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Wanna play? ©
Game of Nim
> Rules:
— 2 players, taking turns, they may not pass;

— remove 1,2 or 3 match(es);
— first player unable to play loses.
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> Rules:
— 2 players, taking turns, they may not pass;
— remove 1,2 or 3 match(es);
— first player unable to play loses.
» My goal: win the game (because who doesn’t like winning?)
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Wanna play? &

Game of Nim

> Rules:
— 2 players, taking turns, they may not pass;
— remove 1,2 or 3 match(es);
— first player unable to play loses.
» My goal: win the game (because who doesn’t like winning?)

000000000000
"Never be so kind, you

forget to be clever"
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Wanna play? &

Game of Nim

> Rules:
— 2 players, taking turns, they may not pass;
— remove 1,2 or 3 match(es);
— first player unable to play loses.
» My goal: win the game (because who doesn’t like winning?)

12 matches
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Wanna play? &

Game of Nim

> Rules:
— 2 players, taking turns, they may not pass;
— remove 1,2 or 3 match(es);
— first player unable to play loses.
» My goal: win the game (because who doesn’t like winning?)

10 matches
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Wanna play? &

Game of Nim

> Rules:
— 2 players, taking turns, they may not pass;
— remove 1,2 or 3 match(es);
— first player unable to play loses.
» My goal: win the game (because who doesn’t like winning?)

8 matches
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Wanna play? &

Game of Nim

> Rules:
— 2 players, taking turns, they may not pass;
— remove 1,2 or 3 match(es);
— first player unable to play loses.
» My goal: win the game (because who doesn’t like winning?)

7 matches
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Wanna play? &

Game of Nim

> Rules:
— 2 players, taking turns, they may not pass;
— remove 1,2 or 3 match(es);
— first player unable to play loses.
» My goal: win the game (because who doesn’t like winning?)

4 matches
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Wanna play? g
Game of Nim

> Rules:
— 2 players, taking turns, they may not pass;
— remove 1,2 or 3 match(es);
— first player unable to play loses.
» My goal: win the game (because who doesn’t like winning?)

1 match

Antoine Renard - Automatic proofs in combinatorial game theory - University of Liege 2/20



Wanna play? &
Switching to graphs
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Wanna play? L
Switching to graphs

— kernel of the graph

(unique for acyclic graphs)
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Wanna play? &>
P- and N -positions

A of a game describes the actual configuration of the game before one of the two
players makes a

Ex: In the previous game of Nim, the position i depicts the situation with i remaining sticks
on the table.
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Wanna play? &
P- and N -positions
A of a game describes the actual configuration of the game before one of the two

players makes a
Ex: In the previous game of Nim, the position i depicts the situation with i remaining sticks
on the table.

Two types of positions:

> = position of the game where the player is ensured to win; itis
thus a position for the person about to play.
> = position of the game where the player is ensured to win; it is thus a

position for the person about to play.
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Wanna play? -
P-positions and kernel

Proposition (folklore)
The sets of P- and A/-positions of an impartial acyclic game are uniquely determined by
the following two properties:

> Every move from a P-position leads to an N -position; equivalently there is no move
between two P-positions ( of P(G)).

> From every N -position, there exists a move leading to a P-position (
of P(G)).

Antoine Renard - Automatic proofs in combinatorial game theory - University of Liege 5/20



Wanna play? v
P-positions and kernel

Proposition (folklore)
The sets of P- and A/-positions of an impartial acyclic game are uniquely determined by
the following two properties:

> Every move from a P-position leads to an N -position; equivalently there is no move
between two P-positions ( of P(G)).

> From every N -position, there exists a move leading to a P-position (
of P(G)).
— For an impartial acyclic game,
set of P-position = kernel of the associated graph
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Wythoff’s game &

The rules

is a 2-player impartial game which is a variation of the game of Nim.

> 2 piles of tokens,
> the players play one after another, they may not pass,
> the first player unable to play loses.

Allowed moves:

> removing a positive number of tokens T T
from one pile, S

» removing the same number of tokens &= T
from both piles.
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Wythoff’s game &
Characterising the P-positions

There exist several characterisations of the P-positions of Wythoff’s game: they are
equivalently given by
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Wythoff’s game )
Characterising the P-positions

There exist several characterisations of the P-positions of Wythoff’s game: they are
equivalently given by

> the pairs of integers (| ny|, [np?]), with p = 1@—‘/5 the golden ratio,
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Wythoff’s game e
Characterising the P-positions

There exist several characterisations of the P-positions of Wythoff’s game: they are
equivalently given by

> the pairs of integers (| ny|, [np?]), with p = 1@—\/5 the golden ratio,
» the pairs (an, by), defined by (ag, by) = (0,0) and

ap =mex{a;,bj:0<i<n} and b,=a,+n,
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There exist several characterisations of the P-positions of Wythoff’s game: they are
equivalently given by
> the pairs of integers (| ny|, [np?]), with p = 1@—‘/5 the golden ratio,
» the pairs (an, by), defined by (ag, by) = (0,0) and
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. . 0~ 01
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Wythoff’s game
Characterising the P-positions
There exist several characterisations of the P-positions of Wythoff’s game: they are
equivalently given by
> the pairs of integers (| ny|, [np?]), with p = 1@—‘/5 the golden ratio,
» the pairs (an, by), defined by (ag, by) = (0,0) and
ap =mex{a;,bj:0<i<n} and b,=a,+n,

> the positions of 0’s and 1’s in the

. . 0~ 01
fixed point of ~ =0
1—0
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Wythoff’s game
Characterising the P-positions
There exist several characterisations of the P-positions of Wythoff’s game: they are
equivalently given by
> the pairs of integers (| ny|, [np?]), with p = 1@—‘/5 the golden ratio,
» the pairs (an, by), defined by (ag, by) = (0,0) and
ap =mex{a;,bj:0<i<n} and b,=a,+n,

> the positions of 0’s and 1’s in the

. . 0— 01
fixed point of ~  f=01
1—0
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Wythoff’s game
Characterising the P-positions
There exist several characterisations of the P-positions of Wythoff’s game: they are
equivalently given by
> the pairs of integers (| ny|, [np?]), with p = 1@—‘/5 the golden ratio,
» the pairs (an, by), defined by (ag, by) = (0,0) and
ap =mex{a;,bj:0<i<n} and b,=a,+n,

> the positions of 0’s and 1’s in the

. . 0— 01
fixed point of ~  f=01001
1—0
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Wythoff’s game
Characterising the P-positions
There exist several characterisations of the P-positions of Wythoff’s game: they are
equivalently given by
> the pairs of integers (| ny|, [np?]), with p = 1@—‘/5 the golden ratio,
» the pairs (an, by), defined by (ag, by) = (0,0) and
ap =mex{a;,bj:0<i<n} and b,=a,+n,

> the positions of 0’s and 1’s in the

. . 0— 01
fixed point of ~ §=0100101

1—-0
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Wythoff’s game
Characterising the P-positions
There exist several characterisations of the P-positions of Wythoff’s game: they are
equivalently given by
> the pairs of integers (| ny|, [np?]), with p = 1@—‘/5 the golden ratio,
» the pairs (an, by), defined by (ag, by) = (0,0) and
ap =mex{a;,bj:0<i<n} and b,=a,+n,

> the positions of 0’s and 1’s in the

. . 0— 01
fixed point of ~ £=01001010

1—-0
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Wythoff’s game
Characterising the P-positions
There exist several characterisations of the P-positions of Wythoff’s game: they are
equivalently given by
> the pairs of integers (| ny|, [np?]), with p = 1@—‘/5 the golden ratio,
» the pairs (an, by), defined by (ag, by) = (0,0) and
ap =mex{a;,bj:0<i<n} and b,=a,+n,

> the positions of 0’s and 1’s in the

. . 0~ 01
fixed point of ~ f=0100101001

1—-0
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Wythoff’s game
Characterising the P-positions
There exist several characterisations of the P-positions of Wythoff’s game: they are
equivalently given by
> the pairs of integers (| ny|, [np?]), with p = 1@—‘/5 the golden ratio,
» the pairs (an, by), defined by (ag, by) = (0,0) and
ap =mex{a;,bj:0<i<n} and b,=a,+n,

> the positions of 0’s and 1’s in the

. . 0— 01
fixed point of ~» £=0100101001001"--

1—-0
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Wythoff’s game
Characterising the P-positions
There exist several characterisations of the P-positions of Wythoff’s game: they are
equivalently given by
> the pairs of integers (| ny|, [np?]), with p = 1@—‘/5 the golden ratio,
» the pairs (an, by), defined by (ag, by) = (0,0) and
ap =mex{a;,bj:0<i<n} and b,=a,+n,

> the positions of 0’s and 1’s in the

. . 0— 01
fixed point of ~» £=0100101001001"--

1—-0
First P-positions: (0,0), (1,2),(3,5),(4,7), (6, 10), etc.
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Wythoff’s game )
Characterising the P-positions - A famous result

Recall that any positive integer can be written as a sum of Fibonacci numbers in a "greedy"
way ~» Zeckendorf representation.
Ex: ConsideringFp = 1,F; =2and F, = Fp_1 + Fp—> foralln > 2, we have

11=8+3 — repg(11) = 10100.
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Wythoff’s game )
Characterising the P-positions - A famous result

Recall that any positive integer can be written as a sum of Fibonacci numbers in a "greedy"
way ~» Zeckendorf representation.
Ex: ConsideringFp = 1,F; =2and F, = Fp_1 + Fp—> foralln > 2, we have

11=8+3 — repg(11) = 10100.

Theorem (Fraenkel, 1982)
Apair (a, b) of integers such that a < b is a P-position of Wythoff’s game if and only if
> repg(a) ends with an even number of zeroes,

> repg(b) is a left-shift of repg(a), i.e. reps(b) = repg(a)O0.
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Using Walnut for Wythoff’s game )
What is Walnut?

Walnut is a free software system originally created by Hamoon Mousavi.

> extensively used for proving results in combinatorics on words and additive number
theory;

> relieson : transform first-order logical formulas into finite automata
for which decision procedures can be applied.

Hence, if a problem of interest can be expressed in a convenient extension of Presburger
arithmetic (N, +), it can then receive an automatic treatment.
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Using Walnut for Wythoff’s game )

Fraenkel’s theorem using Walnut

Defining the candidate set for P-positions in Walnut

reg end_even_zeros msd_fib "0*(00|0*1)*":
reg left_shift {0,1} {0,1} "([0,0]1([0,1][1,1]*[1,0]))*":
def ppos_asym "?msd_fib $end_even_zeros(a) & $left_shift(a,b)":

def ppos "7msd_fib $ppos_asym(a,b) | $ppos_asym(b,a)":
Ex: we can evaluate $ppos (6,10):

images/ppos_paper . pdf repr(6) = 01001
repr(10) = 10010
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Using Walnut for Wythoff’s game

Fraenkel’s theorem using Walnut

Verifying that this set is exactly the set of P-positions
Recall that the sets of P- and N -positions of an impartial acyclic game are uniquely
determined by the two following properties:

,i.e. there is no move between two P-positions
eval w_stable "?msd_fib Ap,q,r,s
(($ppos(p,q) & $ppos(r,s) & p > r & q >= s)
=> ((p=r & g=s) | (p>r & g>s & p+s!=q+r)) )":
,i.e. for each A/-position, there exists a move leading to a P-position
eval w_absorbing "?msd_fib Ap,q ("$ppos(p,q) => Ex,y
( x<=p & y<=q & $ppos(x,y) & (pty=q+x | p=x | gq=y) )) ":
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Using Walnut for Wythoff’s game )

Fraenkel’s theorem using Walnut

Both commands evaluate to TRUE, which proves Fraenkel’s theorem!
We were able to use Walnut because:
> the rules of the game can be expressed using first-order logic,

> we have a "regular" candidate for the set of P-positions,

> the Fibonacci numeration system is addable.
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Using Walnut for Wythoff’s game

Fraenkel’s theorem using Walnut

Both commands evaluate to TRUE, which proves Fraenkel’s theorem!

We were able to use Walnut because:

> the rules of the game can be expressed using first-order logic,
> we have a "regular" candidate for the set of P-positions,

> the Fibonacci numeration system is addable.

Note also that we did have a candidate for the set of P-positions.
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Using Walnut for Wythoff’s game
Other results about Wythoff’s game

Thanks to Walnut, we aslo managed to:
> prove a 15-year-old conjecture describing the set of in Wythoff’s
game (i.e., the set of moves which would allow to play between two P-positions),

» show that all allowed moves in Wythoff’s game are (@ move is said to
be if removing it from the rule-set does not affect the set of P-positions),

> study some extensions/restrictions of Wythoff’s game.
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Using Walnut for Wythoff’s game )
Other results about Wythoff’s game

Thanks to Walnut, we aslo managed to:

> prove a 15-year-old conjecture describing the set of in Wythoff’s
game (i.e., the set of moves which would allow to play between two P-positions),

» show that all allowed moves in Wythoff’s game are (@ move is said to
be if removing it from the rule-set does not affect the set of P-positions),

> study some extensions/restrictions of Wythoff’s game.

What more can we do with this software?
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Some generalisations &
Slightly changing the rules

Same rules as Wythoff’s game, but a player may now remove k > 0 tokens from one heap
and ¢ > 0 from the other, provided that |k — ¢| < 1 for a fixed integer m > 1.
Note that m = 1 ~» Wythoff’s game.
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Some generalisations
Slightly changing the rules

Same rules as Wythoff’s game, but a player may now remove k > 0 tokens from one heap
and ¢ > 0 from the other, provided that |k — ¢| < 1 for a fixed integer m > 1.
Note that m = 1 ~» Wythoff’s game.

Here, we make use of : consider the quadratic irrational
L7 = 2—m+vm?+4
T 2

— the convergents give two numeration systems: the p-system (using numerators) and
the g-system (using denominators).

for m = 1,[1,77] = ¢ the golden ratio ~~ Fibonacci numeration system.
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Some generalisations &
Slightly changing the rules

We get the same result as the one for Wythoff’s game, but with the associated Ostrowski
numeration system:
Theorem (Fraenkel, 1982)
Apair (a, b) of integers such that a < b is a P-position of m-Wythoff’s game if and only if
> rep,(a) ends with an even number of zeroes,

> rep,(b) is a left-shift of rep,(a), i.e. rep,(b) = rep,(a)0,
where rep,(x) is the representation of x in the p-system associated to [1,77].
— we can handle such systems with Walnut (it builds the required automata), and thus

prove results automatically!
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Some generalisations &
Using Walnut to find a new conjecture

Again here, we can ask what are the redundant moves of m-Wythoff’s game. Using Walnut,
we get the following conjecture:
Conjecture (Mignoty, R., Rigo, Whiteland, 2025+)
Let m > 2. The set of redundant moves of the variation of Wythoff’s game where one is
allowed to remove k > 0 and ¢ > 0 provided that |k — ¢| < mis

U {(nn+i),(n+i,n)[n>m—i+2}.

— proved form = 2 (~ 7Gb), m = 3,4 (~ 45Gb, 20 minutes);
— form = 5, we quickly run out of memory ~» use Walnut differently.
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Some generalisations &
Beyond Ostrowski systems

Same rules as Wythoff’s game, but a player may now remove k > 0 tokens from one heap
and ¢ > 0 from the other, provided that 0 < k < ¢ < sk + m for two positive integers m, s.
For s = 1 ~» m-Wythoff’s game; for m = s = 1 ~» Wythoff’s game.
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Some generalisations
Beyond Ostrowski systems

Same rules as Wythoff’s game, but a player may now remove k > 0 tokens from one heap
and ¢ > 0 from the other, provided that 0 < k < ¢ < sk + m for two positive integers m, s.
For s = 1 ~» m-Wythoff’s game; for m = s = 1 ~» Wythoff’s game.

We do get the same result (Fraenkel, 1998) using the following numeration system: we
define the linear recurrence sequence (U;)i>o by
Uy=1, U =s+ and Ui=(s+m—1)Uji_1 +sUj_, Vi > 2.
We then have that each integer n > 0 has a unique representation d; - - - dp such that
‘

n=> dU, withd,#0.
i=0
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Some generalisations &
Beyond Ostrowski systems

We are lucky with this numeration system, for we are in the case, which means:

> we have a regular candidate,
> we have an addable system.
So, in principle, we can use Walnut!
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Some generalisations &
Beyond Ostrowski systems

We are lucky with this numeration system, for we are in the case, which means:

> we have a regular candidate,
> we have an addable system.
So, in principle, we can use Walnut!

Some more work here all the same: no "built-in" automata for this system, so we have to
provide Walnut with

» an automaton recognising U-representations,
> another one computing the addition ~~ using the work of C. Frougny and J.
Sakarovitch to build the
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Fraenkel’s combinatorial games and Walnut:
It’s a !
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Conclusion &

Fraenkel’s combinatorial games and Walnut:
It’s a !

> rules can be written using ,
» we have "nice" numeration systems ( )
> the set of P-position is

Consequences: automatic proofs of old and new results, conjectures, building new games
However...

> automatic proofs are obtained for parameters,
> could be problematic,
> difficult to cope with
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Thank you for your attention!
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