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A B S T R A C T 

We present the discovery and validation of TOI-7166 b, a 2 . 01 ± 0 . 05 R⊕ planet orbiting a nearby low-mass star. We validated 

the planet by combining Transiting Exoplanet Survey Satellite and multicolour high-precision photometric observations from 

ground-based telescopes, together with spectroscopic data, high-contrast imaging, archival images, and statistical arguments. 
The host star is an M4-type dwarf at a distance of ∼35 pc from the Sun. It has a mass and a radius of M� = 0 . 190 ± 0 . 004 M�
and R� = 0 . 222 ± 0 . 005 R�, respectively. TOI-7166 b has an orbital period of 12.9 d, which places it close to the inner edge 
of the Habitable Zone of its host star, receiving an insolation flux of Sp = 1 . 07 ± 0 . 08 S⊕ and an equilibrium temperature of 
Teq = 249 ± 5 K (assuming a null Bond albedo). The brightness of the host star makes TOI-7166 a suitable target for radial 
velocity follow-up to measure the planetary mass and bulk density. Moreover, the physical parameters of the system including 

the infrared brightness ( Kmag = 10 . 6) of the star and the planet-to-star radius ratio (0 . 0823 ± 0 . 0012) make TOI-7166 b an 

exquisite target for transmission spectroscopic observations with the James Webb Space Telescope , to constrain the exoplanet 
atmospheric compositions. 

Key words: exoplanets – planets and satellites: detection – stars: individual – stars: late-type – stars: low-mass. 
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 I N T RO D U C T I O N  

ver the past two decades, exoplanet science has experienced an 
xtraordinary expansion, with more than 6000 confirmed planets 
eported to date. 1 This rapid growth has been largely driven by 
edicated space missions, such as Kepler (W. J. Borucki et al. 
010 ) and the Transiting Exoplanet Survey Satellite ( TESS ; G. R.
icker et al. 2015 ), as well as extensive ground-based surveys
nd radial velocity programmes. These efforts have revealed an 
nexpected diversity of planetary systems and populations. Within 
ll these planets, sub-Neptune-sized (1.5–4.0 R⊕) are among the 
ost common yet enigmatic planetary populations known to date, 
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ith no Solar system analogues. Their origin and internal structure 
emain poorly understood, lying at the transition between rocky 
uper-Earths and gas-rich Neptunes (e.g. L. A. Rogers 2015 ; J.
. Bean, S. N. Raymond & J. E. Owen 2021 ). In particular, their
ulk compositions, atmospheric retention, and formation pathways 
re key open questions in exoplanet science. Around M dwarfs, 
hese planets are especially interesting: their transits produce large 
ignals, their radial velocity amplitudes are enhanced by the low 

tellar masses, and their habitable zones are located at short orbital
eriods (J. F. Kasting, D. P. Whitmire & R. T. Reynolds 1993 ; R.
. Kopparapu 2013 ). These factors make them prime targets for
recise mass measurements and detailed atmospheric studies. Indeed, 
he James Webb Space Telescope ( JWST ) is investing considerable
mount of time on these candidates such as GJ 3470 b (T. G.
eatty et al. 2024 ), GJ 1214 b (E. Schlawin et al. 2014 ), K2-18 b

N. Madhusudhan et al. 2023 ), TOI-270 d (M. Holmberg & N.
adhusudhan 2024 ), LHS 1140 b (M. Damiano et al. 2024 ), and
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Figure 1. TESS target pixel file image of TOI-7166 observed in Sectors 82 
made by tpfplotter (A. Aller et al. 2020 ). Red dots show the location 
of Gaia DR3 sources and the yellow shaded regions show the photometric 
apertures used for photometric measurements extraction. 

L  

r  

o  

K  

e  

o  

M  

t  

h  

A  

a  

K

 

p  

i  

b  

m  

w  

E
 

t  

t  

e  

a  

p  

o  

t  

c  

h  

d  

a  

s
 

v  

p  

t  

T  

t  

s

2

2

T  

R  

S  

F
t

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/544/2/2637/8
 98–59 d (A. Gressier et al. 2024 ) among others; we refer the
eader to N. Madhusudhan et al. ( 2025a ) for a recent review of JWST
bservations of sub-neptunes. Of particular interest is the case of
2-18b, its nature as a water-rich Hycean planet (N. Madhusudhan

t al. 2023 ; R. Hu et al. 2025 ) and the subsequent claim of a detection
f dimethyl sulfide as a potential biosignature in its atmosphere (N.
adhusudhan et al. 2025b ), has produced one of the hottest debates

oday, with a series of independent studies refuting both the hycean
ypothesis (see, e.g. O. Shorttle et al. 2024 ; N. F. Wogan et al. 2024 ;
. Werlen et al. 2025 ) and the detection of any biomaker in its

tmosphere (see, e.g. R. Luque et al. 2025 ; S. P. Schmidt et al. 2025 ;
. B. Stevenson et al. 2025 ; L. Welbanks et al. 2025 ). 
NRAS 544, 2637–2652 (2025)

igure 2. TESS PDC-SAP flux measurements extracted from the 2-min cadence d
he 2-min data, and the red points show the 20-min binned data. The transit locatio
All of these highlight the community’s interest in this puzzling
lanetary population and underscore the importance of identify-
ng well-suited sub-Neptunes orbiting nearby M dwarfs to build
enchmark systems for testing formation, evolution, and habitability
odels, as well as to enable future atmospheric characterization
ith state-of-the-art facilities such as the JWST and/or upcoming
xtremely Large Telescopes. 
In this context, this study reports the discovery of TOI-7166 b, a

emperate sub-Neptune-sized planet orbiting an M4-type star iden-
ified by TESS . We characterize its host star by combining spectral
nergy distribution (SED) fitting with low-resolution spectroscopy,
nd we validate its planetary nature using space- and ground-based
hotometry along with statistical arguments. TOI-7166 b has a radius
f ∼2.01 R⊕ and orbits its host star every 12.9 d, placing it in
he habitable zone and receiving an insolation of S ∼1.07 S⊕. The
ombination of the planet’s properties and the brightness of its
ost star makes TOI-7166 b an excellent candidate for precise mass
etermination and detailed atmospheric characterization, placing it
mong the most promising sub-Neptunes known to date for such
tudies. 

The paper is organized as follows. Section 2 describes the obser-
ations used in this study and the stellar characterization. Section 3
resents the validation of the planetary signal, while Section 4 details
he global photometric modelling. Additional planet searches and
ESS detection limits are discussed in Section 5 . Finally, we outline

he prospects for future follow-up observations in Section 6 and
ummarize our conclusions in Section 7 . 

 OBSERVATI ONS  A N D  DATA  ANALYSI S  

.1 TESS data 

he host star TIC 288421619 (TOI-7166) was observed by TESS (G.
. Ricker et al. 2015 ) in Sector 82 for 27 d from 2024 August 10 to
eptember 5 with 120-s and 200-s cadences, in Camera #1 and CCD
ata of TOI-7166. The target was observed in sector 82. The blue points show 

ns of TOI-7166 b are shown with black arrows and zoom boxes. 
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Figure 3. TESS and ground-based phase-folded transit light curves of TOI- 
7166 b. The coloured data points show the relative flux, and the coloured 
solid lines show the best-fitting transit model superimposed. The transit light 
curves are shifted along y -axis for visibility. 
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2. For our global analysis, we used the Pre-search Data Conditioning 
imple Aperture Photometry flux (PDC-SAP; J. C. Smith et al. 
012 ; M. C. Stumpe et al. 2012 , 2014 ), constructed by the TESS
cience Processing Operations Center (SPOC; J. M. Jenkins et al. 
016 ) at the Ames Research Center, from the Mikulski Archive for
pace Telescopes, 2 as they are already calibrated for any instrument 
ystematics and crowding effects. We extracted the normalized TOI- 
166 fluxes using the LIGHTKURVE (Lightkurve Collaboration 2018 ) 
ython package. Fig. 1 shows the TESS FOV including the TESS
perture photometric and the location of nearby Gaia DR3 sources 
Gaia Collaboration 2021 ). Fig. 2 shows the TESS photometric data 
or TOI-7166. The transit events are highlighted by the black arrows
nd zoom boxes. 

.2 Ground-based data 

ll ground-based photometric time-series were scheduled based 
n the TESS Transit Finder tool, which is a customized 
ersion of the TAPIR software package (E. Jensen 2013 ). These 
re summarized in the following sections. Figs 3 and C1 show the
bserved transit light curves. Table A1 presents the ground-based 
bservation log. 

.2.1 SPECULOOS-North and SPECULOOS-South observations 

e used the SPECULOOS (Search for habitable Planets EClipsing 
Ltra-cOOl Stars; L. Delrez et al. 2018 ; M. Gillon 2018 ; D. Sebastian

t al. 2021 ; A. Y. Burdanov et al. 2022 ) 1 m network to observe five
ransits of TOI-7166.01. These observations were obtained with a 
K ×2K Andor iKon-L cameras with a pixel scale of 0 . 35 arcsec and
 FOV of 12 arcmin × 12 arcmin . Three transits were observed with 
PECULOOS-South located in Paranal, Chile. The first transit was 
bserved with SPECULOOS-South/Ganymede on UTC 2025 June 8 
n the Sloan- z′ with an exposure time of 13 s. Second and third transits
ere observed on UTC 2025 June 20 with SPECULOOS-South/Io 

nd SPECULOOS-South/Europa in the Sloan- g′ (exposure time 
f 140 s) and Sloan- z′ (exposure time of 13 s) filters, respectively.
PECULOOS-North/Artemis observed two full transits in the Sloan- 
′ and I + z′ filters on UTC 2025 July 3 and 29 with exposure time
f 140 s, and 13 s, respectively. Data processing and photometric 
easurements were performed using the PROSE 3 pipeline (L. J. 
arcia et al. 2022 ). 

.2.2 TRAPPIST-South observations 

e observed one full transit of TOI-7166.01 with the TRAPPIST- 
outh (TRAnsiting Planets and PlanetesImals Small Telescope; M. 
illon et al. 2011 ; E. Jehin et al. 2011 ) telescope on UTC 2025

une 20. It is equipped with a 2K ×2K FLI Proline detector with a
ixel scale of 0.65 arcsec and a FOV of 22 arcmin × 22 arcmin . The 
bservations were conducted in the Rc filter with and exposure time 
f 140 s. 

.2.3 LCOGT-1m0 observations 

he Las Cumbres Observatory Global Telescope (LCOGT; T. M. 
rown et al. 2013 ) 1.0-m network was used to observe three transits
 https://archive.stsci.edu/missions- and- data/tess 
 Prose: https://github.com/lgrcia/prose . 

U  

a
(  

e

f TOI-7166.01. The telescopes are equipped with 4096 × 4096 
INISTRO Cameras, with an image scale of 0 . 389 arcsec per pixel
nd a FOV of 26 arcmin × 26 arcmin . First transit was observed on 
TC 2025 June 8 in the Sloan- i ′ , the second transit was observed on
TC 2025 July 3 in the Sloan- r ′ (but the transit was not included in
ur global fit because of low S/R), and the last one was observed on
TC July 16, 2025 in the Sloan- r ′ filter. LCOGT data processing

nd photometric analysis were performed using BANZAI pipeline 
C. McCully et al. 2018 ) and ASTROIMAGEJ software (K. A. Collins
t al. 2017 ), respectively. 
MNRAS 544, 2637–2652 (2025)
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Figure 4. The figure shows 5 σ magnitude contrast curves in both filters as 
a function of the angular separation out to 1.2 arcsec. The inset shows the 
reconstructed 832 nm image of TOI-7166 with a 1 arcsec scale bar. TOI-7166 
was found to have no close companions from the diffraction limit (0.02’) out 
to 1.2 arcsec to within the magnitude contrast levels achieved. 
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.2.4 TTT observations 

hree transits of TOI-7166.01 were observed with the Two-metre
win Telescope facility (TTT) during July 4, 16 and 29 nights. TTT

s located at the Teide Observatory on the island of Tenerife (Canary
slands, Spain). Currently, it includes two 0.8m telescopes (TTT1
nd TTT2) and a 2.0m telescope (TTT3) on altazimuth mounts.
e used TTT1 telescope, that has two Nasmyth ports with focal

atios of f /D = 6 . 8 and f /D = 4 . 4 equipped with a QHY411M 

4 

MOS cameras (M. R. Alarcon et al. 2023 ). The QHY411M have
cientific Complementary Metal–Oxide–Semiconductor (sCMOS)
mage sensors with 14K × 10K 3.76μm pixel−1 pixels. This setup,
n the f /D = 6 . 8 focus, provides an effective FoV of 30 arcmin ×
0 arcmin (with an angular resolution of 0.14 arcsec pixel−1 ). Science
mages were taken using the Sloan- g′ and Sloan- r ′ filters on UTC 2025
uly 4. 

TTT3 is a 2-m f /6 Ritchey–Chrétien telescope that is currently in
ts commissioning phase. An Andor iKon-L 936 2k ×2k camera is
ounted at the Nasmyth 2 focus, equipped with a back-illuminated

3.5μm pixel−1 BEX2-DD CCD sensor, resulting in a field of view
f 7.85 arcmin ×7 . 85 arcmin and a plate scale of 0.23 arcsec pixel−1 .
cience images were taken using the Sloan- g′ and y filters. All the

mages were bias, dark, and flat-field corrected in the standard way,
nd photometry extraction was performed using the PROSE pipeline.
he TTT1 and TTT2 data are not included in the final global analysis
ue to the low S/R and large photometric error bars. 

.2.5 AUKR T80 observation 

e observed two transits of TOI-7166 b on UTC July 29 and August
4, 2025 using the 80 cm Prof. Dr Berahitdin Albayrak Telescope
T80) at the Ankara University Kreiken Observatory (AUKR), in
he Sloan- i ′ filter. The telescope is equipped with a 1024 × 1024
pogee Alta U47 + CCD camera, providing a field of view of
1 arcmin × 11 arcmin . Data reduction and differential photometry
ere performed with the ASTROIMAGEJ (AIJ) software (K. A. Collins

t al. 2017 ). 

.2.6 OSN-1.5m observation 

e used the T150 at the Sierra Nevada Observatory in Granada
Spain) to observe one full transit of TOI-7166 b on UTC 2025 July 29
n the Johnson–Cousin I and V filters. The telescope is equipped with
 2K ×2K Andor iKon-L BEX2DD CCD camera with a pixel scale of
.232 arcsec, resulting in a total FOV of 7.9 arcmin ×7.9 arcmin. The
ata calibration and photometric extraction were performed using the
ROSE pipeline and the ASTROIMAGEJ software. Unfortunately, the
ata set was affected by adverse weather conditions and is therefore
ot included in the global analysis. 

.3 High-resolution imaging 

o obtain high-resolution imaging for TOI-7166, we utilized the
orro speckle interferometric instrument, mounted on the 8-m Gem-

ni South telescope. High-resolution imaging is critical to assess the
ocal environment of an exoplanet host star and determine if a line of
ight or bound close companion star is present. The presence of such
 companion provides ‘third-light’ contamination of the observed
ransit, leading to incorrect derived properties for the exoplanet and
NRAS 544, 2637–2652 (2025)

 https://www.qhyccd.com/

t  

T  

fi  
ts host star (D. R. Ciardi et al. 2015 ; E. Furlan & S. B. Howell 2017 ,
020 ). 
TOI-7166 was observed with Zorro on UTC 2025 July 3. Zorro pro-

ides simultaneous speckle imaging in two bands (562 and 832 nm),
ielding output data products that include robust 5 σ magnitude
ontrast curves and a reconstructed image (N. J. Scott et al. 2021 ).
ight sets of 1000 ×0.06 second images were obtained for TOI-7166
nd the images were processed using our standard reduction pipeline
S. B. Howell et al. 2011 ). Fig. 4 presents the final 5 σ magnitude
ontrast curves and the 832 nm reconstructed speckle image for TOI-
166. We find that TOI-7166 is a single star with no companion
righter than 5–6 mag below that of the target star from the Gemini
elescope 8-m telescope diffraction limit (20 mas) out to 1.2 arcsec.
t the distance of TOI-7166 ( d = 35.4 pc), these angular limits

orrespond to spatial limits of 0.7–42 au. 

.4 Spectroscopic data and stellar physical properties 

.4.1 SED fitting 

e performed an analysis of the broad-band SED analysis of the
tar together with the Gaia DR3 parallax (with no systematic offset
pplied; see, e.g. K. G. Stassun & G. Torres 2021 ), in order to derive
n empirical measurement of the stellar radius, following the same
rocedures described in K. G. Stassun & G. Torres ( 2016 ), K. G.
tassun, K. A. Collins & B. S. Gaudi ( 2017 ), and K. G. Stassun et al.
 2018a ). We pulled the near-infrared W1–W3 magnitudes from WISE
ogether with the zy magnitudes from Pan-STARRS , the GBP GRP 

agnitudes from Gaia , and the J H KS magnitudes from 2MASS .
e also utilized the absolute flux calibrated spectrophotometry from
aia . Together, the available photometry spans the full stellar SED
ver the wavelength range 0.4–10μm (see Fig. 5 ). 

We performed a fit using PHOENIX stellar atmosphere models
T. O. Husser et al. 2013 ), with the free parameters being the
ffective temperature ( Teff ) and metallicity ([Fe/H]). The extinc-
ion, AV , was fixed at zero due to the proximity of the system.
he resulting fit (Fig. 5 ) has a reduced χ2 of 2.8, with a best-
tting Teff = 3100 ± 75 K, and [Fe/H] = −0 . 1 ± 0 . 2. Integrating

https://www.qhyccd.com/


TOI-7166 b system 2641

Figure 5. Spectral energy distribution of TOI-7166. The coloured points 
with error bars represent the observed photometric measurements. The black 
circles are the model fluxes from the best-fitting PHOENIX atmosphere 
model. The absolute flux-calibrated Gaia spectrophotometry is shown as 
the grey swathe. 
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Figure 6. SpeX SXD spectrum of TOI-7166 (red) alongside the M4 V 

standard Ross 47 (grey). Prominent atomic and molecular features of M 

dwarfs are annotated, and regions of strong telluric absorption are shaded. 

Figure 7. Shane/Kast optical spectrum of TOI-7166 (black line) compared 
to its best-fitting M5 SDSS spectral template from J. J. Bochanski et al. 
( 2007 , magenta line). Key spectral features are labelled, including regions of 
residual telluric absorption (⊕). The inset box shows the 6520–6770 Å region 
encompassing H α (weak emission) and Li I features (not present). The gap in 
the Kast spectrum between 5600 and 5900 Å corresponds to the gap between 
that instrument’s blue and red channels. 
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he model SED gives the bolometric flux at Earth, Fbol = 1 . 158 ±
 . 055 × 10−10 erg s−1 cm−2 . Taking the Fbol together with the Gaia 
arallax directly gives the bolometric luminosity, Lbol = 0 . 00448 ±
 . 00021 L�. The stellar radius follows from the Stefan–Boltzmann 
elation, giving R� = 0 . 232 ± 0 . 013 R�. In addition, we can estimate
he stellar mass from the empirical relations of A. W. Mann et al.
 2019 ), giving M� = 0 . 217 ± 0 . 007 M�. 

.4.2 IRTF/SpeX observations for TOI-7166 

e observed TOI-7166 on 18 May 2025 with the SpeX spectrograph 
J. T. Rayner et al. 2003 ) on the 3.2-m NASA Infrared Telescope Fa-
ility (IRTF). We used the short-wavelength cross-dispersed (SXD) 
ode and the 0.′′ 3 × 15 arcsec slit aligned to the parallactic angle to 

ather a spectrum covering 0.80–2.42μm with a resolving power 
f R∼2000 and 2.5 pixels per resolution element. Conditions were 
lear with seeing of 0.′′ 8’. We collected six 200 s exposures at an
irmass of 1.0, nodding in an ABBAAB pattern. Science observations 
ere preceded by six 20 s exposures of the A0 V telluric standard
D 192538 ( V = 6.5) at a similar airmass and followed by the

tandard SXD calibration set. Data reduction was carried out with 
PEXTOOL v4.1 (M. C. Cushing, W. D. Vacca & J. T. Rayner 2004 ),
ollowing the standard approach (e.g. K. Barkaoui et al. 2023 , 2024 ,
025b ; M. Ghachoui et al. 2023 , 2024 ). The resulting spectrum
Fig. 6 ) has a median per-pixel S/R ratio of 79. 

We analyzed the SpeX SXD spectrum of TOI-7166 using the 
peX Prism Library Analysis Toolkit (SPLAT; A. J. Burgasser & 

plat Development Team 2017 ) and referring to the IRTF Spectral 
ibrary (M. C. Cushing, J. T. Rayner & W. D. Vacca 2005 ; J. T.
ayner, M. C. Cushing & W. D. Vacca 2009 ). The spectrum shows
 strong match to the M4 V standard Ross 47, and we adopt a near-
nfrared spectral type of M4.0 ±1.0 accordingly. Using the H2O–K2 
ndex (B. Rojas-Ayala et al. 2012 ) and K-band Na I and Ca I features
n conjunction with the A. W. Mann et al. ( 2013 ) relation, we derive
 stellar iron abundance of [Fe / H] = −0 . 20 ± 0 . 12, suggestive of
ubsolar metallicity. 

.4.3 Shane/Kast observations for TOI-7166 

e observed TOI-7166 with the Kast double spectrograph (J. S. 
iller & R. P. S. Stone 1994 ) on the 3m Shane telescope at Lick
bservatory on 27 July 2025 ( UT ) in clear conditions with 1.′′ 2 seeing.
e used the 1.′′ 5 slit aligned to the parallactic angle to obtain blue and

ed optical spectra split at 5700 Å by the d57 dichroic, and dispersed
y the 600/4310 grism and 600/7500 grating, resulting in spectral 
esolutions of λ/�λ ≈ 1100 and ≈1500, respectively. We obtained a 
ingle 1200 s exposure in the blue channel and two 600 s exposures in
he red channel at an average airmass of 1.2. The nearby G2 V star HD
11 476 ( V = 7 . 0) was observed afterward at a similar airmass for
elluric absorption calibration, and the spectrophotometric calibrator 
D28 + 4211 (J. B. Oke 1990 ) was observed shortly thereafter

or flux calibration. We used HeHgCd and HeNeArHg arc lamp 
xposures to wavelength calibrate our blue and red data, and flat-field
amp exposures for pixel response calibration. Data were reduced 
sing the kastredux code 5 using standard settings. The resulting 
pectra have median signals-to-noise of 38 at 5425 and 141 at
350 Å. 
The reduced spectrum is shown in Fig. 7 , compared to the best-

tting M5 dwarf SDSS spectral template from J. J. Bochanski et al.
 2007 ). TOI-7166 is slightly bluer than this template, indicating a
MNRAS 544, 2637–2652 (2025)

https://github.com/aburgasser/kastredux
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Figure 8. Top panel : Measured transit depths of the planet in different filters 
(coloured dots highlighted with error bars) obtained from our global analysis 
for TOI-7166 b. The horizontal black line corresponds to the depth obtained 
from the achromatic fit with a 1 σ error bar (shaded region). All measurements 
agree with the common transit depth at 1 σ . Bottom panel : Transmission for 
each filter. 
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lightly earlier type. Index-based classifications based on methods
escribed in I. N. Reid, S. L. Hawley & J. E. Gizis ( 1995 ), J. E. Gizis
 1997 ), E. L. Martı́n et al. ( 1999 ), S. Lépine, R. M. Rich & M. M.
hara ( 2003 ), and F. C. Riddick, P. F. Roche & P. W. Lucas ( 2007 )

ndicate M4.5 ±0.5 as a more accurate spectral type that encompasses
he near-infrared classification. We detect weak H β (4861 Å) and
 α (6563 Å) emission, the latter with an equivalent width EW =
1 . 21 ± 0 . 12 Å, corresponding to log ( LH α/Lbol ) = −4 . 52 ± 0 . 08

sing the χ factor relation of S. T. Douglas et al. ( 2014 ). The presence
f weak H α emission indicates an activity age � 7 Gyr based on the
inematic sample of A. A. West et al. ( 2008 ), or � 4 Gyr based on the
ass-dependent relation of E. K. Pass et al. ( 2024 ) assuming M =

.15 M�. The absence of detectable Li I absorption at 6708 Å rules
ut a substellar mass and age less than ∼30 Myr. We measure the
etallicity index ζ = 1 . 080 ± 0 . 005 (S. Lépine et al. 2013 ), which

orresponds to a roughly solar metallicity of [Fe/H] = + 0 . 11 ± 0 . 20
sing the A. W. Mann et al. ( 2013 ) calibration, albeit formally
NRAS 544, 2637–2652 (2025)

igure 9. Evolution of TOI-7155 position. The left panel shows the red image
PECULOOS-South/Europa taken in 2025. The previous and current positions of t
onsistent with the slightly subsolar metallicity inferred from the
ear-infrared spectrum. 

 PLANET  VA LI DATI ON  

.1 TESS data report 

he transit search was performed with the SPOC pipeline (J. M.
enkins 2002 ; J. M. Jenkins et al. 2010 , 2020 ) using Sector 82
ata on 2024 September 13. The pipeline found a transit signal
t 12.92 d with a signal-to-noise ratio of 10.5. The TESS Science
ffice alerted the event on 2024 November 14 (N. M. Guerrero

t al. 2021 ). The transit signal passed all diagnostic tests pre-
ented in the data validation reports (J. D. Twicken et al. 2018 ).
he source of the transits was localized to 2 . 08 ± 2 . 97 arcsec

rom TOI-7166. It resulted in a transit depth of 8723 . 2564 ±
70 . 9261 ppm, duration of 1 . 5980 ± 0 . 2144 h, and an orbital period
f 12 . 9228 ± 0 . 0030 d, which correspond to a planet with a radius of
p = 2 . 1 ± 0 . 32 R⊕. 

.2 Ground-based photometric follow-up for TOI-7166 

e used the ground-based photometric observations to ( i ) con-
rm the event on the target, ( ii ) refine the transit ephemerides
nd ( iii ) measure the transit depth in different bands in order
o validate the planetary nature. We conducted time-series ob-
ervations in different bands, Sloan- g′ , - r ′ , - i ′ , - z′ , SDSS y, and
c filters, covering a wavelength range from 4000 to 10000 Å.
he aperture photometry was performed in uncontaminated small
pertures of only a few arcseconds to exclude any neighbour-
ood objects. It resulted in no chromatic dependence across
lters. Fig. 8 shows the measured transit depths in different
ands. 

.3 Archival data for TOI-7166 

e explored the archival science data for TOI-7166 to exclude any
ossible background stellar objects that could be blended with TOI-
166 in its current position. TOI-7166 has a relative high proper
 from POSS-I taken in 1952. The right panel shows the zp image from 

he target are shown in red and blue circles, respectively. 
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Table 1. Astrometry, photometry, and spectroscopy stellar properties of 
TOI-7166. (1): Gaia EDR3 (Gaia Collaboration 2021 ); (2) TESS Input 
Catalogue (K. G. Stassun et al. 2018b ); (3) UCAC4 N. (Zacharias et al. 
2012 ); (4) 2MASS (M. F. Skrutskie et al. 2006 ); (5) WISE (R. M. Cutri 
et al. 2021 ). 

Star information 

Target designations: 
TOI 7166 
TIC 288421619 
GAIA DR3 1740534092250753920 
2MASS J21224308 + 0853259 
LP 577–37 

Parameter Value Source 

Parallax and distance: 
RA [J2000] 21:22:43.35 (1) 
Dec [J2000] + 08:53:21.83 (1) 
Plx [mas ] 28 . 382 ± 0 . 022 (1) 
μRA [mas yr−1 ] 260 . 21 ± 0 . 02 (1) 
μDec [mas yr−1 ] −270 . 62 ± 0 . 02 (1) 
Distance [pc] 35 . 23 ± 0 . 03 (1) 

Photometric properties: 
TESSmag 13 . 123 ± 0 . 008 (2) 
Vmag [UCAC4] 15 . 79 ± 0 . 20 (3) 
Bmag [UCAC4] 16.8 (3) 
Rmag [UCAC4] 14.6 (3) 
Jmag [2MASS] 11 . 41 ± 0 . 02 (4) 
Hmag [2MASS] 10 . 86 ± 0 . 02 (4) 
Kmag [2MASS] 10 . 60 ± 0 . 02 (4) 
Gmag [ Gaia DR3] 14 . 492 ± 0 . 001 (1) 
W1mag [WISE] 10 . 39 ± 0 . 02 (5) 
W2mag [WISE] 10 . 21 ± 0 . 02 (5) 
W3mag [WISE] 10 . 05 ± 0 . 06 (5) 
W4mag [WISE] 8.90 (5) 

Spectroscopic and derived parameters 
Teff [K] 3099+ 51 

−50 This work 

log g� [dex] 5 . 02 ± 0 . 02 This work 
[Fe / H] [dex] −0 . 20 ± 0 . 12 This work 
M� [M�] 0 . 190+ 0 . 004 

−0 . 004 This work 

R� [R�] 0 . 222+ 0 . 006 
−0 . 004 This work 

L� [L�] 0 . 004103+ 0 . 000336 
−0 . 000298 This work 

Fbol [erg s−1 cm−2 ] (1 . 158 ± 0 . 055) × 10−10 This work 
Av [mag] 0 . 1 ± 0 . 1 This work 
ρ� [ ρ�] 17 . 36+ 0 . 96 

−1 . 33 This work 

Age [Gyr] � 4 Gyr This work 
Optical SpT M4.5 ± 0.5 This work 
Near-infrared SpT M4 ± 1 This work 
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otion of 375.7 mas yr−1 . We used the data from POSS-I/DSS (R.
. Minkowski & G. O. Abell 1963 ) in 1952 in the red filter and
PECULOOS-South in 2025 in the Sloan- z′ filter, and spanning 
3 yr. The target has shifted by 27.′′ 4 from 1952 to 2025. Fortunately,
o background objects are detected in the current position of TOI-
166 (see Fig. 9 ). 

.4 Statistical validation of TOI-7166.01 

e used the TRICERATOPS 6 (S. Giacalone et al. 2021 ) package 
eveloped in PYTHON to compute the False Positive Probability, 
hich allows us to identify whether a given candidate is a planet or a
 TRICERATOPS : https://github.com/stevengiacalone/triceratops . 7
earby false positive. TRICERATOPS provides two output parameters, 
hich are the FPP (False Positive Probability) and the NFPP (Nearby
alse Positive Probability). TRICERATOPS uses the phase-folded TESS 
r ground-based light curves of the candidate together with high- 
ontrast imaging observations in order to improve our results. 
n this case, we used photometric observation from TESS sector 
2 (Section 2.1 ), and high-resolution observation from Gemini- 
outh/Zorro taken on UTC 2025 July 3 (Section 2.3 ). We obtained
FPP = 0 (i.e. the event was detected on the target, Section 3.2 ) and
PP = 0 . 0018 ± 0 . 0005. TOI-7166 b is validated as a planet. 

 G L O BA L  ANALYSI S  O F  PHOTOMETRIC  

ATA  

ur global modelling of transit observations is based on the TESS
described Section 2.1 ) and ground-based data (described in Sec- 
ion 2.2 ), using the Metropolis–Hastings (MH) (N. Metropolis et al.
953 ; W. K. Hastings 1970 ) technique implemented in Trafit , a
evised version of the Markov chain Monte Carlo (MCMC) code (see

. Gillon et al. ( 2014 ) for more details, and references therein). We
ollowed the same strategy as described in K. Barkaoui et al. ( 2023 ,
024 , 2025b ). 
The transit data are fitted using the K. Mandel & E. Agol

 2002 ) quadratic limb-darkening model, multiplied by a transit 
aseline, to correct systematic effects (time, FWHM, airmass, and 
ackground). For each transit light curve, the baseline is selected 
y minimizing the Bayesian information criterion (BIC; G. Schwarz 
 1978 )). The photometric measurement error bars are re-scaled using
he correction factor CF = βw × βr , where βr is the red noise and βw 

s the white noise (M. Gillon et al. 2012 ). 
For the global fit, the free parameters for transit modelling used are

he orbital period, total transit duration, impact parameters, transit 
epth, and stellar density. We applied a Gaussian prior distribution to
he stellar effective temperature ( Teff ), surface gravity (log g� ), mass 
 M� ), radius ( R� ), metallicity ([Fe / H] ) and quadratic limb-darkening 
oefficients u1 and u2 (see Table B1 ). Given Teff , [Fe / H] , and log g� , 
e computed the coefficients u1 and u2 using LDTK 

7 package (H. 
arviainen & S. Aigrain 2015 ). During the fitting, we converted u1 

nd u2 coefficients into q1 = ( u1 + u2 )2 and q2 = 0 . 5 u1 ( u1 + u2 )−1 

roposed by D. M. Kipping 2013 . 
Two global MCMC analysis were performed. First one assuming 

 circular ( e = 0) orbit and second one assuming an eccentric orbit.
ur results favoured a circular orbit solution based on the Bayes

actor. For each transit light curve, we performed a preliminary fit
omposed of one Markov chain with 5 × 105 steps to determine the
orrection factor (CF ; M. Gillon et al. 2012 ) to be applied to the
easurements’ error bars. Then, we performed a final MCMC fit 

omposed of five Markov chains with one million steps to constrain
he final physical parameters of the system. We used the A. Gelman &
. B. Rubin ( 1992 ) statistical tests to check the convergence for each
arkov chain. Our final solution for the circular orbit is presented in

able 2 . 

 PLANET  SEARCHES  A N D  D E T E C T I O N  

IMITS  F RO M  T H E  TESS P H OTO M E T RY  

sing the available TESS data (see Section 2.1 ), we employed the
HERLOCK package (B. O. Demory et al. 2020 ; F. J. Pozuelos et al.
020 ), to independently recover the candidate TOI-7166.01 and to 
MNRAS 544, 2637–2652 (2025)

 LDTK : https://github.com/hpparvi/ldtk. 

https://github.com/stevengiacalone/triceratops
https://github.com/hpparvi/ldtk
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Table 2. Derived properties of the TOI-7166 b system with 1 σ . 

TOI-7166 

Parameter Value 
Quadratic limb-darkening coefficients 

u1 , TESS 0 . 31 ± 0 . 01 
u2 , TESS 0 . 23 ± 0 . 05 
u1 ,Sloan −z′ 0 . 24 ± 0 . 02 
u2 ,Sloan −z′ 0 . 18 ± 0 . 05 
u1 ,I + z′ 0 . 26 ± 0 . 02 
u2 ,I + z′ 0 . 20 ± 0 . 04 
u1 ,SDSSy 0 . 22 ± 0 . 01 
u2 ,SDSSy 0 . 17 ± 0 . 04 
u1 ,Sloan −i′ 0 . 34 ± 0 . 02 
u2 ,Sloan −i′ 0 . 23 ± 0 . 06 
u1 ,Sloan −r′ 0 . 54 ± 0 . 04 
u2 ,Sloan −r′ 0 . 26 ± 0 . 06 
u1 ,Sloan −g′ 0 . 57 ± 0 . 03 
u2 ,Sloan −g′ 0 . 34 ± 0 . 06 
u1 ,Johnson −Rc 0 . 38 ± 0 . 02 
u2 ,Johnson −Rc 0 . 26 ± 0 . 04 
Derived planet parameters 

Orbital period P [days] 12 . 920636210+ 0 . 000000998 
−0 . 000000998 

Transit depth R2 
p /R

2 
� [ppt] 6776+ 198 

−194 

Planet-to-star ratio Rp /R� 0 . 0823 ± 0 . 0012 
Planet radius Rp [R⊕] 2 . 01+ 0 . 06 

−0 . 05 

Transit-timing T0 10847 . 7427718 ± 0 . 0000101 
[BJD TDB − 2450000] 
Scaled semimajor axis a/R� 59 . 98+ 1 . 09 

−1 . 57 

Orbital semimajor axis a [au] 0 . 06191 ± 0 . 00044 
Orbital inclination i [deg] 89 . 80+ 1 . 16 

−1 . 05 

Impact parameter b [ R� ] 0 . 20+ 0 . 10 
−0 . 12 

Transit duration [min] 105 ± 1 
Eccentricity e 0 [fixed] 
Equilibrium temperature Teq [K] 249 ± 5 
Incident flux < F > [ < F⊕ > ] 1 . 07+ 0 . 09 

−0 . 08 
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xplore the existence of additional signals that may have been missed
y the official SPOC and QLP pipelines (see, e.g. G. Dransfield et al.
024 ; S. Yalc ¸ınkaya et al. 2025 ; S. Zú˜ niga-Fernández et al. 2025 ).
HERLOCK is specifically designed to identify low-S/N transit-like
eatures potentially attributable to planets, and it provides tools for
andidate validation and preliminary characterization, as described
n M. Dévora-Pajares et al. ( 2024 ). 

We first recovered the signal corresponding to the planetary
andidate alerted by SPOC, TOI-7166.01, and a secondary signal
hat would correspond to an orbital period of 7.03 d and ∼1.20 R⊕.

e executed the vetting module for this secondary candidate and
ound no obvious false-positive source that may have produced
he signal. In addition, SHERLOCK relies on TRICERATOPS (S.
iacalone et al. 2021 ) to conduct a statistical validation; in this

ase, the FPP and NFPP values were 0.42 and 0.09, respectively,
lacing the candidate in the ambiguous area out of the likely planet
egion, and close to the border with the nearby false positive area.
ence, to finally validate or refute this signal, we triggered a
round-based campaign using SPECULOOS-North/Artemis, LCO-
SO-2m0/MuSCAT4, and LCOGT-1m0 telescopes, which resulted

n no detection in any of our four trials, suggesting this signal is a
alse positive. 

The lack of additional candidates may be explained by several
ossibilities (see, e.g. R. D. Wells et al. 2021 ; N. Schanche et al. 2022 ;
NRAS 544, 2637–2652 (2025)

t

. J. Pozuelos et al. 2023 ): (1) the system hosts no further planets;
2) additional planets are present but do not transit; (3) additional
ransiting planets exist, yet their orbital periods exceed the range
nvestigated in this study; or (4) further transiting planets are present,
ut their signals remain undetectable due to the limited photometric
recision of the available data. Scenarios (1) and (2) could be
ddressed with a high-precision radial velocity campaign, although
uch an analysis lies beyond the scope of this work. Scenario (3) can
e tested by extending the observational baseline; unfortunately, no
ther TESS observations are planned. To explore the fourth scenario,
e conducted injection-and-recovery experiments with the MATRIX

ode 8 (M. Dévora-Pajares & F. J. Pozuelos 2022 ). 
MATRIX explores a three-dimensional parameter space by building

 grid of orbital periods, planetary radii, and transit epochs. Each
hree-parameter set defines a synthetic transit signal that is injected
nto the original TESS light curve. In our analysis, we adopted a grid
f 60 orbital periods (1–15 d), 60 planetary radii (0.5–3 R⊕), and five
ransit epochs, yielding a total of 18 000 scenarios. For each of these
cenarios, we applied a detrend with a bi-weight filter using a window
kmatrix . 

https://github.com/PlanetHunters/tkmatrix
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Figure 10. Results of the injection-recovery experiment conducted with 
MATRIX to determine the detectability of the planets in the TESS data. The 
colour scale represents recovery rates, where bright yellow indicates high 
recovery and dark purple/black indicates low recovery. The solid blue line 
marks the 95 per cent recovery contour, the dashed white line indicates the 
50 per cent, and the solid white line shows the 5 per cent. The red dot marks 
the nominal value for TOI-7166 b. 
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ize of 0.5 d, which was found to be the optimal length during the
HERLOCK exploration. Then, the light curves are processed in the 
earch for planets, where a synthetic planet is considered as retrieved 
hen its found period and epoch differ by at most 1 per cent and up

o 1 h from the injected values, respectively. 
The results are displayed in Fig. 10 . The transition region, that

s, the region with recoveries of 50 per cent, gently increases from
 R⊕ at 1 d orbital period to 1.5 R⊕ at 15 d orbital period. We
ound that Earth-sized planets become invisible for orbital periods 
onger than 3 d, and planets larger than 1.5 R⊕ would be easily
etectable for the full range of periods studied here, with recovery 
ates of 80–100 per cent; hence confirming the non-existence of 
ny. 

Additionally, we computed the Lomb–Scargle periodogram (N. 
. Lomb 1976 ; J. D. Scargle 1982 ), which showed no indications
f flaring activity or stellar rotation modulation in the TESS Sector 
2 data of the target. This implies that the rotational period of the
ost star is probably longer than the TESS observation window for a
ingle sector. 

 PROSPECTS  F O R  F U RTH E R  FOLLOW-UPS  

.1 Planetary mass determination 

ecent studies have quantified the observational thresholds required 
o infer planetary interiors from mass and radius measurements 
see, e.g. C. Dorn et al. 2015 , 2017 ; M. Plotnykov & D. Valencia
020 ). From our best fit model, the measured radius of TOI-
166 b is 2 . 01+ 0 . 06 

−0 . 05 R⊕ (relative precision ∼2.7 per cent). Following 
. Plotnykov & D. Valencia ( 2024 ), assuming a rocky Earth-

ike planet, we would need a mass precision of 7–17 per cent
or achieving iron-mass fractions and core-mass fractions within 
10–15 wt%. In the case of assuming a water-rich planet, the 
ass precision would be 5–15 per cent to keep the water-mass 

raction within ±10–15 wt%. Then, we can adopt a conservative 
ass precision target of 15 per cent as the threshold required to

nable a reliable first-order characterization of the planet’s internal 
tructure. 

Hence, to quantify the radial-velocity follow-up efforts required to 
easure the mass of TOI-7166 b with such a precision, we conducted
 dedicated suite of simulations. To this end, we generated synthetic 
V time series by randomly sampling observation dates within 

he allowed visibility window and evaluating the Keplerian signal 
f the known planet assuming a planetary mass of 5 . 03+ 1 . 54 
−1 . 04 M⊕

erived by the SPRIGHT code (H. Parviainen, R. Luque & E. Palle
024 ). In the absence of prior RVs for this target, the per-epoch
ncertainty was modelled using an effective error ( σeff ) adopted 
irectly from the literature for stellar analogues (similar spectral 
ype, brightness, and Teff ) observed considering two state-of-the-art 
acilities: CARMENES and MAROON-X (see, e.g, A. Reiners et al. 
018 ; K. Barkaoui et al. 2025a ). 
We use N to represent the number of RV measurements in a

lanned observing campaign. For each set of N observations, we 
alculated the noiseless Keplerian RVs and then created 100 Monte 
arlo simulations by adding Gaussian noise with a standard deviation 
f σeff . Then, each set of N simulated observations was fitted using the
urve fit function from the SCIPY library (P. Virtanen et al. 2020 ),

reating planetary mass as a free parameter. While this approach is
impler than a full multiparameter Bayesian analysis, it enables us to
oughly estimate how mass uncertainty changes with the number of 
easurements and helps approximate the number of observations re- 

uired to achieve a desired mass precision. For simplicity, this method 
oes not account for correlated noise, stellar activity, or multiple- 
arameter relationships. As a consequence, the derived number of 
easurements should be regarded as a lower limit, since the absence

f these noise sources makes the simulation more optimistic than 
hat is typically achievable in real observations. Nevertheless, during 

he calibration of this methodology by comparing simulated and 
eal data, we found that for quiet stars, i.e. those with low levels
f stellar activity (such as TOI-7166), the deviation between our 
odel predictions and the actual mass determination is typically < 3

er cent. This provides confidence in the robustness and reliability 
f the procedure. 
Using this method, we find that CARMENES would require 

pproximately 400 observations to achieve the 15 per cent precision 
oal, which aligns with expectations given the target’s faintness for 
his instrument (see, e.g. I. Ribas et al. 2023 ). Since the object
s visible for about five months each year, this would mean an
bserving campaign lasting around three observational semesters. 
n comparison, MAROON-X can achieve the same precision with 
nly about 15 to 20 measurements, which could be completed in
 single semester. This makes MAROON-X the optimal instru- 
ent for mass determination and enabling interior modelling for 
OI-7166 b. 

.2 Atmospheric characterization 

o quantify the suitability of transiting exoplanets for atmospheric 
haracterization using the transmission spectroscopic observation, 
e used the transmission spectroscopy metric (TSM) introduced 
y E. M. R. Kempton et al. ( 2018 ). By combining the planetary
arameters (radius Rp , mass Mp estimated from H. Parviainen et al. 
 2024 ), and equilibrium temperature Teq ), together with the infrared
rightness of the host star Jmag , we find that TOI-7166 b has a
SM of 62+ 21 

−14 . Right panel of Fig. 11 shows the TSM against the
lanetary equilibrium temperature for known transiting exoplanets 
ith mass measurements and radius Rp < 4 R⊕ and stellar effective 

emperature Teff < 4000 K. The diagram shows that TOI-7166 b 
s a suitable sub-Neptune-sized planet for detailed atmospheric 
haracterization with the JWST . 

 C O N C L U S I O N  

e present the validation and discovery of TOI-7166 b system by
he TESS mission. The system has been confirmed using multiband 
MNRAS 544, 2637–2652 (2025)
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Figure 11. Left panel: Stellar effective temperature ( Teff ) as a function of incident stellar flux ( Sp ) of known transiting exoplanets orbiting host stars cooler than 
4000 K. The size of each point corresponds to the planet’s size, and the colour indicates its equilibrium temperature. The light green region denotes the optimistic 
habitable zone, bounded by a solid red line (recent Venus limit) and a solid blue line (Early Mars limit). The dark green region indicates the conservative habitable 
zone as defined by R. K. Kopparapu 2013 . Right panel: Transmission spectroscopy metric (E. M. R. Kempton et al. 2018 ) against the planetary equilibrium 

temperature for the same sample displayed in the left panel. The points are coloured according to the stellar effective temperature. TOI-7166 b is highlighted by 
the error bars. 
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hotometric observations collected with the SPECULOOS-North,
PECULOOS-South-1m0, TTT-2m0, TRAPPIST-South-0.6m and 
COGT-1m0 telescopes (see Section 2.2 ). We characterized the

arget by combining the spectral energy distribution (SED) to-
ether with spectroscopic observations obtained with IRTF/SpeX
Section 2.4.2 ) Shane/Kast (Section 2.4.3 ) instruments. We per-
ormed a global fit of the TESS data and ground-based multicolour
bservations to derive and constrain the physical properties of
he TOI-7166 system (see Section 4 ). Table 1 shows the stellar
roperties (astrometric, photometric, and spectroscopic) of the target
tar. Table 2 shows the derived physical parameters of the system.
he posterior distribution parameters of the system are shown in
ig. D1 . 
We find that TOI-7166 is a nearby M4-type at a distance of

 = 35 . 2 pc, with an effective temperature of Teff = 3099 ± 50K, a
tellar mass of M� = 0 . 190 ± 0 . 004 M�, and a stellar radius of R� =
 . 222 ± 0 . 005 R�, a surface gravity of log g� = 5 . 02 ± 0 . 02 dex and
 metallicity of [Fe / H] = −0 . 20 ± 0 . 12 dex. TOI-7166 b is a mini-
eptune-sized planet completes its orbit in 12.92 d which places it

lose to the inner edge of the Habitable zone of its host star. It has a
lanetary radius of Rp = 2 . 01+ 0 . 06 

−0 . 05 R⊕, an equilibrium temperature of
eq = 249 ± 5 K (assuming a null Bond Albedo), and an insolation
f Sp = 1 . 07 ± 0 . 08 S⊕. 
The predicted radial velocity amplitude using the H. Parviainen

t al. ( 2024 )’s mass-radius relationship is found to be KRV =
 . 24+ 2 . 11 

−1 . 12 m s−1 . By combining the brightness of the star ( Vmag =
5 . 8) and the predicted radial velocity amplitude, which make TOI-
166 a suitable target for radial velocity spectroscopic observa-
ion follow-up using the MAROON-X spectrograph (Section 6.1 ).

e have observed a similar target with MAROON-X, TOI-2015
 Vmag = 16 . 1). Radial velocity measurements are presented in K.
arkaoui et al. ( 2025a ). Moreover, combining the infrared bright-
ess of the star ( Jmag = 11 . 4 and Kmag = 10 . 6) together with the
lanet-to-star ratio Rp /R� = 0 . 0823 ± 0 . 0012 makes TOI-7166 b a
NRAS 544, 2637–2652 (2025)
avourable target for upcoming JWST observations for transmission
pectroscopy. 
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PPENDI X  A :  TO I - 7 1 6 6 . 0 1  OBSERVATI ONS  

O G  

n this appendix, we list the ground-based observations of TOI-
166 b: Telescope, observation date, filter, exposure time, full width
t half maximum (FWHM), photometric aperture, and detrended
arameters that we use during our global analysis. 
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Table A1. TOI-7166.01 observations log. 

Telescope Date (UT) Filter Exptime FWHM Aperture Comment Detrended parameter 
[second] [arcsec] [arcsec] 

SPECULOOS-S −1.0m/Ganymede 2025 June 8 Sloan- z′ 13 3.8 2.0 Full transit Time + FWHM 

LCO-McD −1.0m 2025 June 8 Sloan- i′ 160 1.9 3.5 Full transit Time 
SPECULOOS-S −1.0m/Europa 2025 June 20 Sloan- z′ 13 1.8 2.6 Full transit Time + FWHM 

SPECULOOS-S −1.0m/Io 2025 June 20 Sloan- g′ 140 2.8 2.7 Full transit Time + Sky 
TRAPPIST-S −0.6m 2025 June 20 Rc 140 2.5 4.4 Full transit Time + Airmass 
SPECULOOS-N −1.0m/Artemis 2025 July 4 Sloan- g′ 140 1.1 1.7 Full transit FWHM + Airmass 
LCO-CTIO −1.0m 2025 July 4 Sloan- r ′ 150 2.6 5.0 Full transit Time + dy 
LCO-SAAO −1.0m 2025 July 16 Sloan- r ′ 150 2.0 4.3 Full transit Time + FWHM 

TTT3-2.0m 2025 July 4 SDSSy 60 1.1 2.1 Full transit Time + FWHM + dx 
TTT1-0.8m 2025 July 4 SDSSr, SDSSg 90,90 1.1,1.3 2.2,2.3 Not included –
TTT3-2.0m 2025 July 16 SDSSg 60 1.4 1.8 Full transit Time + dy 
TTT3-2.0m 2025 July 29 SDSS gp 60 1.9 2.9 Full transit Airmass + Time 
SPECULOOS-N −1.0m/Artemis 2025 July 29 I + z 13 1.2 2.3 Full transit Time 
AUKR-T80 2025 July 29 Sloan- i′ 100 2.4 4.8 Full transit FWHM + Airmass 
OSN-1.5m 2025 July 29 Ic, V 60,240 2.1, 2.8 4.6, 5.6 Not included –
AUKR-T80 2025 Aug 24 Sloan- i′ 120 3.1 6.8 Full transit FWHM + Airmass 

Table B1. Priors for the joint modelling of the transit light curves of TOI- 
7166 b. Normal priors are indicated as N (mean, standard deviation) and 
uniform distribution are indicated as U (lower bound, upper bound). 

Parameter Value 

Stellar parameters 

Quadratic Limb-darkening u1 , TESS N (0 . 31 , 0 . 01) 
Quadratic Limb-darkening u2 , TESS N (0 . 22 , 0 . 05) 
Quadratic Limb-darkening u1 ,Sloan −z′ N (0 . 24 , 0 . 02) 
Quadratic Limb-darkening u2 ,Sloan −z′ N (0 . 19 , 0 . 05) 
Quadratic Limb-darkening u1 ,I + z′ N (0 . 26 , 0 . 02) 
Quadratic Limb-darkening u2 ,I + z′ N (0 . 20 , 0 . 04) 
Quadratic Limb-darkening u1 ,SDSSy N (0 . 22 , 0 . 01) 
Quadratic Limb-darkening u2 ,SDSSy N (0 . 17 , 0 . 04) 
Quadratic Limb-darkening u1 ,Sloan −i′ N (0 . 3450 . 019) 
Quadratic Limb-darkening u2 ,Sloan −i′ N (0 . 24 , 0 . 067) 
Quadratic Limb-darkening u1 ,Sloan −r′ N (0 . 56 , 0 . 033) 
Quadratic Limb-darkening u2 ,Sloan −r′ N (0 . 28 , 0 . 085) 
Quadratic Limb-darkening u1 ,Sloan −g′ N (0 . 56 , 0 . 033) 
Quadratic Limb-darkening u2 ,Sloan −g′ N (0 . 28 , 0 . 08) 
Quadratic Limb-darkening u1 ,Johnson −Rc N (0 . 38 , 0 . 02) 
Quadratic Limb-darkening u2 ,Johnson −Rc N (0 . 25 , 0 . 04) 
Effective temperature, Teff [K] N (3100 , 50) 
Surface gravity, log g� [dex] N (5 . 02 , 0 . 02) 
Metallecity, [Fe / H] [dex] N ( −0 . 20 , 0 . 12) 
Stellar mass, M� [M�] N (0 . 190 , 0 . 004) 
Stellar radius, R� [R�] N (0 . 220 , 0 . 006) 
Planetary parameters 

Orbital period, P [days] U (12 . 9 , 12 . 95) 
Impact parameters, b U (0 ., 0 . 8) 
Transit timing, T0 [BJD-TDB] U (2460847 . 7 , 2460847 . 8) 
Transit depth, R2 

p /R
2 
� (ppt) U (6 , 10) 
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PPEN D IX  B:  P R I O R S  F O R  T H E  J O I N T  

O D E L L I N G  O F  T H E  TRANSIT  L I G H T  

U RV E S  O F  TO I - 7 1 6 6  

n this appendix, we present the parameter priors for the joint mod-
lling of the transit light curves using the MH technique implemented 
n Trafit code. 
PPENDI X  C :  TESS A N D  G RO U N D - BA S E D  

RANSI T  L I G H T  C U RV E S  

n this appendix, we show individual transit light curve observed 
rom SPECULOOS-North/-South, TRAPPIST-South, LCOGT-1m0, 
TT1, TTT3, OSN-1.5m, and AUKR-T80 telescopes. 
MNRAS 544, 2637–2652 (2025)
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Figure C1. TESS and ground-based transit light curves for TOI-7166 b. The coloured data points show the relative flux and the black lines show the best-fitting 
transit model superimposed. 
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Figure D1. Corner diagram of the posterior probability distribution from the our global analysis for the stellar and planetary parameters. 
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PPEN D IX  D :  TRANSIT  FIT  POSTERIOR  

ISTR IBU TION S.  

n this appendix, we show the corner diagram of the posterior prob-
bility distribution of the stellar and planetary physical parameters 
rom our global MCMC analysis. 
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-4000 Liège, Belgium 
 Department of Earth, Atmospheric and Planetary Science, Massachusetts 
nstitute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, 
SA 

 Instituto de Astrofı́sica de Andalucı́a (IAA-CSIC), Glorieta de la Astronomı́a 
/n, E-18008 Granada, Spain 
 Department of Physics and Kavli Institute for Astrophysics and Space 
esearch, Massachusetts Institute of Technology, Cambridge, MA 02139, 
SA 

 Department of Astronomy & Astrophysics, UC San Diego, La Jolla, CA
2039, USA 
MNRAS 544, 2637–2652 (2025)



2652 K. Barkaoui et al.

MNRAS 544, 2637–2652 (2025)

7 School of Physics & Astronomy, University of Birmingham, Edg-baston, 
Birmingham B15 2TT, UK 

8 Departamento de Astrofı́sica, Universidad de La Laguna, Avda. Astrofı́sico 
Francisco Sánchez, E-38206 La Laguna, Tenerife, Spain 
9 Light Bridges, SL. Observatorio Astronómico del Teide, Carretera del 
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