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Abstract

We suggest a new decomposition of the rebound effect, highlighting the
contribution of four components: efficiency, technology, capital, and energy
changes. The new approach offers several advantages: it has a strong eco-
nomic foundation as it starts from the modelling of the production process,
it naturally gives the option to understand how each of the four components
contributes to the rebound effect, and it is based on a non-parametric estima-
tion method that does not resort on strong assumptions nor require estimating
parameters. We apply our technique to the case of China’s logistics industry,
which is counteracted by increased energy consumption and carbon emissions
to support economic growth. Our findings reveal that the rebound effect varies
significantly across provinces, with an average of 0.76. Economic growth, driven
by factors such as capital accumulation and technological advancements, plays
a crucial role in determining the rebound effect, with provinces experiencing
higher growth benefiting from improved energy efficiency. We further establish
determinants of the rebound effect, viz., government intervention, environmen-
tal control, and economic growth. The results highlight region-specific energy
policy that takes note of the spatially heterogeneous impacts of economic de-
velopment and policy efforts on the rebound effect.

Keywords: Data Envelopment Analysis; rebound effect; efficiency; technology; China.

*We thank Editor-In-Chief Richard S. J. Tol and the referees for their useful comments.

tSchool of Management, University of Bradford, United Kingdom. email: y.tan9@bradford.ac.uk.

THEC Liege, Université de Liege, Belgium. email: barnabe.walheer@uliege.be. This work is sup-
ported by the Fonds de la Recherche Scientifique (FNRS) under Grant No. J.0193.23. Corresponding
author.



1 Introduction

Energy efficiency is one of the cornerstone strategies for mitigating climate change,
reducing energy consumption, and fostering sustainable economic growth. However,
the energy rebound effect—where improvements in energy efficiency result in less-
than-expected reductions in energy consumption due to behavioural or economic re-
sponses—poses a significant challenge to realizing the full potential of energy-saving
initiatives. The rebound effect has been widely studied across various sectors and re-
gions, with research demonstrating its variability in magnitude, depending on factors
such as industry characteristics, geographic contexts, and energy policies (Sorrell and
Dimitropoulos, 2008; Sorrell et al., 2009; Madlener and Alcott, 2009; Dimitropoulos
et al., 2018).

While the concept of the rebound effect is well understood and its existence is
rarely denied, its modelling is much more challenging (Vivanco et al., 2016; Brockway
et al., 2021). Several methodologies have been suggested that may be regrouped into
two main categories. First, the computable general equilibrium explicitly tries to
model the economic agents’ responses to energy efficiency shocks (Allan et al., 2007).
Such a technique is based on a series of assumptions about the behaviour of the
economic agents and the economy (Bohringer and Loschel, 2006). It turns out that the
computable general equilibrium allows understanding the rebound effect mechanisms
fully. From a practical point of view, an econometrics model is set, and parameters
are estimated using a certain estimation method (Grepperud and Rasmussen, 2004).

Second, the economic accounting approach tries to estimate the rebound effect
directly without requesting modelling of the economic agents’ behaviour (Lin and Du,
2015). Such an approach starts from the definition of the rebound effect and highlights
the importance of specific dimensions to the rebound effect, such as technological
change, efficiency change, input change, and scale efficiency change (Stern, 2020).
Over time, the economic accounting approach has gained popularity because it is
easier to use, less sensitive to assumptions, and does not require estimating parameters
(Egan and Schaltegger, 2023). Shortcomings of the economic accounting approach are
that it is usually focused on one or a few dimensions and that it does not start from an
economic model. In a sense, it might give the impression that the economic accounting
approach is sometimes used to highlight the contribution of specific dimensions while

ignoring other potential channels, without any solid economic foundation.



Building on these drawbacks, we suggest, in this paper, a new economic account-
ing approach that it based on a production function framework and that highlights
the contribution of four dimensions: technological change, efficiency change, capital
accumulation, and energy accumulation. The new approach gives an intuitive and
complete decomposition of the rebound effect while being based on a standard eco-
nomic model. That is, our approach is directly connected with both the computable
general equilibrium and the economic accounting approaches. As the computable
general equilibrium approach, we start with an economic model. As the economic ac-
counting approach, we decompose the rebound effect into different components. All
in all, our approach brings the best of the two practices. From an estimating point
of view, we rely on a non-parametric approach that does not require making strong
assumptions about the production process or estimating parameters.

We apply our new methodology to the rebound effect in China’s logistics industry.
As a key driver of economic growth and industrial output, the logistics industry plays
a crucial role in supporting China’s supply chains and infrastructure development.
With China’s rapid urbanization, industrial expansion, and increasing trade volumes,
the logistics sector has seen considerable growth over the past decade. However, this
growth has also led to escalating energy consumption and carbon emissions, placing
immense pressure on the nation’s energy resources and environmental sustainability
efforts. Given the scale of China’s logistics industry—accounting for a substantial
share of national energy use and greenhouse gas emissions—understanding how energy
efficiency improvements are offset by the rebound effect is critical for shaping effective
energy and environmental policies.

In the logistics industry, the rebound effect would occur as efficiency in energy
usage lowers the costs of doing business and therefore causes an increased demand for
logistics services. For example, fuel-efficient vehicles, routing systems, or automat-
ing warehouse operations can lower per-unit energy usage. Such savings, however,
can lead companies to add more delivery volume and service frequency or reduce
shipment consolidation, hence increasing total energy consumption. These systemic
and behavioral reactions are especially applicable in logistics, where transportation,
warehousing, and distribution processes are extremely energy-intensive.

Surprisingly, previous studies have mainly focused their attention on industries
such as manufacturing or transportation, neglecting the logistics sector (Berner et
al., 2022; Amjadi et al., 2022; Zheng et al., 2022; Liu et al., 2018). We fill this gap



by providing a detailed examination of the rebound effect in China’s logistics indus-
try. Furthermore, we provide an in-depth regional analysis, exploring the variation
in rebound effects across China’s provinces. This geographical focus is particularly
relevant, given the significant differences in economic development, industrial struc-
ture, and energy use across the country. By analyzing regional data, this study sheds
light on the localized drivers of the rebound effect, enabling policymakers to design
region-specific energy efficiency strategies that account for provincial disparities in
energy consumption patterns, regulatory environments, and industrial activity.

Finally, we also explore the determinants of the energy rebound effect, examining
factors such as economic level, industrial structure, government input, environmental
regulation, and resident consumption levels. By using these determinants in a second-
stage analysis, this study provides actionable insights for policymakers and industry
leaders to design more effective energy policies that account for the rebound effect
and its underlying drivers. A distinguished feature of our second-stage analysis is
that our decomposition allows us to better understand how the determinants impact
certain aspects of the rebound effect.

Our paper is structured as follows. We present a literature review in Section 2 and
expose our methodology in Section 3. We run our empirical application in Section 4.
There, we give the results for the rebound effect for China’s logistics industry, and
present its decomposition. We also run a second-stage analysis to better understand

our results. We conclude in Section 5.

2 Literature review and empirical context

We first present recent studies about the rebound effect. This allows us to explain
recent findings and give some figures. Then, we focus our attention on our empirical

context: the Chinese logistics sector.

2.1 Literature review

The rebound effect has been extensively analyzed through various methodologies.
Adetutu et al. (2016) employed a two-stage dynamic panel data method and stochas-
tic frontier analysis (SFA) to estimate the economy-wide rebound effects across 55

countries. Their results indicate that, in the short run, a 100% energy efficiency im-



provement is followed by a 90% rebound in energy consumption, but in the long run,
it leads to a 136% decrease in consumption. Similarly, Amjadi et al. (2018) ana-
lyzed four energy-intensive sectors in Sweden—pulp and paper, basic iron and steel,
chemical, and mining—using firm-level panel data and SFA. Their findings suggest
that fuel and electricity rebound effects do not fully offset potential energy and emis-
sion savings. Moreover, CO, emissions and fuel/electricity share were found to have
significant impacts on the size of the rebound effect.

In the residential sector, Aydin et al. (2017) investigated 563,000 Dutch house-
holds using instrumental variables and fixed-effects models to address endogeneity
concerns. The rebound effect was 26.7% among homeowners and 41.3% among ten-
ants. The study also documented substantial heterogeneity in the rebound effect,
showing that wealthier households experience a smaller rebound, with the lowest
wealth quantile experiencing around 40%, while the highest wealth quantile saw only
19%. The effect was also higher for lower-income households (49%) and those with
higher gas consumption for heating. Belaid et al. (2020), using a quantile regression
model, explored the direct rebound effect in a survey of 2,356 French households.
They reported a rebound effect ranging from 72% to 86%, with heterogeneity among
consumption quantiles.

Bohringer and Rivers (2021) utilized a general equilibrium model to estimate
the rebound effect, decomposing it into partial and general equilibrium components.
They concluded that both components could be substantial. Similarly, Borenstein
(2015) presented a microeconomic framework to disentangle the rebound effect into
income and substitution effects, finding that rebound is unlikely to offset energy
savings but reduces net savings by 10%-40%. Chitnis and Sorrell (2015) estimated
the price and expenditure elasticities of household goods and services to evaluate
the CO, emissions of these goods. Their findings showed rebound effects of 41% for
domestic gas efficiency, 48% for electricity, and 78% for vehicle fuel, largely driven by
substitution effects.

Borger et al. (2016) focused on the rebound effect in Denmark’s car transport sec-
tor using household-level data. By addressing endogeneity through an instrumental
variable approach, they estimated the rebound effect to be between 7.5% and 10%,
with no significant income effect. Dimitropoulos et al. (2018) conducted a meta-
analysis of 74 studies and 1,120 estimates of the rebound effect in road transport,

finding that long-run rebound effects are generally larger than short-run ones, con-



trasting with Adetutu et al. (2016). Their analysis also revealed that rebound effects
decline over time, with lower per capita incomes, higher gasoline prices, and higher
population density associated with larger effects.

Galvin (2015) contributed to the rebound literature by exploring the ICT and elec-
tronics sectors. The study identified structural changes caused by energy efficiency
improvements in ICT and electronics, leading to increased device usage and energy
consumption, with rebound effects ranging from 115% to 161%. Ghosh and Black-
hurst (2014) expanded on previous research by proposing the concept of efficiency
correlation to explain how multiple simultaneous efficiency improvements across ser-
vices might produce large rebound effects. Their model simulations suggested that
these effects could be as substantial as traditional direct and indirect rebounds.

Hediger et al. (2018) analyzed direct and indirect rebound effects in residential
heating using a choice experiment. The average direct rebound was found to be
12%, while the indirect rebound was 24%, combining for a total rebound of about
33%. The study identified significant heterogeneity in rebound effects, with income,
education, and ownership status explaining much of the variation. Ventilation was
identified as the most popular behavioral adaptation. At the macro level, Koesler
et al. (2016) extended the analysis of ‘economy-wide’ rebound effects by including
international spill-over effects using a global computable general equilibrium model.
They found that 10% energy efficiency improvements in Germany’s manufacturing
sector were associated with global rebound values of 48.11%, suggesting significant

global consequences.

2.2 Empirical context

In China, Chai et al. (2016) estimated the rebound effects in the road transport sector
using a system of simultaneous equations. Their findings revealed that rebound effects
increased along with income, a result in contrast with Aydin et al. (2017), due to
differing country contexts and methodologies. The study also found that short-run
rebound effects are larger than long-run ones, consistent with Adetutu et al. (2016).
Lin and Du (2015), measuring the rebound effect in the Chinese economy from 1981
to 2011, found that rebound effects ranged from 30% to 40%.

Liu et al. (2019) proposed an improved approach to estimating the direct rebound

effect in Chinese industry by decomposing it into substitution and output channels.



The direct rebound effect was found to be 37%, with the substitution channel con-
tributing 13.1% and the output channel 23.9%. Lu et al. (2017), using a computale
general equilibrium model, found that rebound effects varied by energy type in China,
with primary energy goods exhibiting larger effects than secondary goods. Wen et al.
(2018) examined the carbon rebound effect and rebound risk across provinces, finding
significant differences, with Xinjiang, Qinghai, and Ningxia being the most vulner-
able. Yan et al. (2019) estimated the rebound effect across 30 Chinese provinces,
showing an average of 88.55% in the short run and 77.50% in the long run, with a
decreasing trend in developed eastern provinces and increasing rebound in western
regions. Zhang et al. (2017) provided aggregate and disaggregate analyses of China’s
industrial sector, finding an energy rebound effect ranging from 20% to 76% (or 39%
on average) between 1995 and 2012. The rebound effect in manufacturing was rela-
tively smaller, averaging 28%. Overall, their study documented a decreasing trend in
energy rebound effects over time.

Recent research has kept advancing the understanding of energy efficiency im-
provement and how it affects energy consumption trends, particularly in China’s
logistics and transportation industry. Zha et al. (2023) investigated the direct energy
rebound effect (ERE) of road transport in China through panel cointegration and
error correction models. Both their road freight and passenger transport evidence
display partial rebound effects (long run: 13%-48% and short run: 3.9%-41%), mean-
ing that efficiency gain does not switch into saving energy, further to find evidence
supporting asymmetric price effects when rising fuel price doesn’t fall into using en-
ergy. It makes China’s transportation consumption complex to change its habit of
behavior to consuming energy less. These observations are particularly relevant to the
logistics industry, whose freight transport patterns play a decisive role in aggregate
energy demand.

At the same time, Guo et al. (2024) explored the function of green finance and
technological innovation in promoting low-carbon development within China’s logis-
tics sector. With panel data for 30 provinces (2005-2019), their research finds that
green finance and technological innovation are conducive to low-carbon development
but are subject to industrial structure and environmental regulation. They suggest a
regional and phased development strategy with the proviso that policy-specific inter-
ventions are required. Their findings make the argument for policy-based mechanisms

being able to prevent energy rebound effects by promoting sustainable technology



adoption and regulation.

Recent studies have extensively studied the rebound effect in China’s high-tech
energy-intensive industries using high-resolution data and high-tech empirical meth-
ods. Liang et al. (2022) also investigated the rebound effect of China’s logistics
technological innovation by utilizing a dynamic spatial Durbin model on 30 provinces
from 2002 to 2019. According to their findings, there exists an apparent spatial
rebound effect with the average being 60.61%, regional heterogeneity, and spatial
spillovers that strengthen the rebound effect, while optimization of the energy struc-
ture has an inhibitory impact. Augmenting this, Zhou et al. (2022) presented firm-
level estimates of China’s manufacturing sector energy rebound effect, with rebound
magnitudes across subsectors varying from 43.2% to 96.8%. This study addresses
micro-level heterogeneity and shows that reaction to gains in efficiency is not uniform
across industries or places.

In addition, Bai et al. (2024) gave a focused analysis of the carbon rebound effect
of technological change in China’s transport industry. Using a nonparametric frontier
approach, they estimated rebound rates at the provincial level between 2006 and 2021
and found that the average CRE was 69.19% and that there were stronger rebound
effects in the western provinces compared to the eastern provinces. These results
underscore rebound effects’ sectoral and spatial heterogeneity and again emphasize
that regional heterogeneity must be taken into consideration when making policies.

Tan et al. (2025) introduce a variable coeflicient production function to measure
China’s energy rebound effect (ERE), addressing limitations in traditional methods
that assume constant output elasticities. Using total-factor energy productivity in-
stead of energy intensity, they find an average ERE of 27.21%, lower than the 30.43%
estimated by a Cobb-Douglas model, which tends to overestimate the effect. Their
study highlights regional and sectoral disparities, with the tertiary and secondary
industries experiencing the highest rebound effects due to expanding energy demand.
By offering a more dynamic, data-driven approach, their findings provide valuable
insights for refining China’s energy efficiency policies.

Our research makes a significant contribution to the existing literature on the re-
bound effect by addressing key gaps and advancing both methodology and empirical
understanding. While much of the prior research has focused on industries like man-
ufacturing, transport, and residential energy use, the current study shifts the focus

to China’s logistics sector, an under-explored yet critical driver of economic growth



and energy consumption. This sector’s significance in China’s economy, coupled with
its substantial energy demands, offers a new context for understanding the rebound
effect, which has been largely neglected in prior work. Additionally, the introduction
of a novel economic accounting approach, rooted in a production function framework,
offers a more comprehensive definition and decomposition of the rebound effect than
previous methods, which have often been constrained by limited assumptions or nar-
rowly defined dimensions. Furthermore, using a second-stage analysis, we identify
the key determinants of the rebound effect and its decomposition. This enhances the

understanding of its drivers in China’s logistics industry.

3 Methodology

Our starting point is the observation of inputs used to generate an output for a
panel dataset of entities between two time periods, labelled b and c.! As a prelim-
inary step, we explain how we define the production process. Next, we define the
rebound effect and show how it can be decomposed into four parts: the contribution
of efficiency change, technological change, capital accumulation, and energy accu-
mulation. Finally, we show how the decomposition components can be computed

non-parametrically.

3.1 Defining the technology

We consider that each entity uses capital K, labour L and energy E to generate out-
put Y. We model the technology using a production function. First, the production
function must fulfil certain properties to remain coherent with macroeconomic stan-
dards (Kumar and Russell, 2002; Henderson and Russell, 2005; Walheer, 2016, 2021,
2024; Chambers and Pieralli, 2020). In particular, we assume that it is quasi-concave,
monotone, and homogeneous of degree one (i.e. constant returns-to-scale).? Next, we
recognize that technological progress (or regress) may occur over time. Finally, we
acknowledge the potential inability of entities to convert inputs into output (Debreu,

1951; Farrell, 1957). This results in a difference between actual and potential outputs.

!'Note that our methodology also works in the case of multiple outputs. We consider the single
output setting here as it is the one used in our empirical application in Section 4.

2Such assumptions can be dropped or changed if needed. Using the produce explained in Walheer
(2019b), we can confirm that constant returns-to-scale holds for our empirical context.



All in all, we obtain for every entity

Y = ft(ktaet) — T (1)

where y, = Y, /Ly, ky = K;/L;, and e, = E;/L; are output, capital, and energy per
unit of labour, respectively. Note that here we use the homogeneity of degree one
assumption to rewrite the production function per labour term.® For the moment,
this rewriting might seem usefulness but it will ease our presentation of the rebound
effect definition and decomposition in the next sections.

fi(k¢, e4) is the time-varying production function at time ¢, and therefore represents
the potential output. As it varies with ¢, it implies that technological change is
possible over time. The difference between actual and potential outputs is captured by
ne = fi(k¢, e;) — yi, which can be interpreted as an (in)efficiency component reflecting
the inability to properly convert inputs into output using a certain technology. The
benchmark value is zero meaning that f;(k;,e;) = y. When it is larger than zero:
fi(ke,e) >y, revealing an inefficiency behaviour and thus a potential output gain.
In practice, both f;(k:,e;) and 7, are unobserved. Finally, note that it might be
surprising that no error term appears in (1), this feature will be discussed in Section

3.4.

3.2 Defining the rebound effect

As explained in the literature review in Section 2, there are several ways to define
the rebound effect: in terms of elasticity, price, potential values, etc. In a production
context, defining the rebound effect in terms of outputs and inputs is more coherent
(Vivanco et al., 2016). In particular, two differences are at the core of the production-
based definition: y. — y, and FEI, — El. where EI;, denotes the energy intensity of
period t. First, y. — vy, captures the output per worker change between periods b and
¢, that is economic development. We expect such a difference to be positive. Note
that using output per worker is fairer than using output as entities may have different
sizes. Also, we prefer normalizing using workers rather than the full population since

the former takes the market conditions into account. Next, EI, — EI. measures the

3The production function is defined as Y; = Fy(Ly, K, Ey) — 1. By dividing the entire equation
by L, we obtain: Y;/L; = Fy(Lt, K¢, Et)/ Lt — vt/ Ly, which is equivalent to y; = Fy(1, k¢, er) — vt/ Ly.
By defining fi(k¢, er) = Fy(1, ki, eq) and ny = vy /Ly, we find equation (1).
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energy intensity change. When an entity is less energy-intensive over time, such a
difference is positive. Otherwise, it is negative.

At this point, it is fair to note that it is not uncommon to use such two differences
to define the rebound effect (e.g. Li and al., 2016; Wu et al., 2018; Jin and Kim, 2019;
Miao and Chen, 2022; Omondi et al., 2023). The main contrast with our approach
is that we combine our economic model defined in Section 3.1 and the rebound effect
definition to end with a simple and intuitive four-part decomposition of the rebound
effect.

Based on our two differences, we can define the rebound effect between periods b

and ¢ as follows:

(Ye — yp)ETy
F=—"" 2
1 yc(EIb - E]c) ( )

Intuitively, at the top we find the extra energy needed to support economic de-
velopment between periods b and ¢, and at the bottom, the energy saving due to
economic development between the same periods. The rebound effect has no unit
and can take positive and negative values. First, in case of no economic growth
between periods b and ¢, we obtain that RE = 0. Next, as Fl, and y. take by con-
struction positive values, the sign of the rebound effect is determined only by the two
differences y. — yp and EI, — F1.. It is less likely that y. — ¢, < 0 as this would mean
that economic growth is negative between b and c. However, £, — EI. < 0 is possible
and implies that the entity is more energy-intensive over time. It turns out that a
negative rebound effect generally implies that the entity is more energy-intensive to
support economic development. On the contrary, when the rebound effect is positive,
it means that we have both economic development and a less energy-intensive entity.

We summarize the interpretations of the rebound effect values in Table 1.

3.3 Decomposing the rebound effect

Different reasons may explain the value of the rebound effect. Following the previous
works exposed in Section 2, we keep four main elements. First, the ability of the
entity to convert the inputs into output, i.e. the efficiency change. Next, technological
change, i.e. how the entities innovate over time. The third factor is the impact of
capital, and the last one is the impact of energy. We explain how to obtain such four

components from the initial definition of the rebound effect in (2) by using different
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Table 1: Rebound effect interpretation

Ye =y >0 Ye—yp =0 Ye —yp <0
RE >0 RE =0 RE <0
El, — EI. > 0 | positive economic growth | no economic growth | negative economic growth
less energy-intensive less energy-intensive less energy-intensive
El,—FI.=0 impossible impossible impossible
RE <0 RE =0 RE >0
El, — EI. <0 | positive economic growth | no economic growth | negative economic growth

more energy-intensive

more energy-intensive

more energy-intensive

versions of the production function in (1).

First, by plugging our definition of the production function in (1) at times b and

¢ in our definition of the rebound effect as defined in (2), we obtain the following:

(yc - yb)EIb

_ [(fc(km ec)

—ne) = (fo(kp, e0) — )| E Ty

ye(EL, — E1.)

ye(EL, — E1.)
[(nb - 770) + (fc(kw ec) — fb(kba eb))]EIb'

ye(EI, — El,)

, (3)
(4)

On the left-hand side, we have RE: the rebound effect between b and c¢. On the

right-hand side, we have two factors: the first is the contribution of (in)efficiency

change between b and ¢, i.e. EFF =

(mp—mnc)ETy
yc(EIb—EIC)

meaning (for the moment). We can thus rewrite (4) as follows:

RE =FEFF +

[fe(keyec) — folkp, en) | ET

ye(ET, — El,)

, while the second factor has no clear

(5)

Next to make the contribution of technological change to the rebound effect ap-

pear, we notice that there are two ways to define technological change in our context:

[fc(kca ec) - fb(km ec)]EIb

TECH, =

TECH, =

y.(El, — E1,) ’
[fe(Kp, en) — fo(kp, ep)|ET,

ye(EI, — EI,)

(6)
(7)

Both indexes measure technological change but generally do not yield the same

results.? To aggregate both indexes, a simple procedure is to take an average (Caves

4The two decompositions are equal only if the neutrality of technological change is assumed.
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et al., 1982; Luenberger, 1992, 1995; Fare et al., 1993; Chambers et al., 1998). Such an
approach is commonly used in the literature, and in related empirical contexts (Kumar
and Russell, 2002; Henderson and Russell, 2005; Walheer, 2016, 2021; Chambers and
Pieralli, 2020). In a sense, it avoids creating a path dependence when decomposing

the rebound effect. In our case, we take the arithmetic average of the two indexes in
(6) and (7):

TECH — % [TECH, + TECH,). (8)

Next, we plug our definition of the contribution of technological change in (8) in

(5):

o 1 [fc(kw ec) - fC(kba €b>]EIb [fb(km ec) - fb(kby eb)]E]b
RE—EFF+TECH+§ yc(EIb—EIc) yc(EIb—EIc)

9)

The two last terms in (9) will be used to obtain our last two factors: the contribu-
tion of capital accumulation (K ACC) and the contribution of energy accumulation
(EACC).

Let us start with the first term: fethecc) =t c_(kb’e”)}EIb. It can be decomposed in two

yc(EIb EIC)
different manners highlighting the impact of one specific variable:

[fc(km ec) - fc(kby eb)]E]b _ [fc(ka 60) - fC(kbu ec)]EIb [fc(kln 60) - fc(kjb’ eb)]EIb

y.(ET, — E1.) y.(El, — E1.) y.(ET, — E1.) ’
= KACC,(e.) + EACC,(ky). (10)
[fc(kca ec) - fc(kb,eb)]Efb _ [fc(kc,ec) - fc(kc,eb)]E[b + [fc(kcaeb) - fc(kb,eb)]EIb
Ye(EI, — El.) ye(EI, — EI.) Ye(EI, — EI.) ’
= KACC,(e.) + EACC.(ky). (11)
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Next, we apply the same procedure to the second factor in (9), i.e. Ve (BT,—ET.)

[folkesec) = folk, eo)|ED,  [folke,ec) = folkn, e)|ETy | [fol(ks, ec) = folks, en)| E Ly

ye(EL, — EI.) a y.(EIL, — EI) ye(EL, — EI.) ’
_ KACGy(e.) + EACCy(ky), (12)
[folkics ec) = folko, o) ELy _ [fo(ke, €c) — folke, )] E Ty N [fo(kes €)= fo(Fn, €0)] BTy
ye(EL, — El.) y.(EL, — EI.) ye(EL, — El.) ’
— KACCy(ed) + EACCy(ky). (13)

The different components in (10)-(13) highlight the contribution of capital or
energy accumulation to the rebound effect. These components are path-dependent
as they depend on a specific time period. Following the spirit of our definition of
TECH in (8), we define the path-independent contributions of capital and energy

accumulation to the rebound effect as follows:

KACC = i (K ACCy(uy) + KACCy(us) + K ACCi(w) + KACC,(u)].  (14)

1
FEACC = Z [EACCb(8b> + EAOCb(SC) + EACCC(Sb) + EAOCC(SC)] . (15)

Note that, this time, we divide by four (and not by two as in (8)) because there
are four different ways to define the contribution of capital and energy to the rebound
effect (see (10)—(13)). This last step ends our decomposition of the rebound effect

into four factors:
RE =FEFF+TECH + KACC + FEACC. (16)

Each component highlights the contribution of one specific dimension and gives
us the option to better understand the patterns found for the rebound effect between
periods b and c¢. As explained in Section 3.2, the rebound effect can take a positive
or a negative value. It turns out that the same applies to the four components.
When a component is positive (negative), it means that such a component contributes
positively (negatively) to the rebound effect. Note that it is possible to consider a
combination of components (see our discussion of Table 4). The interpretations of
the four factors are summarized in Table 2. To obtain a full picture, it is important
to first understand why the rebound effect is positive or negative (see Table 1).

In practice, several production functions have to be estimated to obtain the de-

14

(fo(scsuc)—fo(sp,up)) ETy :



Table 2: Rebound effect decomposition factors

factor interpretation

EFF movement toward (> 0) or away (< 0) from the best practice
TECH technological progress (> 0) or regress (< 0)
KACC | positive (> 0) or negative (< 0) impact of physical capital per labor deepening
EACC positive (> 0) or negative (< 0) impact of energy per labor accumulation

composition. Some of them are even counterfactual as they involve several periods.

The computational aspect is the topic of the next section.

3.4 Estimation

To estimate the different components defined previously, we make use of a non-
parametric linear programming technique: Data Envelopment Analysis (DEA; Charnes
et al., 1972). The basic principle is to compute the potential outputs using other en-
tities as peers such that the production functions fulfil the properties imposed (here:
monotonicity, quasi-concavity and homogeneity of degree one). An important aspect
is that linear programming has to be defined in a general manner as counterfactual
concepts have to be computed.

We remark that a disadvantage of using linear programming is that measurement
errors and potential outliers are ignored. To mitigate this shortcut, we adopt the
well-known order-m estimator to compute the potential outputs (Daraio and Simar,
2007; Walheer, 2019a). The basic principle is to compute B times expected potential
outputs obtained with random sub-samples of m peers.’

The linear programming for entity ¢ evaluated at (v, ki, €s) with respect to sub-

5In our application, we set B = 1,000, and m = 10.
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sample h of m peers in period ¢ (denoted S"(m)) is given as follows:

Ph
e (?Jib, K, €¢b) = yEOI;IVlgizO

(C'l) ) S Z )\sysca fOI‘

s€Sh(m)

(C_Z) kib > Z )‘sk:sca

seSh(m)

(C3)en> D Aeuer

s€Sh(m)

(C41> > A

s€Sh(m)

(17)

The linear programming has to be solved for each entity.> Once the linear pro-
grammings are solved B times, i.e. one time for each sub-sample h, we can obtain

the expected production function for each entity ¢:

fc(yiln Kip, eib) = E[le(yzb: Eip, eib)] (19)

The estimated efficiency scores are easily obtained using (1). All estimated con-

cepts have to be interpreted as their theoretical counterpart.

6We remark that the linear programming in (17) can equivalently be rewritten as follows:

FMYiy, Ly, Kip, Egy) = max Y
c( ibs Liby LA b, z) Y >0:Vs: 112 >0

(CDY < D psYiefor
s€Sh(m)

(C'2> Kib Z Z MSKSC7
s€Sh(m) (18)

(0'3) Eib Z Z ,U/sEsm
s€Sh(m)

(C'S) Lib 2 Z /l’SLSC

seSh(m)

We obtain the equivalence between both linear programming by dividing each side of all inequalities

by L;, and by defining Ay = s ﬁlg for all s.
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4 Application

This study addresses a research gap by investigating the energy rebound effect in
China’s logistics industry across 31 provinces between 2011 and 2020. We estimate
and decompose the rebound effect using the methodology explained in Section 3. We
start by explaining how we get the data and then discuss our results. We end our
empirical application with a second-stage analysis that helps to understand better

the patterns found for the rebound effect and its decomposition.

4.1 Data and preliminary results

We make use of a setting with one output and three inputs for 31 Chinese provinces
between 2011-2020. The inputs are labour, capital, and energy, while the output is
the added value. By doing this, we follow the common practice in the literature when
studying the logistics industry (see Table 7 in the Appendix). Note that we prefer
added value over pure output as the former takes quantities and prices into account.
This is fairer when comparing provinces over time. The data sources for our four
variables are fourfold: 1) National Bureau of Statistics of China; 2) China Statistical
Yearbook; 3) China Energy Statistical Yearbook, and 4) provincial and municipal
development bulletins.

The number of employees is an essential input as it reflects the human resources
involved in the logistics industry (Holl and Mariotti, 2018). The number of employees
correlates with operational capacity, management effectiveness, and productivity, all
of which influence overall efficiency. Similarly, investment in fixed assets represents
the infrastructure and technology investments made by logistics companies. Higher
investments typically indicate better infrastructure and advanced technologies, which
can improve operational efficiency and reduce CO, emissions (Yao et al., 2022). Fur-
thermore, energy consumption is a direct indicator of the environmental impact of
logistics operations. Higher energy consumption typically leads to higher COq emis-
sions, making it a critical input for evaluating emissions efficiency (Yu et al., 2023).
Together, these inputs provide a comprehensive view of the resources and operational
scale of the logistics industry. On the output side, the value added of the logistics
industry quantifies the economic contribution of logistics activities, capturing the
value generated through these activities. This measure is crucial for understanding

the economic efficiency and overall productivity of the industry (Chen et al., 2024).
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Finally, energy intensity is defined as the ratio of total logistics energy consumption
to logistics output value. That is, we take a pure output to define energy intensity
and not added value. This is more coherent as energy is defined also in quantity
terms. This is also in line with the literature, see Table 7 in the Appendix.

We present the descriptive statistics for the inputs and output in Table 2, and the
distributions in Figure 1. Figure 1 presents the distributions of four key variables:
(a) output per worker, (b) energy per worker, (c) capital per worker, and (d) energy

intensity, providing insights into their variation across the sample.

Table 3: Output and inputs

Statistics added energy capital energy
value intensity
10,000 tons 10,000 tons
unit yuan per yuan per 10,000
per worker | worker | per worker yuan
2011
min 14.47 18.25 9.05 0.45
average 40.06 47.81 48.15 1.39
median 35.06 45.51 41.55 1.25
max 98.57 87.57 247.92 4.16
std 18.92 14.12 40.70 0.70
2020
min 14.70 17.60 12.62 0.32
average 49.01 44.95 90.14 1.01
median 47.52 44.17 84.19 0.97
max 103.83 87.57 304.02 1.89
std 20.45 12.14 64.51 0.37

In 2011, the added value per worker ranged from a minimum of 14.47 to a maxi-
mum of 98.57, with an average of 40.06 (10,000 yuan) per worker. By 2020, output per
worker increased slightly, with the minimum at 14.70, the maximum at 103.83, and
an average of 49.01. The standard deviation also grew to 20.45, suggesting a widening
gap in productivity across provinces compared to 2011. Energy per worker showed a
small decline over the period. In 2011, the average was 47.81 tons per worker, while
by 2020, the average was 44.95. Capital per worker exhibited significant growth from
2011 to 2020. In 2011, the average was 48.15 (10,000 yuan) per worker, and it rose
to 90.14 in 2020. Note also that the standard deviation increases substantially to

64.51, pointing to rising inequality in capital distribution across provinces. Finally,
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Figure 1: Distributions of Key Production Variables

(a) Output per worker (b) Energy per worker

(c) Capital per worker (d) Energy intensity

Note: This figure displays the distribution of four core variables used in the translog production function estimation: (a) output per
worker, (b) energy per worker, (c) capital per worker, and (d) energy intensity. The charts illustrate the degree of variation across
provinces in China’s logistics sector from 2011 to 2020.
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energy intensity saw a reduction between 2011 and 2020. In 2011, energy intensity
ranged from 0.45 to 4.16 tons per 10,000 yuan, with an average of 1.39. By 2020, the
minimum dropped to 0.32, the maximum to 1.89, and the average to 1.01. Overall,
these changes reflect growth in output and capital per worker, a slight decline in en-
ergy usage per worker, and improved energy usage within China’s logistics industry
between 2011 and 2020.

Figure 1 charts the distribution of several key variables in China’s logistics in-
dustry. The skew of the output per worker distribution is suggestive that many of
the provinces have low output per worker, but some have substantially higher out-
put per worker, and this could be an indication of different industrial development,
infrastructure, and technology expenditure. The energy per worker distribution is
right-skewed, which implies that some of the provinces use much more energy, which
could be indicative of transport intensity, fuel composition, or variation in provincial
logistics demand. The distribution of capital per worker also captures increasing dif-
ferentials of investment, where some of the provinces heavily invest in enhancing their
logistics infrastructure while others do not. Finally, energy intensity distribution has
a general trend of increasing efficiency, but with a long right tail, suggesting there
are still provinces that have energy-intensive logistics activities. These trends indi-
cate China’s logistics sector to be diversified and require regional policies to reconcile

economic growth and energy efficiency.

4.2 Decomposition results

Using the methodology exposed in Section 3, we compute the rebound effect and its
decomposition for the 31 provinces between 2011 and 2020. Results are provided
in Table 5 for each province and by using descriptive statistics. We also count the
number of provinces with a negative value for each variable. In that table, we also
give the results for the two differences y.— vy, and El, — E 1. to ease the interpretation
of the rebound effect.

Overall, we see that the rebound effect is positive (average is 0.76 and median
is 0.65). Larger rebound effects are found for Gansu (8.02), Jiangxi (3.08), and Fu-
jian (2.34). Gansu shows the immense rebound effect because it has extremely low
historical energy efficiency and fast-growing recent industrialization, pushing energy

consumption despite enhanced efficiency. The province has been investing heavily in

20



logistics infrastructure to boost trade connectivity, but these investments have trans-
lated into higher transport and warehousing activity that raises energy consumption.
Jiangxi and Fujian, which have been developing their economies fast and experienc-
ing increasing freight demand, face the same issue. Their logistics industries are
expanding due to expanding manufacturing production and trade activity, so growth
in demand-driven energy consumption will exceed efficiency gains.

Also, only four provinces have a negative rebound effect (Hunan, Qinghai, Tianjin,
and Inner Mongolia). Hunan’s strongly negative rebound effect may be due to struc-
tural economic changes away from energy-intensive logistics activities. The province
has experienced a decline in energy-intensive freight transport due to industrial re-
structuring and stricter environmental policies. Similarly, Qinghai’s negative rebound
effect reflects its smaller and less energy-intensive logistics sector. Inner Mongolia,
despite being a resource-rich province, has seen limited logistics expansion compared
to high-growth coastal regions, allowing energy savings to persist without significant
offsetting effects.

To ease our interpretation of the results of the rebound effect, we regroup, in Fig-
ure 2, the provinces in four categories using y.—y, and EI,— F I, as criteria. Following
the guidelines explained in Table 1, we notice that two reasons may explain a positive
rebound effect. The best-case scenario is when positive economic growth is associated
with energy savings. These provinces are situated in the upper right. The worst case
is when negative economic growth is associated with more energy consumption. These
provinces lie in the lower-left quadrant. The clustering of provinces in the upper-right
quadrant indicates that many regions have experienced both economic growth and
improved energy efficiency, a sign of good policy action or technological advance. On
the other hand, the presence of provinces within the lower-left quadrant, in which
economic downturn is combined with rising energy intensity, suggests structural in-
efficiency or economic stagnation that dissuades sustainable development.

The upper-left quadrant, in which economic development is combined with the rise
in energy use, denotes areas for which logistics development remains energy-intensive,
possibly due to failure to adopt energy-saving technologies. Finally, the lower-right
quadrant comprises provinces that have attained improved energy efficiency at the
cost of reduced economic activity, which could demonstrate a scale contraction in lo-
gistics activity rather than planned efficiency improvement. This classification elicits

the complexity of the rebound effect at the regional level, demanding region-specific
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Figure 2: Classification of Provinces by Economic Growth and Energy Intensity
Change

Shandong,

ssssss

)
e,

Note: Provinces are grouped into four quadrants based on changes in output per worker and energy intensity from 2011 to 2020.
The upper-right quadrant reflects provinces achieving both economic growth and energy savings (the best-case rebound scenario),
while the lower-left quadrant shows provinces experiencing economic decline with increased energy use (the worst-case scenario). This
classification highlights regional differences in energy rebound performance across China’s logistics sector.

policy that can maintain economic growth without accepting the excessive consump-
tion of energy.

While we focus on the initial and final period to capture long term patterns, it is
possible to compute the rebound effect for each period. Table 8 (in the Appendix)
presents the time-varying rebound effect for China’s 31 provinces in the period be-
tween 2011 and 2020. There are a few notable trends observable from the estimates.
To start with, there is profound temporal and spatial heterogeneity in the rebound
effect, which features the time-varying energy efficiency offsets. Provincial regions like
Jiangxi, Fujian, and Henan always exhibit large rebound effects across some succes-
sive years, embodying vigorous responses from the demand side following improved
energy efficiency. However, certain provinces like Hunan and Inner Mongolia some-
times show negative rebound effects, which are cases where energy saving was not
fully offset by the increase in activity through structural change or logistics growth
stagnation. There are some provinces showing a progressive increase in the rebound
effect throughout the decade (like Guangdong and Sichuan), while others (like Beijing

and Tianjin) remain flat or volatile.
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Next, we continue our exploration of the rebound effect in China’s logistics indus-
try across 31 provinces between 2011 and 2020 by interpreting the four components
of the decomposition: efficiency, technology, capital, and energy changes. We re-
call that as for the rebound effect, the benchmark value is 0, and that a positive
(negative) value implies a positive (negative) contribution to the rebound effect. At
the aggregate level, we see a negative contribution of energy accumulation (average
-1.59, median -0.54) for 22 provinces. An average negative contribution is also found
for efficiency change (-0.12) but this is not confirmed by the median (0.20) and this
only concerns 12 provinces. The rebound effect is pushed up by technological change
(average 1.17, median 0.48) and capital accumulation (average 1.29, median 0.28).

The energy rebound effect and its components vary widely across provinces. For
instance, Tibet (2.53), Qinghai (6.05), and Ningxia (6.62) demonstrate strong pos-
itive efficiency changes. This may be due to targeted efforts to improve logistics
efficiency and infrastructure investments. Gansu (-16.32) and Hunan (-3.97) exhibit
significant negative efficiency changes, which may reflect structural challenges such
as lower capital investment levels, slower adoption of modern logistics technologies,
or regional disparities in logistics infrastructure development, as suggested by recent
studies (e.g., Chen et al., 2024; Liang et al., 2022). In terms of technological ad-
vancements, Gansu (28.16) and Liaoning (4.47) show substantial contributions, likely
indicating strong innovation efforts in logistics technologies or energy-efficient prac-
tices. These regions may have benefited from government policies promoting innova-
tion and industrial upgrades. In contrast, Qinghai (-5.14) and Hunan (-1.71) show
negative technological changes, implying either stagnation in innovation or challenges
in adopting new technologies. Capital accumulation plays a significant role in Gansu
(43.97) and Liaoning (6.36), where substantial capital investments have boosted pro-
duction capacity and contributed positively to the rebound effect. However, Hunan
(-2.69) and Heilongjiang (-3.13) show negative capital accumulation, possibly reflect-
ing disinvestment in capital allocation, further contributing to their negative or low
rebound effects. Finally, the extreme values in energy consumption patterns highlight
the diverse challenges across regions. For instance, Gansu (-47.79) shows a massive
negative energy accumulation, while Qinghai (4.37) shows more moderate positive
energy accumulation. These differences underscore the varying impacts of energy
consumption trends on the rebound effect.

To better know which component or combinations of components explain the re-
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bound effect patterns, we compute the correlation of coefficients between the rebound
effect and each combination of the components.” In particular, we consider the four
components alone and then group the components two by two and three by three.

The correlation of coefficients are provided in Table 4.

Table 4: Correlation of Coefficients Across Decomposition Components

One dimension Two dimensions Three dimensions

EFF |-03558 | EFF+TECH | 09483 | EFF+TECH + KACC | 0.7904
TECH | 0.6898 | EFF+ KACC | 08248 | EFF+TECH + FACC | -0.5409
KACC | 0.7020 | EFF+ FACC |-0.6148 | EFF+ KACC + FACC | -0.3996
EACC |-0.6968 | TECH + KACC | 0.7032 | TECH + KACC + EACC | 0.6878
TECH + EACC | -0.6234
KACC+ EACC | -0.6968

Note: This table presents the correlation coefficients among the estimated contributions of the four decomposition compo-
nents—technological change (TECH), capital accumulation (KACC), energy accumulation (EACC), and efficiency change (EFF). The
correlations are calculated based on combinations of these components (individually, in pairs, and in trios) across provinces, providing
insight into the consistency and interdependence of their effects on the rebound phenomenon.

When only one dimension is considered, we obtain two positive and two negative
coefficients of correlation. Technological change and capital accumulation positively
impact the rebound effect, while efficiency change and energy accumulation present
a negative impact. Note that these two components have the largest number of
provinces with a negative value (see Table 5). Next, with two dimensions, we see that
when efficiency and technological changes are combined, we have the highest connec-
tion with a correlation coefficient of 0.9483. This implies that these two combined
factors are the most important in our empirical case to explain the rebound effect
changes. We highlight the positive contribution of efficiency change that remains true
when combined with another element. Next, we again find a negative contribution to
energy accumulation even when it is combined with another factor. Finally, adding
capital accumulation does not improve the connection strengthens but still gives us
a positive and strong relationship. Combined factors with energy accumulation show

a negative link.

"Another option is to compare the distributions (Walheer, 2021). As we obtain very similar
conclusions, we do not produce the test results here.
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Table 5: Rebound Effect and Decomposition by Province

Province RE |y.—w | EI, — El. | EFF | TECH | KACC | EACC
Beijing 0.23 0.23 0.08 -5.27 5.79 6.36 -6.65
Tianjin -0.40 | -5.30 0.18 -0.86 0.48 0.68 -0.70

Hebei 0.17 5.26 0.14 0.17 0.48 0.12 -0.59
Shanxi 0.65 8.34 0.32 -0.09 0.74 -0.57 0.57
Inner Mongolia | -0.32 | -7.92 0.58 -0.37 0.19 -0.48 0.34
Liaoning 1.04 3.52 0.13 -2.53 4.47 -4.13 3.23
Jilin 0.46 2.40 0.19 -1.72 1.91 0.88 -0.61
Heilongjiang 0.50 | -1.83 -0.27 3.20 -2.73 -3.13 3.16

Shanghai 0.78 8.51 0.81 -0.65 1.35 0.15 -0.07
Jiangsu 0.01 | -0.04 -0.06 0.95 -0.67 -1.35 1.09
Zhejiang 0.65 9.00 0.25 0.18 0.66 0.96 -1.14
Anhui 1.37 | 55.44 0.43 1.14 0.18 0.44 -0.40
Fujian 2.34 8.76 0.05 2.31 0.60 0.00 -0.57
Jiangxi 3.08 | 20.26 0.11 1.28 1.11 1.54 -0.85

Shandong 0.08 3.13 0.65 -0.05 0.26 0.28 -0.41
Henan 0.92 | 36.14 0.68 0.63 0.33 0.51 -0.55

Hubei 0.95 | 24.39 0.76 0.74 0.22 0.53 -0.55
Hunan -5.89 | 17.71 -0.05 -3.97 -1.71 -2.69 2.48
Guangdong 0.40 4.35 0.36 -0.72 0.79 1.53 -1.20

Guangxi 1.10 | 14.63 0.38 0.57 0.49 0.96 -0.91

Hainan 0.28 4.46 1.38 -0.64 0.80 0.66 -0.54
Chongqing 0.99 | 12.35 0.38 0.40 0.77 0.65 -0.84

Sichuan 0.75 | 12.39 0.74 0.65 0.23 0.00 -0.13
Guizhou 0.63 | -9.46 -0.26 0.71 -0.24 -0.21 0.36
Yunnan 1.04 | 49.90 3.01 1.04 0.07 0.01 -0.07

Tibet 1.01 | -19.34 -0.73 2.53 -1.53 0.04 -0.03

Shaanxi 0.44 9.50 0.95 0.20 0.47 0.71 -0.94
Gansu 8.02 3.13 0.02 -16.32 | 28.16 4397 | -47.79
Qinghai -1.66 | 2.43 -0.11 6.05 -5.14 -6.95 4.37
Ningxia 2.85 | -7.57 -0.05 6.62 -2.83 -3.18 2.24
Xinjiang 1.11 | 12.71 0.71 0.19 0.51 1.84 -1.43

min -5.89 | -19.34 -0.73 -16.32 | -5.14 -6.95 | -47.79
average 0.76 8.95 0.38 -0.12 1.17 1.29 -1.59
median 0.65 5.26 0.25 0.20 0.48 0.28 -0.54

std 1.97 | 15.56 0.64 3.78 5.28 8.09 8.64

max 8.02 | 55.44 3.01 6.62 28.16 43.97 4.37
# <0 4 7 7 12 7 9 22

Note: RE values and each component (EFF, TECH, KACC, EACC) for all 31 provinces over 2011-2020, plus the variations of y and
EI for context. Gansu’s extreme RE (8.02) is driven by very large TECH and KACC contributions in a context of low initial efficiency,
while Hunan’s negative RE (-5.89) stems from strong negative EFF and TECH movements amid structural shifts away from energy

intensive logistics.
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4.3 Second-stage analysis

We rely on a second-stage analysis to better understand the results of the rebound
effect. A distinguished feature of our second-stage analysis is that our decomposition
allows us to better understand how the determinants impact certain aspects of the re-
bound effect. We make use of a regression between the rebound effect or a component

and a set of independent variables:
Zi = Po + XiB + uy, (20)

where Z; is RE, EFF, TECH, KACC, or EACC of province 7. X; stands for
independent variables for province i that are defined in percentage change over the
2011-2020 period. We do this to be consistent, as the rebound effect has no unit and
also captures a change over the same period.

Following the literature and the data availability, we take several determinants of
the rebound effect in the logistics industry into account. First, government input in
the form of subsidies, infrastructure investments, and policy support can impact the
logistics industry’s rebound effect. Government initiatives aimed at promoting green
logistics and enhancing infrastructure (Li et al., 2021). However, if these improve-
ments lead to lower operational costs, they may also stimulate increased demand for
logistics services, potentially triggering a rebound effect (Font Vivanco et al., 2015).
Environmental regulation is another critical factor influencing the rebound effect.
Stringent environmental regulations can compel logistics companies to adopt cleaner
technologies and more efficient practices, reducing overall emissions (Zhu et al., 2013).
While environmental regulation is generally expected to reduce emissions, in the con-
text of the logistics sector, it may also encourage efficiency improvements that lower
costs and stimulate increased activity, thereby contributing to a larger rebound effect.
However, if these regulations lead to significant cost savings, they may inadvertently
encourage higher logistics activity (Banihashemi et al., 2019).

Although some of the explanatory variables are also used in energy consump-
tion models, here they are used to explain the rebound effect and its decomposi-
tion—specifically, the extent to which energy efficiency improvements are offset by
behavioral or structural responses. This focus distinguishes our analysis from stan-
dard energy consumption regressions.

Next, provinces with higher economic level typically have more advanced logis-
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tics infrastructure and technology, leading to greater operational efficiency (Lin and
Cheng, 2019). However, higher economic level can also result in increased demand for
logistics services (Munim and Schramm, 2018), and lead to higher energy consump-
tion. The industrial structure influences the type and volume of goods transported,
which in turn affects the logistics industry’s energy consumption. Provinces with a
more diverse and complex industrial structure may experience higher demand for spe-
cialized logistics services, increasing energy use (Wehner et al., 2022). On the other
hand, provinces with a predominance of heavy industries may have higher baseline
energy consumption (Vance et al., 2015). Lastly, higher residential consumption can
drive increased demand for goods transportation, exacerbating the rebound effect
(Liu and Chang, 2021). Provinces with rising consumption levels may see more pro-
nounced increases in logistics, leading to higher energy use and emissions (Sheng et
al., 2017).

Results for the regression are given in Table 6. In that table, we use the following
notation to indicate the significance level for the regression coefficients: *#x significant

at 0.1%, *x* significant at 1%, and * significant at 5%.

Table 6: Estimates of Second Stage Regression

Variable RE EFF TECH | KACC EACC
Constant 0.68%* 6.39%* | -7.61* | -15.44** | 17.35%*
Government input LAT*E 11 0.81%% | 0.97HFF | 2,07** | -2.28%F*
Environmental regulation | 0.85%%* || 2.80*** | 3.71%** | 6.92%%* | _6.98%**
Economic level 0.55%** 11 1.17** | 1.09%* 0.11 0.36
Industrial structure 0.24%* -0.03 -0.50% | -0.84%F | 1.19%F*
Resident consumption level | -0.03 || -7.04%%% | 9.24%%* | 15.93*** | _18.15%**

Note: Regression estimates of the impact of government input, environmental regulation, economic level, industrial structure, and
resident consumption on the rebound effect (RE) and its four decomposition components (EFF, TECH, KACC, EACC). Significance
levels: *** 0.1%, ** 1%, * 5%.

The regression results presented in Table 6 reveal the key factors driving the en-
ergy rebound effect (RE) in the Chinese logistics industry. All variables, except for
resident consumption level, significantly influence the rebound effect. Government
input and environmental regulation exhibit the largest positive coefficients, under-
scoring the vital role these policy-driven factors play in shaping energy efficiency.
Their impact is particularly pronounced across the decomposition components, where
both factors strongly enhance efficiency change, technological advancement, and cap-

ital accumulation while reducing energy accumulation. This suggests that policies
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aimed at increasing government investment and strengthening environmental regu-
lations are crucial for fostering sustainable development in the logistics sector. The
economic level also positively affects efficiency and technological change, though its
impact is more moderate compared to government input and regulation. This indi-
cates that wealthier regions tend to invest more in innovation and efficiency improve-
ments, reflecting a regressive pattern where more economically advanced provinces
benefit from better resource management and energy efficiency advancements. The
industrial structure presents mixed effects: it negatively contributes to technologi-
cal change and capital accumulation but positively affects energy accumulation. This
suggests that shifts towards more energy-intensive sectors contribute to higher energy
use, potentially reflecting increased demand for transportation and logistics services.
These shifts may hinder innovation and investments in energy-efficient technologies,
limiting improvements in productivity and sustainability within the sector. Lastly,
resident consumption level shows a negative influence on efficiency change and energy
accumulation but a positive effect on technological change and capital accumulation.
This highlights the importance of managing residential consumption patterns and
promoting sustainable practices to mitigate the negative impact on energy efficiency.
Encouraging households to adopt energy-saving technologies and behaviors could help

align consumption trends with broader energy efficiency goals in the logistics sector.

5 Conclusion

This study investigates the energy rebound effect in China’s logistics industry across
31 provinces between 2011 and 2020. Such industry is counteracted by increased en-
ergy consumption and carbon emissions to support economic growth. Understanding
how energy improvements are offset by the rebound effect is critical for designing ef-
fective energy and environmental policies. To do so, we suggest a new decomposition
of the rebound effect into four dimensions: efficiency change, technological change,
capital accumulation, and energy accumulation. Our decomposition is based on a
production function framework and has therefore strong economic foundation. From
an estimating point of view, we make use of a non-parametric estimation method that
does not resort to assumptions nor require estimating parameters.

Our first-stage analysis reveals that the energy rebound effect in the Chinese lo-

gistics industry is largely positive, with an average of 0.76 across provinces. Provinces
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such as Gansu, Jiangxi, and Fujian exhibit the highest rebound effects, while a minor-
ity, including Hunan, Qinghai, Tianjin, and Inner Mongolia, show negative rebound
effects. The decomposition highlights that technological change and capital accumu-
lation are the primary drivers pushing up the rebound effect, while energy accumula-
tion contributes negatively. Within China’s logistics sector, our decomposition reveals
three contrasting effects on the rebound. First, technological change (TECH) fuels
rebound by reducing unit costs: when firms introduce efficiency-enhancing tools, such
as automated sorters in major freight hubs or hybrid diesel-electric trucks, the lower
price of logistics services spurs greater usage and, consequently, increased total energy
consumption (the substitution effect). Second, capital accumulation (KACC) further
drives rebound by backing advanced infrastructure—such as multi-story distribution
centers in coastal regions and upgraded vehicle fleets—which lowers energy use per
shipment but also enables a higher volume of goods moved, creating a pronounced
scale effect. Finally, energy accumulation (EACC) works in the opposite direction:
provinces that boost their energy input per worker through investments in on-site re-
newable generation at logistics parks or electrified cold-chain systems effectively swap
out carbon-heavy fuels for cleaner electricity, thereby tempering the rebound rather
than amplifying it.

To better understand the rebound effect results, we run a second-stage analysis.
We select a set of key variables, including economic level, industrial structure, govern-
ment input, environmental regulation, and resident consumption level, as independent
variables for regressions with the rebound effect and its decomposition. level, as inde-
pendent variables for regressions with the rebound effect and its decomposition. The
second-stage regression analysis identifies government input and environmental regu-
lation as the most significant drivers of the rebound effect in China’s logistics industry,
positively influencing efficiency change, technological advancement, and capital accu-
mulation while negatively impacting energy accumulation. Economic level also plays
a positive role in improving efficiency and technology, though its effects are more
modest. In contrast, industrial structure shows a mixed impact, supporting energy
accumulation but hindering technological change and capital accumulation. Resident
consumption levels negatively affect efficiency and energy accumulation, highlighting
the importance of managing consumption patterns to mitigate energy demand.

The policy implications of this research are significant, particularly the reconcil-

iation of energy efficiency gains with the rebound effect. Policymakers must act to
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counteract measures that result in increased energy consumption brought about by
cost reductions through efficiency. One of the key measures is the application of tar-
geted energy pricing regimes that block the savings in energy from excessively driving
higher consumption. Dynamic pricing schemes, carbon taxes, or cap-and-trade sys-
tems may be used to maintain economic incentives for energy conservation even as
efficiency rises. In addition, clean energy infrastructure development will help ensure
that any increase in energy demand through the rebound effect is met with renewable
and not fossil-fuel-based energy sources, hence lowering environmental degradation.
Besides, technological innovation and the digitalization of logistics activities should
be encouraged to decouple economic development from energy use. Regulations facil-
itating the application of intelligent logistics, freight routing optimization, and green
transportation technology will most likely maximize energy savings and provide for
industry growth. Increasing regulatory mechanisms, such as tighter fuel efficiency
standards and environmental policy targeting logistics enterprises, are also set to
minimize rebound effects by eliminating dependence on conventional energy sources.
Lastly, concerning rebound effects differences between provinces, policy interven-
tions need to be tailored in response to regional industrial and economic frameworks.
More developed provinces should face stricter rules and targeted incentives for energy-
efficient technologies, while less developed areas can enjoy capacity-building programs
for logistics efficiency improvement without overexpansion of energy. By integrating
these strategies, policymakers can better balance the economic growth and energy effi-
ciency trade-offs in a way that sustainability goals are met without being undermined

by perverse rebounds in energy consumption.
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Appendix

Table 7: Literature review — logistics industry in China

Authors Output Inputs Energy intensity
Wang and Xin, | added value, COy | people employed, | N/A
2020 emissions fixed  assets in-
vestment, energy
consumed
Liang et al., | freight volume, | transportation lines, | N/A
2022b transported cargo | capital stock, em-
product, GDP, CO, | ployees
emissions
Yu et al., 2023 added value, freight | employees, total | N/A
turnover, passenger | investment in fixed
turnover, CO, emis- | assets, total energy
sions consumption
Chen et al., 2024 | added value, freight | employees,  capital | N/A
turnover, carbon | stock, transport
dioxide emissions route mileage, oper-
ating vehicles, postal
network points, con-
sumption of energy
Ding and Liu, | freight transport, | employees, fixed as- | energy consump-
2024 goods turnover, | sets, trucks, network | tion to output
added value, CO;y | mileage, energy con- | value
emissions sumption
Yao et al., 2024 | GDP, freight trans- | employees, trans- | N/A
port, turnover vol- | portation lines,
ume, carbon dioxide | fixed-asset in-
emissions vestment, energy
consumption
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Table 8: Rebound effect per period

Province 2012 | 2013 | 2014 [ 2015 [ 2016 | 2017 [ 2018 [ 2019 | 2020 [, -
-2011 | -2012 | -2013 | -2014 | -2015 | -2016 | -2017 | -2018 | -2019

Anhui -0.21 | 25.63 [ 1054.75 | 2.92 [ 0.36 | -2.25 [ 1.04 | 1.00 | 5.33 [/ 120.95
Beijing 279 | 090 | 456 |-24.87| 4.05 | 2.61 | 0.99 | 1.14 | -0.96 || -0.98
Chongging | -0.32 | -22.89 | 0.67 | -0.84 | 2.61 | 1.86 | -0.12 | 1.43 | -0.48 || -2.01
Fujian 030 | -5.52 | 430 | 1.33 | 554 | 1.65 | 0.77 | 1.51 | 0.19 || 1.12
Gansu 317 | 053 | 0.73 | -1.31 | -7.95 | 0.75 | 0.65 | 241 | 1.25 | 0.03
Guangdong | 0.71 | -1.86 | 7.03 | 4.30 |-459 | 1.01 | 1.10 | 1.33 | -0.34 || 0.97
Guangxi 015 | -0.19 | -0.55 | 2.78 | 4.38 | 4.98 | 0.81 | 0.75 | 0.27 | 1.49
Guizhou -5.19 | -0.63 | 90.33 | 14.84 | -1.54 | 0.39 | 0.83 | 0.76 | -5.91 || 10.43
Hainan 0.99 | -1.06 | 087 | 517 [-025 | 1.63 | 233 | 1.37 | 5.05 | 1.79
Hebei -2.01 | -1.55 | -0.39 | 0.68 | -0.09 | 1.76 | 1.40 | -0.77 | 0.04 || -0.10
Heilongjiang | -0.27 | 0.87 | 3.15 | 352 | 1.21 | -6.93 | -0.39 | 1.01 | -1.03 | 0.13
Henan 088 | -1.74 | 1.13 | 14.25 | 0.83 | 1.33 | 5.62 | 0.73 | 4.38 | 3.05
Hubei 0.79 | -1.08 | 0.79 | 215 |-0.13 | 1.22 | 1.17 | 1.88 | 2.92 | 1.08
Hunan 1.62 | -0.62 | -2.63 | -1.27 | 17.27 | 1.51 | 0.12 | -0.70 | 1.25 || 1.84
Inner Mongolia | 6.19 | -0.48 | 6.61 | 0.72 | -0.23 | -0.01 | 1.22 | 0.15 | -0.79 | 1.49
Jiangsu 3.53 | 264.25 | 0.04 | -7.00 | 3.29 | 257 | 0.25 | 1.23 | 3.82 || 30.22
Jiangxi 1.33 | 3.60 | 357 | -041 | 1.81 | 1.97 | -0.89 | 1.83 | 0.27 || 1.45
Jilin 296 | 0.16 | 517 | -0.51 | 2.78 | 0.70 | 0.66 | 1.64 | 0.79 | 0.94
Liaoning 1.33 | -0.63 | -21.74 | 1.30 | 0.82 | 0.53 | -1.08 | 0.99 | 0.26 || -2.02
Ningxia -0.70 | 19.54 | -0.41 | -1.41 | -149 | 052 | -542 | 1.92 | 1.14 || 1.52
Qinghai -0.13 | 17.23 | 6.88 | -4.29 | -0.56 | -0.01 | -0.87 | 0.01 | 0.84 || 2.12
Shaanxi 155 | -1.16 | 3.22 | 1.40 | 2.00 | 7.69 | 1.75 | 0.98 | 0.09 | 1.95
Shandong 1.75 | -0.53 | 0.71 | 3.04 | 1.56 | 2.52 | 0.85 | 58.86 | -0.51 || 7.58
Shanghai 422 | 531 | 058 | 232 | -845 [-23.76 | 1.39 | 1.13 | -0.77 || -3.18
Shanxi 052 | -0.88 | 1.39 | 231 | 892 | 2.08 | 2.15 | 0.79 | -0.24 | 1.89
Sichuan 044 | -1.29 | -13.27 | 1.37 | -1.24 | 517 | 0.83 | 2.25 | -2.26 | -0.89
Tianjin -10.02 | 0.17 | -0.01 | -0.12 | -0.45 | 1.91 | 1.43 | 1.39 | 0.48 || -0.58
Tibet 052 | 0.06 | -519 | -0.67 | 1.05 | -7.58 | 3.78 | -3.22 | -5.30 || -1.84
Xinjiang 121 | 1355 | 2.09 | -2.09 | 1533 | 1.35 | 0.74 | 0.99 | 2.48 | 3.96
Yunnan 1.34 | -0.90 | -0.54 | 0.68 | 4.68 | 0.20 | 1.18 | 1.34 | -0.16 || 0.87
Zhejiang -7.76 | 3.05 | 0.86 | 16.54 | 1.28 | 1.74 | 0.60 | 0.47 | 3.38 | 2.24
Av. | 019 | 972 | 3725 | 1.19 | 1.70 | 029 | 0.80 | 2.79 [ 0.50 || 6.05
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