
Parallelizable memory recurrent units

Florent De Geeter1,2, Gaspard Lambrechts1, Damien Ernst1, and Guillaume Drion1

1Montefiore Institute, University of Liege, Liege, Belgium
2florent.degeeter@uliege.be

Abstract

With the emergence of massively parallel processing units, parallelization has become a desirable
property for new sequence models. The ability to parallelize the processing of sequences with respect to
the sequence length during training is one of the main factors behind the uprising of the Transformer
architecture. However, Transformers lack efficiency at sequence generation, as they need to reprocess
all past timesteps at every generation step. Recently, state-space models (SSMs) emerged as a more
efficient alternative. These new kinds of recurrent neural networks (RNNs) keep the efficient update
of the RNNs while gaining parallelization by getting rid of nonlinear dynamics (or recurrence). SSMs
can reach state-of-the art performance through the efficient training of potentially very large networks,
but still suffer from limited representation capabilities. In particular, SSMs cannot exhibit persistent
memory, or the capacity of retaining information for an infinite duration, because of their monostability.
In this paper, we introduce a new family of RNNs, the memory recurrent units (MRUs), that combine the
persistent memory capabilities of nonlinear RNNs with the parallelizable computations of SSMs. These
units leverage multistability as a source of persistent memory, while getting rid of transient dynamics
for efficient computations. We then derive a specific implementation as proof-of-concept: the bistable
memory recurrent unit (BMRU). This new RNN is compatible with the parallel scan algorithm. We
show that BMRU achieves good results in tasks with long-term dependencies, and can be combined with
state-space models to create hybrid networks that are parallelizable and have transient dynamics as well
as persistent memory.

1 Introduction

Recurrent neural networks (RNNs) [1, 2] used to be the most popular architecture for tackling sequential
tasks thanks to their ability to model a large range of dynamical systems, until being foreshadowed by the
Transformer architecture [3]. The impossibility to parallelize RNNs with respect to time for training made
Transformers a much suited architecture for building large models and training them on large amount of data.
However, for generative modeling tasks, the Transformer suffers from a high computational complexity.
Indeed, at every timestep of generation, it needs to process the full sequence of past inputs. RNNs have
however regained interest in recent years thanks to the success of state-space models (SSMs) [4]. SSMs use
strictly linear dynamics in cascade with static nonlinearities, making their computation easily parallelizable.
This allows SSMs to be used in large networks and to be trained on large datasets, because they can benefit
from the computational power offered by GPUs. SSMs can compete with Transformers on a variety of tasks
[4], and large-language models based on SSMs like Mamba [5] have achieved comparable or better performance
than Transformers for similar model sizes. SSMs are more efficient than Transformers during inference, as
their recurrent formulation allows them to compute each output only from their previous output and the
input, while Transformers require the whole sequence of inputs to be fed (or cached activations along the
whole sequence of inputs).

The strictly linear recurrent dynamics of SSMs however creates some limitations: SSMs can only approximate
fading-memory systems, i.e. systems that have a unique stable state [6]. Monostable systems such as SSMs
encode past information in their transient dynamics, which creates a memory that ineluctably fades over
time and makes some tasks unsolvable for a fixed number of layers [7].

Alternatively, multistable systems have several stable states, which allows to encode information for an in-
finite duration. It is possible to foster multistability in RNNs [8, 9], and multistability has been shown to

1

drastically improve RNN performance especially in long-term dependencies tasks [9]. Multistability however
requires strongly nonlinear recurrent connections, which usually prevents parallelization. In this configura-
tion, multistable RNNs cannot compete with parallelizable alternatives such as SSMs or Transformers.

This work attempts to close this gap through the creation of novel RNN models that are parallelizable over
the sequence length but exhibit persistent memory through multistability. Section 2 first introduces the
concept of RNNs with internal clocks, i.e. RNNs in which internal states can be updated several times
between two consecutive timesteps, as a way to formalize our design approach. Section 3 focuses on the
RNN class where infinite updates can occur between two consecutive timesteps. From that, it introduces the
concept of memory recurrent unit (MRU), a class of RNNs that exhibit persistent memory but no fading
memory. Section 4 further introduces bistable memory recurrent unit (BMRU), a concrete example of MRU
that can be trained on sequential tasks. BMRU properties and performance are finally evaluated on several
benchmarks in section 5.

2 RNNs with internal clocks

RNNs encode time-dependencies in a recurrent hidden state ht whose update depends on the previous hidden
state ht−1 and current observation of a time-series xt. It writes

ht = fθ (xt, ht−1; θ) , ∀t ≥ 1 (1)

where fθ represents the update equation of the RNN and θ the parameters of the network. The key mechanism
is the recurrent connection that defines a dependency between ht and ht−1. Nonlinear RNNs such as LSTM
[1] and GRU [2] have remained state-of-the-art methods in sequence modeling for several decades.

The classical RNN formulation of equation (1) constraints the internal state ht to only be updated when
the network receives a new input xt, i.e. only once every timestep t. This constraint forbids the network to
modify its internal state evolution between two timesteps. It particularly impedes our goal to quickly encode
information on stable equilibria at convergence.

To release this constraint, we define a class of RNNs whose internal dynamics are decoupled from the external
dynamics of the input time-series. Each RNN of this class has internal clocks that permit to update their
internal states N -times between two timesteps t, where N can be different for each unit. The internal update
equation of such RNN unit between two timesteps writes

h̃t[0] = ht−1, (2a)

h̃t[n] = fθ(xt, h̃t[n− 1]; θ),∀n ≥ 1, (2b)

ht = h̃t[N], (2c)

where t is the current timestep, n ∈ [0, . . . , N] the current internal clock iteration and N ∈ N the number
of internal clock iterations. h̃t[n] is the transient internal state value at iteration n and ht the final internal
state at time t.

Classical RNNs are contained within this class. Indeed if we set N = 1, equation (2b) becomes

h̃t[1] = fθ(xt, h̃t[0]; θ)

with h̃t[0] = ht−1 and h̃t[1] = ht, which leads to equation (1).

For 1 < N < ∞, we have the set of RNNs whose internal dynamics are decoupled from the time-series
dynamics, as their internal state is updated N times between two timesteps. Such RNNs can be trained as
classical RNNs, but the potential increase in expressive power comes at a computational cost, as the effective
sequence length becomes N · T at inference, T being the length of the time-series. Using linear recurrence of
the form

fθ(xt, h̃t[n]; θ) = A(θ)h̃t[n− 1] +B(θ)xt,

can mitigate this complexity, as the value h̃[N] can be computed analytically from h̃[0] while maintaining the
possibility to output potentially complex trajectories. This is for instance the approach taken by practical
implementations of state-space models (SSMs)[10].

2

0 N

n

−2

0

2
h̃
t
[n

]
Fading memory No memory

0 N

n

−2

0

2

h̃
t
[n

]

Fading memory Memory

Figure 1: Monostability vs bistability in a RNN with internal clock. The figure shows internal state trajec-
tories of the RNN unit described by equation (3) for different initial conditions h̃t[0] = ht−1. (left) Evolution of the
system when β = −1.5. (right) Evolution of the system when β = 1.5.

For N → ∞, we have the specific set of “convergent” RNNs, i.e. RNNs that can converge towards their
steady-state values between two timesteps. In this work, we use the framework of convergent RNNs to build
a novel type of RNN unit that uses stable states as the basis for their computations.

3 The specific case of convergent RNNs (N → ∞)

We focus on RNNs that converge towards stable equilibria, i.e. RNNs whose update equation fθ(xt, ht−1; θ)
is such that:

∀xt, h̃t[0], ∃h∗ ∈ R : lim
N→∞

fN
θ (xt, h̃t[0]; θ) = h∗,

where:

fn
θ (xt, h̃t[0]; θ) =

{
fθ(xt, f

n−1
θ (x, h̃t[0]; θ); θ) if n > 1,

fθ(xt, h̃t[0]; θ) if n = 1.

Letting the internal clock to loop an infinite number of times (N → ∞) ensures that the RNN has converged
towards a stable equilibrium between two time steps. This property, which is specific to this class of RNNs,
ensures a stationary output, i.e. that the output remains stable over time if the input barely changes. This
property is of great interest, as it ensures that the information encoded in the RNN unit will not fade over
time. It however requires specific characteristics to be exploitable in practice.

To illustrate this, we consider the following RNN update equation:

ht = (1− c) · ht−1 + c · tanh (xt + (β + 1) · ht−1) ,∀t ≥ 1, (3)

which is a simplified version of the BRC and nBRC derived by Vecoven et al. [8]. To construct the convergent
version, we rewrite equation (3) at timestep t with an internal clock

h̃t[0] = ht−1 (4a)

h̃t[n] = (1− c) · h̃t[n− 1] + c · tanh
(
xt + (β + 1) · h̃t[n− 1]

)
, ∀n ≥ 1 (4b)

ht = h̃t[N] (4c)

and simulate its response over several internal clock iterations N for different values of previous state value
ht−1 and two different values of the parameter β (figure 1) (other parameter values are c = 0.01 and xt = 0).
In both simulations, the trajectories corresponding to different values of ht−1 are transiently distinct, until
they all converge towards a steady-state. The distinct transient trajectories create fading memory, which can
encode quantitative information about ht−1 but only for a strictly finite amount of time.

Here, we focus our interest on what happens at convergence. In the case of β = −1.5 (figure 1, left), all initial
ht−1 lead to the same equilibrium point, and the RNN unit cannot maintain any stationary information about
ht−1. It is restricted to fading memory. This is because equation (3) for β = −1.5 leads to a monostable
system, i.e. a system that has only one stable equilibrium for all input values xt. Monostable RNNs are
incapable of encoding stationary (i.e. persistent) information about the past. It includes all RNNs with

3

linear recurrence, such as SSMs, as well as all gated RNNs in which gates do not depend on past state values
and whose update gate zt is strictly larger than 0 (for the formulation (1− zt)⊙ ht−1) or smaller than 1 (for
the formulation zt ⊙ ht−1)[11, 12, 13].

In the case of β = 1.5 (figure 1, right), the trajectories converge towards two different equilibria depending on
ht−1: ht ≃ +1 for positive values of ht−1 and ht ≃ −1 for negative values of ht−1. The RNN unit maintains
a stationary, qualitative information about ht−1. In order words, some information about ht−1 is encoded in
persistent memory. This is because equation (3) for β = 1.5 leads to a bistable system, i.e. a system that
has two stable equilibria for a set of input values xt.

Constructing a multistable RNN with infinite internal clock cycles would therefore permit to isolate its per-
sistent memory capabilities. But constructing such RNN by looping a large number of times in equation (2b)
would drastically slow down inference and breach the convergence guarantee. We rather exploit the fact that
the internal state converges towards an equilibria at N → ∞, i.e. h̃t[n] = h̃t[n−1] = ht. To do so, we rewrite
an equivalent formulation for equation (4b) at the convergence point

h̃t[0] = ht−1

ht = (1− c) · ht + c · tanh (xt + (β + 1) · ht) ,

which can be rewritten

F (ht, xt;β) = 0; h̃t[0] = ht−1 (5)

where F (ht, xt;β) = ht − tanh (xt + (β + 1) · ht). Equation (5) provides a set of necessary conditions that
the RNN unit must satisfy at convergence. This equation defines an implicit function that can have multiple
solutions ht for a given input x∗

t . The solution that corresponds to the output at time t depends on the value
of ht−1, which dictates towards which stable point h∗

t the cell will converge (i.e., ht−1 determines in which
basin of attraction the trajectory lies). This solution must also satisfy the stability property to ensure that
it is a stable point:

df(xt, ht;β)

dht

∣∣∣∣
x∗
t ,h

∗
t

< 1

where f(xt, ht;β) = (1− c) · ht + c · tanh (xt + (β + 1) · ht).

The solutions of equation (5) and their stability are shown in figure 2 for β = −1.5 (A) and β = 1.5 (B). For
β = −1.5, the function has only one solution ht for all xt, and the convergent RNN has a similar input-output
function as a static layer. For β = 1.5, the function has a memory region where two solutions are possible,
and the selected solution ht depends on ht−1. The RNN has encoded some information of the past input in
persistent memory.

More generally, the set of necessary conditions that any RNN defined by equation (2b) must satisfy at
convergence are determined by the implicit function

Fθ(xt, ht; θ) = 0, (6)

where Fθ(xt, ht; θ) = ht − fθ(xt, ht; θ). It is therefore possible to efficiently compute the outputs of a conver-
gent RNN at each timestep t by using this implicit function as the update function

Fθ(xt, ht; θ) = 0, ∀t = 1, ..., T, (7)

where ht−1 is used to select the output value when multiple solutions exist. This leads to a recurrent unit that
only encodes information in persistent memory. We call this type of recurrent unit a memory recurrent
unit (MRU). It is important to note that equation (7) can be solved in parallel for each timestep, as the
function only depends on xt and ht, but requires ht−1 to select the proper solution based on history.

In dynamical systems theory, the implicit function Fθ(xt, ht; θ) = 0 corresponds to the bifurcation diagram
of the system described by equation (2b). For instance, equation (5) and associated figure 2 correspond to a
hysteresis bifurcation. Hysteresis bifurcations underlie bistability in existing RNN cells such as the bistable
recurrent cell (BRC) [8] (see appendix A). More generally, a MRU can be built from any nonlinear dynamics

4

0 N

n

−2

0

2
h̃
t
[n

]
xt = −1.5

0 N

n

−2

0

2

h̃
t
[n

]

xt = −0.5

−1.5 −0.5 0.5 1.5

xt

−1

0

1

h
t

Stable Unstable

0 N

n

−2

0

2

h̃
t
[n

]

xt = 0.5

0 N

n

−2

0

2

h̃
t
[n

]

xt = 1.5

A

0 N

n

−2

0

2

h̃
t
[n

]

xt = −1.5

0 N

n

−2

0

2
h̃
t
[n

]
xt = −0.5

−1.5 −0.5 0.5 1.5

xt

−1

0

1

h
t

Stable Unstable

0 N

n

−2

0

2

h̃
t
[n

]

xt = 0.5

0 N

n

−2

0

2

h̃
t
[n

]

xt = 1.5

B

Figure 2: Convergence properties of the RNN unit described by equation (4b) for different values of
input xt and either β = −1.5 (A) or β = 1.5 (B) (left) Internal state trajectories corresponding to different initial
conditions h̃t[0] = ht−1 and 4 different input values xt. (right) Solutions of the steady-state equation equation (5) for
β = −1.5 (A) and β = 1.5 (B). The red arrows show convergence trajectories from different initial conditions h̃t[0].

by using its bifurcation diagram as an implicit activation function. The output state in the memory region
can be computed using iterative methods such as the Newton–Raphson method [14, 15, 16]. Likewise, implicit
differentiation can be used to compute exact gradients during backpropagation. The use of iterative methods
can however slow down inference and hinder parallelization. In the next section, we show how this drawback
can be circumvented, focusing on the hysteresis bifurcation and its associated bistability.

4 A bistable memory recurrent unit

4.1 A computationally efficient hysteresis-based MRU

Instead of directly using the implicit function derived by the hysteresis bifurcation diagram, we propose
to create a MRU based on an approximation of this function that maintains all its qualitative properties,
but which is computationally efficient and remain parallelizable. The goal of this section is to present this
approximation, and to show how we build a bistable memory recurrent unit (BMRU) around it.

We focus our design on the multistable behavior of the implicit function, i.e. β > 0, as β ≤ 0 leads
to a monostable, memory-less function (see figure 2). Under this condition, the original function can be
decomposed into three parts: the upper stable points, the lower stable points, and the unstable points that
serve as a boundary in the bistable region. We approximate these three parts by modeling the stable points
as constant values ±α, and the boundary function as a linear function whose slope is the slope of the original
function at (0, 0), i.e. − 1

β . The approximation writes

ht =

{
α · S(xt) if |xt| ≥ β,

α · S(ht−1 +
xt

β) if |xt| < β,
(8)

5

−β 0 β

xt

−1

1

0h
t

− 1
β

Original

Approximation

Stable

Unstable

Figure 3: Comparison between the implicit func-
tion and its approximation. This figure compares the
solutions (ht, xt) of the implicit function defined by equa-
tion (5) (in blue) with the approximation defined by equa-
tion (8) (in red) where α = 1. Solid lines correspond to
stable points, and dashed lines to unstable points.

0x
t

t
−α

0

α

h
t

Bistable region

Memory is set

±β

Figure 4: Example simulation of the cell defined by
equation (9) for different values of xt and β. The
top graph defines two illustrative variations of xt and β,
as well as the bistable region defined by β. The bottom
graph shows the effect of variations in xt and β on the
evolution of the state ht. The gray areas highlight the
timesteps at which the memory is updated, which occurs
when xt is outside of the bistable region.

where S denotes the sign function (with S(0) = 1). Similarly to the original function, ht is independent of
ht−1 for a large input, but not for a small input. A comparison between this approximation and the original
function is shown in figure 3.

The convergence condition ensures that ht−1 = ±α for all timesteps, which permits to further simplify
equation (8) for |xt| < β:

ht =

{
α · S(xt) if |xt| ≥ β,

ht−1 if |xt| < β.
(9)

It is only every time |xt| is greater than β that ht is updated. Otherwise, it will remain constant. This
property is illustrated in figure 4.

4.2 A learnable bistable memory recurrent unit

Equation (9) defines the input-output properties of the BMRU, but does not contain any learnable parameters.
Here, we add such parameters by taking inspiration from gated RNN structure.

First, we observe that the function defined by equation (9) outputs two different values depending on the
comparison between the values of |xt| and β. We can implement this function by introducing a binary gate,
zt, that computes this condition, and rewrite equation (9) as a gate-dependent update rule. It writes

zt = H(|xt| − β), (10a)

ht = zt · S(xt) · α+ (1− zt) · ht−1, (10b)

where t is the current timestep, H the Heaviside function and S the sign function. Equation (10a) computes
the binary gate value zt, which is used to distinguish whether we are inside the bistable region (zt = 0) or
outside of it (zt = 1). Equation (10b) then computes the new state value ht depending on the value of zt.

We can then extend this formulation to the multidimensional case, where multiple inputs xt converge at a
layer composed of multiple BMRUs. To be coherent with the variables used in gated RNNs, we name the
input values xt and their combination at each BMRU cell ĥt, the candidate. xt becomes a M -dimensional
vector where M is the number of inputs to the layer. Moreover, β can be made input-dependent, and is
therefore renamed βt. ĥt, βt and ht become N -dimensional vectors, where N is the number of BMRU cells

6

−3 0 3

Input

0

1
O

u
tp

u
t

Heaviside

αsurr = 0

αsurr = 1

αsurr = 2

−3 0 3

Input

0

1

D
er

iv
a
ti

v
e

Figure 5: Surrogate gradient used in BMRU. (left) Comparison between the Heaviside function and the function
defined by equation (13) used to approximate the gradient for different values of αsurr. (right) Impact of αsurr on
the surrogate gradient defined by equation (12).

in the layer. We use a classical fully connected layer to compute the vectors ĥt and βt from the input vector
xt, adding the positivity constraint for βt. The equations of the multidimensional BMRU network write

ĥt = Wxxt + bx, (11a)

βt = |Wβxt + bβ |, (11b)

zt = H(|ĥt| − βt), (11c)

ht = zt ⊙ S(ĥt)⊙ α+ (1− zt)⊙ ht−1, (11d)

where ⊙ is the hadamard product, t is the current timestep, Wx and Wβ are matrices of learnable parameters,
bx, bβ and α are learnable parameters, H is the Heaviside function and S is the sign function.

The use of S and H makes the use of backpropagation difficult, as their gradient is 0 everywhere except
in 0 where it is ∞. However, there exist solutions to overcome this problem, and we chose the surrogate
gradient approach: the non-differentiable functions are used in the forward pass, but the derivatives of other
functions, which are differentiable and similar to the non-differentiable ones, are used in the backward pass.
This technique is notably used in the context of spiking neural networks [17, 18].

For the Heaviside function, we chose the following surrogate gradient (inspired from [18])

df

dx
(x) =

1

1 + (αsurrπx)2
, (12)

where αsurr is a tunable parameter. We note that this surrogate derivative comes from the function

f(x) =
1

παsurr
atan(αsurrπx) +

1

2
. (13)

Figure 5 plots f(x) and df
dx (x) for different values of αsurr. The derivative exhibits a localized peak centered

at x = 0. As the parameter αsurr increases, the width of this peak decreases, making it more concentrated.
The case αsurr = 0 is special and leads to a constant derivative equal to 1, which is also called the straight-
through estimator [19]. The surrogate gradient used for S is simply 2 · df

dx (x), as S has the same shape as H
with outputs being either −1 or 1.

4.3 Properties of the bistable MRU

BMRU is a special recurrent cell compared to the usual ones and it has some interesting properties that are
highlighted here.

Stationarity. BMRU is by design stationary, meaning that repeating the same input several times will not
impact state value. It makes state update independent of input duration when the input is constant. One
advantage that comes from this stationarity property is the ability to generalize to longer inputs. Figure 6
illustrates this on a simple benchmark, where the goal is to retain a binary value ±1 given at t = 0 for
some time, during which the input is 0. This benchmark can be easily solved using either persistent memory

7

0 100

Timesteps

−α

α
B

M
R

U
st

a
te

+1

−1

0 100

Timesteps

0

3

L
R

U
st

a
te

+1

−1

101 102 103 104

Length of input

10−14

100

M
S
E BMRU

LRU

Figure 6: Persistent memory of BMRU compared to the fading memory of LRU. Small models with one
LRU or BMRU layer of one unit have been trained on a simple benchmark whose inputs start with ±1 followed by
0’s. The goal of the models is to output the first input at the last timestep. (left, center) Evolution of the states of
LRU and BMRU with respect to the timesteps for the two possible inputs. As the LRU state is complex, its norm is
plotted. (right) MSE computed with both models on the two possible inputs for different sequence lengths.

101 102 103 104

Sequence length

0

1

G
ra

d
ie

n
t

With respect to ĥ1

With respect to β1

No memory set after t = 1

Memory set after t = 1
101 102 103 104

Sequence length

0

−1

G
ra

d
ie

n
t

Figure 7: Consistency of the gradient of BMRU with respect to time. Evolution of the gradient of the last
state hT with respect to the first candidate ĥ1 or β1. Two cases are considered: either only the first timestep sets the
memory, i.e. |ĥ1| > β1 and |ĥt| < βt ∀t > 1, either another timestep also sets the memory.

(figure 6, left) or fading memory (figure 6, center). However, BMRU encoding the information in stable
states, it remains encoded forever, and the performance is not impacted by the input length (figure 6, right).
LRU however encodes the information in fading memory, which does not generalize to larger input length,
as memory fades over time.

No vanishing nor exploding gradient in the memory region. At every timestep, the state ht will
be either set equal to ht−1 or to a value independent of ht−1. When the previous state is kept, the derivative
of the new state with respect to the previous one is 1. When the memory is updated, the derivative is 0,
and therefore the gradient will not go further back in time during the backward pass. In other words, the
information is either kept intact, or overwritten. Mathematically, it writes

∂ht

∂ht−1
=

{
1 if zt = 0,

0 if zt = 1.

Figure 7 shows how the gradient of the last state hT with respect to the first candidate ĥ1 or the first β1

evolves with respect to the sequence length. As expected, it stays constant, with two possible values: a null
one if the memory has been updated at a later timestep, or a non-zero value if the memory was never updated
after the first timestep. Indeed, in this case, each derivative ∂ht

∂ht−1
is equal to 1, therefore their product is

equal to 1, ensuring a constant gradient across time.

Compatibility with parallel scan. BMRU update equations can be rewritten using an associative op-
erator, therefore allowing the use of the parallel scan, as proved in appendix B. A scan is an operation that
takes a binary operator ⊛ and an ordered set of n elements [a0, ..., an−1] and returns the ordered set

[a0, (a0 ⊛ a1), (a0 ⊛ a1 ⊛ a2), . . . , (a0 ⊛ a1 ⊛ . . .⊛ an−1)] .

The goal of the parallel scan is to perform a scan with a better time complexity than by performing it
sequentially, decreasing the complexity of computing the n outputs from O(n) to O(log(n)) on a GPU.

8

100 300

Sequence length

0

1

M
S
E

0.00 0.00 0.00 0.99

BMRU LRU

Figure 8: Results on the copy-first
input benchmark. Test MSEs ob-
tained by BMRU and LRU models
on the copy-first-input benchmark for
two sequence lengths: 100 and 300.

102 103 104 105

Sequence length

0

1

M
S
E

BMRU LRU

102 103 104 105

Sequence length

0

1

M
S
E

BMRU LRU

Figure 9: Generalization capabilities of BMRU and LRU with re-
spect to the sequence length. MSEs obtained by the BMRU and LRU
models trained on the copy-first-input with a sequence length of 100 when
they are evaluated on longer sequences with two different levels of noise.
(left) The noise is sampled from N (0, 1). (right) The noise is sampled
from N (0, 0.1).

5 Experiments

This section aims at analyzing the performance of BMRU on several regression and classification benchmarks,
with increasing level of difficulty. The idea is to showcase the properties, strengths but also the limitations
of BMRU. Networks of LRU [20] were also trained to highlight differences between the SSMs and BMRU.
Each value presented in this section is computed by taking the average over 5 runs.

5.1 Model architecture

The architecture follows the one used in the SSM literature [4, 20]. It consists of a linear layer that projects the
input to some dimensions (called the model dimensions, H), followed by recurrent blocks and fully-connected
layers applied timestep-wise to extract the predictions. Each recurrent block has a batch normalization layer,
recurrent cell (either BMRU or LRU), a GLU activation and a skip connection. These recurrent cells have
their own number of dimensions (state dimensions, N), which can differ from the model dimensions. More
specifically, they receive inputs in H dimensions, update their N dimensional state and generate an output
with H dimensions. The recurrent cells can also receive positional embeddings that encode the current
timestep into some vector of arbitrary dimensions. Unless it is specified otherwise, we consider the prediction
of the model to be its output at last timestep, as our main goal is to evaluate the ability of the models to
retain information. The parameters of each experiment are given in appendix C.

5.2 Copy-first-input

The first benchmark is purely synthetic and consists of remembering a real value for some duration while
being perturbed by noise. In practice, models receive a two-dimensional input xt = (rt, ft) at each timestep.
The first dimension is a real value rt independently and identically distributed from N(0,1) at all timesteps.
The second one is a flag ft indicating if rt has to be retained (ft = 1) or not (ft = 0). This flag is only set at
the first timestep. Models are trained by computing the MSE between the first input and their last output.
In this experiment, we used networks of 2 recurrent blocks, with H = N = 256 and without any positional
encoding. All the models are trained on 60000 samples, 10% of which are used for validation. The test set
also consists of 60000 samples.

Figure 8 shows the test MSE obtained by the networks on two versions of the benchmark, one where in-
formation has to be retained for 100 timesteps, the other for 300 timesteps. For the small duration, both
models learn. However, for the longer duration, only BMRU manages to learn the task. Although increasing
network depth would possibly make LRU learn, our goal here is not to optimize the hyperparameters to get
the best loss possible, but rather to highlight the ability of BMRU to retain information for a long duration
even with a shallow network.

This benchmark also allows to highlight generalization property of BMRU to longer sequences. One can
evaluate this generalization by taking the models trained on 100 timesteps and testing them on longer

9

0 1216

Black pixels

0

1

A
cc

u
ra

cy

0.90 0.96 0.95 0.83 0.55 0.87

BMRU LRU BMRU/LRU

(a) 2 rec. blocks

0 1216

Black pixels

0

1

A
cc

u
ra

cy

0.88 0.97 0.97 0.76 0.84 0.93

BMRU LRU BMRU/LRU

(b) 3 rec. blocks

Figure 10: Results on the permuted sequential MNIST. Accuracies obtained by BMRU, LRU and BMRU/LRU
models on the permuted sequential MNIST, with or without black pixels added at the end of the sequences. Models
with 2 and 3 recurrent block have been tested.

sequences. To do that, we created small test sets whose sequences lengths are a power of 10, starting from
102 to 105. Each test set is composed of 6000 samples. Figure 9 shows the evolution of the MSEs obtained
by both cells on these small test sets with respect to the sequences length. LRU does not generalize to larger
sequences well, as it encodes the information in fading memory. BMRU is much more resilient as it encodes
the information in persistent memory, and the performance only decreases if the stored values are overwritten
by high amplitude noise (center graph). If the noise is sufficiently low, the performance is unaffected by the
sequence length (right graph).

5.3 Permuted sequential MNIST

The MNIST dataset is one of the most well-known datasets [21]. In this experiment, we use a variant of
MNIST, called the Sequential MNIST [22], where the pixels are fed to the models one by one. While being
known as an easy benchmark, the Sequential MNIST is still relevant when testing new architectures. To
increase the difficulty, the pixels are shuffled before being given to the models. Compared to the previous
benchmark, models must combine information received at different timesteps in order to predict the correct
label. To also assess the memorization capabilities of the models, we add, in some experiments, black pixels
at the end of the sequences. This forces the models to not only combine temporal information but also to
retain it for a long period. In practice, 1216 black pixels are added, bringing the sequence lengths to 2000.
Furthermore, we add positional encodings to the inputs of BMRU, as we observed that it can greatly improve
its performance. On the other hand, we observed that adding these encodings to LRU actually impedes its
performance, therefore these are only given to BMRU in these experiments.

Figure 10 shows the accuracies obtained by BMRU (blue bars) and LRU models (yellow bars), with or
without black pixels, and for two network depths. All recurrent blocks contain 256 neurons, as in the
previous experiment. The performance of LRU is better than BMRU on the version without black pixels,
but BMRU better maintains its performance when black pixels are added, especially for the more shallow
model. LRU indeed requires more depth to handle longer dependencies, whereas BMRU only needs two
layers to handle these long dependencies. On the other hand, this experiment also shows that LRU is much
better at combining the information from the different timesteps. This motivates our next experiment: as
LRU is better at combining the information using fading memory, and BMRU at retaining it using persistent
memory, their combination should get the best of both worlds, while still being parallelizable. The results
obtained using this combination are shown in Figure 10 (red bars). Note that for a fair comparison, the state
dimension of each cell has been divided by 2, in order to maintain the number of neurons in each recurrent
block at 256. We can see that the combination has the same performance than LRU alone when there are
no black pixels, but its performance does not decrease when black pixels are added. It even stays higher
than BMRU alone. This highlights the potential of combining the fading memory and persistent memory
properties of these two types of parallelizable RNNs.

10

128 256 512 1024

State dimension

0

1
A

cc
u
ra

cy

0.50 0.71 0.78 0.77

(a) 1 rec. block

128 256 512 1024

State dimension

0

1

A
cc

u
ra

cy

0.50 0.56 0.84 0.84

(b) 2 rec. blocks

128 256 512 1024

State dimension

0

1

A
cc

u
ra

cy

0.50 0.50 0.64 0.67

(c) 3 rec. blocks

Figure 11: Results on the pathfinder benchmark. Each plot shows the accuracies obtained by BMRU models
on the pathfinder benchmark, for different state dimensions (x-axes) and network depths (1, 2 and 3 recurrent blocks
from left to right, respectively).

5.4 Pathfinder

The pathfinder benchmark is part of the long-range arena group of benchmarks [23]. It consists of 32x32
black and white images where lines are drawn randomly, as well as two dots. The goal of the benchmark is to
predict if the two dots are connected by a line or not. Images are fed pixel by pixel, which leads to sequences
of 1024 timesteps. The goal of this experiment is to test the capabilities of shallow BMRU networks, i.e. max
3 recurrent blocks, to solve such a difficult benchmark without trying to achieve state-of-the-art performance
through parameter tuning. We chose a similar model approach as in the S4 and LRU papers [4, 20]: the
predictions of the models are the means of their outputs (instead of their last timestep), and the recurrent
layers are bidirectional.

Figure 11 shows the accuracies obtained by BMRU on this benchmark. Note that as there are only two
classes, so an accuracy of 50% corresponds to random guess. First, the results show that the BMRU is able
to learn on the Pathfinder benchmark, even with only one recurrent layer. Second, these experiments show
that the depth of the network is not that important, but its width, i.e. the state dimension, has a bigger
impact on performance. This differs from SSMs, for which it is known that their ability to handle longer
time dependencies grows with the network depth. The drop of performance when more layers are added can
be explained by the discretization implied by BMRU and the simplicity of layer interconnections. Indeed,
as each neuron of BMRU can only output two values (±α), each BMRU layer adds more discretization, and
makes the learning more difficult.

6 Discussion

The concept of MRU and BMRU are at the junction of several topics that are discussed in this section and
compared to relevant works.

Multistable RNNs. Adding multistability in RNNs is not a very explored topic from the point of view of
machine learning. Some works have been done to better understand multistability in RNNs from a dynamical
system point of view [24, 25], even some that includes thresholding functions [26, 27]. However, these works
do not include any machine learning experiments. Few works have highlighted how this property can improve
the memorization capability of RNNs, either by building new types of RNNs [8] or by enforcing multistability
in existing RNNs [9]. This work attempts to highlight the interesting properties of multistable RNNs for
sequence learning and its complementarity with the more classical fading memory.

Parallelizable RNNs. Parallelization is a sine qua non condition nowadays, and is one the features of
Transformers that put them in the front of the scene. This motivates also the research in SSMs. Since the
creation of SSMs [28, 4], numerous papers have added their contributions and improvements, which finally
led to Mamba [5], the first SSM architecture that was used in large language models. Other works tried
to make RNN parallelizable, but most of them end up removing the nonlinearities [11, 29, 12]. There exist
works that developed parallelizable RNNs, but not without concession: They had for example to remove the
time-dependency in the RNN update [30] or to limit the depth of the network [31]. Recent and promising

11

approaches reformulate the RNNs equations as a system and use iterative methods to solve it [14, 15, 16]. In
this work, we show that multistable RNNs can be parallelizable over the sequence length if we consider the
case of convergent RNNs, i.e. RNNs that reach full convergence between two timesteps.

Surrogate gradients. The usage of non-differentiable functions in neural networks does not happen often,
therefore surrogate gradients are not that useful in classic deep learning. However, in some fields with
restrictions, it allows to benefit from all the advantages of back-propagation while using special functions.
For instance, in the topic of spiking neural networks, where outputs must be 0’s and 1’s, surrogate gradients
have allowed the networks to be trained like any classical networks [18, 32, 33, 17]. However, the impact
of using an approximation during backward pass is difficult to measure, and therefore makes the usage of
surrogate gradients delicate. Also referred to as pseudo-gradient, this idea is not really new: Bengio et al.
[19] introduces the straight-through estimator uses a constant pseudo-gradient, i.e. the derivative of a linear
activation, while Zeng et al. [34] and Goodman and Zeng [35] use the derivative of a sigmoid to train MLPs
and RNNs with threshold units.

Steady-states and equilibria. While BMRU does not really rely on the computation of steady-states,
the notion of MRU is built around it and the concept of implicit function. This reminds of Deep Equilibrium
Models (DEQs) introduced by Bai et al. [36] where layers are formulated as an implicit function and outputs
are the steady-states of this implicit function. They use a solver to estimate this steady-state starting from
some initial guess. However, this initial guess does not depend on any past information, and the implicit
function are typically monostable, therefore these layers do not implement any memory. A MRU can be
seen as a variant of DEQs where the implicit function is multistable and the initial guess is chosen to be the
previous steady-state.

Future works. In the experiments section, we highlighted three characteristics of BMRU: its property to
extend its memory to much longer durations, the gain of performance that can be obtained when combining
it with a SSM, and its ability to learn long-term dependencies in difficult benchmarks with shallow networks.
All of these deserve to be explored. For instance, we know that SSMs are better in deep networks, which is
not the case of BMRU, therefore making mixed models where recurrent blocks are made of more SSM layers
than BMRU layers could lead to interesting results. Also, this degradation of performance when more BMRU
layers are added could be explored, as improvements in the cell equations and initialization could be made
to improve learning in deeper models. Furthermore, BMRU equations have three interesting properties: the
quantization of the state, the shape of the update decision, which is a comparison between ĥt and βt, and
finally the possibility for the update gate zt to be null. The first one is necessary to have discrete stable
states, the second one to approximate the hysteresis bifurcation and the last one to have persistent memory
(as zt = 0 implies ht = ht−1). However, these can be used independently of the others. The impact of each
definitively deserves to be explored, especially the third one which allows for persistent memory, as we are not
aware of another RNN architecture that allows for this property. In addition to that, BMRU update rule is
restrictive: either we keep the past state, or we totally forget it. However, nothing prevents from combining
the past state and the input, as long as the dependency with respect to the past state stays linear. Also, we
note that for introducing the MRU, we put forward a concept of RNNs with internal clocks, the MRU being
a specific implementation of such cells when the internal clock iterates an infinite number of times. In this
respect, we believe it may also be potentially interesting to further exploit this concept when the clock iterates
a finite number of times. Furthermore, the usage of surrogate gradients is practically inexistent in classic deep
learning, as all computations are differentiable. While it seems that using surrogate gradients may impede
the performance of neural networks by introducing some mismatches between forward and backward passes,
we wonder if using non-differentiable functions in classical neural networks may increase the performance
and robustness of these networks. Indeed, step functions like the Heaviside one are more resilient to small
changes in their output, but they probably make the training more difficult. Finally, BMRU was only tested
on classification and regression tasks, but one of its advantages shared with SSMs is its efficient sequence
generation capacity. It would be interesting to try it on generation tasks like text generation benchmarks for
instance.

12

7 Conclusion

In this paper, we introduce the concept of memory recurrent units (MRU): a new class of RNNs that do not
exhibit any transient dynamics but that creates persistent memory through multistability. We also present a
concrete implementation of a MRU, the bistable memory recurrent unit (BMRU), derived from the hysteresis
bifurcation. The equations of BMRU are closed to the usual gated RNN equations, and are compatible with
the parallel scan algorithm.

We observe that BMRU can achieve good results in different benchmarks, all requiring learning long-term
dependencies. Moreover, combining BMRU with a SSM leads to a parallelizable recurrent model that has both
linear transient dynamics and a multistable behavior, which allows to efficiently encode temporal information
for very long durations. Indeed, the linear dynamics can encode complex information but this memory
will unavoidably fade over time, while multistability encode more qualitative information in a never-fading
memory.

Finally, BMRU has shown to be efficient with shallow networks, while SSMs typically requires more layers
to learn long-term dependencies.

To conclude, MRUs are a new concept that deserve to be explored and especially since we showed it could
lead to a well working implementation, the BMRU, that showed interesting properties and performance. This
paves the way for new experiments and improvements for future designs.

Acknowledgments

This work has been the subject of a patent application (Number: EP26151077). Florent De Geeter gratefully
acknowledges the financial support of the Walloon Region for Grant No. 2010235 – ARIAC by DW4AI. Gas-
pard Lambrechts is a postdoctoral researcher of the Fund for Scientific Research (FNRS) from the Wallonia-
Brussels Federation in Belgium. The present research benefited from computational resources made available
on Lucia, the Tier-1 supercomputer of the Walloon Region, infrastructure funded by the Walloon Region
under the grant agreement n°1910247. This work was supported by the Belgian Government through the
Federal Public Service Policy and Support.

References

[1] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural Computation, vol. 9, no. 8, pp.
1735–1780, Nov. 1997.

[2] K. Cho, B. van Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, and Y. Bengio,
“Learning Phrase Representations using RNN Encoder–Decoder for Statistical Machine Translation,” in
Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP).
Doha, Qatar: Association for Computational Linguistics, 2014, pp. 1724–1734.

[3] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin,
“Attention is All you Need,” in Advances in Neural Information Processing Systems, vol. 30. Curran
Associates, Inc., 2017.

[4] A. Gu, K. Goel, and C. Re, “Efficiently Modeling Long Sequences with Structured State Spaces,” ArXiv,
Oct. 2021.

[5] A. Gu and T. Dao, “Mamba: Linear-Time Sequence Modeling with Selective State Spaces,” in First
Conference on Language Modeling, Aug. 2024.

[6] S. Boyd and L. Chua, “Fading memory and the problem of approximating nonlinear operators with
Volterra series,” IEEE Transactions on Circuits and Systems, vol. 32, no. 11, pp. 1150–1161, Nov. 1985.

[7] W. Merrill, J. Petty, and A. Sabharwal, “The illusion of state in state-space models,” in Proceedings
of the 41st International Conference on Machine Learning, ser. ICML’24, vol. 235. Vienna, Austria:
JMLR.org, Jul. 2024, pp. 35 492–35 506.

[8] N. Vecoven, D. Ernst, and G. Drion, “A bio-inspired bistable recurrent cell allows for long-lasting
memory,” PLOS ONE, vol. 16, no. 6, p. e0252676, Jun. 2021.

13

[9] G. Lambrechts, F. De Geeter, N. Vecoven, D. Ernst, and G. Drion, “Warming up recurrent neural
networks to maximise reachable multistability greatly improves learning,” Neural Networks, vol. 166,
pp. 645–669, Sep. 2023.

[10] J. T. H. Smith, A. Warrington, and S. Linderman, “Simplified State Space Layers for Sequence Model-
ing,” in The Eleventh International Conference on Learning Representations, Sep. 2022.

[11] E. Martin and C. Cundy, “Parallelizing Linear Recurrent Neural Nets Over Sequence Length,” in Inter-
national Conference on Learning Representations, Feb. 2018.

[12] L. Feng, F. Tung, M. O. Ahmed, Y. Bengio, and H. Hajimirsadeghi, “Were RNNs All We Needed?”
2024.

[13] Z. Qin, S. Yang, and Y. Zhong, “Hierarchically Gated Recurrent Neural Network for Sequence Modeling,”
Advances in Neural Information Processing Systems, vol. 36, pp. 33 202–33 221, Dec. 2023.

[14] Y. H. Lim, Q. Zhu, J. Selfridge, and M. F. Kasim, “Parallelizing non-linear sequential models over the
sequence length,” in The Twelfth International Conference on Learning Representations, Oct. 2023.

[15] X. Gonzalez, A. Warrington, J. T. Smith, and S. W. Linderman, “Towards Scalable and Stable Paral-
lelization of Nonlinear RNNs,” Advances in Neural Information Processing Systems, vol. 37, pp. 5817–
5849, Dec. 2024.

[16] F. Danieli, P. Rodriguez, M. Sarabia, X. Suau, and L. Zappella, “ParaRNN: Unlocking Parallel Training
of Nonlinear RNNs for Large Language Models,” 2025.

[17] E. O. Neftci, H. Mostafa, and F. Zenke, “Surrogate Gradient Learning in Spiking Neural Networks:
Bringing the Power of Gradient-Based Optimization to Spiking Neural Networks,” IEEE Signal Process-
ing Magazine, vol. 36, no. 6, pp. 51–63, Nov. 2019.

[18] J. K. Eshraghian, M. Ward, E. O. Neftci, X. Wang, G. Lenz, G. Dwivedi, M. Bennamoun, D. S. Jeong,
and W. D. Lu, “Training Spiking Neural Networks Using Lessons From Deep Learning,” Proceedings of
the IEEE, vol. 111, no. 9, pp. 1016–1054, Sep. 2023.

[19] Y. Bengio, N. Léonard, and A. Courville, “Estimating or Propagating Gradients Through Stochastic
Neurons for Conditional Computation,” Aug. 2013.

[20] A. Orvieto, S. L. Smith, A. Gu, A. Fernando, C. Gulcehre, R. Pascanu, and S. De, “Resurrecting
Recurrent Neural Networks for Long Sequences,” in Proceedings of the 40th International Conference on
Machine Learning. PMLR, Jul. 2023, pp. 26 670–26 698.

[21] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to document recog-
nition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324, Nov. 1998.

[22] Q. V. Le, N. Jaitly, and G. E. Hinton, “A Simple Way to Initialize Recurrent Networks of Rectified
Linear Units,” ArXiv, Apr. 2015.

[23] Y. Tay, M. Dehghani, S. Abnar, Y. Shen, D. Bahri, P. Pham, J. Rao, L. Yang, S. Ruder, and D. Metzler,
“Long Range Arena: A Benchmark for Efficient Transformers,” ArXiv, Nov. 2020.

[24] C.-Y. Cheng, K.-H. Lin, and C.-W. Shih, “Multistability in Recurrent Neural Networks,” SIAM Journal
on Applied Mathematics, vol. 66, no. 4, pp. 1301–1320, Jan. 2006.

[25] K. Krishnamurthy, T. Can, and D. J. Schwab, “Theory of Gating in Recurrent Neural Networks,”
Physical Review X, vol. 12, no. 1, p. 011011, Jan. 2022.

[26] R. Edwards, “Analysis of continuous-time switching networks,” Physica D: Nonlinear Phenomena, vol.
146, no. 1-4, pp. 165–199, Nov. 2000.

[27] M. Tournoy and B. Doiron, “A Step Towards Uncovering The Structure of Multistable Neural Networks,”
2022.

[28] A. Gu, I. Johnson, K. Goel, K. K. Saab, T. Dao, A. Rudra, and C. Re, “Combining Recurrent, Convo-
lutional, and Continuous-time Models with Linear State-Space Layers,” Neural Information Processing
Systems, 2021.

[29] M. Beck, K. Pöppel, M. Spanring, A. Auer, O. Prudnikova, M. Kopp, G. Klambauer, J. Brandstetter,
and S. Hochreiter, “xLSTM: Extended Long Short-Term Memory,” Advances in Neural Information
Processing Systems, vol. 37, pp. 107 547–107 603, Dec. 2024.

14

[30] H. Jiang, F. Qin, J. Cao, Y. Peng, and Y. Shao, “Recurrent neural network from adder’s perspective:
Carry-lookahead RNN,” Neural Networks, vol. 144, pp. 297–306, Dec. 2021.

[31] J. E. Zini, Y. Rizk, and M. Awad, “An Optimized Parallel Implementation of Non-Iteratively Trained
Recurrent Neural Networks,” Journal of Artificial Intelligence and Soft Computing Research, vol. 11,
no. 1, pp. 33–50, Jan. 2021.

[32] J. H. Lee, T. Delbruck, and M. Pfeiffer, “Training Deep Spiking Neural Networks Using Backpropaga-
tion,” Frontiers in Neuroscience, vol. 10, 2016.

[33] N. P. Nieves and D. F. M. Goodman, “Sparse Spiking Gradient Descent,” in Neural Information Pro-
cessing Systems, May 2021.

[34] Z. Zeng, R. M. Goodman, and P. Smyth, “Learning Finite State Machines With Self-Clustering Recurrent
Networks,” Neural Computation, vol. 5, no. 6, pp. 976–990, Nov. 1993.

[35] R. Goodman and Z. Zeng, “A learning algorithm for multi-layer perceptrons with hard-limiting threshold
units,” in Proceedings of IEEE Workshop on Neural Networks for Signal Processing, Sep. 1994, pp. 219–
228.

[36] S. Bai, J. Z. Kolter, and V. Koltun, “Deep Equilibrium Models,” in Advances in Neural Information
Processing Systems, vol. 32. Curran Associates, Inc., 2019.

[37] G. E. Blelloch, “Prefix sums and their applications,” School of Computer Science, Carnegie Mellon
University Pittsburgh, PA, USA, Tech. Rep., 1990.

15

−2 0 2

xt

−1

0

1

h
t

ba = −1

−2 0 2

xt

−1

0

1

h
t

ba = 0

−2 0 2

xt

−1

0

1

h
t

ba = 1

Stable Unstable

Figure 12: Hysteresis bifurcation in the bistable recurrent cell. This figure shows the solutions to the implicit
function defined by equation (15) as well as their stability for three values of ba.

A Hysteresis bifurcation in the bistable recurrent cell

The bistable recurrent cell [8] is described the set of equations

ct = σ(Ucxt + wc ⊙ ht−1 + bc), (14a)

at = 1 + tanh (Uaxt + wa ⊙ ht−1 + ba) , (14b)

ht = ct ⊙ ht−1 + (1− ct)⊙ tanh (Uhxt + atht−1 + bh) , (14c)

where ct is the update gate, at the feedback gate, and Uc, wc, bc, Ua, wa, ba, Uh, bh are learnable parameters.
At steady-state, we have ht = ht−1, and equation (14c) writes

(1− ct)⊙ ht = (1− ct)⊙ tanh (Uhxt + atht + bh) ,

which, by replacing at by equation (14b) at steady-state and dividing each term by (1 − ct) (ct being the
output of a sigmoid function, its value is strictly smaller than 1), leads to

tanh (Uhxt + (1 + tanh (Uaxt + wa ⊙ ht + ba))ht + bh)− ht = 0. (15)

This steady-state function is a static, implicit function that relates the values of the input xt to the values
of the state ht at convergence. We can show that this function corresponds to a hysteresis singularity with
xt as the bifurcation parameter and ba as the unfolding parameter. Figure 12 illustrates the unfolding of the
hysteresis bifurcation for ba = −1 (monostable), ba = 0 (singular) and ba = 1 (bistable) (other parameter
values are Uh = 1, Ua = wa = bh = 0). Modifications of the parameters Uh ̸= 0, Ua, wa, bh lead to translations
and deformations of the bifurcation plot without alteration of the existence of a hysteresis singularity.

B Compatibility of BMRU with the parallel scan algorithm

The scan operation, also called the prefix sum operation, computes from a binary operator ⊕ and an array
of n elements [a0, a1, . . . , an−1] the array

[a0, a0 ⊕ a1, . . . , a0 ⊕ a1 ⊕ ...⊕ an−1].

A naive implementation of the scan consists in a simple loop over the input array that accumulates the results
and stores them in the output array. This implementation has a time complexity of O(n). However, it is
possible to perform the scan with a better time complexity when the operator ⊕ is associative and when
multiple processors are available.

The parallel scan algorithm introduced by Blelloch [37] is an algorithm that performs the scan operation on a
array of n elements with a time complexity of O(np + log(p)), where p is the number of processors. Assuming

16

this algorithm is run on a GPU, we can consider p = n, which therefore gives a time complexity of O(log(n)).
Notably, this algorithm is used with the SSMs during their training [10].

This section proves that BMRU equations are compatible with the parallel scan algorithm.

Theorem 1: The parallel scan can be used to perform the scan on an array with a binary operator ⊕ if and
only if ⊕ is associative.

Proof. The proof is given in [37].

Furthermore, Blelloch [37] showed that there exists a binary associative operator that computes the ordered
set of states from a first-order linear recurrence.

Theorem 2: Assume a first-order linear recurrence of the following form:

ht =

{
b0 if t = 0,

at ⊙ ht−1 + bt if 0 < t < T,

where at and bt ∀t ∈ [0, T] are independent of ht′ ∀t′ ∈ [0, T]. Consider the set of pairs ct = [at, bt] and the
binary operator ⊛ defined as follows:

ct ⊛ ct′ ≡ [ct,a ⊙ ct′,a, ct′,a ⊙ ct,b + ct′,a]

where ct,a and ct,b are the first and second elements of ct. Then,

1. The operator ⊛ is associative,

2. Performing the scan with the operator ⊛ on the array [c0, . . . , cT] creates the array [s0, . . . , sT] where
st = [yt, ht] and yt is defined as:

yt =

{
a0 if t = 0,

at ⊙ yt−1 if 0 < t < T.

It results that the parallel scan can be used to solve this first-order linear recurrence as ⊛ is associative (point
1.), and the solutions ht will be the second values of the generated pairs st (point 2.).

Proof. The proof is given in [37], section 4.1.

To prove that BMRU is compatible with the parallel scan, we can therefore show that equations (11a) to (11d)
can be rewritten as a first-order linear recurrence.

Theorem 3: Assume a sequence of inputs [x1, . . . , xT] and fixed parameters Wx,Wβ , bx, bβ and α. Equa-
tions (11a) to (11d) describe a first-order linear recurrence, and are therefore compatible with the parallel
scan.

Proof. First, let us separate the equations that are independent of the previous state ht−1 from the ones
that are not. Equations (11a) to (11c) do not depend on ht−1. Therefore ĥt, βt and zt can be computed in
parallel for all timesteps.

The last equation, equation (11d), is the only one that has to be analyzed. As a reminder, here it is:

ht = zt ⊙ S(ĥt)⊙ α+ (1− zt)⊙ ht−1.

The left term is independent of ht−1, hence let us define the set of bt’s as follows:

bt ≡ zt ⊙ S(ĥt)⊙ α.

Also, the factor that multiplies ht−1 is independent of it. Let us define the set of at’s as follows:

at ≡ 1− zt.

17

Equation (11d) can therefore be rewritten using at and bt:

at = 1− zt, (16a)

bt = zt ⊙ S(ĥt)⊙ α, (16b)

ht =

{
h0 if t = 0,

at ⊙ ht−1 + bt if 0 < t < T.
(16c)

Once again, equations (16a) and (16b) are independent of ht−1 and can be computed in parallel for all
timesteps. Finally, equation (16c) is a first-order linear recurrence and by using theorem 2, parallel scan can
be used to solve it.

C Training parameters

This section gives all the training parameters used in the experiments of section 5: Tables 1 to 3 respectively
give the parameters of sections 5.2 to 5.4.

Parameter Value(s)
Number of samples in dataset 60000
Sequence length 100 - 300
Train / valid ratio 90% / 10%
Epochs 100
Learning rate Cosine annealing:

10−4 → 10−3 during 10 first epochs,
then 10−3 → 10−5

Weight decay 0.0001 for BMRU parameters
0.05 for other parameters

Number of recurrent blocks 2
Model dim 256
State dim 256
Positional encoding No
Activation between blocks GLU
Bidirectional No
Number of fully connected layers (after last block) 2
Pooling for prediction Last timestep
(BMRU) αsurr 1
(LRU) rmin, rmax and θmax 0.0, 0.99 and 2π

Table 1: Training parameters used in section 5.2.

18

Parameter Value(s)
Number of black pixels 0 - 1216
Pixel normalization p/255− 0.5, with p ∈ [0, 255]
Train / valid ratio 90% / 10%
Epochs 100
Learning rate Cosine annealing:

10−4 → 10−3 during 10 first epochs,
then 10−3 → 10−5

Weight decay 0.0001 for BMRU parameters
0.05 for other parameters

Number of recurrent blocks 2 - 3
Model dim 256
State dim 256
Positional encoding 16 dim, only for BMRU
Activation between blocks GLU
Bidirectional No
Number of fully connected layers (after last block) 2
Pooling for prediction Last timestep
(BMRU) αsurr 1
(LRU) rmin, rmax and θmax 0.0, 0.99 and 2π

Table 2: Training parameters used in section 5.3.

Parameter Value(s)
Pixel normalization (p− µ)/σ, with p ∈ [0, 255],

µ = 10.94 and σ = 38.51
Train / valid ratio 90% / 10%
Epochs 100
Learning rate Cosine annealing:

10−4 → 10−3 during 10 first epochs,
then 10−3 → 10−5

Weight decay 0.0001 for BMRU parameters
0.05 for other parameters

Number of recurrent blocks 1 - 2 - 3
Model dim 256
State dim 128 - 256 - 512 - 1024
Positional encoding 16 dim
Activation between blocks GLU
Bidirectional Yes
Number of fully connected layers (after last block) 2
Pooling for prediction Mean of all timesteps
(BMRU) αsurr 1

Table 3: Training parameters used in section 5.4.

19

	Introduction
	RNNs with internal clocks
	The specific case of convergent RNNs (N→∞)
	A bistable memory recurrent unit
	A computationally efficient hysteresis-based MRU
	A learnable bistable memory recurrent unit
	Properties of the bistable MRU

	Experiments
	Model architecture
	Copy-first-input
	Permuted sequential MNIST
	Pathfinder

	Discussion
	Conclusion
	Hysteresis bifurcation in the bistable recurrent cell
	Compatibility of BMRU with the parallel scan algorithm
	Training parameters

