loop process step 

response. The identification of a point of the process 
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frequency response can be performed either using a 

proportional regulator, which brings the closed-loop system 

to the stability boundary, or by using a relay feedback which 

forces the process output to oscillate [4],[5],[6],[7]. Usually 

these preliminary tests are necessary to determine a (partial) 

model for the process, along with the tuning of the controller 

parameters [8], [9]. Some other employed autotuning 

methods vary broadly from fuzzy inference [10], to neural 

networks [11], iterative feedback tuning [12], and robust 

control tuning [13].  

This paper presents the development and validation of a 

novel specifications based PID autotuner. The original 

contribution of this paper is given in the second section and 

stands in the development of the algorithm. The third section 

presents briefly a computer aided design tool for calculating 

PID parameters based on the knowledge of the full process 

model. Next, the validation of the novel algorithm is 

performed in simulation on a high-order system (where a PID 

controller is not the obvious choice). In the fifth section we 

present the testing of the proposed autotuner versus the 

model based PID on 3 real-life setups: a coupled water tank 

process, a poorly damped electromechanical system and a 

variable time delay thermal process. Finally, a conclusion 

section summarizes the main outcome of this work. 

II. PRINCIPLE OF A SPECIFICATIONS BASED PID AUTOTUNER 

The approximation of a closed-loop response by a 

dominant 2nd order transfer function with gain 1 gives the 

relationship between the closed-loop percent overshoot 

(%OS) and the peak magnitude Mp in frequency domain 

[14]: 
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By specifying the allowed overshoot in the closed-loop, it 

follows that the closed-loop transfer function must fulfill the 

condition: 
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with ( )G j  the open loop transfer function (both the 

process and controller). Rewriting (2) as: 
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with R the real part and I the imaginary part of ( )G j , and 

taking 
2

( )T j , it results that:  

 
2 2 2R c I r                      (4) 
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where 
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. The equation (4) represents 

a (Hall-)circle with radius r and center in  ,0c . At this 

point the reader should remind that in the Nyquist plane, the 

specification (2) means that the Nyquist curve of the 

Controller*Process ( )G j  is tangent to the M-circle. The 

equivalent of the M-circle in the Nichols chart is a curve (the 

red curves in Figs 1 & 2), to which the Controller*Process 

curve should thus be tangent. 

Our long-standing experience with a frequency response 

CAD tool (ref. section III) has learned us that a good closed-

loop time response is achieved if the frequency response 

curve of Controller*Process is going smoothly around the 

M-curve at the intersection with the (horizontal) 0dB line in 

the Nichols chart. The 0dB line represents the unit circle in 

the Nyquist plot, hence the phase margin (PM) can be 

calculated. Intersection with the unit circle is achieved by 

adding the condition: 
2 2 1R I                (5) 

Solving for R and I in (4) and (5) yields: 
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and the phase margin can be calculated as: 
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It was earlier stated in [15] that specifying the PM is not 

sufficient to guarantee a good closed-loop performance in all 

cases. Therefore, the next step is to determine the cross-over 

frequency c , which is the frequency where the 

Controller*Process frequency response should cross 0dB.  

If the settling time Ts of the (dominant 2
nd

 order) closed-

loop is also specified, then similar derivations as for (1) lead 

to (ref. [14]):  
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which allows us to calculate the bandwidth frequency
BW . 

This is the frequency where Controller*Process curve 

intersects the -3dB closed loop magnitude line (the green 

line in Figs 1 & 2), which occurs at about 7 to 8dB below the 

0dB line. Root-locus insights show that a 2
nd 

order system 

with gain 1 is the result of closing the loop around an 

integrator (with -90° phase lag) and a 1
st
 order system (with -

45° phase lag at its time constant). In order to have a PM of 

at least 45°, the cross-over frequency c  must be smaller 

than the frequency corresponding to this time-constant. The 

magnitude around c  then decreases between -20dB/dec 

(integrator) and -40dB/dec. To cover the -7.5dB between c  

and 
BW

 

it follows that 
cBW  2  and generalization to 

higher order systems (with steeper magnitude decrease) 

gives the rule 2c BW c    . 

From the knowledge of c  a sinusoid with period 
2

c
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


is applied to the process and the output: 
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can easily be found from the corresponding system response. 

The task is now to find the controller parameters such that 

the specification for PM is fulfilled at c , given the specified 

[ %OS , sT ] and the measured M and  . Based on the 

relation: 

  PMjPMjGjR cc sincos)()(         (11) 

and the PID controller given by: 
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we obtain: 
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Specifying the usual PID relationship Ti=4Td , (13) becomes: 
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which gives only one positive result. For the magnitude, 

from (11) and (10) we have that: 
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which gives the Kp controller parameter: 
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p
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K
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with only one positive result. 

 

Summarizing algorithm: 

1) With the overshoot specification %OS, calculate PM 

using (1)(7) 

 

2) With the settling time specification Ts , calculate c  

using (9)(8) and the relationship 2c BW c     

3) Enter in the system a sine signal with period 𝑇𝑐 =
2𝜋

𝜔𝑐
 

and obtain (10) 

 

4) Calculate [Kp Ti Td] using (17)(15) and Ti=4Td 

 

III. A MODEL BASED PID TUNING METHOD AS A 

PERFORMANCE REFERENCE  

It is always interesting to compare the performance of an 
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autotuned PID controller to the performance of a PID 

controller which is designed based on the full knowledge of 

the process model. When a process model is available, the 

controller design can be done using computer aided design 

(CAD) tools.  

In this paper, the CAD design uses the Frequency 

Response toolbox (FRtool) for Matlab® as described in [16]. 

Its user-friendly graphical interface is depicted in Figure 1. 

There is a separate window (not shown) allowing the design 

of the compensator by dragging compensator’s poles and 

zeros with the mouse.  

The interface offers the possibility to introduce design 

specifications (such as %OS, Ts, and more …) as graphical 

restrictions on the Nichols plot – including a real-time 

update while dragging controller’s poles and zeros. 

 

 
 
Fig. 1: Illustrative example of the graphical interface of FRtool. After the 

system has been imported from Matlab workspace, it appears as a curve in 

the Nichols chart corresponding to the loop frequency response of the 
process and controller (P*C). 

 

 
 

Fig. 2: The CAD- FRtool control design, based on the transfer function of 

the process P1(s) 

IV. AN ILLUSTRATIVE EXAMPLE 

In order to validate the proposed autotuner, the process 

transfer function  

 6
1

1

1
)(




s
sP                              (18)  

is considered, with specifications: %OS=20 and Ts=30 

seconds. For 0.2c   rad/s it follows M=0.87, 71   

and PM=45.6°. The controller parameters are then calculated 

using (15) and (17), with Kp=0.5, Ti=2.25 and Td=0.56.  

Figure 2 shows the design of the PID controller when 

using the full knowledge of the transfer function of the 

process, by means of FRtool.  The corresponding PID 

parameters are: Kp=0.3; Ti=1.66 and Td=0.41.  

 
Fig. 3: Comparison between the FRtool based PID controller, the AH 

autotuner and the proposed specification based autotuner, for P1(s). 

 
Fig. 4: Validation of controller in open loop (SYS*PID) and closed loop for 

the specified cross-over frequency (phase margin) and bandwidth frequency 
(settling time) for P1(s). 

 

Additionally, the well-known Åström-Hägglund auto-

tuner [2] is employed, giving the following parameters: 

Kp=1.41; Ti=5.45 and Td=1.36. Figure 3 shows the 

comparison between the ‘best’ design possible (FRtool), and 

the two PID auto-tuners. Figure 4 validates the cross-over 

frequency of 0.18c   rad/s and bandwidth frequency 
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0.34BW  rad/s, both close to specifications.  

 

V. RESULTS ON REAL LIFE PROCESSES 

A. Nonlinear 2-Coupled Water Tanks 

 

The 2 coupled water tank from Quanser has been used as 

a real-life example, illustrated in figure 5. The setup of the 

two tanks corresponds to the configuration #1 from the 

Quanser manual (state coupled). The system is highly 

nonlinear in changes in the gain and in the time constant 

parameters. The control objective is to maintain the water 

level in the 2
nd

 tank at a desired value. Disturbance is applied 

at the output of the first tank (volume loss). 

 

 
 

Fig. 5: Photo and schematic of the state-coupled water tanks.  

 

For the specifications of no overshoot %OS<0.001 and 

Ts=100 seconds we have that 0628.0c  rad/s and it 

follows M=1.66,  97  and PM=45.6°. The controller 

parameters Kp=0.44, Ti=38.9 and Td=9.7. For the FRTool 

design, a transfer function has been identified using the 

prediction error method around the operating point of 15cm 

level in the second tank, as given by: 
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The PID parameters tuned in FRTool for this transfer 

function are: Kp=0.38, Ti=25, Td=9.37. The results on the 

real plant are shown in figure 6 below. Figure 7 validates the 

cross-over frequency of 06.0c  rad/s and bandwidth 

frequency 1.0BW rad/s, both very close to specifications. 

 

 
Fig. 6: Comparison between the FRtool based PID controller and the 

proposed autotuner with the same specifications for P2(s).  

 
Fig. 7: Validation of controller in open loop (SYS*PID) and closed loop for 

the specified cross-over frequency (phase margin) and bandwidth frequency 

(settling time) for P2(s). 

B. Poorly Damped Electromechanical System 

 

Consider now a mass-spring-damper system driven by an 

electrical motor, with two masses, three springs and one 

damper as illustrated in figure 8 and given by the transfer 

function: 

3 4 3 2

800
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P s
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 (20) 

 

The control objective is to maintain the position of the 

second mass at a desired setpoint. Disturbance is applied to 

the first mass. The input of the system is the voltage to the 

motor ( )u t  and the outputs are the mass displacements 

1( )y t and
2 ( )y t  expressed in centimeters. Therefore a 

complete model of the electromechanical plant should 

describe the dynamics from ( )u t  to 
1( )y t  and from ( )u t  to 

2 ( )y t . The (fast) dynamics of the electrical motor can be 
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neglected; hence, the motor can be represented by a pure 

static gain ( ) ( )F t K u t  , with F(t) the force on the 1
st
 

mass. The parameters of the set-up are: 1m =1.7 Kg, 2m =1.2 

Kg, 
1 2k k =800 N/m, k3=450 N/m, c1=9 N/(m/s).  

 
Fig. 8: Photo and schematic of the mass-spring-damper system. In our 

setup, the 3rd mass has been kept fixed and the damper has been connected 
to the 2nd mass 

 

This system has two eigen-frequencies 
1 20.8   rad/s 

and 
2 39.1   rad/s, and damping factors 

1 0.08  and 

1 0.05  . Using the CAD package, one obtains the ‘best’ 

possible PID controller Kp=41.76, Ti=0.023 and Td=0.0057.  

For specifications as no overshoot %OS<0.001 and Ts=3 
seconds, it follows that 1.29c   rad/s and consequently 

0.0005M  , 1    and PM=91°. The controller 

parameters are Kp=53.5, Ti=0.0245 and Td=0.0061. It should 
be noted that for this system, the AH auto-tuner gives 
unstable results.  

Figure 9 shows the performance of the proposed auto-
tuner, which gives results comparable to those provided by 
the PID controller designed via the CAD-FRtool.   

Figure 10 validates the cross-over frequency of 1.3c   

rad/s and bandwidth frequency 1.31BW  rad/s, both close 

to specifications.  

 
 

Fig. 9: Comparison between the FRtool based PID controller and the 
proposed autotuner with the same specifications for P3(s).  

 
Fig. 10: Validation of controller in open loop (SYS*PID) and closed loop 

for the specified cross-over frequency (phase margin) and bandwidth 
frequency (settling time) for P3(s). 

 

C. Variable Time delay Thermal Plant 

Many processes include time delay phenomena in their 

inner dynamics, representative examples being found in 

biology, chemistry, mechanics, physics, population 

dynamics, as well as in engineering sciences. The presence 

of time delay (dead time) in the control loop is always a 

serious obstacle to good performance. Hence, it is interesting 

to test the performance of the proposed auto-tuner in a 

process with time delay. In fact, the auto-tuner will be tested 

on a system with variable time delay comparable to the time 

constant of the system. 

The process consists of a heated tank of which the level is 

controlled by a mechanical float switch, thus resulting in a 

constant water volume as depicted in Figure 11.  

 

 
 

Fig. 11: Process with variable time delay: a heating tank system  

 

A submerged electrical heater delivers a constant heat flow 

Qh, which causes the liquid to warm up. Temperature control 

of the outlet water is achieved by changing the outflow of 

hot tank water, which allows an equal amount of cold tap 

water to flow in. A variable transport delay, which depends 

on the outflow q(t) - the manipulated variable - is introduced 

in the system by measuring the temperature of the effluent 

stream at a distance L from the tank. It is important to 

mention that the volume of the tube is a little larger than the 
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volume of the tank. Therefore, the time delay is comparable 

to the time constant of the system.  

For a chosen setpoint of 32ºC, the identified model of the 

process using prediction error method is given by the 

following transfer function: 

𝑃4 𝑠 =
−1192

 45 𝑠+1 (29 𝑠+1)
𝑒−72𝑠     (21) 

The closed loop specifications have been set as %OS<10 

and Ts=300 seconds. The PID parameters tuned in FRTool 

for the transfer function (21) are: Kp=-0.00061, Ti=84.657, 

Td=21.16. By applying the autotuner methodology and based 

on the specifications it follows that 𝜔𝑐 = 0.0105 rad/s and 

consequently 𝑀 = 1031.7, 𝜑 = 101.8 and PM=59.1°. The 

controller parameters are Kp=-0.0007, Ti=83.51 and 

Td=20.88. The performance of both controllers in the real 

plant is presented in figure 12.  

 
Fig. 12: Comparison between the FRtool based PID controller and the 
proposed autotuner with the same specifications for P4(s).  

 

A validation is performed in Figure 13, by checking the 

cross-over frequency 𝜔𝑐 = 0.0105 rad/s and bandwidth 

frequency 𝜔𝐵𝑊 = 0.0262 rad/s. The controllers fulfill the 

specifications. 

 
Fig: 13 Validation of controller in open loop (SYS*PID) and closed loop 
for the specified cross-over frequency (phase margin) and bandwidth 

frequency (settling time) for P4(s). 

VI. CONCLUSIONS 

The development and validation of a specifications based 

novel PID autotuner have been presented. The tuning of the 

PID parameters is based on overshoot and settling time 

specifications, using an experiment with a sinusoid as input 

to the process. The method is simple to implement in 

practice.  

The effectiveness of the algorithm has been tested in 

simulation on a high-order process where a PID control is 

obviously not an optimal choice. Nevertheless, the results 

were as good as when a model-based PID tuning is 

employed.  

Furthermore, 3 real-life setups have been used as practical 

examples where the proposed autotuning algorithm has   

delivered good results for both setpoint tracking and 

disturbance rejection.  
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