

VU Research Portal

Sensor networks to measure environmental noise at gravitational wave detector sites

Koley, S.

2020

document version

Publisher's PDF, also known as Version of record

[Link to publication in VU Research Portal](#)

citation for published version (APA)

Koley, S. (2020). *Sensor networks to measure environmental noise at gravitational wave detector sites*. [PhD-Thesis - Research and graduation internal, Vrije Universiteit Amsterdam].

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

Take down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

E-mail address:

vuresearchportal.ub@vu.nl

**SENSOR NETWORKS TO MEASURE ENVIRONMENTAL NOISE
AT GRAVITATIONAL WAVE DETECTOR SITES**

Soumen Koley

Promotiecommissie:

promotor: prof.dr. J.F.J. van den Brand
copromotoren: dr. H.J. Bulten
dr. X. Campman

Overlige leden: prof.dr. H.G. Raven
prof.dr. F.L. Linde
prof.dr. G. Saccorotti
prof.dr. J. Harms
prof.dr. A. Freise
dr. S. Caudill
dr. A. Bertolini

Printed by: Ipkamp Printing
Cover by: Soumen Koley
ISBN: 978-94-028-2054-6

This work is part of the research programme *Computational Sciences for Energy Research 12CSER075*, which is funded by the Dutch Research Council and Shell Global Solutions International BV. The research work was carried out at Nikhef.

VRIJE UNIVERSITEIT

**SENSOR NETWORKS TO MEASURE ENVIRONMENTAL NOISE
AT GRAVITATIONAL WAVE DETECTOR SITES**

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad Doctor aan
de Vrije Universiteit Amsterdam,
op gezag van de rector magnificus
prof.dr. V. Subramaniam,
in het openbaar te verdedigen
ten overstaan van de promotiecommissie
van de Faculteit der Bètawetenschappen
op woensdag 17 juni 2020 om 11.45 uur
in een online bijeenkomst van de universiteit,
De Boelelaan 1105

door

Soumen Koley

geboren te Durgapur, West Bengal, India

promotor: prof.dr. J.F.J. van den Brand
copromotoren: dr. H.J. Bulten
dr. X. Campman

Contents

Acknowledgements	V
Introduction	IX
1 Background and theory	1
1.1 Gravitational waves and their detection	1
1.1.1 Introduction	1
1.1.2 General relativity and gravitational waves	2
1.1.3 Sources of gravitational waves	5
1.1.4 Gravitational wave detection	7
1.2 Theory of seismic surface waves	13
1.2.1 Historical development of theory of elasticity	13
1.2.2 Types of Elastic Waves	14
1.2.3 Mathematical theory of Elasticity	16
1.2.4 Rayleigh waves in homogeneous half-space	23
1.2.5 Rayleigh Waves in a Layered Medium	28
1.2.6 A physical insight into surface waves	34
1.2.7 Summary	35
2 Passive Seismic Data Analysis Methods	37
2.1 Passive seismic studies - A historical context	37
2.2 Wireless seismic sensors	39
2.2.1 Sensor overview	39
2.2.2 Vault noise test	41
2.3 Data Analysis Methods	42
2.3.1 Beamforming	43
2.3.2 Extended Spectral Autocorrelation	53
2.4 Rayleigh wave phase velocity estimation	57
2.5 Rayleigh wave phase velocity inversion strategies	59
2.5.1 Theoretical dispersion curve computation	60
2.5.2 Model parametrization	60
2.5.3 Neighborhood algorithm	62
2.6 Summary	64

3 Passive seismic studies at AdV	67
3.1 Objectives	67
3.2 Introduction	69
3.3 Seismic Array Design	69
3.4 Array Deployment	74
3.5 Passive Seismic Sources	75
3.5.1 Oceanic microseism	75
3.5.2 Road bridge noise	76
3.5.3 Local noise sources	79
3.6 Beamforming Results	79
3.7 ESAC Results	83
3.8 Estimation of a 1D S -wave velocity model at AdV	84
3.9 Near surface quality factor estimation	86
3.9.1 Rayleigh wave attenuation model	86
3.9.2 Estimating the attenuation coefficient	87
3.9.3 Quality factor forward problem	89
3.9.4 Quality factor inversion	90
3.10 Newtonian Noise Estimate	93
3.11 Summary	95
4 Noise hunting at AdV	97
4.1 GW detection and Virgo	98
4.2 Noise Sources	100
4.2.1 Fundamental noises	100
4.2.2 Technical noise	104
4.2.3 Environmental noise	105
4.3 Environmental monitoring network	109
4.3.1 Slow Channels	109
4.3.2 Slow channel network layout	111
4.3.3 Fast channels	112
4.3.4 Fast channel network layout	115
4.4 Magnetic noise injections	116
4.4.1 Magnetic noise injections in the CEB	117
4.4.2 Magnetic noise injections in the NEB	118
4.4.3 Magnetic noise injections in the WEB	118
4.4.4 Projected magnetic noise	122
4.5 Acoustic noise injections	123
4.5.1 CEB acoustic injections	124
4.5.2 NEB acoustic injections	128
4.5.3 WEB acoustic injections	130
4.5.4 MCB acoustic injections	130
4.6 Scattered light noise investigation	131
4.6.1 PR seismic injections	133
4.6.2 DT west flange injections	137
4.6.3 DT east flange injections	140

4.6.4	Beamsplitter tower injections	142
4.6.5	NI injections	143
4.6.6	Stationary noise mitigation	144
4.7	Non-stationary noise	149
4.7.1	Noise amplitude variation	149
4.7.2	Noise frequency variation	151
4.7.3	Correlation analysis	152
4.7.4	Drifting lines analysis	153
4.8	AdV during O2	164
4.9	Summary	169
5	Passive Seismic Tomography at Limburg	171
5.1	Motivation	171
5.2	Challenges of building ET	174
5.3	Types of Seismic Studies	177
5.4	Seismic noise interferometry	177
5.4.1	Representation theorem	178
5.4.2	Green's function	178
5.4.3	Elastodynamic Reciprocity theorem	179
5.4.4	Green's function extraction from distributed noise fields	181
5.4.5	Practical implementation	183
5.5	Reconnaissance passive survey	185
5.5.1	Initial Subsurface model	186
5.5.2	Rayleigh wave sensitivity	187
5.5.3	Array Design	187
5.5.4	Array deployment	192
5.5.5	Seismic noise characteristics	193
5.5.6	Beamforming Results	195
5.5.7	Rayleigh wave phase velocity estimation	199
5.5.8	Estimation of an 1D S-wave velocity model	200
5.6	Dense Array Study	203
5.6.1	Array geometry	203
5.6.2	Data preprocessing	204
5.6.3	Green's function extraction	207
5.6.4	Cross-correlation beamforming	214
5.6.5	Group velocity estimation	217
5.6.6	Surface wave tomography	220
5.6.7	Geological interpretation	228
5.7	Summary & Outlook	230
6	Active seismic studies at Limburg	231
6.1	Introduction	231
6.2	Seismic source	232
6.2.1	Signal to noise ratio	232
6.2.2	Frequency band	234

6.2.3	Duration parameters	235
6.3	Source Receiver Geometry	236
6.4	Seismic data quality	239
6.5	Seismic refraction processing	243
6.5.1	Fundamentals	243
6.5.2	DeltatV method	244
6.5.3	Implementation and results	247
6.5.4	DeltatV pitfalls	249
6.6	Wavepath Eikonal Tomography	250
6.6.1	WET algorithm	251
6.6.2	WET results	252
6.7	Conclusion and Recommendations	253
7	Conclusions and recommendations	255
7.1	Conclusion	256
7.1.1	Development of autonomous seismometers	256
7.1.2	AdV seismic noise characterization	257
7.1.3	Pre-O2 commissioning at AdV	258
7.1.4	Einstein Telescope site studies	259
7.2	Recommendations	260
Summary		279
Samenvatting		285
List of symbols and abbreviations		293
Appendix		295

Acknowledgements

Joining Nikhef in the summer of 2014 for pursuing a Phd in gravitational wave physics was a leap of faith that I had taken. Having completed my masters in geophysical sciences the earlier year, I was skeptical about how my knowledge and skill set would fit into the needs of the gravitational wave community. Although it took me a year to figure out the objective of my research and my role in this scientific endeavor, it would be the least to say that these have been the best years of my life and I couldn't have asked for more. For that, I want to thank my family, friends and colleagues at Nikhef who helped me feel at home and have been there by my side through the crest and troughs of my Phd life.

First and foremost I would like to thank Jo van den Brand and Henk Jan Bulten who gave me this opportunity to do research at Nikhef and had faith in me throughout my tenure at Nikhef. The first year and a half at Nikhef was tough but for Jo who always supported me and showed me new avenues of how I could make my knowledge of geophysics relevant to the gravitational wave community. So a big thank you to you for showing me the path forward.

I would like to thank Henk Jan Bulten who was my daily supervisor for always being encouraging and supportive. I cherish all the long meetings that we had, and the time spent during the field measurements at Virgo and Limburg. I enjoyed the car rides to Limburg and would not have been the same without you. Also thank you for going through every line of this thesis!

Meeting Xander Campman in 2015 in one of the meetings that we had at Nikhef was indeed a game changer in my research interests. All that I learnt about passive seismic, seismic array analysis would not have been possible without your help. It was pleasure working with you at Shell, Rijswijk and also special thanks to Jack Levell, Zijian Tang who sat with me for hours going through every line of my programs. It meant a lot!

Special thanks to Peter Hoogerbrugge who was my Shell-coach. Although we didn't meet enough during my tenure, but thanks for all the meetings that we had, it motivated me a lot. I would also like to thank Frank, my current boss at work who supported me and motivated me to have finally completed my thesis. I know it must have been difficult for you, but really my heartfelt thanks to you for having stayed by my side. Especially during the seismic campaign at Limburg during that cold winter of 2018 you supported me a lot and I will be always grateful to you for having faith in me. Also special gratitude to people from Innoseis who helped me a lot with getting the wireless sensors to work. Special mention to Mark Beker, Jules van Oven for all the help in the early days of my Phd. I would also like to thank Guillaume Lager from Innoseis for helping me numerous times in data-retrieval and helping me address small bugs with the working of the sensors.

I met Irene Fiori in the summer of 2017 at Virgo and she was instrumental in the noise hunting activities that I performed at Virgo. Thank you so much for being patient and helping me get acquainted with the already existing softwares for AdV. I am also very grateful that you showed me the inside of the Central Building and the input towers. It was so exciting for me. During my stay at Virgo I met Bas Swinkels, and special thanks to him for giving me ideas of how to hunt down mysterious sources of noise. Without your help we would have never figured out the drifting-lines noise source. Thanks to also Maddalena Mantovani, Paolo Ruggi and Ettore Majorana who helped with the noise injections at Virgo and taught me a lot about scattered light noise. I must not forget the discussions that I had with Antonino Chiummio. You were always very cordial and I learnt a lot from the discussions that I had with you. Special thanks to Alessio Cirone who shared his magnetic noise injection results with me. The list of people who helped me at Virgo gets endless and sorry if I forgot someone! During my visit to INGV, Pisa I met Gilberto Soccoroti and Carlo Giunchi who helped me a lot with their existing geophysical knowledge about the Virgo seismic environment. I really enjoyed reading your article on the impact of 'windmill noise' at Virgo. That was one of the first things I read when I started planning for the passive seismic study at AdV. I met Bjorn Vink, the geologist in 2017 and I am grateful for all the geological knowledge about Limburg that you shared with me. Thank you for being there on the field with me and others during that cold winter of 2018.

Now moving onto my colleagues at work, who supported me through both the good and bad days at work. To name a few: Archisman, Anuradha, Tim, Boris, Mangal, Pawan, Khunsang, Rakesh, Mandar, Adriaan, Rob, Daniela, Matteo and Chris. I cherish all the interesting conversations that we had during the coffee breaks or on Fridays after-work.

A special expression of gratitude to my Nikhef colleagues who accompanied me to the field trips at Limburg. So a big thank you to Eric, Niels, Martin, and Paul.

Reetam and Debajeet: the two people in my life without whom my Phd would have been so much more difficult. You are still two of my best friends and thanks for patiently listening to all the geophysics problems that I posed you with. Thank you for downloading numerous research articles for me. Credits to you two for keeping me motivated, telling me new research ideas and sharing the burden of my work at times. All this means so much to me till today!

Ramiz, Sourav, Anirban and Kushal: my best friends from my undergraduate studies: A big thank you to all three of you for being by my side and supporting me through the tough times. Special thanks to Sourav for sharing with me his ideas on how to design my thesis cover.

I did not make a lot of good friends in Amsterdam, but the few I made are all very special. Thank you Harshal for all the after-work table tennis sessions we had. All the intense forehand and backhand battles we had, the time spent at Maslow, all of these helped me keep my brain away from work and was so refreshing. John, whom I have known for only the last few months, but thanks to you for being my table tennis partner and also my jamming partner. Thanks for the encouragement, love and the friendship!

Sirshendu and Srinivasan: thank you for being the best housemates in the world and being supportive when I got back home after a long day at work. You always stood by my side and it means a lot.

Laura: although you are now my ex-colleague from Nikhef, you are also a very good friend! Needless to mention the summer of 2017 we spent at Virgo was memorable. The bike rides, the trip to Florence, all are so well etched in my memory. I know, I asked you a lot of ques-

tions on Virgo optics during the bike rides, but you always answered them! I learnt a lot from you during the stay. Also thanks for giving me company at Nikhef whenever I asked for it. Maria: I never thought I would find my best friend at work, but there you were! Thank you so much for all the support with work, life and everything really. All the interesting discussions during coffee breaks, the after-work chats, the concerts, the movies, the music, the field work and the list gets endless. Your questions always made me think deeper into the physics of the problem and your contribution has been instrumental in my Phd work and I cannot thank you enough.

Last but not the least, I would like to thank the three most important people in my life without whom I wouldn't have made it here. They are my parents and my girlfriend. Thank you *Ma* and *Baba* for having the faith in me. I know you sacrificed a lot so that I could be here, and I think it was worth it. Thanks for teaching me everything in life and it has surely steered to being a better person everyday. Mou, without you my Phd life would have been so much more stressful. Thanks for being on the phone for hours, listening to my troubles and being always there to keep me motivated through all the good, the bad and the ugly days. You keep me driven till to this day and hopefully will be by my side for many more years to come.

Soumen

