
Short Paper: Oops. . . I Did It Again. I Reused my
Nonce.

Vincent Jacquot[0009−0007−8026−5277], Benoit Donnet[0000−0002−0651−3398]⋆

Université de Liège, Montefiore Institute, Liège, Belgium

Abstract. The Elliptic Curve Digital Signature Algorithm (ecdsa) is
widely used by cryptocurrencies to authenticate transactions through sig-
nature. Signing with ecdsa involve the generation of a nonce, a number
that must be used only once and randomly regenerated between each sig-
nature. This is particularly important as it has been demonstrated that
reusing the nonce between signatures allows attackers to recover private
keys and, ultimately, steal funds.
This paper presents a large-scale analysis of ecdsa signatures across
several blockchains, identifying numerous cases of nonce reuse within
blockchains (within-reuse) but also between different blockchains (cross-
reuse), leading to a larger attack surface. Our approach combines crypto-
graphic techniques for private key recovery, the deployment of honeypots
to collect ground-truth evidence, and the analysis of real-world incidents
to better understand the scope of the problem. Notably, we recovered
3,620 private keys across several blockchains, revealing both cross-reuse.
Our analysis estimates the potential financial loss could reach up to 101
million EUR.

1 Introduction

Many of the most popular cryptocurrencies use the Elliptic Curve Digital
Signature Algorithm (ecdsa) [1], an asymmetric cryptographic algorithm, to
generate digital signatures. ecdsa requires the secure generation of nonces: ran-
dom values that must be used only once. Reusing a nonce can allow an adversary
to recover the associated private key, leading to potential theft of funds. The vul-
nerabilities were already studied in previous papers [2–6].

This paper investigates real-world vulnerabilities arising from nonce reuse
across six cryptocurrencies. We systematically analyzed their complete transac-
tion history to evaluate the security impact of reused nonces. To conduct this
study, we deployed honeypots, which involve depositing funds into cryptocur-
rency addresses that have reused nonces, to obtain ground-truth evidence and
analyzed empirical cases of nonce reuse.

Compared to prior work, this paper introduces the following novel contribu-
tions: (i) it presents the first systematic study of ecdsa nonce reuse on Bitcoin
⋆ This work is supported by the CyberExcellence project funded by the Walloon Re-

gion, under number 2110186. The authors also extend our thanks to TRM Labs for
providing access to raw blockchain data.



2 Vincent Jacquot, Benoit Donnet

Cash, Litecoin, Dogecoin, and Dash; (ii) it shows that nonce reuse can occur
within a single blockchain (within-reuse), but also across several (cross-reuse);
(iii) it provides the first confirmation that attackers are actively exploiting nonce
reuse vulnerabilities on both Ethereum and Bitcoin; Finally, we publicy release
the tool we have developed and employed to derive the private keys from a
dataset of signatures (github.com).

Moreover, in line with prior work, our contributions also include (iv) esti-
mating the financial impact of attacks enabled by nonce reuse, with a potential
loss of €101 million; (v) analyzing attackers’ behavior and presenting signs of
their activity across the full transaction history of Bitcoin and Ethereum; and
(vi) discussing potential mitigation strategies to prevent similar vulnerabilities
going forward.

2 Related work

The risk of reusing a nonce with the same private key is well known, in
particular on Bitcoin [2–6].

Bos et al. [2] ran an analysis on a 2013 Bitcoin blockchain snapshot (up to
block number 252,450). They managed to recover 158 private keys. They were
able to identify three keys belonging to Bitcoincard and several Blockchain-
.info accounts.

Moreover, Brengel and Rossow [3] extended the attack by including nonce
reuse across distinct private keys, modelling signatures in a bipartite graph to
detect vulnerable private keys. This is the technique adopted in this paper. They
ran the attack on a snapshot of Bitcoin (up to block 506,071) and managed
to recover 2,537 private keys. They also provided a calibrated estimate of the
potential financial loss from these attacks (up to 412.80B).Particular nonces such
as the most frequent one which appears 2 million times or special values which
were likely chosen manually by humans were discussed. Finally, they performed
a similar temporal analysis as we do, observing five spikes between February
2013 and September 2015 that align in both time and magnitude with those
highlighted in our paper.

Breitner and Heninger [4] focused on the vulnerability introduced by the use
of weak nonces. They used a lattice-based approach to recover private keys, which
is not considered in this work. They performed their analysis on a 2018 snapshot
of Bitcoin (up to block 541,244) and Ethereum (up to block 6,346,730). They
also analysed a portion of the Ripple blockchain. As a side effect of their work,
they recovered 1,296 Bitcoin, three Ethereum, and one Ripple private keys from
repeated nonces, in addition to the private keys their lattice-based approach can
extract but ours cannot.

Macchetti [6] introduced a nonce-related attack that exploits algebraic re-
currence relations in certain nonce-generation procedures, allowing key recovery
from only a few signatures. Their results intersect with ours since a repeated
nonce corresponds to the simplest recurrence relation covered by their frame-

https://github.com/jack695/ECDSA-Cracker


Short Paper: Oops. . . I Did It Again. I Reused my Nonce. 3

work. However, their method appears unable to recover more private keys than
the approach used in this paper.

3 Background

The Bitcoin (Btc) is a protocol whose history starts in 2008 [7] and defines
the first decentralized digital currency, the bitcoin (B). This innovation paved the
way for many other cryptocurrencies, such as the Ethereum project [8], which
also allows for the exchange of another cryptocurrency called ether (ETH).

Many cryptocurrencies’ codebases are forks of Bitcoin: Litecoin (Ltc) [9],
Dogecoin (Doge) [10], Dash (Dash) [11], and BitcoinCash (Bch) [12]. In the
following, we will refer to Bitcoin and its forks collectively as Bitcoin et al.

Bitcoin et al. and Ethereum rely on ecdsa over the SECP256k1 curve [13,14]
to authenticate messages such as financial transactions. The curve is defined by
several parameters, such as the generator point G and the order n of G.

To sign a message with ecdsa, end-users generate a random integer, dA,
which serves as the private key. The public key QA can then be derived math-
ematically from this private key. Note that this process is a one-way function;
it is not possible to retrieve dA from QA. Then, the private key can be used to
sign any number of messages [15] as follows:

Step 1 : Compute the digest e of the message m as e = HASH(m), where
HASH is a cryptographic hash function.

Step 2 : Let z be the Ln leftmost bits of e, where Ln is the bit length of the
group order n.

Step 3 : Select a cryptographically secure random integer k ∈ [1, n − 1], the
nonce.

Step 4 : Calculate the curve point (x1, y1) = kG.
Step 5 : Calculate r = x1 mod n. If r = 0, go back to Step 3.
Step 6 : Calculate s = k−1(z + rdA) mod n. If s = 0, go back to Step 3.
Step 7 : The signature is the pair (r, s). And (r,−s mod n) is also a valid sig-

nature.

Finally, blockchains employ the concept of cryptocurrency address: a unique
alphanumeric string that represents a destination for sending or receiving cryp-
tocurrency. Address generation schemes typically rely on the owner’s public key.
On Ethereum, each public key maps to a single address, whereas on Bitcoin
et al., a single public key can generate multiple distinct addresses. Note that
Ethereum enables the deployment of semi-autonomous pieces of code known as
smart contracts. Those smart contracts are also identified by an address, but
their behavior is totally predefined by their code.

4 Data Collection

We formalize a transcript as a tuple (r, s, pk, z, ts), where r and s together
represent the signature, pk is the public key, z is the message digest, and ts is the



4 Vincent Jacquot, Benoit Donnet

timestamp of the signature. We extracted signatures from six blockchains: Btc,
Bch, Doge, Ltc, Dash, Eth. This dataset spans the entire lifetime of these
blockchains up to June 30th, 2024. The exact blockchain heights considered in
this work are listed in the long version of the paper [16].

Our industrial partner, TRM Labs, provided us with access to raw blockchain
data, such as transactions for Bitcoin et al. Since the mechanism for verifying
signatures is well-documented and standardized [17–19], extracting r, s, pk from
raw transactions is straightforward. However, producing the transaction digest
is more complex [20, 21]. For this, we rely on a Python implementation [22]
to generate Bitcoin transaction digests and adapted this software to generate
digests on Bitcoin-like blockchains.

For Ethereum, we extracted signatures thanks to an archive node running
Lighthouse [23] and Erigon [24]. First, we extracted all signatures used to au-
thenticate the transactions. Every execution client must implement the same
JSON-RPC specification, which allows for the retrieval of the r, s values, and
the sender’s address for any transaction [25]. We relied on another library,
eth-account [26], to compute the message digest from the raw transaction data.

Finally, it is possible to retrieve the public key pk from the message digest
and the signature [15]. For SECP256k1 [27], public key recovery can yield up
to four possible public keys. Since an Ethereum address is formed of the last 20
bytes of the public key hash, we can accurately identify the correct public key.

Ethereum provides a precompiled contract at address 0x01 that performs
signature verification. On-chain signatures are sent as transaction parameters to
this contract and constitute our second source of Ethereum signatures.

5 Attack

5.1 Single-Key Nonce Reuse

With ecdsa, using the same nonce to produce two signatures with the same
private key allows anyone to retrieve the private key. From Step 4 and Step 5,
it is clear that both signatures will share the same first half of the signature,
i.e., r. Let s1 and s2 be the respective second part of both signatures, we obtain
a system of two linearly independent equations with two unknowns: the shared
nonce k and the private key dA. Thus, the system is uniquely solvable, and the
private key can be retrieved as follows:

{
s1 = k−1(z1 + rdA) mod n

s2 = k−1(z2 + rdA) mod n
⇔

{
k = (s1 − s2)

−1(z1 − z2) mod n

dA = r−1(s1 · k − z1) mod n

As stated in Step 6, for every signature (r, s), (r, −s) is also a valid signature.
Hence, the user may have published −s1 and/or −s2 instead of s1 and s2. To
address this issue, we can simply brute-force all possibilities, four in this case,
until the expected private key is recovered.



Short Paper: Oops. . . I Did It Again. I Reused my Nonce. 5

5.2 Multiple Keys Nonce Reuse

Instead of focusing on nonces reused by the same key, private keys can also
be recovered when nonces are reused across distinct private keys. For example,
consider two private keys d1 and d2 used with two nonces k1 and k2. The resulting
system of four linearly independent equations in the four unknowns (k1, k2, d1,
d2) is uniquely solvable.

s1 = k−1
1 (z1 + r1d1) mod n

s2 = k−1
2 (z2 + r2d1) mod n

s3 = k−1
1 (z3 + r1d2) mod n

s4 = k−1
2 (z4 + r2d2) mod n

(1)

Moreover, this principle can be extended. To identify such solvable systems
of equations, one can rely on graph theory as originally framed by Brengel and
Rossow [3]. One can build a bipartite graph G = (Vpk ∪ Vr, E), where Vpk is the
set of public keys and Vr the set of r values. An edge exists between a public
key node and a r node if there exists a signature for this public key pk and r
value. This representation directly exposes repeated nonce usage across multiple
private keys. Any non-trivial cycle of 2·n edges (i.e. signatures) translates into 2·n
linearly independent equations involving n private keys and n nonces, yielding
2 · n unknowns.

5.3 Methodology

From the set of signatures, our tool selects a subset composed of signatures
whose r values were used more than once. Then, it builds a bipartite graph from
these signatures.

It first recovers private keys that were used to sign multiple messages with
the same nonce, as described in Sec. 5.1. Then, the tool constructs systems of
linear equations from signatures that form cycles, as described in Sec. 5.2.

Finally, the attack can be extended further as described by Brengel and
Rossow [3]. From the set of recovered nonces, it is possible to detect all signatures
that used one of the recovered nonce, as r is derived from the nonce (see Step 3
and Step 4 in Sec. 3), and to recover the private key. The same applies for the set
of recovered private keys. We can generate the corresponding public keys from
this set, fetch the corresponding signatures, and recover the nonces. This final
step is repeated until no new private key and nonce is recovered.

6 Results

We initially applied our methodology separately to each blockchain. The
number of private keys recovered for each is also shown in Table 1. Interestingly,
the total number of distinct recovered private keys is not 3, 608 as expected but
3, 605. This discrepancy arises from three private keys being used across multiple
blockchains.



6 Vincent Jacquot, Benoit Donnet

Table 1: Results of the attack applied separately on every chain (within-reuse).
Reused nonce data Attacks

Sig. ’r’ PubKey PrivKey Nonces
Btc 2.50M 2441 5372 3,278 1696
Eth 21.3k 461 20.9k 119 102
Bch 141 7 8 6 6
Ltc 26 7 15 9 5
Doge 578 268 332 195 200
Dash 11 2 3 1 1
Total 2.90M 3174 26.6k 3,605 2002

Applying the attack on the combined set of signatures from all blockchains
allows us to recover 3, 620 private keys (cross-reuse). This indicates the presence
of nonces being reused across multiple blockchains. At their peak, slightly less
than 2, 000ecould have been stolen from the additional 15 private keys. Running
the attack on all blockchains at once also allows us to crack five keys earlier than
would have been possible with the attack being run on a per chain basis. For
three of them, the key could be cracked 41 days earlier, and for the other two,
around 20 minutes earlier.

6.1 Financial Loss Estimation

An important aspect is evaluating the potential of these attacks. All amounts
in euros are based on cryptocurrency prices as of November 25th, 2024 through-
out the paper. Fig. 1 illustrates the cumulative amount of vulnerable money over
time. First, we observe nine occurrences over time where more than a million
euros in cryptocurrencies could have been stolen. Most of these occurrences hap-
pened between 2014 and early 2016, with vulnerable Bitcoin keys being the main
contributors. At its peak in December 2014, cryptocurrencies worth e25M could
have been stolen. For the last two occurrences, in October 2022 and February
2023, vulnerable keys could have been exploited to steal e11.2M and e1.2M, re-
spectively, with most of these amounts originating from Ethereum. Notably, the
vulnerable addresses held cryptocurrencies worth e101M at their peak balances.
The vast majority of the funds originate from Btc and Eth.

From Fig. 2, we can observe that 67.25% of the vulnerable addresses held
cryptocurrencies worth less than a hundred euros. We observe the presence of
addresses with large balances (more than e1M) that remained vulnerable for
extended periods (more than 24 hours). This set includes two Ethereum ad-
dresses that were active in 2022 and 2023, and three Bitcoin addresses with
peak balances in 2013, 2014, and early 2016.

6.2 Confirming Attackers Activity

Since the true owners of addresses are generally unknown and users can
generate an unlimited number of addresses, a transfer from a vulnerable address



Short Paper: Oops. . . I Did It Again. I Reused my Nonce. 7

2012 2014 2016 2018 2020 2022 2024
Time

10−2

100

102

104

106

V
u

ln
e
ra

b
le

v
a
lu

e
in

E
U

R

B
C

H
F

or
k

dash

ltc

doge

bch

eth btc

Fig. 1: Vulnerable value over
time.

[0s,1min[

[1min,1h[
[1h,1d[

[1d,30d[

[30d,365d[

[365d,...[

Duration Until Address Emptied

[0,1[

[1, 102(

[102, 104[

[104, 106[

[106, ...[

P
e
a
k

V
u

ln
e
ra

b
le

A
m

o
u

n
t

E
U

R

0.05 2.46 1.78 1.44 0.21 0.02

39.06 3.47 6.19 17.84 0.61 0.08

0.16 0.88 3.15 17.97 0.29 0.03

0.00 0.37 1.56 2.17 0.06 0.00

0.00 0.00 0.08 0.05 0.03 0.00

10−1

100

101

p
er

ce
nt

ag
e

Fig. 2: Distribution of ad-
dress balances and vulnera-
bility duration.

does not necessarily indicate an attack. In this section, we focus on demonstrating
that attackers are actively scanning Btc and Eth by deploying and monitoring
honeypots. We deployed two types of honeypots: sknr (Single-Key Nonce Reuse)
and mknr (Multiple Key Nonce Reuse) which respectively test the presence of
attacks described in Sec. 5.1 and 5.2 on April 28th, 2025. All vulnerable addresses
were funded with between 3 and 5 USD worth of cryptocurrency at that time.

sknr honeypots consist of two funded addresses: the first address’s private
key uses the same nonce twice, and the second address’s private key uses that
nonce one. Hence, both keys are vulnerable. We also deployed a special honeypot
where the same private key was used twice with the same nonce to produce one
signature on Eth and one signature on Btc. This allows us to detect attackers
monitoring multiple chains. mknr honeypots involve three private keys and two
nonces. The first two keys use every nonce exactly once, forming a solvable
system of equations. The third private key uses the first nonce as well.

Finally, we also monitored the Btc mempool (the space where unconfirmed
transactions reside before being included into the blockchain) with the Bitcoin
Core RPC API. This method provides a convenient way to observe concurrent
transactions from different attackers attempting to withdraw funds from the
same honeypot.

Btc: We observed transactions in the mempool targeting our sknr honey-
pots at the second the addresses became vulnerable. However, only the addresses
which directly reused the same nonce were attacked. This suggests that some ac-
tors run automated attacks on Btc but limited to recovering a private key that
reuse the same nonce. Finally, on the May 11th 2025, another attack siphoned
all remaining untouched Btc addresses. Interestingly, we observed two distinct
attempts to spend funds from a honeypot, suggesting that multiple attackers
might be competing with each other. No transaction shows any sign of boosted
fees.

However, these observations seem to conflict with the continued presence of
vulnerable bitcoins, as illustrated in Fig. 1. As previously discussed, Btc sup-
ports multiple address formats, and most of the currently vulnerable funds are
stored at an address using an uncommon format. Due to the nature of cryp-
tocurrencies, it is not possible to contact the owners of the vulnerable addresses.



8 Vincent Jacquot, Benoit Donnet

This may reinforce the intuition that attackers are often disorganized and lack
a systematic approach.

Eth: Every vulnerable address was siphoned, suggesting that attackers are
more methodical. We also observed that it took approximately three hours for
the honeypot to be attacked and the funds transferred to the same address. The
transactions’ fees are not outliers compared to other transactions in the same
block; however, transactions use the legacy version type.

Btc & Eth: As of December 2025, none of the vulnerable addresses were
attacked, hence we can assume that no attackers were monitoring for cross-chain
nonce reuse during this period of time across Btc and Eth.

6.3 Evolution of Attacker Activity

Bitcoin et al. We are also interested in determining whether attackers are
consistently monitoring for vulnerabilities. Bitcoin et al. provide a perfect play-
ground to answer this question. We focused on addresses vulnerable due to single-
key nonce reuse, as it appears that attackers might not be employing more ad-
vanced attacks, as discussed in the previous subsection. For every money deposit
made after the address became vulnerable, we measured the time it took for the
funds to be transferred to another address. Fig. 3 presents the average time per
quarter.

First of all, it appears that Btc and Bch experienced periods during which
vulnerable deposits were systematically transferred to other addresses, though
this does not seem to be the consistent trend over time. The earliest period dates
back to the fourth quarter of 2015 for Btc. While we lack definitive proof that
these transactions were attacks, this may suggest that attackers carry out such
actions sporadically rather than consistently. For the other three blockchains,
we have fewer data points, but the available evidence suggests that these chains
might not currently be the targets of attacks. This might be explained by their
lower popularity and value.

btc bch doge ltc dash

20
11

-Q2

20
12

-Q2

20
12

-Q4

20
13

-Q2

20
13

-Q4

20
14

-Q2

20
14

-Q4

20
15

-Q2

20
15

-Q4

20
16

-Q2

20
16

-Q4

20
17

-Q2

20
17

-Q4

20
18

-Q2

20
18

-Q4

20
19

-Q2

20
19

-Q4

20
20

-Q2

20
20

-Q4

20
21

-Q2

20
21

-Q4

20
22

-Q2

20
22

-Q4

20
23

-Q2

20
23

-Q4

20
24

-Q2

20
24

-Q4
0

50

100

500

1K

5K

10K

50K

100K

500K

1M

5M

10M

50M

V
u

ln
e

ra
b

le
 e

n
d

p
o

in
t:

 t
im

e
 t

o
 t

ra
n

s
fe

r 
(s

.)

Fig. 3: Average time in seconds until a
vulnerable deposit is transferred.

2017
2018
2019
2020
2021

2022
2023
2024
2025

Vulnerable address
Withdrawing address
Mixed C

B

F

E

D

A

C

B

F

E

D

A

Fig. 4: Interaction between vulnerable
and withdrawing addresses on Eth.

Eth As the transaction model differs totally from the other chains, we took
another approach. We listed all addresses which withdrew funds from vulnerable



Short Paper: Oops. . . I Did It Again. I Reused my Nonce. 9

addresses after they became vulnerable. We exclude from this list the addresses
which received funds from vulnerable addresses before their vulnerability and
the addresses which send funds to those vulnerable addresses. This allowed us
to build the graph in Fig. 4. Each node represents an address (categorized as
vulnerable, withdrawing, or mixed), and an edge is drawn when a fund transfer
occurs between two addresses. We have investigated in detail the history of five
addresses labeled A, B, and E.

A & B: Both addresses are publicly listed on websites that catalog
known vulnerable keys1. Remarkably, these two addresses continue to receive
funds, which are typically withdrawn shortly afterward. Furthermore, although
the addresses were already vulnerable as early as September 2017, suspicious
withdrawals only began approximately two months later.

E: This address first interacted with and withdrew funds from another
vulnerable address in August 2022. In October 2022, E itself became vulnerable.
Thirteen hours later, a suspicious transfer of 62 ether occurred. The withdrawing
address forwarded the funds to the well-known mixer, TornadoCash. Later in
October, a second withdrawing address stole 2 ether just 5 hours after it was
deposited. In November, two more deposits of 6 and then 350 ether were claimed
by yet another address, only 12 seconds after being made. This sequence of events
strongly suggests that address E was indeed the victim of an attack in 2022.

Based on this sample of analyzed addresses, withdrawals from vulnerable
Eth addresses date back as early as 2017, and we have strong evidence that at
least one attack occurred in 2022. This hypothesis is further supported by the
existence of a blog post already reporting such attacks in December 2021 [28].

7 Mitigation

Repeated nonces likely occur for three reasons. First, the most frequently
used nonce, which accounts for 2.48M BTC transactions, generates a r of 21
bytes. As users pay their fee per byte, this special nonce allows them to de-
crease the transaction cost on Bitcoin et al. chains. The second most used nonce
generates a 30-byte r. The financial argument becomes clear when consider-
ing the nature of UTXO blockchains. Second, improperly implemented software
might be responsible. Two known examples are the Android bug in 2013 [29],
or the bug in a JavaScript client’s random number generator not being seeded
correctly [30]. Finally, we have noticed nonces that might have been manually
chosen by humans, e.g., 123456, 12345678, 0x01010...10101.

RFC 6979 [31] defines a deterministic nonce generation procedure that com-
pletely eliminates the need for a pseudo-random number generator. If this pro-
cess were systematically used, repeated nonces would not occur, and the attack
described in this paper would not be applicable.

A core reason these issues arise today is the lack of education on the topic. We
aim to raise developer awareness of such issues. As a concrete action, we have
1 Examples: https://privatekeys.directory/keys?page=1&coin=eth and https://
ethkey.net/

https://privatekeys.directory/keys?page=1&coin=eth
https://ethkey.net/
https://ethkey.net/


10 Vincent Jacquot, Benoit Donnet

developed two CTF levels for Ethernaut2, a popular online Ethereum smart
contract CTF challenge. Both levels highlight common vulnerabilties related to
ecdsa, with one specifically focuses on repeated nonces. Moreover, publishing
our tool to derive private keys from a dataset of signatures may assist companies.

8 Conclusion

Our analysis is the first to examine nonce reuse across the entire Eth, Doge,
Dash, Ltc, and Bch blockchains. This study, which also includes Btc, is the
first to investigate nonce reuse across multiple chains. It highlights that ecdsa
nonce reuse remains a significant threat. In total, over 101M EUR in cryptocur-
rencies could have been stolen.

Through the use of honeypots, we have confirmed that attackers are actively
targeting Btc and Eth as of April 2025. There are indications that these attacks
are not carried out consistently, neither in terms of exploiting their full potential
nor in their continuity over time. The earliest evidence of such activity for Btc
and Eth dates back to 2015 and 2022, respectively.

Our investigation suggests that different actors may be involved. For Btc, we
observe signs of automation, though the automated attacks appear suboptimal.
Furthermore, we have gathered evidence that multiple actors are competing
against each other. In contrast, the actor observed on Eth exhibited a more
methodical approach, though the delayed response suggests that the attack is not
fully automated. Additionally, our honeypot which requires attackers to monitor
repeated nonces on Btc and Eth, demonstrates that attackers tend to focus
on one blockchain at a time. Our findings also show that monitoring multiple
blockchains would enable attackers to retrieve keys ahead of their competitors,
ultimately allowing them to access more private keys.

We also present evidence that Doge, Dash, and Ltc are likely not under
active scrutiny by attackers, possibly due to their lower value or popularity.

By shedding light on these issues, we hope this study will serve as a wake-
up call for blockchain users and wallet developers. Without stronger safeguards,
these vulnerabilities could continue to undermine trust in decentralized financial
systems.

Ethical Considerations

Honeypots were deployed specifically to study malicious behavior, not to
deceive or harm regular users. To verify our findings, we derived the private keys
of vulnerable addresses. These keys were never shared with any third party, nor
were they used to withdraw funds from those addresses.

2 Refer to CTF levels 35 and 37 available at https://ethernaut.openzeppelin.com

https://ethernaut.openzeppelin.com


Short Paper: Oops. . . I Did It Again. I Reused my Nonce. 11

References

1. D. Johnson, A. Menezes, and S. Vanstone, “The elliptic curve digital signature
algorithm (ECDSA),” International Journal of Information Security (IJIS), vol. 1,
no. 1, pp. 36–63, August 2001.

2. J. W. Bos, J. A. Halderman, N. Heninger, J. Moore, M. Naehrig, and E. Wustrow,
“Elliptic curve cryptography in practice,” in Proc. Financial Cryptography and Data
Security (FC), March 2014.

3. M. Brengel and C. Rossow, “Identifying key leakage of bitcoin users,” in Proc.
Research in Attacks, Intrusions, and Defenses (RAID), September 2018.

4. J. Breitner and N. Heninger, “Biased nonce sense: Lattice attacks against weak
ECDSA signatures in cryptocurrencies,” in Proc. Financial Cryptography and Data
Security (FC), September 2019.

5. J. Ko and J. Kwak, “Private key recovery on bitcoin with duplicated signatures,”
KSII Transactions on Internet and Information Systems, vol. 14, no. 3, pp. 1280–
1300, March 2020.

6. M. Macchetti, “A novel related nonce attack for ECDSA,” March 2023. [Online].
Available: https://eprint.iacr.org/2023/305.pdf

7. S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” October 2008.
[Online]. Available: http://www.bitcoin.org/bitcoin.pdf

8. V. Buterin, “Ethereum: A next-generation smart contract
and decentralized application platform.” December 2014. [Online].
Available: https://ethereum.org/content/whitepaper/whitepaper-pdf/Ethereum_
Whitepaper_-_Buterin_2014.pdf

9. “Litecoin github repository.” [Online]. Available: https://github.com/
litecoin-project/litecoin

10. “Dogecoin github repository.” [Online]. Available: https://github.com/dogecoin/
dogecoin

11. “Dash github repository.” [Online]. Available: https://github.com/dashpay/dash
12. “Bitcoincash github repository.” [Online]. Available: https://gitlab.com/

bitcoin-cash-node/bitcoin-cash-node
13. V. Buterin, “Ethereum: A secure decentralised generalised transaction ledger,”

April 2014. [Online]. Available: https://ethereum.github.io/yellowpaper/paper.pdf
14. “Bitcoin github repository.” [Online]. Available: https://github.com/bitcoin/

bitcoin
15. Standards for Efficient Cryptography Group, “Sec 1: Elliptic curve cryptography,”

May 2009. [Online]. Available: https://www.secg.org/sec1-v2.pdf
16. V. Jacquot and B. Donnet, “Oops!. . . i did it again. i reused my nonce.” December

2025. [Online]. Available: https://eprint.iacr.org/TODO
17. Bitcoin Community, “Script,” [Last Accessed: October 30th, 2024]. [Online].

Available: https://en.bitcoin.it/wiki/Script
18. G. Andresen, “Pay to script hash,” Bitcoin, BIP 16, January 2012. [Online].

Available: https://github.com/bitcoin/bips/blob/master/bip-0016.mediawiki
19. E. Lombrozo, J. Lau, and P. Wuille, “Segregated witness (consensus layer),”

Bitcoin, BIP 141, December 2015. [Online]. Available: https://github.com/
bitcoin/bips/blob/master/bip-0141.mediawiki

20. Bitcoin Community, “Op checksig,” [Last Accessed: October 30th, 2024]. [Online].
Available: https://en.bitcoin.it/wiki/OP_CHECKSIG

21. J. Lau and P. Wuille, “Transaction signature verification for version 0
witness program,” Bitcoin, BIP 143, December 2015. [Online]. Available:
https://github.com/bitcoin/bips/blob/master/bip-0143.mediawiki

https://eprint.iacr.org/2023/305.pdf
http://www.bitcoin.org/bitcoin.pdf
https://ethereum.org/content/whitepaper/whitepaper-pdf/Ethereum_Whitepaper_-_Buterin_2014.pdf
https://ethereum.org/content/whitepaper/whitepaper-pdf/Ethereum_Whitepaper_-_Buterin_2014.pdf
https://github.com/litecoin-project/litecoin
https://github.com/litecoin-project/litecoin
https://github.com/dogecoin/dogecoin
https://github.com/dogecoin/dogecoin
https://github.com/dashpay/dash
https://gitlab.com/bitcoin-cash-node/bitcoin-cash-node
https://gitlab.com/bitcoin-cash-node/bitcoin-cash-node
https://ethereum.github.io/yellowpaper/paper.pdf
https://github.com/bitcoin/bitcoin
https://github.com/bitcoin/bitcoin
https://www.secg.org/sec1-v2.pdf
https://eprint.iacr.org/TODO
https://en.bitcoin.it/wiki/Script
https://github.com/bitcoin/bips/blob/master/bip-0016.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0141.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0141.mediawiki
https://en.bitcoin.it/wiki/OP_CHECKSIG
https://github.com/bitcoin/bips/blob/master/bip-0143.mediawiki


12 Vincent Jacquot, Benoit Donnet

22. “python-bitcoinlib.” [Online]. Available: https://pypi.org/project/
python-bitcoinlib/

23. Sigma Prime, “Solutions for a secure & decentralized world,” [Last Accessed: April
3rd, 2025]. [Online]. Available: https://lighthouse-blog.sigmaprime.io

24. Erigon, “Beyond software frontiers. empowering industries with trustless,
decentralized software innovations,” [Last Accessed: April 3rd, 2025]. [Online].
Available: https://erigon.tech

25. @MaryNfs, “Json-rpc api,” [Last Accessed: October 30th, 2024]. [On-
line]. Available: https://ethereum.org/en/developers/docs/apis/json-rpc/#eth_
gettransactionbyhash

26. “eth-account.” [Online]. Available: https://github.com/ethereum/eth-account/
tree/main

27. D. Brown, “SEC 2: Recommended elliptic curve domain parameters,” Certicom
Research, Standards for Efficient Cryptography 2.0, January 2010.

28. R. Miller, “A glimpse of the deep: Finding a creature in ethereum’s dark
forest,” December 2021, [Last Accessed: April 29th, 2025]. [Online]. Available:
https://bertcmiller.com/glimpse.html

29. “Cve-2013-7372 detail,” [Last Accessed: May 20, 2025]. [Online]. Available:
https://nvd.nist.gov/vuln/detail/cve-2013-7372

30. D. Gilson, “Blockchain.info issues refunds to bitcoin theft victims,” [Last Accessed:
May 20, 2025]. [Online]. Available: https://www.coindesk.com/markets/2013/08/
21/blockchaininfo-issues-refunds-to-bitcoin-theft-victims

31. T. Pornin, “Deterministic usage of the digital signature algorithm (DSA) and ellip-
tic curve digital signature algorithm (ECDSA),” Internet Engineering Task Force,
RFC 6979, August 2013.

https://pypi.org/project/python-bitcoinlib/
https://pypi.org/project/python-bitcoinlib/
https://lighthouse-blog.sigmaprime.io
https://erigon.tech
https://ethereum.org/en/developers/docs/apis/json-rpc/#eth_gettransactionbyhash
https://ethereum.org/en/developers/docs/apis/json-rpc/#eth_gettransactionbyhash
https://github.com/ethereum/eth-account/tree/main
https://github.com/ethereum/eth-account/tree/main
https://bertcmiller.com/glimpse.html
https://nvd.nist.gov/vuln/detail/cve-2013-7372
https://www.coindesk.com/markets/2013/08/21/blockchaininfo-issues-refunds-to-bitcoin-theft-victims
https://www.coindesk.com/markets/2013/08/21/blockchaininfo-issues-refunds-to-bitcoin-theft-victims

	Short Paper: Oops…I Did It Again. I Reused my Nonce.

