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My research is summarized in Figure 1 and then described in detail.

1 Context and Problematic
Developing first-year students’ minds to solve problems at different
levels of abstraction is both important and challenging. However,
students may quickly feel overwhelmed when asked to abstract
their view. They prefer focusing on the code that appears more
concrete. The development of abstraction skills requires students
to see the relevance of these skills, which motivates them to con-
sistently practice designing abstract representations and actively
engage with feedback. This is illustrated as “Objectives” in Figure 1.

On the right, the figure also shows that, in our Introduction to
Programming (CS1) course, we explicitly teach abstraction by pro-
viding a top-down framework where students must solve problems
from higher to lower levels of abstraction (see the inverted pyra-
mid in red). This framework is inspired by the PGK hierarchy. Our
contribution comes when students must implement a loop to solve
a problem. In that case, we added an abstraction level called “From
problem to solution model” to better bridge the transition from prob-
lem (structural views) to algorithmic and code levels (operational
views). At this intermediate level, we ask students to graphically
represent the output of the problem and its dependency on the
input (i.e., the postcondition). Then, they should generalize it to
the solution under construction, thus forming a Graphical Loop
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Invariant (GLI)1. It encourages students to visually model the
objects and variables that they will manipulate in their loop. Based
on this representation, students should determine the steps needed
to advance toward the final solution and translate them in code.

2 Solution
The central portion of Figure 1 shows how this top-down approach,
based on the Graphical Loop Invariant, can be taught to fulfill
the key objectives depicted at the heart of the figure. To motivate
students to reflect thoughtfully at each level of abstraction (in-
stead of jumping to the code), I created the Collaborative Design
and Build (CDB) activity. It simulates professional team dynam-
ics, thereby triggering student’s interest. The activity dedicates
specific time periods for working at each level of abstraction. The
success of the activity hinges on students working together in a
structured chain, where each team builds upon and contributes
to the success of the others. This fosters student engagement as
they realize the impact of their actions on the entire chain. I also
created a generic framework highlighting the general components
and mechanisms of this activity to facilitate its transposition in
other courses. Besides this classroom activity, to enable students
to regularly practice the Graphical Loop Invariant design and
translation into C-instructions, we developed a learning tool called
Café 2.0. It supports a semester-long activity in which students
solve problems by submitting both a graphical representation of
their solution and its implementation. In addition to checking the
final implementation, Café 2.0 also provides personalized feedback
on how students have graphically modeled their solution and how
consistent it is with their code. The cost of this automated feedback
is that students’ solutions are constrained (using a fill-in-the-blank
diagram) so that it can be automatically processed.

3 Method and results
My research explored several research questions. Specifically, it
addressed:
RQ 1:Does the CDB activity actually motivate students on this

top-down approach?
RQ 2:Does CAFÉ make students improve on this approach via its

Automated Feedback?
RQ 3:Does the Graphical Loop Invariant help students to find

solutions and write code correctly?
To answer these questions, data was collected in our CS1 course

where about 100 students are registered every year. I relied on three
1The Graphical Loop Invariant is explained in this paper: https://orbi.uliege.be/
handle/2268/298149
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Figure 1: Connecting Teaching Objectives to CS1 Course Content and Innovative Pedagogical Approaches.

data collection methods: surveys (primarily composed of five-point
Likert scale questions), analysis of students’ work (GLI and code),
namely from an A/B testing setup, and learning analytics (LA) col-
lected through Café 2.0. Student survey responses captured their
perceptions, manual analysis of student workmeasured their perfor-
mance and revealed students’ errors, and LA data provided insights
into students’ problem-solving behaviors and their processing of
automated feedback.

During the CDB activity, I could observe that students actively
engage in reflecting on a problem and its solution at each level of
abstraction. However, especially in the first session, the quality of
students’ work is quite limited, especially in the lower levels, due
to poor foundations from the previous teams.

In Café 2.0, students tend to oscillate between modeling (GLI)
and development. I also noticed that their level of freedom to form
their GLI seems too constrained to really prepare them to create
GLI from scratch in the exam. Their GLI often lack accuracy or even
consistency. In general, many students struggled to understand or
represent GLI, especially when they need to textually describe the
relationship between the variables. Some students are overwhelmed
by the design of the GLI, while others can still extract useful infor-
mation from their GLI to guide their coding (such as defining their
loop guards, etc.).

4 Implication and recommendation
From our results, two recommendations emerged to (better) teach
the GLI. We should first only train students to code using provided
GLI, focusing solely on translating diagrams into code. Then, we
should teach students to sketch their own models by recognizing
similarities to previously solved problems. That would be a good
preparation to the CDB activity and the exam.

Regarding Café 2.0, we should provide students with greater
freedom in creating diagrams while maintaining relevant feedback.
To achieve this, we plan to integrate Large Language Models to
translate students’ natural language input into a constrained for-
mat (predicates or sentences with predefined words) that can be
processed by our current rule-based system. This approach allows
us to maintain control over the feedback provided to students, thus
limiting the uncertainty associated with AI usage.
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