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Introduction mutations are frequently found in high-grade
Gynaecological cancers are characterised by a serous ovarian cancers (HGSOCs).1> These
significant genetic diversity. High-throughput mutations often disrupt DNA repair mechanisms,
sequencing techniques, such as those employed leading to genomic instability. Synthetic lethality
by The Cancer Genome Atlas (TCGA) project, (SL) offers an opportunity to exploit these vulner-
have enabled detailed mapping of the molecular abilities, with strategies such as poly(ADP-ribose)
alterations in these tumours. Understanding the polymerase inhibitors (PARPis) in BRCA-mutated
prevalence of these mutations across the different cancers? or Ataxia Telangiectasia and Rad3-
gynaecological tumours allows more rational and related protein (ATR) inhibitors in ARID1A-
precise use of targeted therapies. deficient tumours.?
Alterations in genes such as AT-rich interactive These advances have led to the identification of
domain-containing protein 1A (ARID11), phos- specific mutations that can be exploited for the
phatase and tensin homolog (PTEN) and development of targeted therapies, allowing for
BRCA1/2 are common. For example, ARID1A treatments based on precision medicine.® An
mutations occur in approximately 45% of ovarian increased understanding of the genomic profiles of
endometrioid and clear cell carcinomas and gynaecological cancers has facilitated the optimisa-
25% of endometrial cancers, while BRCA1/2 tion of therapeutic strategies. Among the mutations
2
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associated with tumourigenesis, there are ‘gain-of-
function’ mutations leading to oncogenic protein
overexpression that can be easily targeted, as well as
‘loss-of-function’ mutations in tumour suppressor
genes that disrupt cell growth regulation. Targeting
these later mutations is more challenging, as they
do not involve oncogenic protein inhibition, but
require the exploitation of vulnerabilities by identi-
fying SL.7 In this review, we describe SL, which has
emerged as a promising therapeutic approach for
cancers associated with loss-of-function mutations.
We also discuss interesting targets in ovarian and
endometrial cancers, along with completed and
ongoing clinical studies.

SL overview

SL is a biological concept describing a relation-
ship between two genes, where the alteration of
both genes leads to cell death, while alteration in
only one of the genes is tolerable. By targeting a
gene that is synthetically lethal with a mutated or
deregulated oncogene, SL-based therapies can
selectively eliminate cancer cells while sparing
normal cells, thereby reducing off-target toxici-
ties. Research on SL has led to the identification
of a wide array of SLL mechanisms that vary in
complexity and contextual dependency condi-
tions. These mechanisms can be classified into
four main categories (Figure 1).

Standard SL

At the cellular level, functional redundancy
ensures that compensatory mechanisms can be
activated in cases of an inactive or mutated pro-
tein.8 SL is an approach involving the interaction
between two or more genes. The alteration
(mutation or inhibition) of one of these genes can
be viable for the cell, while an expression anomaly
of both genes leads to cell death®10 (Figure 1(a)).

This concept is now widely studied in the devel-
opment of cancer treatments, particularly in rela-
tion to mutations frequently observed in tumour
cells.1:12 The use of PARPi in patients with
BRCA-mutated ovarian cancer has paved the way
for SL as an effective therapeutic strategy.!3-15

Synthetic dosage lethality

Alterations in gene copy number and the epige-
netic regulation of some genes are common
tumour abnormalities, leading to gene and protein

overexpression. Various therapeutic strategies can
therefore be considered, including inhibition of
the overexpressed proteins or the synthetic dosage
lethality (SDL) approach. This latter strategy is
based on gene overexpression inducing cellular
stress that can only be tolerated if other genes
remain functional.!® When mutations cause a loss
of function, or in the case of pharmacological inhi-
bition of these proteins, tumour cells apoptosis
can be induced. SDL is particularly relevant in
cases of oncogene deregulation, where direct inhi-
bition is often too toxic for normal cells due to
their essential roles in cell cycle, survival, differen-
tiation, apoptosis, proliferation and metabolism
(Figure 1(b)). For example, the oncogene c-myc,
which regulates approximately 15% of all genes
under normal conditions, is frequently overex-
pressed in more than 50% of cancers. Targeting
c-myc appears to be a relevant strategy in oncol-
ogy; however, its involvement in many crucial cel-
lular functions represents a therapeutic challenge.1°
Various strategies to target c-myc have been
tested, including SDL. Inhibition of cyclin-
dependent kinase 1 (CDK1) by the small mole-
cule purvalanol A induces downregulation of the
surviving in myc-driven cells, leading to specific
apoptosis of c-myc overexpressing cells.l7-18
Moreover, c-myc induces replication stress and
DNA damage through excessive replication-fork
firing, making c-myc overexpressing tumours
more sensitive to checkpoint kinase 1 (CHKI1)
inhibition and consequently, CHKI1 inhibition
leads to massive cell death in c-myc overexpress-
ing cancer cells.19-21

The overexpression of protein CCNEI1, which is
frequently observed in gynaecological cancers
due to high copy number amplification, exhibits
SDL when combined with the protein Weel
inhibitor.

Conditional SL

Beyond the genetic contribution, the environ-
ment, tumour heterogeneity and external con-
ditions can significantly influence SL.22 The
recent concept of conditional SL refers to a
specific lethal phenotype that also depends on
internal factors (such as hypoxia and high reac-
tive oxygen species (ROS) production) and/or
external factors (such as the use of agents
inducing DNA anomalies). These factors can
explain the heterogeneity of treatment responses
(Figure 1(c)).
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Figure 1. Representation of the four categories of synthetic lethality. (a] Standard synthetic lethality, where
the mutation of a gene, such as BRCA1, renders the cell vulnerable to PARP inhibition. (b] Synthetic dosage
lethality, exemplified by the interaction between Cyclin E1 (CCNE1) and the Wee1 inhibitor, which affects

cell cycle control. (c) Conditional synthetic lethality, influenced by environmental factors such as human
papillomavirus (HPV], oxidative stress or hypoxia, as seen in HPV-positive cells treated with a PARPI.

(d) Complex synthetic lethality, which incorporates polygenic interactions and environmental factors, increases

the complexity of the tumour response.

Source: Created in BioRender by Lebeau (2025; https://BioRender.com/v75d289).
BRCA, breast cancer; CCNE1, Cyclin E1; HPV, human papillomavirus; PARP, poly(ADP-ribose) polymerase.

Hypoxia is a recognised hallmark of solid tumours,
arising from the rapid proliferation of cancer cells
and the development of aberrant, inefficient vas-
culature. This results in a heterogeneous oxygen
landscape within the tumour, with regions of
moderate (1%—2%) and areas of severe hypoxia
or anoxia (<0.01%). Both acute and chronic
hypoxia have been shown to suppress homolo-
gous recombination repair (HRR) by downregu-
lating key effectors such as RAD51, BRCA1 and
BRCA2.23-25 This hypoxia-induced homologous
recombination deficiency (HRD) sensitises
tumour cells to PARPI, leading to SL under con-
ditions of severe hypoxia (<0.5%).26

Additionally, SL is essentially influenced by the
tumour microenvironment in cervical and vulvar
cancers. Indeed, tumorigenesis results in most
cases from the integration of the HPV genome
into the host genome, rather than being caused by
specific oncogenic mutations in DNA repair
pathways or cell cycle regulation. HPV-positive
tumours are associated with several intrinsic char-
acteristics: low tumour hypoxia, high T cells den-
sity in the tumour microenvironment?? and a p53
wild-type status.2® Additionally, the E6 and E7
viral oncoproteins expressed in tumour cells
interact with over 20 proteins (including CHEK?2,
CLK2, ERCC3) involved in DNA repair
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mechanisms.?® The virus exploits these DNA
repair pathways to facilitate its own replication,
ultimately compromising the host cell and leading
to genomic abnormalities accumulation. The use
of PARPi in HPV-positive tumour cells exploits
conditional SL, leading to the accumulation of
unrepaired DNA damage and ultimately causing
cell death (NCTO01281852, NCT737664,
NCTO03476798, NCT03644342).30

Complex SL

SL associated with genetic mutations often exhib-
its incomplete penetrance, suggesting the influ-
ence of additional genetic (polygenic) and
environmental factors.3! Indeed, the concept of
complex SL reflects the biological redundancy
inherent in cancer cells. Unlike a binary relation-
ship between two genes, complex SL is context-
dependent, influenced by genetic and
environmental factors, and contributes to the
variability in therapeutic responses. Tumour cells
have redundant pathways and compensatory sys-
tems that can be modulated in response to muta-
tions. The lethal effect of a partnership (mutations/
inhibitions) depends on the presence of these
compensatory systems, which are modulated by
additional genetic mutations, epigenetic regula-
tion and environmental factors such as metabo-
lism, hypoxia and inflammation. Indeed, it has
become apparent that the penetrance of pairwise
genetic interactions differs significantly across dif-
ferent cancer types (Figure 1(d)). The interplay
between genetic mutations and underlying epige-
netic modifications creates a network of distur-
bances that differs from one cancer to another,
leading to varied therapeutic outcomes, as seen in
the frequent combination of mutations in KRAS/
PIK3CA32 in colorectal cancer, BRAF/PTEN in
melanoma®®* or ARID1A/PIK3CA in clear cell
ovarian carcinoma.?*

While certain pairwise genetic interactions, such
as those between BRCA genes and PARPI, have
shown therapeutic promise, resistance mecha-
nisms have revealed that other factors, such as
mutations in DNA repair proteins such as
TP53BP1 or poly(ADP-ribose) glycohydrolase
(PARG), can alter treatment efficacy. For exam-
ple, HRD can be bypassed by loss-of-function
mutations in DNA repair proteins such as
TP53BP1, which restore HRR and confer resist-
ance to PARPj.35:3¢

Unlike cumulative toxicity resulting from multi-
ple non-specific inhibitions, complex SL relies on
a functional, non-additive and often selective
dependence of cells harbouring the mutated part-
ner. Moreover, combinatorial studies (via
CRISPR or RNAI) have shown that only a minor-
ity of SL interactions are consistently reproduced
across multiple cell lines, underscoring their com-
plex nature.3?

Mechanisms and targets of SL in
gynaecological cancers

DNA repair

Among the hallmarks of cancer described by
Hanahan and Weinberg,38:3° which define the
biological characteristics enabling normal cells to
transform into tumour cells, genomic instability is
a key factor. It typically arises from defects in
DNA repair mechanisms, leading to the accumu-
lation of mutations that promotes malignant
transformation. Cells are subjected to various
forms of DNA damage, which can arise from both
intrinsic (such as replication errors and cellular
metabolism generating ROS) and extrinsic fac-
tors (such as radiation, viral infections and envi-
ronmental exposure).?0 These DNA lesions are
resolved by various DNA repair mechanisms,
thereby maintaining genomic integrity. Each
DNA repair mechanism targets specific types of
damage. Base Excision Repair (BER) addresses
damage caused byoxidised or alkylated bases,*!
while Nucleotide Excision Repair (NER) man-
ages more extensive lesions, such as those induced
by UV radiation or chemical agents.*? For dou-
ble-strand breaks (DSBs), often caused by ionis-
ing agents or replication errors, two repair
mechanisms may be involved: HRR or non-
homologous end joining (NHE]).43

Homologous recombination repair. DSBs are
repaired primarily through HRR, initiated by
ATM kinase, which phosphorylates proteins like
BRCALI, thereby stabilising the damaged DNA
and recruiting repair complexes. At the 3’ extrem-
ities, BRCA2 and PALB2 facilitate the recruit-
ment of RAD51, which forms a nucleoprotein
filament. This filament searches for a homolo-
gous sequence in the sister chromatid to enable
strand pairing and invasion of the double helix,
allowing for DNA synthesis to faithfully repair
the break.
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Common somatic mutations/phenotype in
endometrial cancer:

HRD: 50% Non endometrioid / 12% Endometrioid '> ||
ARID1A: 25% U
TP53: 88% Serous / 15% Endometrioid

CCNE1: 50%

PTEN: 35% \

Common somatic mutations/phenotype in
ovarian cancer:

HRD: 50%
- ARID1A: 45% Endometriod and Clear Cell
- TP53:96% HGSOC

CCNE1: 20% HGSOC

PTEN: 7%

Figure 2. Overview of the most common mutations identified in ovarian and endometrial cancers, classified by

tumour site.

Source: Created in BioRender by Lebeau (2025; https://BioRender.com/j63a663).

The HRR pathway plays a crucial role in gynae-
cological cancers.** According to TCGA, HRD is
found in approximately 50% of epithelial ovar-
ian,245:46 50% of non-endometrioid endometrial
and 12% of endometrioid endometrial cancers
(Figure 2).47

HRD may result from mutations in key proteins
including BRCA1l, BRCA2, RAD51, RAD52,
PALB2 and ATM. In the case of an HRD-positive
tumour, DSBs accumulate, leading to increased
genomic instability. Alternative repair pathways,
such as NHE], take over, allowing the cell to sur-
vive but at the cost of increased errors and genomic
instability.4® PARP is involved in repairing single-
strand breaks (SSBs), which must be corrected
rapidly to prevent their progression to DSBs dur-
ing DNA replication. In response to SSB, PARP
binds to the damaged site and adds ADP-ribose
chains (PARylation) to itself and nearby proteins.
This post-translational modification serves both
as a recruitment signal for DNA repair factors and
as a means to decondense chromatin, thereby
enhancing accessibility to the damaged site. This
step is essential for initiating repair pathways such
as BER, the primary mechanism for resolving
SSBs. In the presence of pharmacological PARP

inhibition, SSBs persist. During DNA replication,
the progression of the replication fork requires the
opening of the DNA helix and strand separation.
When the replication machinery encounters
an unrepaired SSB, it becomes interrupted.
Continued helicase and polymerase activity prior
to the damage site generates torsional stress, which
can cause collapse of the replication fork and
physical breakage of the opposing strand — thereby
converting a single-strand lesion into a DSB.
These secondary DSBs are normally repaired by
HRR, a high-fidelity process relying on a homolo-
gous DNA template. In HR-deficient cells, such
as those with BRCA1 or BRCA2 mutations, repair
cannot proceed effectively, resulting in genomic
instability and cell death.

Inhibition of PARP results in the accumulation of
SSBs, which evolve into DSBs that cannot be
effectively repaired in HRD-positive tumour cells,
ultimately leading to cell death. PARP inhibition
exploits this HRD-related vulnerability by ampli-
fying DNA damage beyond a tolerable threshold,
thereby inducing apoptosis.

However, ovarian cancers inevitably develop
resistance to PARPi during or after maintenance
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therapy.*® This resistance is due to secondary
mutations restoring BRCA function,>%3! activa-
tion of pro-survival signalling pathways (such as
RAS and PI3K/AKT),5253 and stabilisation of
replication forks.’* Treatment with PARPi
increases activation of ATR, which plays a crucial
role in maintaining genome integrity by stabilising
replication forks and activating cell cycle check-
points at the S and G2/M phases.>> Selective phar-
macological ATR inhibitors have been developed,
and their use in combination with PARPi could
potentially overcome resistance and enhance
DSBs accumulation.36-58

AT-rich interactive domain-containing protein 1A
[ARID1A]. ARID1A gene mutations are common
in gynaecological tumours, particularly in endo-
metrioid and clear cell ovarian cancers (approxi-
mately 45%), as well as in endometrial cancers
(approximately 25%) (Figure 2).3:39-61 Notably,
the majority of ARID1A mutations are of the
‘loss-of-function’ type.

ARID1A (also known as BAF250a) is a key subu-
nit of the SWI/SNF chromatin remodelling com-
plex, involved in DNA repair, cell cycle regulation
and epigenetic control of signalling pathways. 2

This complex is recruited to sites of DNA DSBs
through interactions with ATR.%3 ARIDI1A facili-
tates chromatin decompaction at these sites,
enhancing DNA accessibility and allowing the
efficient recruitment of HRR proteins, such as
RADS51.%4 In addition, ARID1A recruits and sta-
bilizes topoisomerase II alpha (TOP2A), an
enzyme essential for resolving DNA supercoiling
by introducing transient DNA breaks. Loss of
ARID1A impairs both chromatin decompaction
and TOP2A function, resulting in limited access
for repair proteins and increased DNA dam-
age.%%:66  ARID1A also directly regulates p21
(CDKN1A), a cyclin-dependent kinase inhibitor
(CKI) that governs the GI1/S checkpoint in
response to genotoxic stress temporarily halting
cell cycle progression to allow repair.” Epigene-
tically, ARID1A represses the expression of
enhancer of zeste homolog 2 (EZH2) polycomb
repressive complex 2 (PRC2) subunit, which
silences tumour suppressor genes such as PTEN
through histone methylation.%8

Loss-of-function mutations in ARID1A impair
chromatin remodelling, compromising HRR by
reducing RADS51 access to DSBs and destabilising

TOP2A, thereby increasing DNA supercoiling
and replication stress. The inability to upregulate
p21 prevents G1/S checkpoint arrest, allowing the
propagation of damaged DNA. Increased EZH2
activity silences tumour suppressors such as
PTEN, thereby activating the PI3K/Akt signalling
pathway. These alterations lead to genomic insta-
bility and make cells highly dependent on ATR,
offering therapeutic opportunities via SL with
ATR, PARP or EZH2 inhibitors.®® Indeed, phar-
macological inhibition of ATR induces replication
fork collapse and accumulation of DSBs, trigger-
ing SL.5 Similarly, as ARID1A-deficient cells dis-
play HRD, they are sensitive to PARPi, which
block SSB repair and lead to toxic DSB accumula-
tion. Moreover, EZH?2 inhibitors such as tazeme-
tostat may restore tumour suppressor gene
expression (e.g. PTEN), downregulate PI3K/Akt
signalling and suppress tumour cell prolifera-
tion.%%70 Molecular profiling reveals the frequent
co-occurrence of ARIDIA and PTEN/PI3K
mutations, particularly in ovarian and endometrial
cancers.3%71

Cell cycle checkpoints and regulation

The mitotic cell cycle is an essential process for
the proliferation of normal cells, occurring in four
phases: G1 (cell growth), S (DNA synthesis), G2
(mitosis preparation) and M phase (mitosis). This
mechanism is regulated by the G1/S and G2/M
checkpoints, which ensure genomic integrity
before progression to the next phase. Various pro-
teins are involved in cell cycle regulation, includ-
ing the regulatory proteins p53 and Weel kinase,
CHKI1/CHK2, as well as cyclins and CDKs.
Before DNA replication, ATM and ATR proteins
are recruited to the sites of DNA lesions. They
activate CHK1/2 and p53, which inhibits the
CCNEI1/CDK2 activity complex through nega-
tive regulation of p21.7273 Tumour cells frequently
hijack these cell cycle checkpoints to continue
proliferating despite accumulating DNA damage,
which in turn enhances their invasiveness and
immunosilencing.

TP53/Weel. The p53 protein is a transcription
factor involved in various cellular functions,
primarily surveillance of genomic integrity.
Under normal conditions, cells contain low lev-
els of p53, which is rapidly degraded by the
MDM2 complex.”* In response to cellular stress
stimuli (such as DNA damage, nutrient depri-
vation or oncogene activation), p53 levels
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increase due to protein stabilisation: signals
from ATM, ATR, CHKI1 and CHK2 inhibit
MDMZ2 and stabilise p53 through acetylation.
In cases of replication errors or DNA damage,
p53 induces the expression of p21 protein,
which inhibits CDKs to block cell cycle pro-
gression at the G1/S transition. If DNA damage
is irreparable, p53 activates pro-apoptotic genes
(BAX, PUMA, Caspases) and represses anti-
apoptotic genes (Bcl-2).75

The TP53 gene is the most frequently mutated
gene in ovarian cancers, with approximately 96%
of HGSOCs carrying mutations.?7% In endome-
trial cancer, its prevalence varies by histological
subtypes: 88% in serous compared to 15% in
endometrioid cancers!:77 (Figure 2). These are
typically loss-of-function mutations.

The Weel kinase regulates the cell cycle by pre-
venting progression from G2 to mitosis. When
p53 is mutated, the G1/S checkpoint becomes
ineffective, making the cell dependent on the
G2/M checkpoint, which is regulated by Weel
kinase.”® This dependency can be therapeutically
exploited. By targeting Weel, CDK1 and CDK2
activity is inhibited, forcing cells blocked in G2
due to DNA damage to progress into mitosis,
leading to mitotic catastrophe and apoptosis of
tumour cells. The loss of p53 function contrib-
utes to genomic instability, resulting in DNA
damage accumulation. This damage is detected
by the ATR and ATM proteins, which activate
DNA repair mechanisms. In p53-mutated cells,
inhibition of the ATM/CHK2 and ATR/CHKI1
pathways inactivates the repair of accumulating
DNA damage, leading to SL.79-82

Cyclin E7. CCNEL1 is a protein essential for cell
cycle progression during the S phase. Entry and
progression through the cell cycle depend on cyclin
activity associated with CDKs, which are specific to
each phase. CCNEI forms a complex with CDK2,
inducing phosphorylation of the retinoblastoma
protein (Rb) and the release of the transcription
factor E2F, which is essential for the transcription
of genes involved in DNA synthesis.83

The CCNEI1 gene copy number is significantly
increased in approximately 20% of HGSOC?3*
and 50% of serous endometrial carcinomas
(Figure 2). This amplification is associated with
resistance to platinum-based therapies and
reduced survival outcomes.?>%7 In ovarian can-
cer, CCNEI1 overexpression is an early event in

tumorigenesis occurring before the emergence of
serous tubal intraepithelial carcinoma.84

CCNEI1 overexpression is strongly associated
with p53 mutation, leading to cell cycle dysregu-
lation. In p53 wild-type cells, CCNE1 overexpres-
sion induces p53 expression, which allows for cell
cycle arrest to facilitate DNA repair.88 In contrast,
when p53 is mutated, CCNEI1 activity persists,
resulting in genomic instability.8® CCNE1 ampli-
fication and overexpression, associated with p53
‘loss of function’, allow tumour cells to bypass the
G1/S checkpoint despite DNA damage. The
G2/M checkpoint is crucial for preventing cell
division. This dependency can be targeted by
Weel and Protein Kinase Membrane Associated
Tyrosine/Threonine 1 (PKMYT1; a protein that
prevents premature entry into mitosis) inhibitors,
inducing SL.%° Currently, there are four ongoing
phase I clinical trials evaluating PKMYT1
inhibitors.

Oncogenic signaling pathways

Phosphatase and tensin homolog. The PI3K/Akt/
mTOR signaling pathway is involved in numerous
pro-tumorigenic processes, such as proliferation,
cell survival and cell motility.°? PTEN functions
as a tumour suppressor by negatively regulating
this signaling pathway. By removing a phosphate
group from phosphatidylinositol-3,4,5-triphos-
phate (PIP3), PTEN inactivates this pathway. In
contrast, when PI3K is activated, it adds a phos-
phate group to phosphatidylinositol-3,4-bisphos-
phate (PIP2), catalyzing the conversion of PIP2
to PIP3, thus activating the signaling pathway.
This mechanism functions as a switch (off/on),
regulating the PI3K/Akt/mTOR pathway activa-
tion or inhibition.

PTEN loss-of-function mutations are observed in
approximately 47% of endometrial cancers and
7% of ovarian cancers (Figure 2).92

Loss of PTEN results in continuous pathway
activation, driving tumour progression and resist-
ance to conventional treatment.? In addition to
its role as a PI3K/Akt/mTOR pathway inhibitor,
PTEN can also be found in the nucleus, where it
regulates the transcription of the RAD51 protein
(a major player in HRR), as well as of cyclin D1
(involved in G1 phase progression of the cell
cycle).949 Inhibitors targeting DNA repair
mechanisms and the G2/M checkpoint may act
synergistically to induce SL. The gain-of-function
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PIK3CA and KRAS mutations are commonly
observed in ovarian and endometrial cancers.%7>%8
SL does not generally apply to these types of
mutations, as they can be directly targeted with
specific inhibitors, such as those developed for
KRAS.

Clinical trials evaluating SL

target in gynaecological cancers

The SL concept has found significant clinical
application with the use of PARPi in tumours
exhibiting HRD, revolutionising daily practice in
breast, pancreas, prostate and ovarian cancers.
There is a growing interest in evaluating new
inhibitors for other loss-of-function mutation
types. Currently, these agents are in the early stages
of development, with studies primarily aiming to
assess their toxicity and efficacy without specifi-
cally targeting particular mutations (Table 1).

PARP inhibitors

PARRP is a protein involved in the repair of SSBs.
When inhibited, unrepaired SSBs can be con-
verted into DSBs. In HRD-positive cells, DSBs
accumulate, leading to genomic instability and
ultimately cellular toxicity and death.

Historically, PARPi have been evaluated in the
recurrent, platinum-sensitive setting. The phase
II Study 19 and the phase III NOVA and ARIEL3
trials demonstrated the efficacy of olaparib, nira-
parib and rucaparib, respectively, as maintenance
therapy in relapsed ovarian cancer. In these trials,
recurrence rates in the intention-to-treat (ITT)
population ranged from 42% to 64%, with a
marked improvement in progression-free survival
(PFS) for HRD-positive patients (hazard ratio
(HR) 0.32-0.38) and the most pronounced ben-
efit in BRCA-mutated patients (HR 0.18-
0.27).99-101 The SOLO2 trial, focused exclusively
on BRCA-mutated patients, confirmed a 70%
reduction in the risk of relapse following PARPi
maintenance.l%2 In the treatment setting (rather
than maintenance), the ARIEL4 trial assessed
rucaparib versus chemotherapy in BRCA-
mutated patients and showed clinical activity,
albeit with a less pronounced benefit (HR
0.64).193 This gradient of efficacy reflects the
underlying biology: BRCA1/2 mutations result in
complete loss of HR, making tumour cells highly
dependent on alternative repair pathways such as
BER, where PARP is essential. Conversely,
HRD-positive tumours without BRCA mutations

often exhibit partial or transient HRR defects,
commonly due to loss of heterozygosity or epige-
netic alterations. Some clones may regain HRR
function through mechanisms such as demethyla-
tion of BRCAI, thereby diminishing PARPi
sensitivity.104

PARPi have also been evaluated in the first-line
maintenance setting. The phase III SOLOI1 and
PRIMA trials assessed olaparib and niraparib,
respectively, in newly diagnosed ovarian cancer.
SOLO1 included only BRCA-mutated patients
and demonstrated an impressive median PFS of
56.0months versus 13.8 months in the placebo
arm (HR 0.30; 95% CI: 0.23-0.41), with an
overall survival (OS) HR of 0.55 despite 44.3% of
patients in the control arm receiving a PARPi in
later lines. 105106

In contrast, the PRIMA trial reported a 34%
reduction in the risk of progression in the overall
population and 49% among HRD-positive
patients. No OS benefit was observed, likely due
to the study being powered for PFS, the higher
rate/percentage of patients receiving subsequent
PARPiI in the placebo arm and the inclusion of a
higher-risk, more heterogeneous population
(residual disease post-surgery, FIGO stage IV,
use of neoadjuvant chemotherapy and partial
response to platinum-based chemotherapy).19?
The higher proportion of patients achieving RO
resection, could also explain the improved effi-
cacy in the SOLOI1 trial. Achieving RO during
primary debulking reduces the likelihood of clonal
resistance emergence, potentially influencing
long-term outcomes. Moreover, the longer treat-
ment duration in the PRIMA study (3years)
raises concerns regarding adherence, particularly
given the need for dose modifications or interrup-
tions. Although treatment duration does not sig-
nificantly impact toxicity profiles, it may influence
the efficacy of subsequent therapies. Clinical ben-
efit from chemotherapy appears diminished in
patients previously treated with first-line PARPi.

Combination strategies have also been investi-
gated. The PAOLA-1 trial evaluated olaparib plus
bevacizumab versus bevacizumab alone as first-
line maintenance therapy. In the ITT population,
the combination failed to improve OS (56.5 vs
51.6months; HR 0.92; 95% CI: 0.76-1.12;
p0.4118). However, a significant benefit was
observed in HRD-positive patients, particularly
those with BRCA mutations, with recurrence risk
reduced by 38% and 40%, respectively.!® The
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ICONTY7 trial previously showed that bevacizumab
conferred benefit only in a high-risk subgroup for
progression (FIGO stage III-IV disease following
suboptimal debulking, or stage I-II disease with
grade 3 or clear cell histology; HR 0.78), with no
effect in the overall population (HR 0.99).10°
High-risk features were further defined using the
KELIM score, a model based on the CA125 elim-
ination rate. In PAOLA-1, high-risk HRD-positive
patients exhibited an HR of 0.46, compared to
0.26 in the low-risk group — indicating potential
therapeutic benefit even among patients with poor
prognostic features.!1© The ATHENA-COMBO
trial assessed the addition of the immune check-
point inhibitor nivolumab to rucaparib. BRCA-
mutated tumours often express neoantigens,
attracting tumour-infiltrating lymphocytes and
upregulating Program-Death Ligand 1 (PD-L1),
suggesting potential synergy between PARPi and
immune checkpoint inhibitors. Among 863
enrolled patients (44% HRD-positive), no benefit
from nivolumab addition was observed. In the
HRD-positive group, median PFS was
28.9months (rucaparib + nivolumab) versus
31.4months (rucaparib alone). Similar results
were found in the ITT population (mPFS 15.0 vs
20.2months), questioning the added value of
immune checkpoint blockade in this setting.11!

Long-term analyses confirm the role of PARPi as
maintenance therapy post-chemotherapy, demon-
strating prolonged PFS and an extended chemo-
therapy-free interval. This interval allows patients
to recover from prior cytotoxic treatments and
better tolerate subsequent future regimens.
However, maintenance treatment with PARPi can
be accompanied by the development of resistance.
In the SOLO-1, PAOLA-1 and PRIMA trials,
20%—45% of patients discontinued treatment due
to disease progression. Treatment failure to
PARPI is frequently associated with cross-resist-
ance to platinum-based chemotherapy, largely
because both therapeutic classes exploit similar
mechanisms of cytotoxicity. The predominant
mechanism of resistance to PARPi involves the
restoration of HRR, most commonly through sec-
ondary reversion mutations in BRCA genes. Once
HRR is reactivated, tumour cells regain the ability
to efficiently repair DNA DSBs induced by both
PARPi and platinum agents. In addition, the
selective pressure exerted by PARPi treatment
eliminates sensitive clones, promoting the expan-
sion of resistant subclones. This HRR restoration
contributes to broad chemoresistance and signifi-
cantly complicates the management of recurrent

disease. However, concerns persist regarding
long-term toxicity, particularly myelodysplastic
syndrome (MDS) and acute myeloid leukaemia
(AML). These adverse events were observed in
heavily pre-treated patients, with incidences of
3.7% in ARIEL3 and 8% in SOLO2.112113 In
these studies involving patients with relapsed
ovarian cancer, cumulative exposure to multiple
lines of cytotoxic chemotherapy likely contributed
to the increased risk of therapy-related MDS. In
contrast, follow-up data from first-line mainte-
nance trials PRIMA, SOLO1 and PAOLA-1 have
shown low incidences of MDS/AML (1.2%, 1.5%
and 1.7%, respectively) comparable to those
observed in the placebo arms.

In endometrial cancer, the role of HRD as a pre-
dictive biomarker remains insufficiently explored.
To date, the DUO-E and RUBY Part II clinical
trials have investigated the efficacy of combining
anti-PD-1/PD-L1 therapy with PARPi.114115 The
DUO-E trial is a phase III, randomised, 1:1:1
study evaluating the combination of carboplatin/
paclitaxel with durvalumab and olaparib in 718
patients with advanced (FIGO 2009 stages III-
IV) or recurrent endometrial cancer. Three treat-
ment arms were compared: a control group
(carboplatin/paclitaxel plus placebo followed by
placebo maintenance), a durvalumab group (car-
boplatin/paclitaxel plus durvalumab followed by
durvalumab maintenance with placebo), and the
durvalumab + olaparib arms (carboplatin/pacli-
taxel plus durvalumab followed by durvalumab
and olaparib maintenance). While the DUO-E
study concluded that the combination of dur-
valumab and olaparib provides clinical benefit
irrespective of HRR gene-mutated (HRRm) sta-
tus, notable differences in the degree of benefit
were observed across molecular subgroups. In the
ITT population, the combination significantly
improved mPFS with a HR of 0.55 (95% CI:
0.43-0.69). This effect was even more pro-
nounced in the HRRm group (HR 0.30 (95% CI:
0.15-0.58)). These results suggest a potentially
predictive role for HRRm status, despite benefits
being observed beyond this subgroup. Exploratory
analyses also indicated improved PFS among
patients who were either PD-L1 positive or
HRRm positive when durvalumab alone was
added to chemotherapy, whereas the benefit
appeared more limited in TP53-mutated tumours.
Notably, the addition of olaparib further enhanced
PFES across several subgroups, including those
with TP53-mutations and serous histology, sup-
porting the hypothesis of a synergistic interaction
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between PARP inhibition and immune check-
point blockade in specific molecular contexts.
However, in the mismatch repair-deficient
(MMRJ) subgroup (around 30% of endometrial
cancers) the addition of olaparib did not improve
survival. MMRd tumours are typically character-
ised by high tumour mutational burden and
PD-L1 expression, but also substantial T-cell
infiltration, making them highly responsive to
immune checkpoint inhibitors alone. The lack of
added benefit from PARPIi in this setting high-
lights that this population may already achieve
maximal therapeutic effect with immunotherapy
alone. These findings suggest that HRD testing
may be most valuable in guiding treatment deci-
sions within the MMRp subgroup, which
accounts for approximately 70% of endometrial
cancers.

In contrast, the RUBY Part II trial did not assess
HRD status, limiting interpretation of its results
in relation to this biomarker. The study included
291 patients with advanced (FIGO stage III/IV)
or recurrent endometrial cancer randomised into
two arms: one receiving maintenance treatment
with dostarlimab combined with niraparib for
3years (n=192) versus a placebo arm (z=099).
Baseline characteristics were similar between the
treatment arms, with notably 74% of patients
identified as MMRp. In the overall population,
the authors showed a mPFS improvement in the
dostarlimab-niraparib arm compared with the
control arm, 14.5 versus 8.3 months (HR 0.60;
95% CI, 0.43-0.82; p=0.0007). Among the
MMRp group, the mPFS was 14.3 and 8.3 months
in the dostarlimab and the placebo arms, respec-
tively (HR 0.63; 95% CI, 0.44—0.91; p=0.006).114
These findings underscore the heterogeneity of
treatment responses in endometrial cancer and
highlight the need for future studies to incorpo-
rate HRD testing. Improved molecular stratifica-
tion could enable more precise patient selection,
thereby maximising the therapeutic benefit of
PARP inhibitors and immune checkpoint inhibi-
tors in this setting.

PARPis have transformed the treatment of
BRCA-mutant and HRD-associated cancers by
exploiting the concept of SL. However, their clin-
ical application is frequently limited by haemato-
logical toxicities: these led to dose reductions in
71% of patients in the PRIMA and 66% in the
NOVA trial, with treatment discontinuation in
some cases.!1%117 Most clinically approved PARPi

act as pan-inhibitors targeting PARP1, PARP2,
PARP3, despite their distinct biological roles.
PARP1 is the primay sensor of DNA SSBs and
initiates repair through PARylation. In contrast,
PARP?2 is activated by 5'-phosphorylated DNA
nicks (such as Okazaki fragments) and plays a
structural role in facilitating DNA ligation by
ligases 1 and 3. Catalytically inactive PARP2
compromises this ligation process, causing repli-
cation fork collapse, particularly detrimental to
rapidly proliferating cells such as erythroblasts.
This mechanism explains the haematological side
effects observed with pan-PARPi.118 To address
this limitation, next-generation PARPi with
enhanced selectivity for PARP1 have been devel-
oped. Among them, saruparib demonstrates over
500-fold greater selectivity for PARP1 compared
to PARP2, with the goal of maintaining anti-
tumour efficacy while reducing haematopoietic
toxicity.!1® Preclinical studies have shown that
saruparib has potent and durable anti-tumour
activity in patient-derived BRCA1/2-mutant mod-
els of breast, ovarian and pancreatic cancers,
alongside a favourable safety profile. Saruparib is
currently under investigation in multiple phase I/II
and III clinical trials, including PETRA and
EvoPAR-Ovarian0O1 in ovarian cancer.In Part A of
the phase I/Il PETRA study (NCT04644068),
saruparib was administered as monotherapy at
doses ranging from 10 to 140mg daily to 61
patients with advanced solid tumours (19.3% of
ovarian cancers) harbouring BRCA1/2, PALB2 or
RAD51C/D mutations. The treatment demon-
strated a favorable safety profile with a low inci-
dence of haematological and gastrointestinal
adverse events, even among heavily pretreated
patients (median of 3 prior lines of therapy, 45%
with previous exposure to PARPi and/or platinum-
based chemotherapy). The recommended dose was
established at 60mg daily, with a maximum toler-
ated dose of 90mg. Pharmacodynamically, saru-
parib demonstrated a fold coverage (ratio of plasma
concentration to effective concentration) of 31.7,
markedly higher than other PARPi (niraparib 0.36,
talazoparib 0.5, rucaparib 2.44, olaparib 2.44),
indicating prolonged and selective PARP1 inhibi-
tion, which may underpin its improved efficacy
and tolerability profile. The study is ongoing
through multiple stages, investigating dose escala-
tion of saruparib in combination with other agents
(paclitaxel, carboplatin-paclitaxel, trastuzumab
deruxtecan and datopotamab deruxtecan) in a
total of 306 patients with breast, ovarian or pros-
tate cancers.!?0
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The phase III, randomised, double-blind, pla-
cebo-controlled EvoPAR-Ovarian01 study, cur-
rently in preparation, will evaluate saruparib as
second-line maintenance therapy in patients with
platinum-sensitive relapsed ovarian cancer who
progressed following PARPi maintenance after
first-line carboplatin-paclitaxel chemotherapy
combined with bevacizumab. This study plans to
enrol 570 patients stratified into 3 cohorts based
on BRCA and HRD status: BRCA-mutated,
HRD-positive without BRCA mutation, and an
exploratory/descriptive HRD-negative cohort.

ATR inhibitors

ATR inhibition, a key mechanism involved in the
detection and repair of DNA DSBs, represents a
promising therapeutic approach for targeting
tumours with specific molecular vulnerabilities.
Preclinical data have demonstrated increased
ATR dependency in tumours with ARIDIA loss-
of-function mutations due to inherent defects in
genomic stability. This creates a context of SL
that can be therapeutically exploited. This
dependency is particularly relevant in gynaeco-
logical malignancies, where ARID1A mutations
are commonly observed, notably in clear cell
ovarian and endometrial carcinomas.

In the NCI-9944 trial, the addition of berzosertib
to gemcitabine in patients with platinum-resistant
ovarian cancer did not significantly improve OS
(HR 0.79 (90% CI: 0.52-1.2)). The absence of
clinical benefit may be attributed to the absence
of patient selection based on ARID1A mutational
status. However, enhanced efficacy observed in
subgroups with a platinum-free interval of less
than 3 months, or with low replicative stress, sug-
gests that clinical and biological stratification
could improve treatment outcomes. 21,122

As monotherapy, ATR inhibitors have shown
limited efficacy in unselected populations.
Conversely, their combination with PARPi,
which target complementary DNA repair path-
ways, may enhance anti tumour activity. The
phase II CAPRI study evaluated the combination
of olaparib and ceralasertib in patients with plat-
inum-sensitive relapse, reporting an objective
response rate (ORR) of 48.5% and encouraging
PFS, irrespective of genomic instability status.
However, the absence of a control arm and a
lack of molecular stratification by BRCA, HRD
or ARIDIA status limit the interpretation of

these results and may conceal differential
responses.123:12¢ In contrast, the ATARI study
incorporated rigorous molecular and histological
stratification, enabling a more refined assessment
of ceralasertib efficacy, both as monotherapy and
in combination. In cohort 1A, patients with clear
cell ovarian or endometrial carcinoma with con-
firmed ARID1A loss received ceralasertib mono-
therapy, achieving an ORR of 14%. In cohort 2,
patients with the same histology but without
ARIDI1A loss were treated with the combination
of ceralasertib and olaparib, also resulting in an
ORR of 14%. In comparison, cohort 3, which
included patients with other histological subtypes
(endometrioid, carcinosarcoma, cervical) treated
with the same combination therapy, demon-
strated a higher ORR of 24%.125,126

EZHZ2 inhibitors

Tazemetostat, a selective EZH?2 inhibitor, is cur-
rently under investigation in the first phase II
clinical trial specifically targeting ARIDI1A-
mutated solid tumours. In this single-arm study
(NCTO05023655) is evaluating tazemetostat as
monotherapy, with ORR as the primary endpoint
according to RECIST 1.1 criteria.1??

WEET kinase inhibitors

WEEI kinase functions as a key regulator of the
cell cycle, acting as a critical checkpoint that pre-
vents premature mitotic entry in response to
DNA damage or replicative stress. Tumours har-
bouring TP53 mutations and/or CCNE1 amplifi-
cation, both major regulators of the cell cycle,
exhibit increased dependency on WEEI1 activity
to avoid mitotic catastrophe. Inhibiting WEE1
with agents such as adavosertib or ZN-c3 forces
damaged cells into unscheduled mitosis, leading
to genomic instability and cell death. This SL
approach is particularly promising in cancers
characterised by high levels of replicative stress,
such as those with TP53 mutations or CCNE1
amplification.

Several clinical trials have investigated the poten-
tial of WEEI inhibitors in ovarian and endome-
trial cancers. In platinum-resistant TP53-mutated
ovarian cancer, three studies have assessed ada-
vosertib in combination with chemotherapy (car-
boplatin or gemcitabine), reporting encouraging
ORRs ranging from 41% to 67%.128-130 Within
the CCNEI1-amplified subgroup, response rates
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were numerically higher, although statistical sig-
nificance was not reached.!28

The multicentric phase II IGNITE study assessed
the efficacy of adavosertib in women with recur-
rent platinum-resistant HGSOC based on
CCNE]1 gene amplification level (< or >8 cop-
ies). CCNEI1 protein expression was evaluated by
immunohistochemistry, and CCNEI1 gene copy
number was determined using fluorescence in
situ hybridisation. Patients were stratified into
two cohorts: cohort 1, characterised by CCNEE1
protein overexpression (H-score >50) with
CCNEI1 gene amplification (copy number >8;
n=21); and cohort 2, with CCNEI1 protein over-
expression but without gene amplification
(n=59). Among the enrolled patients, 83% had
received two or more prior lines of chemotherapy.
The ORR was 38% in the CCNEIl-amplified
cohort and 45% in the overexpressed but non-
amplified cohort. Treatment-related adverse
events occurred in 97% of patients (n=78), with
dose reductions required in 45% (n=136), primar-
ily due to neutropenia or diarrhoea. CCNEI
overexpression appears to be a reliable biomarker
of response to adavosertib, independent of
CCNE]1 gene amplification.13!

In platinum-sensitive ovarian cancer, adavosertib
also demonstrated clinical benefit, achieving an
ORR of 74.6% compared with 69.4% in the pla-
cebo arm. Moreover, the study identified variable
sensitivity to adavosertib according to TP53
mutation subtype, with hotspot and missense
mutations conferring greater benefit than truncat-
ing variants.132

In the population of patients with ovarian cancer
who relapse following treatment with PARPi,
therapeutic options become markedly limited.
Several studies are currently investigating strate-
gies to overcome PARPI resistance or to resensi-
tise tumours to targeted therapies. Among these
approaches, the EFFORT trial, a non-compara-
tive phase II study, evaluated the efficacy of ada-
vosertib alone (#=39) or in combination with
olaparib (z=41) in 80 patients who relapsed
after PARPi therapy. The majority of patients
were platinum-resistant (64%) and heavily pre-
treated, with a median of four prior lines of ther-
apy (range 1-11). The results demonstrated an
ORR of 23% with adavosertib monotherapy and
29% with the combination, and mPFS of 5.5
and 6.8 months, respectively. Although a high

incidence of grade 3/4 adverse events was
observed (83%), most toxicities were managea-
ble with treatment interruptions (88%) and/or
dose reductions (71%).133:134

In endometrial cancer, particularly uterine serous
carcinomas where TP53 mutations occur in
nearly 90% of cases,! two phase II studies have
shown antitumour activity with adavosertib mon-
otherapy, with ORRs between 26% and 30%, and
a 6-mPFS rate of 47.1%.135> The ADAGIO study
confirmed these findings, although toxicity was
notable (grade =3 adverse events reported in
68.8% of patients).!36:137

Finally, ZN-c3, a next-generation selective WEE1
inhibitor, has shown promising preliminary effi-
cacy and tolerability in phase I studies involving
patients with solid tumours.!3® Multiple ongoing
clinical trials are currently evaluating ZN-c3 in
ovarian and endometrial cancers INCT04158336,
NCT05431582, NCT04516447).

Despite strong preclinical rationale supporting the
inhibition of ATR, WEE]1, and other key regulators
of the DNA damage response (DDR) and cell cycle
checkpoints, clinical trials to date have yielded only
modest results. Tumour cells frequently activate
compensatory signalling pathways to overcome the
inhibition of a single CHK. For instance, ATR or
WEEI inhibition may lead to the upregulation of
CHKI1 or mTOR signalling, sustaining cell cycle
progression and DNA repair despite therapeutic
pressure. This functional redundancy diminishes
the efficacy of monotherapy and suggests that com-
bination strategies targeting multiple partners
within the DDR network may be required.
Furthermore, ATR, WEE1 and other inhibitors
have been associated with considerable toxicities,
particularly haematological (such as neutropenia
and thrombocytopenia) and gastrointestinal side
effects. These toxicities often necessitate dose
reductions, treatment interruptions or discontinua-
tions, limiting the delivery of optimal therapeutic
intensity and negatively impacting clinical efficacy.
To maximise clinical benefit, the identification and
validation of robust predictive biomarkers that
reflect tumour dependence on specific DDR path-
ways (like CCNEI e.g.) is imperative.

CHK1/2 inhibitors
Checkpoint kinases play a pivotal role in cell cycle
regulation by activating the G2/M and S-phase
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checkpoints. Upon DNA damage, CHK1/2 delay
cell cycle progression, allowing time for DNA
repair. Similar to WEEI inhibitors, CHK1/2
inhibitors bypass this protective mechanism, forc-
ing damaged cells to enter mitosis prematurely,
ultimately leading to mitotic catastrophe and sub-
sequent cell death.

CHK1/2 inhibitors are of particular interest when
used in combination with DNA-damaging thera-
pies such as chemotherapy or radiotherapy. By
impairing the cell’s ability to repair DNA, these
inhibitors potentiate the cytotoxic effects of such
treatments. Additionally, SL. can be achieved in
tumours with deficiencies in ATM, ATR or p53
pathways.

Several CHKI inhibitors have been evaluated in
clinical trials, yielding variable results. AZD7762
was, initially tested as monotherapy and later in
combination with gemcitabine, but its develop-
ment was discontinued due to cardiotoxicity.!3®
Prexasertib, another CHKI1 inhibitor, was studied
in patients with platinum-resistant or-refractory
ovarian cancer, showing modest ORRs (6.1%—
12.1%) across different cohorts.!¥ A monocentric
proof-of-concept study in patients with BRCA
wild-type HGSOC mutations reported a partial
response rate of 33%.141 SRA737, another CHK1
inhibitor, was evaluated in a phase I/II trial,
establishing a maximum tolerated dose of 1000 mg
and a recommended dose of 800mg.'*2 The
oral CHKI1 inhibitor GDC-0575 failed to demon-
strate clinical activity when administered as
monotherapy.143

While CHK1 inhibitors show therapeutic prom-
ise, their clinical development has been hampered
by toxicity concerns and limited efficacy as single
agents.

Discussion

SL offers a significant therapeutic advantage by
enabling targeted treatment, particularly in cases
of somatic mutations acquired within the tumour,
without affecting healthy cells. Moreover, this
approach allows targeting of loss-of-function
mutations, particularly in tumour suppressor
genes. By coupling mutation in these genes with
the inhibition of a complementary gene, the
resulting accumulation of mutations induces
tumour cell apoptosis. This strategy neutralizes
the advantage conferred by the loss-of-function

mutation, turning the tumour cell’s weakness into
a therapeutic opportunity.

Tumour sequencing is necessary to identify poten-
tial targets for SL. For example, mutations in BER
genes, less studied in gynaecological tumours,
could also be exploited for SL.. The TCGA data
analysis of breast, colon and uterine cancers
revealed that PD-L1 expression is negatively cor-
related with the expression of BER genes (such as
NTHI1, XRCC1, POLB, LIG3). Alterations in
this repair pathway may predict the effectiveness
of anti-PD-1/PD-L1 immunotherapy.!4

The use of PARPis in HRD-positive cancers rep-
resents one of the most significant success stories
in the field of SL. However, SL has shown more
limited anti-tumour effects for other types of
mutations. Emerging techniques evaluating
genetic perturbation, such as CRISPR-Cas9 and
RNA interference, along with high-throughput
screening, have identified numerous synthetic
lethal effects driven by genetic interactions, gen-
erally between a tumour driver gene and a target
gene. 10,145,146 This approach remains reductionist,
focusing on binary interactions, whereas genetic
interactions in cancer are often polygenic and
involve multiple genes.

SL can also exhibit incomplete penetrance within
tumours, partly due to intratumoural clonality. In
many cases, certain tumour clones harbor the
mutation that renders them vulnerable to SL strat-
egies, while other do not, thereby limiting overall
treatment efficacy. Furthermore, the influence of
the tumour microenvironment, such as the pres-
ence of oncogenic viruses (e.g. HPV) or the local
microbiome, can affect cellular responses to inhibi-
tors targeting survival pathways, adding further
heterogeneity. Indeed, although lethal effects have
been identified, validation in different preclinical
models is not always reproducible, suggesting that
the presence of a mutation alone may not be suffi-
cient to induce lethality. Tumour cells carrying
similar mutations may respond differently depend-
ing on the tumour model and microenvironment.
Additionally, the specific type of mutation also
influences treatment response: for example, mis-
sense mutations, which result in a single amino
acid substitution in the protein, can have different
biological effects from truncating mutations that
prematurely halt protein production. This diver-
sity in mutations types (including point mutations,
nonsense mutations and frameshifts) can influence
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the efficacy of SL-based treatments.!32 SL is based
on the principle of pharmacologically inhibiting a
partner gene of a loss-of-function mutation,
thereby conferring a high degree of specificity in
killing mutant while sparing normal cells. However,
significant toxicities are frequently observed in
clinical practice. These adverse effects predomi-
nantly impact rapidly proliferating tissues, such as
the bone marrow and gastrointestinal mucosa,
whose cells require efficient DNA repair mecha-
nisms to resolve the physiological stress occurring
during DNA replication. Although these normal
cells do not carry the targeted mutations, sustained
inhibition of key DDR effectors such as PARP,
WEEI1 or ATR impairs their repair capacity, lead-
ing to cytotoxicity. SL should not be considered a
strictly binary phenomenon but rather a spectrum
of cellular sensitivity, where non-mutated cells
may still partially depend on the inhibited path-
ways. Furthermore, the inherent plasticity of cel-
lular signalling networks and the activation of
compensatory pathways can contribute both to
therapeutic resistance in mutant tumour cells and
to sensitivity in normal cells.

In conclusion, while the concept of SL remains a
convincing and theoretically powerful approach
in oncology, its clinical application requires in-
depth research incorporating the tumour’s poly-
genic profile, the tumor microenvironment and
the type of mutation.

Conclusion

In this review article, we have provided an over-
view of the most frequently observed loss-of-
function mutations (HRD, TP53, ARIDI1A and
PTEN) and gene amplifications (CCNEI1) in
ovarian and endometrial cancers, with particu-
lar emphasis on their biological roles in normal
cells. These genetic alterations play a central
role in tumour progression and represent key
targets for SL-based strategies. Tumour cells
acquire such mutations and develop diverse
escape mechanisms, exploiting cellular pro-
cesses to support their survival. For example,
defects in DNA repair pathways enable tumour
cells to sustain rapid proliferation and increase
resistance to conventional treatments. Similarly,
mutations in cell cycle proteins such as p53 ena-
ble the cell to bypass checkpoints and thereby
ensure its survival. These mutations provide a
selective advantage to tumour cells by activating
compensatory pathways that support tumour
viability.
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