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Abstract

Resource accumulation has been identified, with technological change, as a

major explanatory factor of economic growth convergence. At the same time,

resource capacity may act as a growth limiting factor. Under-investment may

have a moderator effect on the economic growth convergence process, while

path-dependencies may be observed. Using a tailored non-parametric model

and a unique sample of 92 countries all around the world for the 1965–2019 pe-

riod, we study the role of resource capacity from a new angle. First, we measure

potential countries’ under-investment. Next, we quantify its role in the eco-

nomic growth convergence process. Our findings reveal that under-investment

exists and that it represents a brake on economic growth convergence. However,

such an effect can be counterbalanced by promoting technological advances or

creating a more favourable resource environment. Finally, we run several sen-

sitivity tests to assess the robustness of our findings.
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1 Introduction

Economic growth convergence, i.e. whether worse performers catch up best perform-

ers over time, has been studied from various angles in the literature. The first aspect is

establishing economic growth convergence using a methodology and a particular defi-

nition. Several definitions have been suggested such as β−convergence, i.e. a negative

partial correlation between economic growth and its initial level, σ−convergence, i.e.

a gradual reduction in dispersion, distributional convergence, i.e. economic growth

distributions move over time, and club convergence, i.e. the existence of distinct

economic growth regimes. Popular methodologies include cross-sectional and panel

regressions, parametric and non-parametric statistical tests, economic growth decom-

position, and counterfactual approaches.

Starting with the classical papers of Baumol (1986) and Barro (1991), the eco-

nomic growth convergence puzzle has received considerable attention in the litera-

ture.1 When economic growth convergence has been defined and a methodology has

been selected, economic growth has to be measured. Popular choices include output

per capita, i.e. output divided by total population, and labor productivity, i.e. out-

put divided by total labor force.2 An advantage of using labor productivity is that

both the numerator and the denominator correspond to the market sector, which is

not the case for the denominator of output per capita. This might be particularly

problematic for countries with non-market production activity (Jones, 1997). Also,

labor productivity is established as a crucial indicator of welfare in the macroeconomic

literature (Henderson and Russell, 2005).

Once economic growth convergence or divergence is established, the next step

is to investigate how the sources of economic growth contribute to the convergence

or divergence process. Again, several methodologies have been employed and several

sources have been highlighted.3 Nevertheless, they all agree that technological change,

1A non-exhaustive list of works includes Quah (1996a), Rey (2001), Shioji (2001), Bloom et al.
(2002) Acemoglu et al. (2006), Graham and Temple (2006), Fiaschi and Lavezzi (2007), Maasoumi
et al. (2007), Phillips and Sul (2007), Young et al. (2008), Magnus et al. (2007), Owen et al. (2009),
Henderson et al. (2012) Stokey (2015), Krause (2016), Mirestean and Tsangarides (2016), Walheer
(2016), Haupt et al. (2018), Fukase and Martin (2020), Gao et al. (2021), Kremer et al. (2022) and
Walheer (2023). However, despite such attention, empirical studies have not led to many definitive
conclusions.

2Bernanke and Parkinson, 1991; Aizcorbe, 1992; Kumar and Russell, 2002; Henderson and Rus-
sell, 2005; Jajri and Ismail, 2010; Preenen et al., 2017; Gibson and Shrader 2018; McMillan and
Zeufack, 2022; Walheer, 2021).

3Solow, 1956; Temple, 1999; Kumar and Russell, 2002; Henderson and Russell, 2005; Wong, 2007;
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i.e. innovation, and resource accumulation, mainly capital and labor, are the main

drivers.

In this paper, we study the role of resources in labor productivity convergence

from a new angle. Our starting point is the potential impacts of resource capacity

on the economic growth convergence process. Under-investment in resources may

act as a constraint preventing the economic growth convergence from happening.

That is, under-investment has a moderator effect on labor productivity convergence.

At the same time, under-investment may present a second undesirable feature: path

dependence. That is, countries with lower performances have larger under-investment

over time. If both features are combined, this may lead to a virtuous circle from which

it is difficult to get out.

To the best of our knowledge, while the role of resources, mainly capital and

labor, in the economic growth process has been acknowledged (Piketty et al., 2019;

Caunedo and Keller, 2021; Koopman and Wacker, 2023; Walheer and Bigandi, 2024),

there is no formal definition of the resource capacity constraint on economic growth in

the literature. We suggest a simple way by comparing how countries generate labor

productivity with and without the resources. That is, we first measure potential

labor productivity ignoring the resources; and, next, we compute potential labor

productivity taking the resources into account. From a mathematical point of view,

the resource capacity constraint is therefore measured as a ratio between these two

potential labor productivities. By comparing this ratio to unity, we can verify whether

countries do not optimally use the resources, or whether more resources are needed

to raise labor productivity (i.e. under-investment occurs). Note that, we expect to

empirically observe the latter case only.

While moderator effects and path-dependencies are been studied before in the eco-

nomic literature (Eliasson, 1989; Redding, 2002; Dutt, 2009; Belläıche, 2010; Harada,

2010; Forte and Moura, 2013; Aghion et al., 2016; Teixeira and Queirós, 2016; Sainz-

Fernandez et al., 2018; Dada and Abanikanda, 2022), this study is the first to do so

for the resource capacity. Moreover, another particularity of our empirical work is

to distinguish two complementary dimensions of the resource capacity impact. The

first is the change in the resource capacity that captures the extent to which the eval-

Badunenko et al., 2008; Li and Liu, 2011; Vu, 2011; Badunenko et al., 2014; Sinelnikov-Murylev
and Kazakova, 2014; Jones, 2016; Shen et al., 2017; Lafuente et al., 2020; Walheer, 2021; AlKathiri,
2022; Meng et al., 2023).
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uated countries get closer to their best practice benchmark over time. The second

is the change in the resource environment measuring the shift in the best practice

performances.

To estimate the resource constraint, we rely on a non-parametric estimation: Far-

rell’s (1957) deterministic production-frontier. The basic idea is to use observed data

to reconstruct a production function that fulfills certain technology axioms (such as

monotonicity and quasi-concavity). Such procedure has gained popularity in study-

ing economic growth convergence (Kumar and Russell, 2002; Henderson and Russell,

2005; Badunenko et al., 2008; Badunenko et al., 2014; Filippetti and Peyrache, 2015;

Walheer, 2016, 2021, 2023; Chambers and Pieralli, 2020; AlKathiri, 2022). Our rea-

sons for using such an estimation procedure are twofold. On the one hand, parametric

estimation methods heavily rely on typically unverifiable assumptions about certain

aspects of the growth process, such as technology, market structure, technological

change, and market imperfections. On the other hand, parametric estimation meth-

ods study the first or second moment of the economic growth process. However, it

is recognized, since Quah (1996b, 1997), Galor (1996), and Jones (1997), that labor

productivity distribution is bi-modal. Finally, to be fair, a disadvantage of the deter-

ministic production-frontier is that it ignores measurement errors and is affected by

outliers. To mitigate such aspects, we rely on a bootstrap procedure (Simar, 2003).

In terms of data, we use the most recent Penn World Table to measure labor pro-

ductivity and resources (Feenstra et al., 2015). By removing missing data, we obtain

a balanced panel of 92 countries all around the world for the 1965–2019 period. This

represents a unique opportunity to quantify the resource constraint impacts on a long-

term basis. Our results reveal the growing importance of under-investment over time,

but not for all countries. Next, technological change is positive and the resource envi-

ronment is more favourable in the world over time. Path dependence is not observed

for the resource constraint, while a moderator effect. However, β−convergence is

possible by promoting technological advances or creating a more favourable resource

environment. Finally, we run three sensitivity tests to verify the robustness of our

results: we partition countries in groups, we remove potential extreme values, and

we consider σ−convergence. Our sensitivity analyses support our previous findings

while highlighting some additional interesting features.

The rest of the paper unfolds as follows. In Section 2, we present our data and

some preliminary analyses to motivate our study. Next, we move to our empirical
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investigation in Section 3. There, we also study resource capacity from two angles:

path-dependence and moderator effect. We run several sensitivity tests in Section 4

and conclude in Section 5.

2 Data and preliminary analyses

We assume that we observe a balanced panel of n countries during a time interval

[b, c], where b and c denote the base and current time period, respectively. We adopt

the standard macroeconomic modelling for the production process: each country i

produces output Yit using labor Lit and physical capital Kit at time t. Variables are

constructed using the common practice in the literature. In particular, the output is

measured by output-side real GDP at chained PPPs, capital in stock term, and labor

in persons engaged. Also, output and capital are deflated and expressed in constant

US$. Data are taken from the most recent Penn World Table 10.1 (Feenstra et al.,

2015).4 By removing missing values, we obtain a balanced sample of 92 countries for

the time span 1965–2019 (i.e. b = 1965 and c = 2019). Descriptive statistics for our

variables are given in Table 1. There, we present the minimum, mean, median, and

maximum for 1965, 2019, and for the change between these two time periods.

Output has importantly increased between 1965–2019 with an average change of

1,186%. It is more than labor (342%) but less than capital (1,988%). This means that

countries are becoming more capital-intensive over time. The crucial role of capital

accumulation has also by pointed out in Piketty (2017). Note that the medians

confirm these patterns but to a lesser extent for output and capital, highlighting the

presence of extreme countries. Moreover, labor productivity raises more than capital

productivity (369% versus 89%). It reveals the labor specialisation over time. Each

employee produced, on average, 50,454 US$ in 2019 against 16,944 US$ in 1965. The

medians mitigate this claim: 40,291 US$ in 2019 and 12,646 US$ in 1965. Finally,

it is worth noticing the population change with an average of 284%. It implies that

labor has increased slightly more than the population on the period 1965–2019, while

capital and output have more than tripled the population change.

As discussed in the Introduction, we study the change in labor productivity, de-

noted yit = Yit/Lit for country i at time t, between our initial and final years. Note

that all years between these two time periods will be taken into account in the es-

4Data can be freely downloaded at www.ggdc.net/pwt.
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Table 1: Descriptive statistics

statistics
Y L K Y/L K/L Y/K POP

mil. US$ mil. mil. US$ US$ US$ − mil.
1965

min 340 0.08 805 1,535 459 0.06 0.19
mean 157,458 11.77 606,540 16,944 68,514 0.57 30.90
median 31,430 2.75 98,921 12,646 37,577 0.30 8.01
max 4,515,720 292.88 17,730,630 59,019 266,294 4.58 721.82

2019
min 3,507 0.13 22,509 612 2,831 0.04 0.29
mean 1,196,243 31.96 5,127,079 50,452 222,057 0.30 72.84
median 286,947 8.21 1,205,383 40,291 139,860 0.27 19.99
max 20,595,844 798.81 99,608,664 221,661 796,137 0.96 1,433.78

1965–2019
min 9% 85% 183% 2% 43% 2% 100%
mean 1,186% 342% 1,988% 369% 637% 89% 284%
median 834% 334% 963% 270% 332% 84% 272%
max 11,159% 984% 18,830% 2,184% 7,938% 316% 831%

timation (see Section 3.1). We start our discussion with two important graphical

representations of labor productivity in Figure 1. First, we verify how labor produc-

tivity has changed over time by plotting (kernel) distributions. This representation

is used to quantify labor productivity change and verify whether this improvement

is similar across countries. Second, we plot the initial level of labor productivity and

its change between the initial and final time periods. In other words, we look for

β−convergence:

ln(yic/yib) = α + βyib + ui (1)

β−convergence occurs when the slope coefficient β is negative. This means that

smaller initial labor productivity values (yib) are associated with larger economic

growth levels (ln(yic/yib)). Putting this differently, countries with the worst economic

performances have faced more important positive performance changes if β−convergence

is observed.

Figure 1(a) highlights a positive shift of labor productivity over time, but it also

reveals a transformation of the world labor productivity distribution from uni- to a

multi-modal distribution. In Figure 1(b), we see that higher output per worker is, on
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Figure 1: Labor productivity

(a) Distributions

(b) Convergence

average, associated with lower change. In other words, labor productivity convergence

is observed. To formally test whether our observations are statistically true we rely
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on three statistical tests. We make use of a level of 5% in the paper (unless otherwise

stated). First, we make use of the nonparametric Kolmogorov–Smirnov (KS) test to

compare the distribution in 1965 and 2019.5 The p−value, given in Table 2, is worth

0.000 confirming the improvement between the two years. Next, we use calibrated

Silverman’s (1981) test for multimodality.6 We cannot reject the hypothesis that the

1965 labor productivity distribution has more than one mode. On the contrary, this

hypothesis is rejected for 2019. Two groups of countries are thus observed in 2019:

those with labor productivity close to the 1965 values and those with larger labor

productivity. Finally, we find a negative and significant GLS slope coefficient that is

worth −0.0051 supporting the existence of β−convergence.

Table 2: Labor productivity tests

Test Alternative hypothesis p−value
KS 2019 distribution is larger than 1965 distribution 0.000

Silverman
there are more than one mode in 1965 0.654
there are more than one mode in 2019 0.002
there are more than two modes in 2019 0.452

t−test the slope coefficient is negative 0.000

3 Empirical investigation

We start off by defining the technology by means of a non-parametric reconstruc-

tion, and we explain how we measure under-investment non-parametrically. Next,

we estimate the moderator effect of resource constrain on economic growth, and its

path-dependence.

3.1 Technology and inefficiency

The starting points of our modelling are, on the one hand, the definition of time-

varying production functions and, on the other hand, the existence of inefficiency

5H0: two distributions are equal; H1: 2014 labor productivity distribution is larger than 1965
labor productivity distribution. Note that an alternative test is Li’s test by Simar and Zelenyuk
(2006). We obtain similar conclusions with that test.

6H0: the distribution has one mode; H1: the distribution has more than one mode. In practice,
it is advised to use the bootstrapped version of the calibrated Silverman’s (1981) test due to Hall
and York (2001). We also refer to Henderson et al. (2008) for more statistical discussions of the
Silverman’s test.
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behaviours implying potential productivity gains. We assume that the production

function is unobserved but fulfils standard macroeconomic assumptions: it is quasi-

concave, continuous, strictly increasing, and satisfies constant returns-to-scale. Mak-

ing such assumptions is weaker than relying on a parametric specification for the

production functions. Given our assumptions on the production function, we can

redefine the production process by ⟨yit, kit⟩, where kit = Kit/Lit represents capital

per worker at time t for country i :

yit = ft(kit)× et(kit). (2)

In words, f(kit) is the time-varying production function at time t, and therefore

represents potential output. The distance between actual and potential outputs is

captured by et(kit) which can be interpreted as an (in)efficiency component reflecting

the inability to properly convert capital and labor into output using a certain technol-

ogy. It is the inverse of the maximal amount that output yit can be expanded while

keeping the inputs (kit) constant. When potential output exceeds actual one, we have

et(kit) < 1, revealing an inefficiency behaviour and thus a potential productivity gain.

et(kit) = 1 is, therefore, the benchmark situation when actual and potential outputs

are equal. Finally, note that it might be surprising that no error term appears in (2),

this will be discussed hereafter.

In practice, both ft(kit) and et(kit) are unobserved. To estimate ft(kit), we make

use of a well-known linear programming technique: Data Envelopment Analysis

(DEA) introduced by Charnes et al. (1972). As noticed in Section 2, our preliminary

investigations support the convergence but also highlight the existence of groups. A

direct implication is the suspicion of empirical analyses based on the first moment

(or even higher moments). Another concern is how to specify a functional form for

the production function. Choosing a functional form for the technology is not insidi-

ous and may have important impacts on the empirical analysis (Kumar and Russell,

2002). Moreover, the use of more sophisticated statistical methods often requires

relatively large samples and, given the limited number of countries in the world, such

techniques can ‘ask a lot of the available’.

Formally, potential outputs for each country i at time t are obtained by running

linear programming using the other countries as peers. In addition, we consider that

technological degradation is not possible over time (Henderson and Russell, 2005;
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Chambers and Pieralli, 2020; Walheer, 2021). Intuitively, this means that knowledge

accumulates over time; that is, it is important to take what has happened in the past

into account. Practically, we adopt a sequential reconstruction of the production

process (Diewert, 1980): potential outputs at time t are computed using all available

observations at time t, i.e. data at time t and before.

To be fair, a disadvantage of using linear programming is that measurement errors

and potential outliers are ignored. While such aspects are probably less severe when

relying on well-respected aggregated data as those given in the Penn World Table,

they can not be ignored. To mitigate these shortcuts, we adopt the well-known order-

m estimator to compute the potential outputs (Daraio and Simar, 2007). The basic

principle is to compute expected potential outputs obtained with random sub-samples

of m peers. Practically, the sampling procedure is repeated B times to obtain the

expected potential outputs. In this study, we set B = 1, 000 and m = 30.7 That is,

the linear programming is run for each sub-sample and the expected potential output

is simply the arithmetic average of the sub-sample potential outputs. The estimated

potential output for country i at time t when considering sub-sample s is computed

as follows:

f̂ s
t (kit) = max

 y

y ≤
∑t

τ=1

∑n
j=1 λjτyjτ ,

kit ≥
∑t

τ=1

∑n
j=1 λjτkjτ ,

1 ≥
∑t

τ=1

∑n
j=1 λjτ ,

λjτ ≥ 0 ∀j,∀τ.

 . (3)

Two remarks have to be made about the linear programming in (3). First, we can

verify that technological degradation is impossible by noting that previous observa-

tions are included in (3) avoiding an implosion of the production process. Second,

constant returns-to-scale is assumed for the production process ⟨Yit, Kit, Lit⟩ which

implies that non-decreasing returns-to-scale is observed for labor productivity.8 Such

assumption is standard in macroeconomics (Bernanke and Parkinson, 1991; Aizcorbe,

1992; Kumar and Russell, 2002; Henderson and Russell, 2005; Gibson and Shrader

2018; Walheer, 2021). Once the linear programmings are solved B times, i.e. one

time for each sub-sample s, we can obtain the expected estimated potential output

7Note that results do not change if we increase B and are very similar if we increase m.
8This is formally captured by the third constraint: 1 ≥

∑t
τ=1

∑n
j=1 λjτ (Banker et al., 2004).

See Appendix A for a formal proof.
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that we will use in the following:

f̂t(kit) = E
[
f̂ s
t (kit)

]
. (4)

Finally, using (2), we can obtain the estimated efficiency score for each country i

at time t:

êt(kit) =
yit

f̂t(kit)
(5)

The estimated efficiency score êt(kit) has to be interpreted as the theoretical coun-

terpart et(kit): the benchmark value is unity and lower values reflect greater ineffi-

ciency behaviour and, thus, more potential productivity gains. Note that the price

to pay is to the decomposition discussed after does not probably hold with equalities.

At the same time, as we take the expectation (see (4)), we are probably close enough

to the equalities.9

We present the reconstructed production functions for our initial and final time

periods in Figure 2. There, we also show the observations in 1965 and 2019 and

the largest labor productivity. Countries that defined the world technology in 1965

are Myanmar, Venezuela, Trinidad and Tobago, and the United States. In 2019, we

have Myanmar (1965, 1966), Rwanda (1970), Venezuela (2011, 2012), Trinidad and

Tobago (2008), Norway (2008, 2012), and Ireland (2019).

The production possibilities have exploded over time. Two groups of countries are

present in 2019: those that remain rather close to their 1965 point, and those that

have moved up and right. We note that only one point of 2019 lies on the production

function in 2019: Ireland. Maximal labor productivity has moved from 59,019 US$

(United States, 1965) to 221,661 US$ (Ireland, 2019), i.e. a change of 375.58 %. Two

important dimensions are highlighted in Figure 2: how the production functions move

over time, and how countries move towards the production functions. In both cases,

capital per worker plays a crucial role. Using the (in)efficiency component in (2), we

can define two indexes capturing these two dimensions.10 Both dimensions have to

be used in a complementary fashion to understand the full picture. The indexes are

9This is an interesting topic for further research.
10Another option is to use a difference. The ratio is preferred for several reasons such as it is unit-

free, easy to interpret, and to measure over time. It is fairly easy to adapt the indexes developed
here to a difference version.
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Figure 2: Reconstructed production functions

given for country i between time periods b and c as follows:

∇e(kib, kic) =
ec(kic)

eb(kib)
, (6)

∇tech(kib, kic) =

[
eb(kic)

ec(kic)
× eb(kib)

ec(kib)

]1/2
. (7)

In both cases, an index larger (smaller) than unity implies a performance pro-

gression (decrease) for country i between periods b and c. ∇e(kib, kic) captures the

catching-up of a country with the best practice, while ∇tech(kib, kic) reflects techno-

logical change, i.e. change in the best practice. We highlight that the ∇tech(kib, kic)

is defined as a geometric average of two path-dependent indexes as there are two ways

to evaluate technological change between periods b and c: one with respect to obser-

vations at time c, eb(kic)
ec(kic)

, and another when time b is chosen as the referent time period
eb(kib)
ec(kib)

. Such geometric average procedure is known as the Fisher ideal decomposition

(Caves et al., 1982) and overcomes choosing a particular reference point. This is the

most used procedure in practice (Kumar and Russell, 2002; Henderson and Russell,

2005; Badunenko et al., 2008; Badunenko et al., 2014; Filippetti and Peyrache, 2015;
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Walheer, 2016, 2021, 2023; Chambers and Pieralli, 2020; AlKathiri, 2022). Note

that ∇tech(kib, kic) involves two counterfactual (in)efficiency measurements that can

both easily be computed using the linear programming in (3). Descriptive statistics

and statistical tests for the estimated indexes are provided in Table 3 and (kernel)

distributions in Figure 3.11

Table 3: Efficiency and technological changes

statistics ∇e(kb, kc) ∇tech(kb, kc)
min 0.21 1
mean 1.08 1.84
median 0.96 1.79
max 3.71 3.20

more than one mode 0.574 0.044
more than two modes 0.854 0.685

Figure 3: Efficiency and technological changes

Efficiency change presents an average larger than one but a median smaller than

unity. This means that some countries with better performances have pulled up the

11We do not add hats on the estimated indexes in Table 3 to improve readability, but each time
we provide results it is for estimated concepts.
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overall performance. In fact, a bit more than 40% of the countries present an efficiency

decrease. One mode is noticed for efficiency change while two modes are observed

for technological change. This is confirmed by the p−values of the Silverman’s tests.

This implies that a group of countries has pushed up the production possibilities while

others are lagging behind. To better understand these patterns, we cross efficiency

and technological changes in Figure 4. There, we draw the medians of each dimension

to identify four groups. Moreover, we provide in Table 4 the best and worst 10

performers.12

Figure 4: Efficiency and technological change scatter plot

First, there is no clear connection between efficiency and technological changes as

the correlation coefficient is rather small at 0.13. This is explained by the fact that we

find countries in each of the four groups. The best performers are those in the upper-

right as they are pushing the technology and benefit from positive efficiency change.

Worse performers lie in the lower left. The most innovative countries are European,

and we find several African countries amongst the poorer performances. We also note

that countries with high positive efficiency changes can be called followers as they do

not innovate directly, but rather benefit from innovations made by others.

12Countries are given in decreasing order in Table 4.
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Table 4: Efficiency and technological changes

top ∇e(kb, kc) ∇tech(kb, kc)

top 10 +

Thailand, Indonesia, Bolivia,
Argentina, Tunisia, Singa-
pore, Romania, Malta, Korea,
Botswana

Denmark, Belgium, Switzer-
land, Austria, France, Spain,
Cyprus, Italy, Luxembourg,
Ireland

top 10 –

Congo, Myanmar, Rwanda,
Burkina Faso, Malawi,
Mozambique, Bangladesh,
Barbados, Mali, Chad

Venezuela, Mozambique
Rwanda, Mali, Tanzania,
Myanmar, Ethiopia, Burkina
Faso, Malawi, Chad

3.2 Resource capacity constraint

Previous investigations, while pointing out several interesting patterns, are rather

standard as they do not consider the resource capacity constraint. To do so, we

have to compare how countries generate labor productivity by taking the resource

constraint into account, and when ignoring such constraints. The former is captured

by our (in)efficiency measurement defined before. The latter can be obtained by

computing (in)efficiency when capital per worker is ignored. By taking a simple ratio

between both concepts, we measure to what extent resource capacity represents a

constraint.13 It is given for country i at time t as follows:

rt(kit) =
et(1)

et(kit)
. (8)

et(kit) is the (in)efficiency measurement as defined before in Section 3.1. et(1)

exactly captures the (in)efficiency behaviour without resource constraint. By taking

the ratio between both, we measure how resource capacity, here capital per worker,

impacts the labor productivity performance. As there is no natural ranking between

et(kit) and et(1), the ratio rt(kit) is unbounded. When it is greater than one, it

reflects that capital per worker is not used in an optimal manner. Therefore, labor

productivity could be increased without requesting more resources. When rt(yt, kt)

is smaller than one, it is the opposite situation: more capital per worker is needed to

raise labor productivity. Indeed, in that case, ignoring the resource variations reveals

more potential labor productivity improvements. In other words, economic growth is

13Another option is to use a difference: et(1) − et(kit). The ratio is preferred for several reasons
such as it is unit-free, easy to interpret, and to measure over time.
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limited by resources, i.e. there is under-investment. In our empirical case, we expect

to see the latter case only. At this point, we highlight that a related ratio has been

used before by Cherchye et al. (2019), Perelman and Walheer (2020) , Aparicio et

al. (2022), Mwaku et al. (2024), and Nsabiman et al. (2024). We cross (in)efficiency

with (et(kit)) and without (et(1)) resources in Figure 5.

Figure 5: Efficiency with and without resources

The diagonal line captures the benchmark case, i.e. when (in)efficiency with and

without resources are equal. Above the diagonal, rt(kit) > 1, resources can be used

in a better way; and below the diagonal, rt(kit) < 1, more resources are needed. All

observations lie below the diagonal for both time periods. That is, under-investment

is observed. We may interpret this finding as the need for additional resources to

meet sufficient and stable economic growth, i.e. the notion of a steady state (Fernald

and Jones, 2014; Jones, 2016).

As done before for the efficiency measurement, we can define two indexes for the

resource ratio. The first one captures the change in the resource constraint over time,
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and the second one the resource environment effect:

∇rc(kib, kic) =
rc(kic)

rb(kib)
, (9)

∇renv(kib, kic) =

[
rb(kib)

rc(kib)
× rb(kic)

rc(kic)

]1/2
. (10)

Both concepts follow closely the indexes defined before for the efficiency measure-

ments in (6) and (7). The only difference is that they are here defined for the resource

capacity constraint measurement. Note that (10) again involves counterfactual con-

cepts. ∇rc(kib, kic) tells us how the resource constraint has evolved over time. A

value larger than unity implies that under-investment impact has decreased between

b and c. When the index is smaller than one, we observe a greater impact.

∇renv(kib, kic) represents the resource environment change. To better understand

what this change means, let us compare the two factors of the first fraction in (10).

When rb(kib) < rc(kib), it implies that the resource constraint is larger for countries

in period b when the technology is the one at period c. That is, resource constraint

is more important in period c than in b. There is a less favorable environment in c

in that case. When rb(kib) > rc(kib), the opposite situation prevails: there is a more

favourable environment in c. A value of one represents the status quo. As a similar

comparison holds true for rb(kic) and rc(kic), we conclude that ∇renv(kib, kic) > 1

means that the resource environment has improved between b and c. When it is

smaller than one, it is the opposite situation. Distributions for both indexes are

provided in Figure 6. In Table 5, we give descriptive statistics for both indexes.

Table 5: Resource constraint and resource environment change statistical tests

statistics ∇rc(kb, kc) ∇renv(kb, kc)
min 0.20 1.43
mean 0.92 2.22
median 0.79 2.19
max 6.68 3.88

more than one mode 0.02 0.48

The resource constraint change is, on average, smaller than unity revealing the

growing importance of under-investment over time. This being said the distribution

of the resource constraint change highlights three groups of countries. One with very

high resource constraint change in the [3.2 – 4] interval, a second in the [1.8–2.5] in-
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Figure 6: Resource constraint and resource environment change

terval, and a last one with an average of around 0.75. This reveals that the increasing

importance of under-investment is not a rule in the world. Next, the resource environ-

ment has, on average, increased showing that the resource environment is more and

more favourable in the world over time (the minimum value is 1.43). Note that this

does not imply that all countries have benefited similarly from such a more favourable

environment. We do not find statistical evidence of multi-modes for the resource en-

vironment change even though Figure 6 shows a small bump. Finally, we note that

the resource environment has more importantly increased than technological change

(Table 3).

As done before for the efficiency and technological changes, we cross the resource

constraint change and the resource environment effect in Figure 7 and give the best

and worst top performers in Table 6. A first observation is that the resource con-

straint and resource environment changes are slightly positively related. The Pearson

correlation coefficient is close to 0.30 and significant. This means that countries with

positive resource constraint changes are those that have a more favourable resource

environment. Graphically, we see four distinct groups of countries. More developed

countries are those with smaller resource environment changes. However, this does

not mean that the resource environment is less favourable over time in these countries
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as all resource environment changes are positive (Table 5). Countries with higher re-

source environment changes are less developed. This is also true for those with lesser

resource constraint changes, but countries are different in both groups. This means

that under-investment is more severe in less developed countries. Finally, we find

mostly African and Asian countries is the best resource constraint change group.

Figure 7: Resource constraint and resource environment change scatter plot

Table 6: Resource constraint and resource environment changes

group ∇rc(kb, kc) ∇renv(kb, kc)

top 10 +

Mozambique, Taiwan,
Bangladesh, Botswana, Egypt,
Rwanda, Mali, Burkina Faso,
China, Myanmar

Congo, Uganda, Malawi,
Tanzania, Myanmar, Mozam-
bique, Burkina Faso, Rwanda,
Mali, Ethiopia

top 10 –

Zimbabwe, Madagascar, Niger,
Senegal, Ghana, Zambia, Bo-
livia, Venezuela, Kenya, Nige-
ria

Italy, Luxembourg, Cyprus,
Belgium, Ireland, Greece,
France, Spain, Switzerland,
Austria
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3.3 Path-dependence and moderator effect

Our previous investigation highlighted the existence of under-investment in the world.

At the same time, β−convergence seems to be true (Figure 1). A follow-up question is

how under-investment impacts β−convergence ? Under-investment in resources may

act as a constraint preventing the economic growth convergence from happening.

That is, under-investment has a moderator effect on labor productivity convergence.

While moderator effects have been studied before (Forte and Moura, 2013; Teixeira

and Queirós, 2016; Sainz-Fernandez et al., 2018; Dada and Abanikanda, 2022), this is

not the case for under-investment. Moreover, another important aspect is whether and

how the moderator effect of under-investment varies when combined with efficiency,

technological, or resource environment change. Answering such questions is another

added value of our empirical investigation.

At the same time, under-investment may present a second undesirable feature:

path-dependence. Such notion of path dependence can be traced back to David

(1985) where it is defined as ‘important influences upon the eventual outcome [that]

can be exerted by temporally remote events’. In economics, this term was widely used

to describe the phenomenon in which future paths of a system are based on its current

or past states (Eliasson, 1989; Redding, 2002; Dutt, 2009; Belläıche, 2010; Harada,

2010; Aghion et al., 2016; He and Walheer, 2020), but not in the under-investment

context.

If both features are combined, this may lead to a vicious circle from which it is

difficult to get out. Intuitively, this would mean that countries with worse perfor-

mances, i.e. smaller initial labor productivity value, tend to be more impacted by

under-investment, whilst under-investment prevents β−convergence from occurring.

When repeating such phenomena over time, we obtain the virtuous circle.

In the following, we use the same definitions, yet adapt to our context. First, we

look at how initial output per worker is linked to the efficiency, technological, resource

constraint, and resource environment changes. The rationale behind such exercise is

to verify whether countries with worse initial conditions have benefited more from

efficiency increases and technological and environment advancements, and are less

affected by the resource capacity constraint. Next, to study the role of the different

dimensions in the β−convergence process, we augment the regression equation in

(1) by including additional factors: indexes and interaction terms. Such interaction

effects exactly capture the moderation effects. Formally, the regression equations to
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test for the path-dependence existence and the moderator effect are given as follows:

∇z(kib, kic) =α + βyib + ui, (11)

ln(yic/yib) =α + βyib + γ1∇rc(kib, kic) + γ2∇z(kib, kic) + ϕ1yib ×∇rc(kib, kic)

+ ϕ2yib ×∇z(kib, kic) + ui, (12)

where ∇z(kib, kic) = {∇rc(kib, kic),∇e(kib, kic),∇tech(kib, kic),∇renv(kib, kic)}.
Table 7 gives the slope coefficients of theGLS regressions of the path-dependence.14

In Appendix B, Figure 9 shows the scatter plots and the GLS fitted regression lines.

A positive slope coefficient for the regression with the output per worker in 1965

in (11) implies path-dependence. We see that only technological change presents a

path-dependence pattern. Countries with larger initial labor productivity are those

pushing the technological frontier over time, i.e. they are more innovative. Such

findings are coherent with other recent investigations (Redding, 2002; Aghion et al.,

2016). Next, efficiency change has benefited countries in need. A similar finding holds

for the resource constraint and resource environment changes. This means worse ini-

tial performers have less resource constraint and a better resource environment over

time. In terms of amplitude, the resource environment presents the largest impact as

it has the greater slope coefficients.

Table 7: Path dependence slope coefficients

statistics Output per worker 1965
∇e(kb, kc) -0.0011*

∇tech(kb, kc) 0.0023*
∇rc(kb, kc) -0.0012*

∇renv(kb, kc) -0.0031*

Next, results for the moderator effects in (12) are given in Table 8. There, we

also give the R2 and p−value of the Fisher test for the global significant level. It is

required to verify the significance level of the coefficient ϕ to conclude the existence of

a moderator effect. Next, the value of ϕ has to be checked: if ϕ is negative (positive),

it means that the variable supports (plays against) convergence (as β is found to be

negative, see Table 2). Finally, to understand the strength of the moderator effect,

we can compare the values of the coefficients.

14The symbol ‘*’ means that the coefficient is significant at the 1% level in all following Tables.
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Table 8: Moderator effects

statistics ∇rc(kb, kc)
∇rc(kb, kc) combined with

∇renv(kb, kc) ∇e(kb, kc) ∇tech(kb, kc)
α 349.87 1079.2* 546.7* -309.45
β -0.0339* -0.0058* -0.00234* -0.0061*
γ1 219.53 435.57* 456.98* 314.12
γ2 235.71 315.15* 464.44*
ϕ1 0.0366* 0.0187* 0.00439* 0.0087*
ϕ2 -0.0931* -0.0123 -0.0047*
R2 0.2438 0.5212 0.5324 0.6511

F − stat 0.0000 0.0000 0.0000 0.0000

A moderator effect to economic growth convergence is found for under-investment.

We see that countries where under-investment decreases, i.e. greater ∇rc(kb, kc), are

more likely to diverge over time. This means that under-investment is a brake on

economic growth convergence. However, these results are contrasted when we take

another dimension into account. When combined with technological or resource envi-

ronment change, the story is different. Both dimensions present a negative coefficient

meaning that they support β−convergence. It implies that it is possible to counter the

moderator effect of under-investment if technological or resource environment changes

are positive and high enough. As technological change presents path-dependence (see

Table 8), it is probably simpler to set a more favourable environment. Policy-makers

have an important role to play here. Finally, we note that no significant results are

found when combined with efficiency change.

All in all, our results indicate that path dependence is not observed for the re-

source constraint and that β−convergence is possible when technological or resource

environment change is positive and high enough.

4 Sensitivity tests

As the results might be sensitive to the empirical specification, we run several sensi-

tivity tests to verify their robustness. First, we partition countries into two groups in

light of their technological change value. Next, we do the same using their resource

environment change value. Our second sensitivity test consists of removing obser-

vations during the oil and financial crisis. Finally, we verify how our results change
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when considering σ−convergence, i.e. a gradual reduction in dispersion.15

Overall, our additional analyses support our previous findings while highlight-

ing some additional interesting features. One, different patterns are found in each

group. Second, crises are found to have an impact on the moderator effects. Third,

σ−divergence, which is reduced by the moderator effects, is observed.

4.1 Groups

As highlighted before in Figures 1(a), 3, and 6, distribution picks are observed. We

may interpret this finding as the existence of groups of countries in the world; each

group with its own growth regimes. Several researchers have studied group or club

convergence (Azariadis and Drazen 1990; Durlauf and Johnson 1995; Bernard and

Durlauf, 1996; Galor 1996).16 In brief, convergence of countries within a technology

regime or club is possible, but overall convergence is prevented by a certain club factor.

In our context, this would imply that the resource constraint impact is different in

each group. Our aim is not to confirm the club convergence hypothesis, but rather to

verify how our results change when we partition countries into groups based on our

previous empirical observations. In light of the distribution picks in Figures 3 and

6, we define two groups using technological change (cut-off at 1.83) and two groups

using resource environmental change (cut-off at 1.74). The cut-offs correspond to the

distribution modes.

Results for both grouping procedures are given in Tables 9 and 10 in Appendix

C. For path-dependence, previous results are confirmed: only technological change

presents such a phenomenon. This is true regardless of the grouping procedure.

Next, β−convergence is found in each group but the impact of each dimension varies

across groups. In the more technologically advanced group, under-investment does

not present a moderator effect. This is true whether it is taken alone or combined

15Another sensitivity test is to redo the analysis for periods covered in previous research (e.g.
Kumar and Russell, 2002; Henderson and Russell, 2005; Badunenko et al., 2008; Badunenko et al.,
2014; Filippetti and Peyrache, 2015; Walheer, 2016, 2021, 2023; AlKathiri, 2022) to see how our
new concept of resource capacity constraint challenges their conclusion. It is also a way to verify
that our results are not driven by considering the updated sample. We redo our analysis considering
the samples in Kumar and Russell (2002) and Henderson and Russell (2005), and we find similar
findings. Given the space constraint, the additional results are not presented here but are available
upon request.

16Club convergence has received a certain attention in the literature. As it is not the goal of this
paper to go into detail we refer to Walheer (2022) for an overview.
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with another dimension. Efficiency and technology change both present a moderator

effect in that group. Such effect is negative meaning that both dimensions support

β−convergence in the group. We do not find a moderator effect of under-investment

for the group with the most favourable resource environment. However, techno-

logical and resource environment change both have a moderator effect encouraging

β−convergence.

Next, for the group less technologically advanced and the one with a less favourable

resource environment, there is a moderator effect of under-investment. As found be-

fore in Section 3.3, under-investment is a brake on economic growth convergence.

Again, this result is counterbalanced by the other dimensions. As technology and re-

source environment changes have both a moderator effect in favour of β−convergence,

it is, in principle, possible to counterbalance the moderator effect of under-investment.

Finally, we highlight that this time, efficiency change also has a role to play in both

groups.

4.2 Crisis

A fair criticism of our previous analysis is its sensitivity to extreme values. During the

1965–2019 period, the world faced several crises that clearly impacted the countries’

performances. An advantage of our estimation method is to include all available

information. However, a drawback is that it is sensible to potential issues (as those

explained in Section 3.1) but also to extreme data as it might be the case for crises.

We remove four time periods from our estimation: the oil crisis 1974–1977, the oil

crisis 1989–1992, and the financial crisis 2008-2011.17

In Appendix D, we provide the distributions for the four indexes (Figure 9), the

path dependence regressions (Table 11), and the moderator effect regressions (Table

12). First, distributions are similar to those obtained previously in Figures 3 and

4 when all periods are used to estimate the potential outputs. The picks (modes)

are, in fact, more visible, when crises are removed. Next, path-dependence is again

only found for technological change. Note that coefficients are smaller than before

(compared to Table 8). Finally, β−convergence is found and a moderator effect for

under-investment is observed. This effect can be countered by technological advance-

ment, a more favourable resource environment, or positive efficiency change. All in

17Another option is to adopt a median regression. We obtain simialr results.
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all, our previous results are confirmed.

4.3 σ−convergence

Besides β−convergence, which is probably the most popular definition of convergence,

σ−convergence has received certain attention in the economic literature (Dalgaard

and Vastrup, 2001; Young et al., 2008; Egger and Pfaffermayr, 2009; Rapacki and

Próchniak, 2009; Kong et al., 2019). The basic idea is to verify how labor pro-

ductivity variability changes over time. If such variability decreases, it means that

differentiation between countries decreases over time. That is, there is a convergence

as countries are more and more similar. In practice, labor productivity variability

is measured by its standard deviation. Contrary to β−convergence, the regression

equation for σ−convergence depends on time and not on individuals. This has two

implications for our indexes. First, they have to be computed at each time period.

Second, they have to be aggregated annually. Finally, as indexes capture change with

respect to a base period, we have to take the initial labor productivity variability into

account. All in all, we have the following equation:

σ(yt)/σ(yb) =α + βt+ γ1∇rc(kb, kt) + γ2∇z(kb, kt)

+ ϕ1t× rc(kb, kt) + ϕ2t×∇z(kb, kt) + ut. (13)

∇z(kb, kt) is an aggregated index built on the ∇zr(kib, kit)’s at time t (the same

holds true for ∇rc(kb, kc)). We recall here that ∇z(kib, kit) represents one of our

four indexes (see (11) and (12)). Also, we note that ∇z(kib, kit) is the index with a

current time period t and a base period b. To aggregate indexes, it is, generally, not

advised to take the arithmetic average, it is rather, better, to use a weighted sum.

In particular, we follow the well-known procedure explained in Zelenyuk (2006) and

Walheer (2018). In brief, relative output-labor ratios are utilized to define aggregated

potential outputs that are, then, used to obtain the aggregated indexes.

Variabilities of labor productivity and capital-labor ratio are shown in Figure

11 in Appendix E. Both are given with respect to their initial value. We see that

capital-labor ratio follows a much more stable trend than labor productivity. Labor

productivity is only larger is the [2005–2008] interval and in 2018–2019. Note that the

gap between both variabilities reduces over time. Results for the moderator effects

are given in Table 13. σ−divergence is found as the slope coefficient is positive.
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Divergence is strengthened by under-investment as it presents a moderator effect

with a positive coefficient. Such a process is braked by technological change only.

The coefficient for efficiency and resource environment changes are both insignificant.

5 Conclusion

Using a non-parametric intuitive approach and a tailored database, we investigate how

resource capacity impacts economic growth convergence. We distinguish two main

channels: path-dependence and moderator effect. Under-investment in resources may

act as a constraint preventing the economic growth convergence from happening. At

the same time, countries with lower performances may have larger under-investment

over time. If both features are combined, this may lead to a virtuous circle from

which it is difficult to get out.

Our results reveal the growing importance of under-investment over time, but not

for all countries. Next, the resource environment has, on average, increased showing

that the resource environment is more and more favourable in the world. Also, our

empirical exercise indicates that path dependence is not observed for the resource

constraint but there is a moderator effect. However, β−convergence is possible by

promoting technological advances or creating a more favourable resource environment.

We run several sensitivity tests to verify the robustness of our results. First, we

partition countries into two groups in light of their technological change value and

their resource environment change. Next, we remove potential extreme observations.

Finally, we verify how our results change when considering σ−convergence, i.e. a

gradual reduction in dispersion. Overall, our additional analyses support our previous

findings while highlighting some additional interesting features for each group.

Finally, we want to mention some potential paths for further research using the

concept of resource capacity. A first extension is to include other resources such

as human capital and energy; and distinguish between private and public resources.

Next, the pollution process can be included to capture the negative effect of economic

growth. Finally, technology heterogeneity can be taken into account as it may be

argued that countries (or groups of countries) have access to different technologies.
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[15] Belläıche J., 2010, “On the path-dependence of economic growth”, Journal of

Mathematical Economics 46(2), 163-178.

[16] Bernanke B. S., Parkinson M. L., 1991, “Procyclical labor productivity and

competing theories of the business cycle: Some evidence from interwar US man-

ufacturing industries”, The Economic Journal 102(413), 860-873.

[17] Bernard A., Durlauf S., 1996, “Interpreting tests of the convergence hypothesis”,

Journal of Econometrics 71, 161-173.

[18] Bloom D. E., Canning D., Sevilla J. P., 2002, “Technological diffusion, condi-

tional convergence, and economic growth”.

[19] Caunedo J., Keller E. , 2021, “Capital Obsolescence and Agricultural Produc-

tivity”, The Quarterly Journal of Economics 361(1), 505–561

[20] Chambers R. G., Pieralli S., 2020, “The Sources of Measured US Agricultural

Productivity Growth: Weather, Technological Change, and Adaptation”, Amer-

ican Journal of Agricultural Economics 102(4), 1198-1226.

[21] Cherchye L., De Witte K., Perelman S., 2019, “A unified productivity-

performance approach applied to secondary schools.”, Journal of the Operational

Research Society 70(9), 1522-1537.

[22] Dada J. T., Abanikanda E. O., 2022, “The moderating effect of institutions in

foreign direct investment led growth hypothesis in Nigeria”, Economic Change

and Restructuring 55(2), 903-929.

[23] Dalgaard C. J., Vastrup J., 2001, “On the measurement of σ−convergence”,

Economics letters 70(2), 283-287.

28



[24] David P. A., 1985, “Clio and the economics of QWERTY”, American Economic

Review 75, 332–337.

[25] Diewert W., 1980, “Capital and the theory of productivity measurement”, Amer-

ican Economic Review 70(2), 260-267.

[26] Durlauf S., Johnson, P.A., 1995, “Multiple regimes and cross-country growth

behavior”, Journal of Applied Econometrics 10, 365-384.

[27] Dutt A. K., 2009, “Path dependence, equilibrium and economic growth”, Path

Dependency and Macroeconomics 119-161.

[28] Egger, P., Pfaffermayr, M. , 2009, “On testing conditional ‘–convergence”, Oxford

Bulletin of Economics and Statistics 71(4), 453-473.

[29] Eliasson G., 1989, “The Dynamics of Supply and Economic Growth: How in-

dustrial knowledge accumulation drives a path-dependent economic process.”,

Industrial Dynamics: Technological, Organizational, and Structural Changes in

Industries and Firms 21-54.

[30] Färe R., Grosskopf S., Norris M., Zhang Z. 1994, “Productivity Growth, Tech-

nical Progress, and Efficiency Change in Industrialized Countries”, American

Economic Review 84 (1), 66-83.

[31] Farrell M., 1957, “The Measurement of Productive Efficiency”, Journal of the

Royal Statistical Society Series 1, General, 120, Part 3, 253-281.

[32] Feenstra R. C., Inklaar R., Timmer M. P., 2015, “The Next Generation of the

Penn World Table”, American Economic Review 105(10), 3150-3182.

[33] Fernald J. G., Jones C. I., 2014, “The future of US economic growth”, American

Economic Review 104(5), 44-49.

[34] Fiaschi D., Lavezzi A., 2007, “Nonlinear economic growth: Some theory and

cross-country evidence”, Journal of Development Economics 84, 271-290.

[35] Filippetti A., Peyrache A, 2015, “Labour productivity and technology gap in

European regions: A conditional frontier approach”, Regional Studies 49(4),

532-554.

29



[36] Forte, R., Moura, R., 2013, “The effects of foreign direct investment on the

host country’s economic growth: theory and empirical evidence”, The Singapore

Economic Review 58(03), 1350017.

[37] Fukase E., Martin W., 2020, “Economic growth, convergence, and world food

demand and supply”, World Development 132, 104954.

[38] Galor O., 1996, “Convergence? inferences from theoretical models”, Economic

Journal 106, 1056-1096.

[39] Gao C., Ge H., Lu Y., Wang W., Zhang Y., 2021, “Decoupling of provincial

energy-related CO2 emissions from economic growth in China and its conver-

gence from 1995 to 2017”, Journal of Cleaner Production 297, 126627.

[40] Gibson, M., Shrader, J., 2018, “Time use and labor productivity: The returns

to sleep”, Review of Economics and Statistics 100(5), 783-798.

[41] Graham B. S., Temple J. R., 2006, “Rich nations, poor nations: how much can

multiple equilibria explain?”, Journal of Economic Growth 11, 5-41.

[42] Hall P., York M., 2001, “On the calibration of Silverman’s test for multimodal-

ity”, Statistica Sinica 11, 515-536.

[43] Harada T., 2010, “Path-dependent economic growth with technological trajec-

tory”, Economics of Innovation and New Technology 19(6), 521-538.

[44] Haupt H., Schnurbus J., Semmler W., 2018, “Estimation of grouped, time-

varying convergence in economic growth”, Econometrics and Statistics 8,

141–158.

[45] He M., Walheer B., 2020, “Spillovers and path dependences in the Chinese man-

ufacturing industry: A firm-level analysis”, The Journal of Development Studies

56(4), 817-839.

[46] Henderson D. J., Russell R. R., 2005, “Human capital and convergence: a

production-frontier approach”, International Economic Review 46(4),1167-1205.

[47] Henderson D. J., Parmeter C.F., Russell R. R., 2008, “Modes, weighted modes,

and calibrated modes: evidence of clustering using modality tests”, Journal of

Applied Econometrics 23(5), 607-638.

30



[48] Henderson D. J., Papageorgiou C., Parmeter C. F., 2012, “Growth empirics

without parameters”, The Economic Journal 122, 125-154.

[49] Jajri, Ismail, R., 2010, “Impact of labour quality on labour productivity and

economic growth”, African Journal of Business Management 4(4), 486.

[50] Jones C., 1997, “On the Evolution of the World Income Distribution”, Journal

of Economic Perspectives 11(3), 19-36.

[51] Jones C. I., 2016, “The facts of economic growth”, Handbook of macroeconomics

Vol. 2, 3-69.

[52] Kong J., Phillips P. C., Sul D., 2019, “Weak σ−convergence: Theory and appli-

cations”, Journal of Econometrics 209(2), 185-207.

[53] Koopman, E., Wacker K. M., 2023, “Drivers of Growth Accelerations: What

Role for Capital Accumulation?”, World Development 169:159.

[54] Kremer M., Willis J., You Y., 2022, “Converging to convergence”, NBER

Macroeconomics Annual 36(1), 337-412.

[55] Krause M., 2016 “The Millennium Peak in Club Convergence: A New Look at

Distributional Changes in The Wealth of Nations”, Journal of Applied Econo-

metrics 32, 621-642.

[56] Kumar S., Russell R. R., 2002, “Technological change, technological catch-up,

and capital deepening: relative contributions to growth and convergence”, Amer-

ican Economic Review 92(3), 527-548.

[57] Lafuente E., Acs Z. J., Sanders M., Szerb L., 2020, “The global technology

frontier: productivity growth and the relevance of Kirznerian and Schumpeterian

entrepreneurship”, Small Business Economics 55, 153-178.

[58] Li K. W., Liu T., 2011, “Economic and productivity growth decomposition: An

application to post-reform China”, Economic Modelling 28(1-2), 366-373.

[59] Maasoumi E., Racine J., Stengos T., 2007, “Growth and convergence: a profile of

distribution of dynamics and mobility”, Journal of Econometrics 136, 483-508.

31



[60] Magnus J., Powell O., Prufer P. 2010, “A comparison of two model averaging

techniques with an application to growth empirics”, Journal of Econometrics

154, 139-153.

[61] McMillan M., Zeufack A., 2022, “Labor productivity growth and industrializa-

tion in Africa”, Journal of Economic Perspectives 36(1), 3-32.

[62] Meng Y., Parmeter C. F., Zelenyuk V., 2023, “Is newer always better? A rein-

vestigation of productivity dynamics using updated PWT data”, Journal of Pro-

ductivity Analysis 59(1), 1-13.

[63] Mirestean A., Tsangarides C., 2016, “Growth determinants revisited using

limited-information Bayesian model averaging”, Journal of Applied Economet-

rics 31 (1), 106-132.

[64] Mwaku J., Perelman S., Walheer B., Mapapa M., 2024, “Effectiveness and ef-

ficiency of urban water access in the Democratic Republic of Congo: A panel

directional approach”, Environmental Science & Policy 160, 103837.

[65] Nsabiman R, Perelman S., Walheer B., Mapapa M., 2024, “Effectiveness and

efficiency in access to reliable electricity: the case of East African countries”,

Socio-Economic Planning Sciences 93, 101898.

[66] Owen A., Videras J., Davis L., 2009, “Do all countries follow the same growth

process?”, Journal of Economic Growth 14(4), 265–286.

[67] Perelman S., Walheer B., 2020, “Economic growth and under-investment: A

nonparametric approach.”, Economics Letters 186, 108824.

[68] Phillips P., Sul D., 2007, “Transition modeling and econometric convergence

tests”, Econometrica 75, 1771-1855.

[69] Piketty T., 2017, “Capital in the twenty-first century”, Harvard University Press.

[70] Piketty T., Yang T.L., Zucman G., 2019, “Capital Accumulation, Private

Property, and Rising Inequality in China”, American Economic Review 56(7),

572–619.

32



[71] Preenen P. T., Vergeer R., Kraan K., Dhondt S., 2017, “Labour productivity and

innovation performance: The importance of internal labour flexibility practices”,

Economic and Industrial Democracy 38(2), 271-293.

[72] Quah D. T., 1996a, “Empirics for economic growth and convergence”, European

economic review 40(6), 1353-1375.

[73] Quah D. T., 1996b, “Twin peaks: growth and convergence in models of distri-

bution dynamics”, Economic Journal 106(437), 1045-1055.

[74] Quah D., 1997, “Empirics for growth and distribution: stratification, polariza-

tion, and convergence clubs”, Journal of Economic Growth 2(1), 27-59.
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Appendix A

When assuming that the production function is quasi-concave, continuous, strictly

increasing, and satisfies constant returns-to-scale. The reconstructed technology for

the production process ⟨Yt, Kt, Lt⟩ is defined as follows (Charnes et al., 1978):

Tt =

 (Yt, Kt, Lt)

Yt ≤
∑t

τ=1

∑n
j=1 µjτYjτ ,

Kt ≥
∑t

τ=1

∑n
j=1 µjτKjτ ,

Lt ≥
∑t

τ=1

∑n
j=1 µjτLjτ ,

µjτ ≥ 0 ∀j,∀τ.

 . (14)

As constant returns-to-scale is assumed, we can multiply each side of the inequal-

ities by Ljτ/Lt:

Tt =

 (Yt, Kt, Lt)

Ljτ

Lt
Yt ≤

∑t
τ=1

∑n
j=1 µjτYjτ

Ljτ

Lt
,

Ljτ

Lt
Kt ≥

∑t
τ=1

∑n
j=1 µjτKjτ

Ljτ

Lt
,

Ljτ

Lt
Lt ≥

∑t
τ=1

∑n
j=1 µjτLjτ

Ljτ

Lt
,

Ljτ

Lt
µjτ ≥ 0 ∀j,∀τ.

 . (15)

By reorganizing the terms in each inequality, we obtain:

Tt =

 (Yt, Kt, Lt)

Yt

Lt
≤

∑t
τ=1

∑n
j=1

(
µjτ

Ljτ

Lt

)
Yjτ

Ljτ
,

Kt

Lt
≥

∑t
τ=1

∑n
j=1

(
µjτ

Ljτ

Lt

)
Kjτ

Ljτ
,

Lt

Lt
≥

∑t
τ=1

∑n
j=1

(
µjτ

Ljτ

Lt

)
Ljτ

Ljτ
,

Ljτ

Lt
µjτ ≥ 0 ∀j,∀τ.

 . (16)

By defining labor productivity as yt = Yt/Lt, capital-labor ratio as kt = Kt/Lt,

and new multipliers by λjτ = µjτ × Ljτ/Lt, we obtain:

Tt =

 (yt, kt, 1)

yt ≤
∑t

τ=1

∑n
j=1 λjτyjτ ,

kt ≥
∑t

τ=1

∑n
j=1 λjτkjτ ,

1 ≥
∑t

τ=1

∑n
j=1 λjτ1,

λjτ ≥ 0 ∀j,∀τ.

 . (17)

This last formation shows that the production process can be expressed as ⟨yt, kt, 1⟩,
and that non-decreasing returns is found (Banker et al., 2004).
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Appendix B

Figure 8: Path-dependence

(a) Efficiency change (b) Technological change

(c) Resource constraint (d) Resource environment
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Appendix C

Table 9: Path dependence slope coefficients per grouping

statistics Output per worker 1965
grouping 1: ∇tech(kb, kc) > 1.83

∇e(kb, kc) -0.00003*
∇tech(kb, kc) 0.00001*
∇rc(kb, kc) -0.00001*

∇renv(kb, kc) -0.00009*
grouping 1: ∇tech(kb, kc) < 1.83

∇e(kb, kc) -0.00008*
∇tech(kb, kc) 0.000009*
∇rc(kb, kc) -0.00003*

∇renv(kb, kc) -0.00003*
grouping 2: ∇renv(kb, kc) > 1.74

∇e(kb, kc) -0.00003*
∇tech(kb, kc) 0.00001*
∇rc(kb, kc) -0.00002*

∇renv(kb, kc) -0.00001*
grouping 2: ∇renv(kb, kc) < 1.74

∇e(kb, kc) -0.000004*
∇tech(kb, kc) 0.000004*
∇rc(kb, kc) -0.00004*

∇renv(kb, kc) -0.00003*
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Table 10: Moderator effects per grouping

statistics β−conv. ∇rc(kb, kc)
∇rc(kb, kc) combined with

∇renv(kb, kc) ∇e(kb, kc) ∇tech(kb, kc)
grouping 1: ∇tech(kb, kc) > 1.83

α 521.98* 425.21* 457.64* 546.87* 435.98*
β -0.00645* -0.00479* -0.00548* -0.00987* -0.00435*
γ1 365.89 548.98* 345.87 567.98*
γ2 126.99* 234.98* 543.34
ϕ1 -0.00214 -0.00312 0.00871 -0.0113
ϕ2 -0.00235 -0.00134* -0.00235*
R2 0.6363 0.4686 0.6545 0.4538 0.5698

F − stat 0.000 0.000 0.000 0.000 0.000
grouping 1: ∇tech(kb, kc) < 1.83

α 435.23* 245.98* 3254.68* 456.97 345.78*
β -0.00526* -0.00325* -0.00429* -0.00234* -0.00436*
γ1 234.58* 358.98 348.76 457.76
γ2 465.98* 567.45* 345.78
ϕ1 0.00128* 0.00365* 0.00456* 0.00345*
ϕ2 -0.00124* -0.00345* -0.00234*
R2 0.5487 0.4563 0.6358 0.4987 0.5514

F − stat 0.000 0.000 0.000 0.000 0.000
grouping 2: ∇renv(kb, kc) > 1.74

α 548.71* 458.55* 498.65* 654.87 567.87*
β -0.00457* -0.00215* -0.00124* -0.00324* -0.00187*
γ1 321.58* 231.98* 298.76 546.87*
γ2 412.87* 345.87* 287.65
ϕ1 -0.00362 0.00321 -0.00298 -0.00199
ϕ2 -0.00128* -0.00187 -0.00217*
R2 0.4599 0.5987 0.5547 0.4989 0.6120

F − stat 0.000 0.000 0.000 0.000 0.000
grouping 2: ∇renv(kb, kc) < 1.74

α 426.50 * 546.98* 645.66* 765.87* 645.66
β -0.00312* -0.00214* -0.00148* -0.00287* -0.00189*
γ1 562.32* 421.65* 438.77* 398.65*
γ2 512.98 198.76 165.88*
ϕ1 0.00131* 0.00148* 0.00234* 0.00187*
ϕ2 -0.00124* -0.00176* -0.00273*
R2 0.4587 0.5698 0.6247 0.6547 0.6344

F − stat 0.000 0.000 0.000 0.000 0.000
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Appendix D

Figure 9: Efficiency and technological changes without crisis

Table 11: Path dependence slope coefficients without crisis

statistics Output per worker 1965
∇e(kb, kc) -0.00001*

∇tech(kb, kc) 0.00002*
∇rc(kb, kc) -0.00002*

∇renv(kb, kc) -0.00002*
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Figure 10: Resource constraint and resource environment change without crisis

Table 12: Moderator effects without crisis

statistics β−conv. ∇rc(kb, kc)
∇rc(kb, kc) combined with

∇renv(kb, kc) ∇e(kb, kc) ∇tech(kb, kc)
α 370.62* -131.53* -408.41 243.98* 324.98
β -0.0063* -0.0008* -0.0159* -0.0065* -0.00987*
γ1 380.36* 562.67* 345.98 345.87*
γ2 421.65* 347.98* 234.87*
ϕ1 0.0013* 0.0345* 0.00234* 0.00176*
ϕ2 -0.00421* -0.00387* -0.00248*
R2 0.4517 0.6234 0.7125 0.6845 0.6285

F − stat 0.0000 0.0000 0.0000 0.0000 0.0000
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Appendix E

Figure 11: Variability

Table 13: Moderator effects for σ−convergence

statistics σ−conv. ∇rc(kb, kc)
∇rc(kb, kc) combined with

∇renv(kb, kc) ∇e(kb, kc) ∇tech(kb, kc)
α -77.88* 413.94 341.71* 182.87* 292.87*
β 0.0345* 0.0568* 0.0457* 0.0324* 0.0456*
γ1 0.02073* 0.0185* 0.0587 -0.0979
γ2 23.98 40.97* 34.76
ϕ1 0.2359* 0.0158* 0.0487* 0.0398*
ϕ2 -0.0265 0.0987* -0.0643*
R2 0.9245 0.9187 0.9356 0.9412 0.9545

F − stat 0.000 0.000 0.000 0.000 0.000
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