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Abstract

Controlling production and release of material into a manufacturing system e↵ectively can
lower work-in-progress inventory and cycle time while ensuring the desired throughput. With
the extensive data collected from manufacturing systems, developing an e↵ective real-time
control policy helps achieving this goal. Validating new control methods using the real man-
ufacturing systems may not be possible before implementation. Similarly, using simulation
models can result in overlooking critical aspects of the performance of a new control method.
In order to overcome these shortcomings, using a lab-scale physical model of a given manu-
facturing system can be beneficial. We discuss the construction and the usage of a lab-scale
physical model to investigate the implementation of a data-driven production control policy
in a production/inventory system. As a data-driven production control policy, the marking-
dependent threshold policy is used. This policy leverages the partial information gathered
from the demand and production processes by using joint simulation and optimization to
determine the optimal thresholds. We illustrate the construction of the lab-scale model by
using LEGO Technic parts and controlling the model with the marking-dependent policy
with the data collected from the system. By collecting data directly from the lab-scale pro-
duction/inventory system, we show how and why the analytical modeling of the system can
be erroneous in predicting the dynamics of the system and how it can be improved. These
errors a↵ect optimization of the system using these models adversely. In comparison, the
data-driven method presented in this study is considerably less prone to be a↵ected by the
di↵erences between the physical system and its analytical representation. These experiments
show that using a lab-scale manufacturing system environment is very useful to investigate
di↵erent data-driven control policies before their implementation and the marking-dependent
threshold policy is an e↵ective data-driven policy to optimize material flow in manufacturing
systems.
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1. Introduction

A modern manufacturing system has the necessary technological infrastructure to collect
extensive data from the shopfloor and control all the processes. Utilizing this infrastructure
requires developing e↵ective data-driven production control methods. An important aspect
of devising new control policies for manufacturing systems is validating them using a testbed.
Testing new control policies in a real manufacturing system may not be possible before actual
implementation or can be extremely costly. Furthermore, even if the implementation is pos-
sible in an actual manufacturing system, observing the long-run performance of the system
under a proposed policy may take a very long time. As an alternative, simulation models are
commonly used as digital twins for the validation of new policies. However, inadequacy of
modeling the physical properties of the elements in a system in a su�ciently detailed way has
been identified as one of the limitations of the simulation models. Simplifying assumptions
used in the simulation models, ignoring smaller delays in the processes related to material
handling, and human errors and testing a proposed policy with such a simulation model may
yield an inaccurate evaluation of the proposed policy in a real implementation [1]. Using a
design that is based on a simulation model that does not capture the physical properties of
the system accurately can yield a lower e�ciency of the system compared to target level [2].

Using a lab-scale physical manufacturing system model is a realistic middle ground al-
ternative to using simulation models or actual manufacturing systems as testbeds. In many
di↵erent areas, physical models have been used for performing tests to evaluate the perfor-
mance, and finalizing and validating a given design. For example, in automotive industry,
physical models are commonly used to finalize the design and evaluate the performance in
more realistic settings [3]. Similarly, in construction industry, physical models of buildings
are also used to visualize the design and performing tests [4]. In order to test the proposed
optimization algorithm for a variant of the traveling salesman problem, drones and ground
vehicles are also used as a testbed [5]. However, the use of physical models in design and
control of manufacturing systems is limited.

Similar to the limitation of simulation models in other settings, validating control policies
using lab-scale manufacturing system models includes many steps that are present in real
systems but are usually ignored in simulation models. For example, transportation and
handling of material can introduce considerable delays or unexpected failures may happen.
Furthermore, using a lab-scale environment emphasizes the implementation issues such as
considering the availability of the existing sensors, the communication system, data collection
and computational capacity during the algorithm development phase. Therefore, lab-scale
physical manufacturing system models can provide a testbed for studies that consider the
processes of data gathering from a physical system, processing the collected data to build
the models or estimate the system parameters, optimizing the system, and implementing
the prescribed solutions in the physical system. As a result, lab-scale physical models can
be used to develop more realistic digital twins and for demonstrating the feasibility of the
proposed design [6, 7, 8, 9].

In this work, we discuss development of a lab-scale manufacturing system environment
to investigate data-driven production control approaches. Developing data-driven methods
is a part of the goals of Industry 4.0 and one of the necessities of smart manufacturing
[10, 11]. Data-driven approaches have been used in di↵erent aspects of analysis of manufac-
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turing systems including identifying critical processes in semiconductor manufacturing and
bottleneck detection in serial lines [12, 13]. We focus on a specific policy that is referred
as the marking-dependent production control policy implemented in a production/inventory
system [14]. This policy has been devised in line with the criteria of data-driven methods
that emphasise the direct use of data and avoiding imposing mathematical assumptions on
the data for the purpose of tractability [15, 16]. Production/inventory systems have been
extensively studied in the literature and the base-stock policy has been shown to be optimal
for them, given restrictive assumptions such as independent arrivals, independent service
times and a fully observable system [17]. For more complex settings such as deteriorat-
ing production and uncertain inventory, reinforcement learning and dynamic programming
based methods have been proposed [18, 19]. For partially observable systems, variants of the
base-stock policy have been studied [20, 21]. The marking-dependent threshold policy has
been extended to more general systems by using a machine learning approach to implement
these policies [22].

In the construction of the lab-scale model, we use LEGO Technic parts. The LEGO
manufacturing system consists of conveyors, workstations, gates, sensors and EV3 bricks
that enable the connection of the physical system with the computer that controls the setup.
We introduce the di↵erent components of the setup and demonstrate the control of the system
with the making-dependent threshold policy. Then, in order to validate the implementation
of the data-driven control method, we conduct experiments where for given parameters for
the setup, the actual inter-event times generated by the setup are collected and compared
to that of the analytical models. Finally, we apply the data-driven joint simulation and
optimization method to the traces gathered from the physical system.

In recent years, several LEGO manufacturing systems have been constructed and used
mainly for educational purposes [23, 24, 25, 26]. Most of these implementations use the
lab-scale models of manufacturing systems with reliable and unreliable stations, closed-loop
and open-loop production lines. LEGO manufacturing systems have been used as a proof
of concept for the digital twin and real-time simulation [27, 28, 29]. LEGO manufacturing
systems have also been used for automatic generation of simulation models based on data
collected from manufacturing systems without additional knowledge about the structure
of the system [30]. Compared to the number of studies that report the use of lab-scale
models for teaching purposes, the number of studies that report the use of these models for
manufacturing system research is limited.

The main contributions of this study are two fold. First, we demonstrate the construction
and the usage of a lab-scale manufacturing system model to investigate production control
policies in detail with the relevant methods and algorithms. We discuss the disparity between
the analytical models and the empirical data collected from the physical model and the ways
to improve the models. Second, we validate the e↵ectiveness of the data-driven marking-
dependent production control policy in a production/inventory system by using a lab-scale
manufacturing system model.

The remainder of this paper is organized as follows. Section 2 introduces the produc-
tion/inventory system and the data-driven marking-dependent policy we use for validation.
Section 3 describes the LEGO production/inventory system with construction of system
elements and the centralized control algorithm. Section 4 discusses the results of the ex-
periments conducted by using the lab-scale manufacturing system model. Finally, Section 5
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concludes the paper.

2. Data-driven marking-dependent threshold policy

In the lab-scale manufacturing environment, a specific data-driven control policy that is
referred as the marking-dependent threshold policy is used in a specific production/inventory
system. The production/inventory model considered here falls under the category of make-
to-stock queues that have been extensively studied in the literature. The state-dependent
policies have been studied for these models under di↵erent conditions [31, 21]. For a survey
of make-to-stock queues we refer the reader to [32].

In this section, the control policy and the production/inventory system are introduced
following the setting given in [14]. Figure 1 shows a general setting where the real-time
signals from the production time process and the demand process are collected and used
by the control policy to decide whether the release of material into the production will be
allowed. The marking-dependent threshold policy uses the clusters of real-time information
signals, referred as markings, collected from a system to authorize the release of material
into di↵erent parts of the system.

Buffer

Machine

Flow of
information

Flow of
material

Policy

Backlogs

Inventory

Demand
Process

Production

Markings Inventory Level

Markings

Control
Policy

Figure 1: The marking-dependent threshold policy for a production/inventory system

The control problem considered in this study is minimizing the long run inventory and
backlog costs by deciding whether the release of material into the production will be au-
thorized based on the inventory level, the availability of the machine, and the last collected
information signals related to the demand and production times that are represented by the
selected markings. The formal definition of the policy, the model and its assumptions are
given in the following part.

2.1. Model

We consider a discrete state space and continuous time representation of a manufacturing
system. The state of the production time process at time t is ⌘W (t) 2 {1, . . . , w} where w

4



is the number of the di↵erent production time states. The working status of the production
stage at time t is M(t) 2 {0, 1} where M(t) = 0 indicates that the production stage is
idle and M(t) = 1 indicates that it is working. When the production starts, it cannot be
preempted.

The state of the demand arrival process is ⌘D(t) 2 {1, . . . , d}, where d is the number of
the di↵erent demand arrival states. In the experimental setup described in Section 2.5, the
output from a two-station production line generates the demand for the production/inventory
system, and the demand inter-arrival times are correlated.

The inventory position that is the di↵erence between the cumulative production and
cumulative demand at time t is X(t), the inventory level is X+(t) = max{X(t), 0} and the
backlog level is X�(t) = max{�X(t), 0}. The inventory carrying cost is c+ and the backlog
cost is c� per unit time for each part.

The markings arrive as the information signals with the demand arrivals or production
completions. They can also arrive independently. The last observed marking from the
information and demand process at time t is cD(t) 2 {1, . . . , CD} where CD is the num-
ber of markings for the demand process. The last observed marking from the production
time process is cW (t) 2 {1, . . . , CW} where CW is the number of markings for the pro-
duction process. The inventory status, the production status, and the marking processes,
(X(t),M(t), cD(t), cW (t)) are observable. However, the demand and production states, de-
noted as ⌘D(t) and ⌘W (t) respectively, are not fully observable. The marking-dependent
control policy is based on the observable state of the system.

2.2. Production Control Problem

The decision to authorize production at time t under policy l is denoted with

ul(X(t),M(t), cD(t), cW (t)),

where ul = 1 denotes authorizing the production and ul = 0 denotes not authorizing the
production depending on the inventory position, the machine status, and the last observed
demand and production markings. The control problem is finding the optimal policy l that
minimizes the steady-state average cost ⇡ in the long run

⇡⇤ = min
l

J l = E


1

T
lim
T!1

Z T

t=0

�
c+X+(t) + c�X�(t)

�
dt|X(0), ⌘D(0), ⌘W (0)

�
. (1)

2.3. Marking-dependent Threshold Policy

The proposed solution to the control problem given in Equation (1) is using the marking-
dependent threshold policy where the inventory position at time t is compared with the
threshold level set for the last observed markings of the demand and production processes
to authorize production. Let ScD,cW be the threshold level for the marking pair (cD, cW ),
cD 2 {1, 2, ..., CD}, cW 2 {1, 2, ..., CW}. The arrival of a demand while the last observed
marking pair is (cD, cW ) authorizes production if there is no item being produced at that
moment and the inventory level is less than or equal to ScD,cW . Upon completion of a part,
production is allowed to continue if the inventory level is less than ScD,cW . If the inventory

5



level reaches ScD,cW , the production stops until a new demand or information signal arrives.
The production will not start if the threshold that corresponds to the newly observed marking
pair is lower than the inventory level. The control policy can be expressed as

u(X(t),M(t), cD(t), cW (t)) =

⇢
1 if X(t) < ScD,cW and M(t) = 0
0 otherwise

. (2)

2.4. Determination of the Optimal Thresholds

The parameters of the marking-dependent control policy are the thresholds that are used
based on the markings collected from the system in real time. There are CD⇥CW parameters
of the control policy corresponding to di↵erent thresholds S = {ScD,cW }, cD 2 {1, 2, ..., CD},
cW 2 {1, 2, ..., CW}.

A joint simulation and optimization (JSO) approach is proposed to determine the opti-
mal threshold levels for each pair of production and demand process markings by using the
traces gathered from the system [14]. The JSO approach uses a mixed integer programming
formulation that captures the discrete-event dynamics of the system when it is controlled
with the marking-dependent threshold policy with the specific thresholds, the data collected
from the shopfloor, and the simulated inter-event times for other random variables with the
available statistical information. This formulation yields the optimal thresholds that mini-
mize the average inventory carrying and backlog cost over a time period. The JSO approach
does not impose any assumptions about the demand arrival and production processes.

Alternatively, the demand and production signal arrival processes can be approximated
with i.i.d. processes with exponential or phase-type inter-event time distributions or with
Markovian Arrival Processes. The parameters of these processes can be determined based
on the observed traces. Following the parameter setting, the long-run average cost can be
determined analytically for given thresholds and the optimal thresholds can be determined
accordingly.

In Section 4, we compare these di↵erent methods to determine the optimal thresholds
by using the data collected from the lab-scale model of a specific system. We describe the
specific production/inventory system analyzed in the experiments in the next subsection.

2.5. Production/Inventory System Model for the Experimental Setup

We build the lab-scale physical model of the system depicted in Figure 2 and used in our
experiments. This system has been analyzed analytically and with simulation in [14].
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Figure 2: The schematic representation of the LEGO production/inventory system

In this system there are three machines, WS1, WS2, WS3. WS1, and WS3 are reliable
and WS2 is unreliable. The production control policy aims at balancing the flow of parts
from WS1 with the flow of parts coming from a two-station production line that is composed
of workstations WS2 and WS3 separated with a finite bu↵er by controlling the release of
parts to WS1. The downstream bu↵er of WS1 represents the accumulated inventory and the
downstream bu↵er of WS3 represents the accumulated backlog.

The status of the unreliable workstation WS2, in working condition (1) or under repair

(2), forms the markings used for making the decision to release parts into WS1. According
to the experimental setup, we do not consider the information about the bu↵er between
WS2 and WS3 in forming the markings. Since WS1 is reliable and has unlimited material,
its status is either idle or busy with the processing of an existing part. Since its working
status is taken into consideration directly in the authorization decision, we do not consider
any additional markings related to production. Therefore, there are two markings coming
from the demand process used to authorize the release of parts: cD 2 {1, 2}. Accordingly,
there are two thresholds to control the system: S1 that is imposed when WS2 is in working
condition and S2 that is used when WS2 is down and under repair. Then, the optimal
real-time release control policy based on the system status is given as

u(X(t),M(t), cD(t)) =

⇢
1 if X(t) < ScD and M(t) = 0
0 otherwise

. (3)

The long-run average cost of the system when it is operated with this policy is denoted with
⇡(S1, S2). Let X2 be the steady-state inventory position of the system when the production
is controlled with the double-threshold control policy given in Equation (3), E[X+

2 ] be the
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average inventory level and E[X�
2 ] be the average backlog. Then, the average cost ⇡(S1, S2)

for the double-hedging policy can be written as

⇡(S1, S2) = c+E[X+
2 ] + c�E[X�

2 ]. (4)

As a further approximation, a single threshold S can also be used. In this approximation,
the single threshold S, instead of using 2 thresholds, is used to determine the production
authorization policy ũ(X(t),M(t)) depending on the system status:

ũ(X(t),M(t)) =

⇢
1 if X(t) < S and M(t) = 0
0 otherwise

. (5)

The long-run average cost of the system when it is operated with the single-threshold
policy is denoted with ⇡̃(S). Let X1 be the steady-state inventory position of the system
when the production is controlled with the single-threshold control policy given in Equation
(3), E[X+

1 ] be the average inventory level and E[X�
1 ] be the average backlog. Then, the

average cost for the single-threshold policy is

⇡̃(S) = c+E[X+
1 ] + c�E[X�

1 ]. (6)

The average inventory levels and the backlog levels that are used to determine the average
costs in Equation (4) and (6) can be estimated from the data collected from the lab-scale
manufacturing system model.

For this system, the system parameters are the processing time parameters for WS1,
WS2, and WS3 denoted with the parameter sets T1, T2, and T3, the repair and failure
time parameters for WS2 denoted with Tr, and Tf , and the capacity of the interstation
bu↵er between WS2, and WS3 denoted by q. For a given inter-event time process, the
parameter set includes the parameters that describes the inter-event time distribution and
the autocorrelation function. For example, if the processing times are i.i.d. and exponentially
distributed, only the mean of the processing time or the processing rate is included in the
parameter set. The system parameters used in the LEGO production/inventory system are
given in Table 1.

Table 1: The system parameters
System parameters Description

T1 Processing time parameters WS1
T2 Processing time parameters of WS2
T3 Processing time parameters of WS3
Tr Repair time parameters of WS2
Tf Failure time parameters of WS2

q
The capacity of the bu↵er between

WS2 and WS3
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3. LEGO Production/Inventory System

We have constructed the LEGO production/inventory system as a physical model of the
system described in Section 2. Figure 3 depicts the LEGO Production/Inventory system. In
Figure 3, the arrows show the direction of the flow of the material in the system.

Synchronization
station

Raw
material

Raw
material

Figure 3: The LEGO production/inventory system

3.1. Construction of System Elements

The lab-scale manufacturing system model is constructed by using EV3 LEGO Mind-
storms Education sets. These sets include the LEGO parts for constructing di↵erent physical
elements such as machines, conveyors, EV3 Intelligent Brick that is a programmable com-
puter to control motors and collect sensor feedback, and di↵erent sensors (gyro, ultrasonic,
color and touch sensors). We use Matlab to communicate with di↵erent EV3 intelligent
bricks. The manufacturing system we describe in this section can be built by using 6 EV3
bricks, 11 color sensors and 1 touch sensor.

Here, we describe the construction of the elements of the LEGO production line sepa-
rately. These elements can be connected together to form di↵erent manufacturing systems.

3.1.1. Transportation

Transportation of material between the work stations and the synchronization station
is carried out by using conveyors as depicted in Figure 4 (a-b). The conveyors also act as
the bu↵ers for the system. The conveyor speed is set to approximately 20 centimeters per
second. This speed is set based on its performance in terms of the parts moving through the
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system correctly. Namely, if the conveyors work slowly, the parts might fail to go through
the gates correctly and if the conveyors work very fast, they cause vibrations in the system
that at times cause the parts to move out of their correct path and fall out.

(a) Model of a conveyor without the
conveyor belt

(b) Model of a conveyor

(c) A work station (d) A gate mechanism (e) A gate attached to a work
station

Figure 4: The components of the LEGO manufacturing system.

We investigate the e↵ect of the delays caused by the transportation system on the produc-
tion control policy by changing the time scale used to run the lab-scale model with respect
to the time scale used in the analytical model in Section 4.

3.1.2. Work Stations and Gates

Work stations are built by using belts that hold the parts while the work station is
working and move the part downstream when working on the part is finished. The parts are
fed to the workstations using gates. Gates fulfill two purposes. First, they separate the parts
from the workstation and allow control of the release of parts into the workstation; second,
they provide a force orthogonal to the path of a part allowing for bending the conveyor
path. A workstation and a gate are depicted in Figure 4 (c-d) and a gate connected to a
workstation is depicted in Figure 4 (e). Figure 5 depicts a workstation and its gate and its
upstream and downstream bu↵ers.
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Figure 5: A workstation and its upstream and downstream bu↵ers

3.1.3. Sensors

Sensors provide the data that will be used by the algorithm that controls the system. We
use color sensors that report the color of the object under them. Figure 6 (a) depicts a sensor
with its stand that can be installed in di↵erent locations in the system for di↵erent purposes.
However, most of the sensors are used for the control of a workstation subject to blocking
and starvation. A workstation subject to blocking and starvation requires three sensors to
operate, the gate sensor that signals starvation, the machine sensor that indicates if a part
is in the workstation or not and a blocking sensor that signals blocking if the downstream
bu↵er is full. Hence, the placement of the blocking sensor for a workstation determines the
size of the bu↵er between that workstation and the downstream work station. Figure 7
depicts the placement of sensors for a workstation subject to blocking and starvation.

A touch sensor is used for starting and stopping the system. A touch sensor has a button
that can be pushed for this communicating the start/stop signal. Figure 6 (b) depicts a
touch sensor.

(a) A sensor that can be placed in dif-
ferent locations on the conveyors

(b) A touch sensor that is used for start-
ing and stopping the system

Figure 6: The sensors used in the setup
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The blocking
sensor

The machine
sensor

The gate
sensor

Figure 7: The placement of the sensors for a workstation

3.1.4. Synchronization Station

A synchronization station is a station that allows the material to continue their path
only if all the bu↵ers feeding into the synchronization station have at least one item in them.
The synchronization station is built using two gate mechanisms and two sensors as depicted
in Figure 8. The arrows in Figure 8 (a) show the direction of the flow of the material and
the arrow in 8 (b) shows the movement of the gate mechanism for taking the parts in and
ejecting them to the downstream bu↵er.

(a) The path of the parts through the station (b) Model of a conveyor

Figure 8: The synchronization station
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3.1.5. Centralized Control for the LEGO Production/Inventory System

For controlling the system with the marking-dependent policy, the status of WS2 should
be considered to decide on the release of material to WS1. However as depicted in Figure
3 the sensors related to these workstations are connected to di↵erent EV3 bricks. For this
reason, the control of the system cannot be totally decentralized. We use a centralized design
for the control of the system, where a single algorithm controls all the activities in the system.
The system components are connected to EV3 bricks, and the EV3 bricks are connected to
the computer that controls the system via bluetooth. A Matlab script on this computer
controls the system. In a di↵erent setup, an ethernet modem for connecting the EV3 bricks
to the computer has been used for controlling the components connected to each EV3 brick
and a di↵erent Matlab session has been used to control each EV3 brick [27]. Algorithm 1
along with its submodules Algorithms 2-4 given in the Appendix give the pseudocode for
controlling the LEGO production/inventory system with the marking-dependent threshold
policy.

4. Experiments

The setting we described in Section 3 can be used with di↵erent processing time, repair
time, and failure time processes that can be set in the program. This setup allows analyzing
i.i.d. or correlated interevent times with general distributions. In addition, this setup can be
used to investigate di↵erent issues related to implementation of various production control
policies. For example, performance of static policies, base-stock policies, pull-type policies
and other data-driven policies can be investigated with the same setup. The information
sources and the information used by the control policies can also be changed. Although, this
setup has been developed for research purposes, the same setup can be used for teaching
advanced topics in production control, simulation, and manufacturing system design.

In this section, we present the results for a specific setting where the processing times are
exponential, the repair time is Erlang, and the failure time is exponential. Furthermore, the
information about WS2 and the number of parts in the finished goods inventory are used
as the information utilized by the control policy. The reason for selecting this setup is that
the performance of the system under the marking-dependent threshold control policy can be
determined analytically. Therefore, the results obtained by using the physical model can be
compared directly with the analytical results.

We run two sets of experiments. We first compare the results obtained by using the
analytical models and the collected traces from the physical model and discuss the reasons
for the disparity. Then, we evaluate performance of the data-driven joint simulation and
optimization method on the LEGO production/inventory setup.

4.1. Parameter Setting for the Experiments

The system parameters, the processing rates, the repair rate, failure probability, and the
bu↵er capacity are given in Table 2. In Table 2, the rates are given without the time unit.
In order to run the LEGO manufacturing system, the unit of time used for the processing
time, repair time, and failure time parameters must be determined. We define the time scale

parameter, denoted as � to specify the relation between the aforementioned rates and the
unit time in the physical system. Namely, the distribution mean in the physical system in
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seconds is � times the distribution mean given in Table 2 without specifying the time unit.
For example, if � = 1, the average stand-alone processing time of WS2 will be 1 second and
if � = 20, the average stand-alone processing time of WS2 will be 20 seconds.

Table 2: The system parameters
System parameters Distribution Description Values

T1 = {µ1} Exponential Processing rate for WS1 {1}
T2 = {µ2} Exponential Processing rate for WS2 {1}
T3 = {µ3} Exponential Processing rate for WS3 {1}

Tr = {r,�} Erlang
Number of phases (r) and the rate (�)

for each phase for the repair time of WS2
{4, 0.5}

Tf = {�} Exponential Failure rate of WS2 {0.09}

q -
The capacity of the bu↵er between

WS2 and WS3
{1}

The analytical models do not account for the delays introduced by transportation and
other delays. Consequently, the results obtained by the analytical model do not change with
the time scale parameter �. However, since the conveyor moves at a speed of 20 cm/sec., the
transportation delay will a↵ect the results obtained by using the physical model depending
on the time scale used in the experiments. As � decreases, the e↵ect of external factors, such
as transportation delays that are not accounted for in the analytical model will be more
pronounced.

We use four values for �, � 2 {1, 4, 10, 20} to investigate the e↵ect of the balance between
the delays caused by the physical model and the delays related to the processing times and
repair times in our experiments.

4.2. Comparison of the Properties of the Analytical Models and the Collected Traces from

the Physical Model

For each value of �, we run the LEGO production/inventory system with di↵erent pairs
of policy parameters that are the thresholds S1 and S2 for the up and down states of WS2.
For each run of the system, we collect the traces of the demand and production times and
the sample path of the inventory position to be able to calculate the average cost for a given
set of policy parameters and a given value of �. The data used in these experiments were
collected from the system that ran for a total duration of 6.5 hours.

4.2.1. Properties of the Analytical Model of the System

In the production/inventory system shown in Figure 2, the demand arrivals are generated
by the output of the same two-station production line WS2 and WS3 separated with a finite
bu↵er. Since the processing times are exponential, the output process distribution and the
autocorrelation can be determined analytically for the given parameters as given in Figure
9.
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Figure 9: The analytical distribution of the demand inter-arrival times and their autocorrelation function

Using the system parameters given in Table 2, the schematic representation of the system
given in Figure 2 and the analytical method given in [14], the system can be evaluated for
di↵erent values of S1 and S2.

Figure 10 depicts the analytical cost function ⇡(S1, S2) for this set of system parameters
and Figure 11 depicts the cost function ⇡̃(S) for a single threshold policy as described
in Equations (4)-(6). Figure 10 shows that the analytical models suggest using S1 = 3
and S2 = 2 to minimize the average cost when two thresholds are used for two markings.
Furthermore, the cost function is more sensitive to the threshold level when the machine is
in working condition. This is because the machine is more often in working condition rather
than being repaired. Similarly, Figure 11 shows that using S = 2 minimizes the average cost
when one threshold is used.
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Figure 10: Analytical cost function ⇡(S1, S2)
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4.2.2. Properties of the Physical Model

Although, the time scale parameter � does not a↵ect the analytical models, it influences
the properties of the data gathered from the physical system because of the delays related
to the physical system that are not modeled in the analytical models. As � decreases, the
e↵ect of these delays become more important. For very small values of �, the delays mostly
determine the inter-event time distributions as opposed to the stand alone processing times.

Figure 12 depicts the inventory position sample paths related to each � value when the
production is controlled with the single-threshold policy given in Equation (5). The inventory
sample paths are used to determine the average inventory levels and the backlog levels that
are used to determine the average costs in Equation (6) and (4). The sample paths are
quite di↵erent to each other indicating that the production times generated by WS1 and the
demand inter-arrival times generated by WS2 and WS3 are di↵erent for each � value. As a
result, as the time scale parameter � changes, the average inventory and backlog levels and
thus the cost functions calculated by using Equations (6) and (4) will be di↵erent compared
to the analytical cost functions given in Figure 10 and Figure 11. Consequently, the optimal
thresholds that minimize the empirical average costs will be di↵erent.

Figure 13 depicts the distribution and Figure 14 depicts the autocorrelation of the de-
mand inter-arrival times gathered from the physical system. The empirical distribution
and the autocorrelation function depending on the data collected from the physical model
are significantly di↵erent from the analytical distribution and the autocorrelation function
shown in Figure 9. In addition, although the demand arrivals are generated by the output of
the same two-station production line WS2 and WS3 separated with a finite bu↵er with the
same parameters, the distribution and the autocorrelation function of the inter-departure
time from the system are di↵erent for di↵erent time scale parameters. The analytical model
yields the same distribution and the autocorrelation function for the demand inter-arrival
times for the given processing rates of WS2 and WS3 and the bu↵er capacity as shown in
Figure 9.

Similarly, Figure 15 depicts the processing time distribution of WS1 based on the traces
collected from the system. Although the processing time on WS1 is generated as an expo-
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nentially random variables, the realization on LEGO manufacturing system has a di↵erent
distribution as a result of the delays related to opening the gates before and after the process
completion. These gates are opened with servo motors and introduce a delay that is not
accounted in the processing time generation by the software. Similarly, the time scale a↵ects
the production time distribution while the analytical model gives the same distribution.
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Figure 12: Sample paths of the inventory position gathered from the physical system for di↵erent time scale
� parameters when the production is controlled with the single-threshold policy
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Figure 14: The autocorrelation function of the demand inter-arrival times gathered from the physical system
for di↵erent time scale � parameters when the production is controlled with the single-threshold policy

18



20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

4 6 8 10 12 14 16
0

0.1

0.2

0.3

0.4

2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5 1 1.5 2 2.5 3 3.5
0

0.1

0.2

0.3

0.4
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scale � parameters when the production is controlled with the single-threshold policy

4.2.3. Reasons for the Disparity between the Analytical Models and the Physical Model

The two main reasons that cause a disparity between the analytical models and the
empirical data collected from the physical model are ignoring the small delays in the system
and correlation between the di↵erent inter-event times in the system due to the specifics
of the system. In this case, the delays are caused by the conveyors and gates and the
dependency is caused by the centralized control of the system. More specifically, for this
system, the following factors contribute most to the inaccuracy of the analytical models:

• The travel time of the parts on the conveyors

• The time spent for opening and closing the gates

• The time spent for communications between the physical system and the computer
that controls the system

• Time spent for centralized control of the system

In order to develop a more detailed analytical model, the time spent on transportation
can be modeled by pseudo-stations with infinite bu↵ers and infinite servers. The time spent
during centralized control of the system can also be modeled by using a pseudo station with
one machine that has to produce an item for every other workstation in order for them to
be able to function. Furthermore, the delay related to opening and closing the gates can be
incorporated in the processing times. These delays can also be incorporated in the simulation
model.

19



4.3. Performance of the Data-driven JSO on the LEGO Production/Inventory System setup

In this part, we apply the control methods based on parameter fitting and the data-
driven Joint Simulation and Optimization (JSO) method to the traces gathered from the
physical system [14]. Here, we consider setting a single threshold for the system. We solve
the mixed integer programming formulation with the traces related to demand inter-arrival
and processing times collected from the LEGO system and determine the optimal threshold.
In addition, we use the collected demand inter-arrival and processing times and fit expo-
nential and phase-type distributions and use the analytical model to determine the optimal
threshold. We compare the JSO method with exponential and phase-type distribution fitting
approaches, denoted as EXP Fit and PH Fit respectively, to determine the optimal thresh-
old. For the phase-type fitting method where the demand inter-arrival time is approximated
with a phase-type distribution, we fit phase-type distributions with up to 10 phases. For all
three methods we set the maximum admissible threshold level to 100.

In order to determine the empirical average cost function for the LEGO system, we have
used all the available trajectories of the inventory process obtained by running the LEGO
manufacturing system with 4 di↵erent � values. Based on these trajectories, we built the
shortfall processes that indicate the gap between the threshold and the inventory level. Since
it is known that the shortfall process does not depend on the threshold level, these shortfall
processes are used to estimate the cost for each threshold level and the optimal threshold
levels according the empirical average cost function. Figure 16 gives the cost functions
generated by this approach. The figure shows that using S = 3 is the empirical optimal
when the � = 1 and using S = 2 is the empirical optimal when � is equal to 4, 10, and 20.
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Figure 16: Average cost of the system based on available trajectories of the inventory position

Table 3 gives the thresholds suggested by these three alternative methods and the optimal
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thresholds that are obtained analytically based on the analytical model with restrictive
assumptions and the empirical estimation of the average cost functions given in Figure 16.
The optimal analytical threshold for this system is evaluated as 2 as shown in Figure 11.

Table 3: The threshold level suggested by each method

�
Benchmark Method

Analytical Empirical JSO EXP Fit PH Fit
1 2 3 3 100 64
4 2 2 2 48 6
10 2 2 2 25 4
20 1 2 2 4 2

For small � values, exponential and phase-type fitting do not generate satisfactory an-
swers. This is because the inter-event time distributions for both traces are a↵ected signifi-
cantly by the delays in the system and do not resemble the exponential distribution when �
is relatively small. In other words, there is less randomness in the system, but exponential
fitting and phase-type fitting fail to consider this in setting the threshold. This e↵ect is
significantly less harmful to JSO. For the largest time scale parameter, phase-type fitting
suggests using a threshold closer to the optimal analytical threshold. However, it should be
noted that given the disparities between the analytical solutions and the behavior of the sys-
tem assessing the true optimal solution with the accuracy su�cient to compare the methods
needs much longer runs of the physical system with these thresholds.

This experiment shows that the optimal parameters of the marking-dependent threshold
policy can be determined e↵ectively by using the joint simulation and optimization approach
that uses the real-time data collected from the physical model. As a result, the marking-de

5. Conclusions

In this study, we present a lab-scale manufacturing system model that can be used to
investigate di↵erent production control policies and analytical and empirical methods to
evaluate the performance of manufacturing systems. We demonstrate the construction and
the usage of the system by using a LEGO set with sensors, servo motors, programmable
computers with a centralized control software developed for Matlab. The proposed setup
can be used for research and teaching purposes.

We present two sets of experiments that compare the analytical models with the physical
model and evaluate the performance of a data-driven control policy that operates with the
traces collected from the physical model. These experiments show that using a physical
model yields a more realistic evaluation of a proposed data-driven performance evaluation
and production control method as opposed to using the analytical or simulation models that
do not include some of the details. These observations can be used to improve the analytical
model and the simulation model by incorporating the omitted details that a↵ect the results.
In this way, the lab-scale physical models can be used to build a more accurate digital twin
that uses analytical models or simulation.

The experiments on the e↵ectiveness of the data-driven control policy used in this study
show that the marking-dependent production control policy is considerably less prone to be
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a↵ected by the di↵erences between the physical system and its analytical representation.
This is due to the ability of using real-time data directly in the marking-dependent control
policy as opposed to the simplifying assumptions and the parameter fitting steps used in
the analytical models. Therefore, using the lab-scale manufacturing system validates the
benefits of this data-driven control policy compared to the alternative analytical models.

This work can be extended in di↵erent directions. The LEGO manufacturing system
can be used for devising and testing data-driven methods that consider the current state
of a system and take into account that a good solution must be reached before the system
changes drastically. The advantage of using a physical system for evaluating di↵erent meth-
ods is that the ability of the methods to react to the properties of the system that escape
modeling can be assessed. As shown here, even relaxing the common assumptions about
independent exponential inter-event times can fall short of matching the analytical models
and the behavior of a physical system. To address this, Q-learning can be combined with
the data-driven methods to fine-tune the policies in real time. In addition, the data-driven
JSO can be used for generating a basis for ordinary behavior of a system for training outlier
detection learning methods.

Furthermore, a digital twin that displays the current state of the LEGO manufacturing
system and also has the ability to simulate can also be included in the setup. The setup
can be revised to use a camera and image processing to track the part movements instead of
color sensors used in this setup. A more flexible design that allows changing the information
sources used by the control policy can also be developed. These are left for future research.

As a summary, we propose using the lab-scale manufacturing system environment in-
troduced in this paper as a useful tool to investigate, improve, and develop di↵erent data-
driven control policies before their implementation. Furthermore, we propose the marking-
dependent control policy as an e↵ective data-driven production control policy.
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[22] Siamak Khayyati and Barış Tan. A machine learning approach for implementing data-driven
production control policies. International Journal of Production Research, pages 1–22, 2021.

[23] Young Jae Jang and Vina Sari Yosephine. LEGO robotics based project for industrial en-
gineering education. The International Journal of Engineering Education, 32(3):1268–1278,
2016.

[24] Anna Syberfeldt. A LEGO factory for teaching simulation-based production optimization. In
Industrial Simulation Conference, ISC’2010, Budapest, Hungary, pages 89–94. EUROSIS-ETI,
2010.

23



[25] Giovanni Lugaresi, Ziwei Lin, Nicla Frigerio, Mengyi Zhang, and Andrea Matta. Active learn-
ing experience in simulation class using a LEGO based manufacturing system. In 2019 Winter
Simulation Conference. 2019 Winter Simulation Conference, 2019.

[26] Arturo Sanchez and Jorge Bucio. Improving the teaching of discrete-event control systems
using a LEGO manufacturing prototype. IEEE Transactions on Education, 55(3):326–331,
2011.

[27] Davide Travaglini. Manufacturing system based on LEGO-robotics: Development of physical
and digital models. Master’s thesis, Politecnico Milano, Milan, Italy, 2018.

[28] Giovanni Lugaresi, Davide Travaglini, and Andrea Matta. A LEGO manufacturing system as
demonstrator for a real-time simulation proof of concept. In 2019 Winter Simulation Confer-
ence. 2019 Winter Simulation Conference, 2019.

[29] Giovanni Lugaresi, Vincenzo Valerio Alba, and Andrea Matta. Lab-scale models of manufac-
turing systems for testing real-time simulation and production control technologies. Journal
of Manufacturing Systems, 58:93–108, 2020.

[30] Giovanni Lugaresi and Andrea Matta. Automated manufacturing system discovery and digital
twin generation. Journal of Manufacturing Systems, 59:51–66, 2021.

[31] Jing-Sheng Song and Paul Zipkin. Inventory control in a fluctuating demand environment.
Operations Research, 41(2):351–370, 1993.

[32] Rene A Caldentey. Analyzing the Make-to-Stock queue in the supply chain and eBusiness
Settings. PhD thesis, Massachusetts Institute of Technology, 2001.

Appendix A Pseudo Codes for Controlling the Physical System

Algorithm 1 and its submodules Algorithms 2-4 can be used for controlling the physical
system with the marking-dependent threshold policy. The description of the notation used
for this algorithm is given in Table 4.

The trace for the processing times ĝ is collected directly from the physical system. The
demand arrival times ȧ are determined based on the the inventory position trajectory X
collected from the physical system. That is,

ȧ = {ai : ai < ai+1 ^X(ai � ✏) = X(ai + ✏)� 1}

where ✏ is a small enough number. Then the trace for the demand inter-arrival times ṫ can
be calculated as

ṫ = {ai+1 � ai}.

For the experiment presented in Section 4, Figure 15 depicts the histograms of the pro-
cessing time traces, ĝ collected from the system with di↵erent time scales. Similarly, Figures
13 and 14 give the histogram and the autocorrelation of the inter-arrival time traces, ṫ
collected from the system with di↵erent time scales.
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Table 4: Description of the variables used in the algorithm for control of the LEGO system.

Variable Description
T The value of the clock
↵ The status of WS2

SV The value for the switch that turns the system on and o↵
SFi Scheduled finishing time for WSi

ḃ A trace of binary indicators that shows if a breakdown will occur or not
ġi The trace of processing times for WSi

ĝi The trace of processing times for WSi collected from the system
ṙi The trace of repair times for WS2

ig1 , ig2 , ig3 , ib, ir Counters for the traces
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Algorithm 1 Algorithm for control of the LEGO production/inventory system
1: Initialize EV3s, motors and sensors
2: Start the clock
3: X  0
4: ig1 , ig2 , ig3 , ir, ib  1
5: SV  o↵
6: ↵ in working condition
7: while T < time limit do
8: if The touch sensor is pushed then

9: wait for 0.4 seconds
10: if The touch sensor is pushed then

11: if SV = on then

12: Turn the conveyors o↵
13: SV  o↵
14: else

15: Turn the conveyors on
16: SV  on
17: end if

18: end if

19: end if

20: if SV = on then

21: . WS2

22: Call the submodule for WS2

23: . WS3

24: Call the submodule for WS3

25: . Synchronization Station
26: if both of the Synchronization station’s sensors detect a part then

27: Take a part in from each of the upstream bu↵ers
28: Release the parts to the bu↵er that closes the system’s loop
29: end if

30: . WS1

31: Call the submodule for WS1

32: end if

33: end while

34: Save the generated trajectory of X
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Algorithm 2 Submodule for WS1

1: if WS1’s gate sensor sees a part then

2: if WS1’s machine sensor does not see a part then
3: o1  ↵ = “Under repair” ^ SDown’s sensor does not see a part
4: o2  ↵ = “In working condition” ^ SUp’s sensor does not see a part
5: if o1 _ o2 then

6: ĝ(ig1) T
7: WS1 takes a part in from the upstream conveyor
8: SF1  T + ġ1(ig1)
9: end if

10: end if

11: end if

12: if The SW1’s machine sensor sees a part then

13: if SF1 < T then

14: WS1 releases a part to the downstream conveyor
15: X  X + 1
16: ĝ(ig1) T � ĝ(ig1)
17: ig1  ig1 + 1
18: end if

19: end if

Algorithm 3 Submodule for WS2

1: if WS2’s gate sensor sees a part then

2: if WS2’s machine sensor does not see a part then
3: WS2 takes a part in from the upstream conveyor
4: if ḃ(ib) then
5: SF2  T + ġ2(ig2) + ṙ(ir)
6: ig2  ig2 + 1
7: ir  ir + 1
8: ↵ Under repair
9: else

10: SF2  T + ġ2(ig2)
11: ig2  ig2 + 1
12: end if

13: ib  ib + 1
14: end if

15: end if

16: if The SW2’s machine sensor sees a part then

17: if SF2 < T ^ SW2’s blocking sensor does not see a part then
18: WS2 releases a part to the downstream conveyor
19: ↵ In working condition
20: end if

21: end if
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Algorithm 4 Submodule for WS3

1: if WS3’s gate sensor sees a part then

2: if WS3’s machine sensor does not see a part then
3: WS3 takes a part in from the upstream conveyor
4: SF3  T + ġ3(ig3)
5: ig3  ig3 + 1
6: end if

7: end if

8: if The SW3’s machine sensor sees a part then

9: if SF3 < T ^ SW3’s blocking sensor does not see a part then
10: WS3 releases a part to the downstream conveyor
11: X  X � 1
12: end if

13: end if
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