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Wanna play?



Wanna play?
Game of Nim

▶ Rules:
→ 2 players, taking turns, they may not pass;
→ remove 1, 2 or 3 match(es);
→ first player unable to play loses.

▶ My goal: win the game (because who doesn’t like winning?)
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Wanna play?
Game of Nim

▶ Rules:
→ 2 players, taking turns, they may not pass;
→ remove 1, 2 or 3 match(es);
→ first player unable to play loses.

▶ My goal: win the game (because who doesn’t like winning?)

"Never be so kind, you
forget to be clever"

Antoine Renard – Automatic proofs in combinatorial game theory – University of Liège 2/20



Wanna play?
Game of Nim

▶ Rules:
→ 2 players, taking turns, they may not pass;
→ remove 1, 2 or 3 match(es);
→ first player unable to play loses.

▶ My goal: win the game (because who doesn’t like winning?)
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Wanna play?
Game of Nim

▶ Rules:
→ 2 players, taking turns, they may not pass;
→ remove 1, 2 or 3 match(es);
→ first player unable to play loses.

▶ My goal: win the game (because who doesn’t like winning?)
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Antoine Renard – Automatic proofs in combinatorial game theory – University of Liège 2/20



Wanna play?
Game of Nim

▶ Rules:
→ 2 players, taking turns, they may not pass;
→ remove 1, 2 or 3 match(es);
→ first player unable to play loses.

▶ My goal: win the game (because who doesn’t like winning?)

8 matches
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Wanna play?
Game of Nim

▶ Rules:
→ 2 players, taking turns, they may not pass;
→ remove 1, 2 or 3 match(es);
→ first player unable to play loses.

▶ My goal: win the game (because who doesn’t like winning?)

7 matches
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Wanna play?
Game of Nim

▶ Rules:
→ 2 players, taking turns, they may not pass;
→ remove 1, 2 or 3 match(es);
→ first player unable to play loses.

▶ My goal: win the game (because who doesn’t like winning?)

4 matches
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Wanna play?
Game of Nim

▶ Rules:
→ 2 players, taking turns, they may not pass;
→ remove 1, 2 or 3 match(es);
→ first player unable to play loses.

▶ My goal: win the game (because who doesn’t like winning?)

1 match
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Wanna play?
Switching to graphs
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→ kernel of the graph
(unique for acyclic graphs)
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Wanna play?
P- and N -positions

A position of a game describes the actual configuration of the game before one of the two
players makes a move.
Ex: In the previous game of Nim, the position i depicts the situation with i remaining sticks
on the table.

Two types of positions:

▶ P-position = position of the game where the previous player is ensured to win; it is
thus a losing position for the person about to play.

▶ N -position = position of the game where the next player is ensured to win; it is thus a
winning position for the person about to play.
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Wanna play?
P-positions and kernel

Proposition (folklore)
The sets of P- and N -positions of an impartial acyclic game are uniquely determined by
the following two properties:

▶ Every move from a P-position leads to an N -position; equivalently there is no move
between two P-positions (stability property of P(G)).

▶ From every N -position, there exists a move leading to a P-position (absorbing
property of P(G)).

→ For an impartial acyclic game,
set of P-position = kernel of the associated graph
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Wythoff’s game



Wythoff’s game
The rules

Wythoff’s game is a 2-player impartial game which is a variation of the game of Nim.

▶ 2 piles of tokens,
▶ the players play one after another, they may not pass,
▶ the first player unable to play loses.

Allowed moves:
▶ removing a positive number of tokens

from one pile,
▶ removing the same number of tokens

from both piles.
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Wythoff’s game
Characterising the P-positions
There exist several characterisations of the P-positions of Wythoff’s game: they are
equivalently given by

▶ the pairs of integers (⌊nφ⌋, ⌊nφ2⌋), with φ = 1+
√

5
2 the golden ratio,

▶ the pairs (an, bn), defined by (a0, b0) = (0, 0) and

an = mex{ai, bi : 0 ≤ i < n} and bn = an + n,
▶ the positions of 0’s and 1’s in the Fibonacci word f:

fixed point of

0 7→ 01
1 7→ 0

⇝ f =

First P-positions: (0, 0), (1, 2), (3, 5), (4, 7), (6, 10), etc.
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Wythoff’s game
Characterising the P-positions – A famous result

Recall that any positive integer can be written as a sum of Fibonacci numbers in a "greedy"
way⇝ Zeckendorf representation.
Ex: Considering F0 = 1, F1 = 2 and Fn = Fn−1 + Fn−2 for all n ≥ 2, we have

11 = 8 + 3 → repF(11) = 10100.

Theorem (Fraenkel, 1982)
A pair (a, b) of integers such that a ≤ b is a P-position of Wythoff’s game if and only if
▶ repF(a) ends with an even number of zeroes,
▶ repF(b) is a left-shift of repF(a), i.e. repF(b) = repF(a)0.
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Using Walnut for Wythoff’s game
What is Walnut?

Walnut is a free software system originally created by Hamoon Mousavi.

▶ extensively used for proving results in combinatorics on words and additive number
theory;

▶ relies on Büchi’s theorem: transform first-order logical formulas into finite automata
for which decision procedures can be applied.

Hence, if a problem of interest can be expressed in a convenient extension of Presburger
arithmetic ⟨N,+⟩, it can then receive an automatic treatment.
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Using Walnut for Wythoff’s game
Fraenkel’s theorem using Walnut

Step 1: Defining the candidate set for P-positions in Walnut

reg end_even_zeros msd_fib "0*(00|0*1)*":
reg left_shift {0,1} {0,1} "([0,0]|([0,1][1,1]*[1,0]))*":
def ppos_asym "?msd_fib $end_even_zeros(a) & $left_shift(a,b)":
def ppos "?msd_fib $ppos_asym(a,b) | $ppos_asym(b,a)":

images/ppos_paper.pdf

Ex: we can evaluate $ppos(6,10):

repF(6) = 01001
repF(10) = 10010
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Using Walnut for Wythoff’s game
Fraenkel’s theorem using Walnut

Step 1: Defining the candidate set for P-positions in Walnut

reg end_even_zeros msd_fib "0*(00|0*1)*":
reg left_shift {0,1} {0,1} "([0,0]|([0,1][1,1]*[1,0]))*":
def ppos_asym "?msd_fib $end_even_zeros(a) & $left_shift(a,b)":
def ppos "?msd_fib $ppos_asym(a,b) | $ppos_asym(b,a)":
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Using Walnut for Wythoff’s game
Fraenkel’s theorem using Walnut

Step 2: Verifying that this set is exactly the set of P-positions
Recall that the sets of P- and N -positions of an impartial acyclic game are uniquely
determined by the two following properties:

Stability, i.e. there is no move between two P-positions
eval w_stable "?msd_fib Ap,q,r,s
(($ppos(p,q) & $ppos(r,s) & p >= r & q >= s)
=> ((p=r & q=s) | (p>r & q>s & p+s!=q+r)) )":

Absorbing, i.e. for each N -position, there exists a move leading to a P-position
eval w_absorbing "?msd_fib Ap,q (~$ppos(p,q) => Ex,y
( x<=p & y<=q & $ppos(x,y) & (p+y=q+x | p=x | q=y) )) ":
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Using Walnut for Wythoff’s game
Fraenkel’s theorem using Walnut

Both commands evaluate to TRUE, which proves Fraenkel’s theorem!

We were able to use Walnut because:

▶ the rules of the game can be expressed using first-order logic,
▶ we have a "regular" candidate for the set of P-positions,
▶ the Fibonacci numeration system is addable.

Note also that we did have a candidate for the set of P-positions.
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Using Walnut for Wythoff’s game
Other results about Wythoff’s game

Thanks to Walnut, we aslo managed to:

▶ prove a 15-year-old conjecture describing the set of forbidden moves in Wythoff’s
game (i.e., the set of moves which would allow to play between two P-positions),

▶ show that all allowed moves in Wythoff’s game are non-redundant (a move is said to
be redundant if removing it from the rule-set does not affect the set of P-positions),

▶ study some extensions/restrictions of Wythoff’s game.

What more can we do with this software?
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Some generalisations



Some generalisations
Slightly changing the rules

Same rules as Wythoff’s game, but a player may now remove k > 0 tokens from one heap
and ℓ > 0 from the other, provided that |k − ℓ| < m for a fixed integer m ≥ 1.
Note that m = 1⇝Wythoff’s game.

Here, we make use of Ostrowski numeration systems: consider the quadratic irrational

[1,m] =
2 − m +

√
m2 + 4

2
→ the convergents give two numeration systems: the p-system (using numerators) and
the q-system (using denominators).

Rem.: for m = 1, [1,m] = φ the golden ratio⇝ Fibonacci numeration system.
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Some generalisations
Slightly changing the rules

We get the same result as the one for Wythoff’s game, but with the associated Ostrowski
numeration system:
Theorem (Fraenkel, 1982)
A pair (a, b) of integers such that a ≤ b is a P-position of m-Wythoff’s game if and only if
▶ repp(a) ends with an even number of zeroes,
▶ repp(b) is a left-shift of repp(a), i.e. repp(b) = repp(a)0,

where repp(x) is the representation of x in the p-system associated to [1,m].

→ we can handle such systems with Walnut (it builds the required automata), and thus
prove results automatically!
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Some generalisations
Using Walnut to find a new conjecture

Again here, we can ask what are the redundant moves of m-Wythoff’s game. Using Walnut,
we get the following conjecture:
Conjecture (Mignoty, R., Rigo, Whiteland, 2025+)
Let m ≥ 2. The set of redundant moves of the variation of Wythoff’s game where one is
allowed to remove k > 0 and ℓ > 0 provided that |k − ℓ| < m is⋃

1≤i<m
{(n, n + i), (n + i, n) | n ≥ m − i + 2} .

→ proved for m = 2 (∼ 7Gb), m = 3, 4 (∼ 45Gb, 20 minutes);
→ for m = 5, we quickly run out of memory⇝ use Walnut differently.
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Some generalisations
Beyond Ostrowski systems

Same rules as Wythoff’s game, but a player may now remove k > 0 tokens from one heap
and ℓ > 0 from the other, provided that 0 < k ≤ ℓ < sk + m for two positive integers m, s.
For s = 1⇝m-Wythoff’s game; for m = s = 1⇝Wythoff’s game.

We do get the same result (Fraenkel, 1998) using the following numeration system: we
define the linear recurrence sequence (Ui)i≥0 by

U0 = 1, U1 = s + m and Ui = (s + m − 1)Ui−1 + sUi−2 ∀i ≥ 2.
We then have that each integer n > 0 has a unique representation dℓ · · · d0 such that

n =
ℓ∑

i=0
diUi, with dℓ ̸= 0.
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Some generalisations
Beyond Ostrowski systems

We are lucky with this numeration system, for we are in the Pisot case, which means:

▶ we have a regular candidate,
▶ we have an addable system.

So, in principle, we can use Walnut!

Some more work here all the same: no "built-in" automata for this system, so we have to
provide Walnut with

▶ an automaton recognising U-representations,
▶ another one computing the addition⇝ using the work of C. Frougny and J.

Sakarovitch to build the zero-automaton.
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Conclusion



Conclusion
Fraenkel’s combinatorial games and Walnut:

It’s a match!

▶ rules can be written using first-order logic,
▶ we have "nice" numeration systems (addable),
▶ the set of P-position is regular.

Consequences: automatic proofs of old and new results, conjectures, building new games
However...

▶ automatic proofs are obtained for fixed parameters,
▶ state complexity could be problematic,
▶ difficult to cope with Tribonacci adder.
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Thank you for your attention!
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