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Abstract

We show how the software Walnut can be used to obtain concise proofs of results
concerning variants of the famous Wythoff game, in which blocking maneuvers or
terminal positions are added, as discussed respectively by Larsson (2011) and Komak
et al. (2025). Our approach provides automatic proofs that both confirm and extend
their results, and the same techniques apply to newly introduced variants as well.

Then, using classic techniques, we obtain new recursive and morphic characteriza-
tions of Wythoff-type games where the set of terminal positions (x, y) satisfy x+y ≤ ℓ.

The use of Walnut in combinatorial game theory is relatively recent, and only a few
examples have been explored so far. The Wythoff game, being directly connected to
the Fibonacci numeration system, proves especially well suited to this kind of approach.
It permits us to solve instances for fixed value of a parameter.

Keywords: Combinatorial game theory ; Wythoff game ; automatic theorem-proving ;
terminal positions

1 Introduction

In combinatorial game theory, proofs of many results are obtained by using a suitable nu-
meration system [7, 10, 11, 26]. As a typical example, the Zeckendorf numeration based
on the Fibonacci sequence is used to characterize the P-positions (i.e., losing positions) of
the Wythoff game [9]. Fraenkel showed that a pair (a, b) of integers such that a ≤ b is a
P-position of Wythoff game if and only if repF (a) ends with an even number of zeroes and
repF (b) is the left-shift of repF (a), i.e., repF (b) = repF (a)0.

When the numeration system has good properties (i.e., it is an addable system as dis-
cussed in [27]), the formalism of first-order logic can be used to express certain properties of
combinatorial games. We have recently exploited this approach and used Walnut to reprove
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classical results in combinatorial games theory, as well as to obtain new ones [23]. Walnut is a
free, open-source prover for first-order statements dealing with automatic sequences [24, 27].

We assume that the reader is sufficiently familiar with the use of Walnut. For references
on combinatorial game theory, we refer to [26] and [23].

The Wythoff game is a take-away game: two players alternately remove tokens from two
piles. One can remove a positive number of token from one pile or, remove the same positive
number of token from both piles. The Wythoff game is impartial: the set of options (i.e.,
positions reachable in one legal move) of a given position does not depend on which player
is in turn to move. Wythoff game can be seen as a queen on an infinite chessboard N2: in
a position (x, y) ̸= (0, 0) the queen can move horizontally to (x − n, y) with 0 < n ≤ x,
vertically to (x, y−n) with 0 < n ≤ y or diagonally to (x−n, y−n) with 0 < n ≤ min{x, y}.
According to the normal convention, a player who is unable to move loses the game; passing
is not allowed. Otherwise stated, the player who takes the last token wins or, in an equivalent
way, when the queen reaches (0, 0).

In this article, we are mainly interested in two kinds of variations of the Wythoff game.
In [19], a variant of Wythoff game has been introduced: the set {(x, y) | x + y ≤ 2} is

declared to be the set of terminal positions. If a player moves the queen into this terminal
set with the usual Wythoff moves, that player wins the game. Let us call this game K2. We
chose this notation because we will later introduce a generalization of the game obtained by
varying the set of terminal positions. Let ϕ be the golden ratio (1 +

√
5)/2. We first define

a sequence (g(n))n≥0 as follows.

Definition 1. We let g(0) = 1, g(1) = 0 and

g(n) =

{
1− g(m), if ⌊nϕ⌋ = ⌊m(ϕ+ 1)⌋+ 1 for some m ≥ 0;
1, otherwise.

The first values of the sequence g are given in Table 1.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
h 0 1 1 2 3 3 4 4 5 6 6 7 8 8 9 9 10 11 11 12 12
g 1 0 1 1 0 0 1 1 1 1 0 1 0 0 1 0 1 1 0 1 1

Table 1: First values of the sequence g and Hofstadter sequence h.

The main result of Komak et al. provides an algebraic description of set of P-positions
of K2:

Theorem 2. The set of P-positions of the variant of Wythoff game where the set of terminal
positions is {(x, y) | x+ y ≤ 2}, is exactly{

(⌊nϕ⌋+ g(n)− 1, ⌊nϕ2⌋+ g(n)) | n ≥ 0
}
∪
{
(⌊nϕ2⌋+ g(n), (⌊nϕ⌋+ g(n)− 1) | n ≥ 0

}
(1)

where g : N → N is the function given in Definition 1.
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The authors provide a classical proof of their result by showing that the set of P-positions
described by (1) is both stable and absorbing (see Definition 10). The proof is quite long and
requires a detailed case analysis. Without diminishing their achievement, once the set (1)
has been conjectured, if the set can be handled by Walnut, then it becomes straightforward
to produce an automated proof in just a few lines. Our approach therefore complements the
work carried out in [19].

In [20], other variants of Wythoff game are studied, in which some blocking maneuvers
are added. Let k ≥ 1. In the game denoted by W k, for each move, before the next player
(i.e., the player who is about to play) moves, the previous player (i.e., the one who has
just played) may declare at most k − 1 of the options as forbidden. When the next player
has moved, any blocking maneuver is forgotten and has no further incidence on the game.
This terminology of previous and next player explains why we speak of N - and P-positions,
respectively. For k = 1, this is the classical game of Wythoff. When k = 2, 3, we reconsider
Larsson’s result and obtain an automated proof, replacing a 2-page-long analysis by some
easy-to-describe first-order formulas.

As Shallit has already noted on several occasions, the two approaches are complementary.
A classical, purely combinatorial proof usually provides structural insights, whereas the use of
automated provers helps avoid lengthy case analyses and enables the exploration of directions
that are difficult to access through traditional techniques. In particular, in this article, we
easily obtain a variety of results that would otherwise require significantly more effort using
“classical” methods. Moreover, these results lead us to formulate general theorems.

This article is organized as follows. Section 2 — which was the starting point of this article
— aims to give an automatic proof of the algebraic characterization (1) of the P-positions
of K2. We begin with preliminary results about Fibonacci-automatic sequences. We define
a notion of φ-morphism and describe a heuristic that we extensively use throughout the
paper to construct such φ-morphisms. Given a sufficiently long prefix of an infinite word,
we obtain morphisms that can be used in our automatic proofs (and we can therefore prove
the correctness of the procedure). Basic results from combinatorial game theory are given
in Section 2.3.

In Section 3, we obtain results about new games: a parameterized version of a variant of
Wythoff game denoted by Kℓ, where the set of terminal states is

{(x, y) ∈ N2 | x+ y ≤ ℓ}

for some ℓ ∈ N. We study the games K1, K3 and K4 and obtain algebraic characterizations
of the P-positions similar to [19]. In particular, as for the classical Wythoff game K0, the
game K1 has a nice set of P-positions: a pair (a, b) of integers such that a ≤ b is a P-position
of K1 if and only if its Fibonacci representation repF (a) ends with zero and repF (b) is of the
form repF (a)1, see Theorem 12.

In Section 4, we go further in the analysis of the games Kℓ for an arbitrary ℓ ≥ 1. We
provide a recursive characterization of the set of P-positions. The non-terminal P-positions
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(an, bn)n≥0 of Kℓ are given, in Theorem 17, by

(a0, b0) = (ℓ+ 1, 2ℓ+ 2) and ∀n ≥ 1,

{
an = MeX({ai, bi | i < n} ∪ {0, 1, . . . , ℓ})
bn = an + n+ ℓ+ 1.

We prove this result in an automatic way for ℓ = 1, 2, then extend it for all values of the
parameter using classical arguments. With Corollary 19, we generalize Theorem 2 and obtain
that (an, bn)n≥0 are of the form

an = ⌊(n+ ℓ)ϕ⌋+ λℓ(n) and bn = ⌊(n+ ℓ)ϕ2⌋+ λℓ(n) + 1

for some bounded integer-valued function λℓ. Our result can be related to the recent paper
[22] where discrepancy of generalized Hofstadter functions is studied (and formalized in Coq).
Our methods are inspired by [12, 17, 21].

It is well-known that the set of P-positions of the Wythoff game are coded by the Fi-
bonacci word f = abaababa · · · , see [5, 7]. If we start indexing letters of f with 1, the indices
of the letters a (resp. b) in f correspond to the sequence (an)n≥0 (resp. (bn)n≥0). Using
the recursive definition from the previous section, we obtain similar results with K1, K2, K3:
their P-positions are encoded by morphic words obtained by φ-morphisms and codings.

In Section 6, we obtain automatic proofs of Larsson’s result about W 2 and W 3. Inter-
estingly, the automata arising in the computations are much larger than those for K2.

In Section 7, we are concerned with redundant moves of the games discussed so far.
A move is considered redundant if, upon its removal from the rule-set, then the set of P-
positions remains unchanged. It is a classical question in combinatorial game theory: do
distinct rule-sets yield the same set of P-positions? In particular, can certain moves be
added or removed without altering the P-positions?

Remark 3. A Jupyter notebook recording all the Walnut computations is available (it has
been produced using Ollinger’s Walnut-Kernel. The Mathematica code and the various
Walnut files are also available online1. In particular, the package permits us to compute
P-positions and φ-morphisms.

2 Our starting point: The game K2

This section is about the game K2. The aim is to give an automatic proof of the character-
ization of its P-positions. We first show that the sequence g appearing in (1) is Fibonacci-
automatic, i.e., for all n ≥ 0, its nth term is the output of a DFAO fed with the Fibonacci
representation of n (see Definition 5). To discover this DFAO we apply a heuristic that we
describe in Section 2.2 (and then applied several times in Section 3). Finally, we give the
automatic proof. To be self-contained, classical definitions from combinatorial game theory
are given in Section 2.3.

1at https://hdl.handle.net/2268/338482, you may also download a standalone Wolfram Player.
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2.1 A first result on the sequence g

To make use of Walnut, all the ingredients need to be definable in a suitable extension of
⟨N,+⟩. Here, we show that the sequence g can be computed with a DFAO fed with Fibonacci
representations.

Let us follow the presentation given in [19] where an alternative definition of g is provided.

Proposition 4. We have g(0) = g(1) = 1 and for all n ≥ 2,

g(n) =

{
1− g(h(n− 1)), if h(n− 2) < h(n− 1);
1, otherwise.

where h is the Hofstadter G-sequence A005206, see [15].

A characterization of the entries of Hofstadter G-sequence in terms of the lower and
upper Wythoff sequence is given in [4].

Definition 5. Let F = (Fn)n≥0 be the Fibonacci sequence where F0 = 1, F1 = 2 and
Fn+2 = Fn+1 + Fn for all n ≥ 0. We let repF (n) denote the greedy representation of the
integer n > 0, that is the unique word dk · · · d0 over {0, 1} such that

n =
k∑

i=0

diFi

with dk ̸= 0 and di+1di ̸= 11 for i < k. The representation of 0 is repF (0) = ε the empty
word.

The Beatty sequences ⌊nϕ⌋ and ⌊nϕ2⌋, also known respectively as lower and upper
Wythoff sequences A000201, A001950 can be defined in Walnut using

reg shift {0,1} {0,1} "([0,0]|([0,1][1,1]*[1,0]))*":

def phin "?msd_fib (s=0 & n=0) | Ex $shift(n-1,x) & s=x+1":

def phi2n "?msd_fib (s=0 & n=0) | Ex,y $shift(n-1,x) & $shift(x,y) & s=y+2":

For instance, the command

eval test "?msd_fib $phin(3,4)":

returns TRUE because ⌊3ϕ⌋ = 4. See [27, p. 278].

Proposition 6. The sequence (g(n))n≥0 is Fibonacci-automatic: The DFA depicted in Fig. 1
accepts repF (n) if and only if g(n) = 1.
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(n): ?msd_fib G[n]=1

0

0
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Figure 1: A DFA recognizing {repF (n) : g(n) = 1}.

Proof. The candidate automaton depicted in Figure 1 can be encoded and stored in Word

Automata Lib. So we have access in Walnut to a candidate function G. A discussion about
how we have obtained this DFA is given in Section 2.2. Now, it is well-known that the
Hofstadter sequence satisfies, for n > 0,

h(n) =

⌊
n+ 1

ϕ

⌋
= ⌊(n+ 1)ϕ⌋ − n− 1.

See, [13, 14]. Hence, h(n) = y can be easily coded as a binary predicate h(n, y) by

def hofstadter "?msd_fib (y=1 & n=0) | Ex $phin(n+1,x) & y+n+1=x":

Now we have to check that the automaton satisfies the properties expressed in Proposition 4

eval test "?msd_fib An n>=2 => (Es,t ($hofstadter(n-2,s) & $hofstadter(n-1,t)

& (s<t => G[n]+G[t]=1)))":

eval test2 "?msd_fib An n>=2 => (Es,t ($hofstadter(n-2,s) & $hofstadter(n-1,t)

& (s=t => G[n]=1)))":

and both commands return True.

2.2 A heuristic generating φ-morphisms

We present here a heuristic that, given a (long enough) prefix of an infinite word w being
the coding of a fixed point of what we call a φ-morphism, suggests a morphism µ and a
coding ρ such that w = ρ(µω(0)). This heuristic will be used many times (it was already
used in [6] but not explicitly described). Once the morphism is obtained, we can then prove
its correctness with Walnut.

Definition 7. A morphism µ : A∗ → A∗ is said to be a φ-morphism, if for any with fixed
point w = w0w1 · · · of µ,

• if repF (n) ends with 1, then µ(wn) = wrepF (n)0,
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• if repF (n) ends with 0, then µ(wn) = wrepF (n)0wrepF (n)1.

We have chosen a simplified presentation, adapted to the situation considered here. In-
deed, this is a special case of what is called a U -substitution in [2] for a wide class of
numeration systems. Let σ : a 7→ ab, b 7→ a the usual Fibonacci morphism generating the
Fibonacci word f = abaababaa · · · . If µ : A∗ → A∗ is a φ-morphism, then there is a coding
f : A∗ → {a, b}∗ such that

f(µ(i)) = σ(f(i)), for all i ∈ A. (2)

Roughly speaking, µ is defined on a larger alphabet than {a, b} but it preserves the underlying
structure of the morphism σ.

Example 8. The morphism

µ : 0 7→ 01, 1 7→ 2, 2 7→ 31, 3 7→ 45, 4 7→ 35, 5 7→ 4

is a φ-morphism. Consider the coding f : 0, 2, 3, 4 7→ a and 1, 5 7→ b.

Definition 9. We will often associate a DFA with a morphism µ : A∗ → A∗. The set of
states is the alphabet A, the alphabet of the automaton is 0, 1. This is a classical construction
that goes back to Cobham [3] and it corresponds to the promote operation in Walnut. The
transitions of the DFA are given by the morphism: if µ(c) = de, c, d, e ∈ A, then there are
edges from c to d and e with respective labels 0 and 1. If µ(c) = d, c, d ∈ A, then there
is a single edge from c to d labeled by 0. If we have an extra coding ρ : A → B (i.e.,
a letter-to-letter morphism), then the DFA can be turned into a DFAO where the output
function is exactly ρ.

With the morphism from Example 8, the corresponding automaton is depicted in Fig-
ure 2. Property (2) means that there is morphism of automata between the one associated
with µ and the one associated with the Fibonacci morphism: if there is a transition between
c and d with label i, then there is a transition between f(c) and f(d) with the same label i.

0 2 3 4 a

1 5 b

0

1
0

0

1

0

1

0

1

0

0

1 0

f

f

Figure 2: Automata associated with µ and the Fibonacci morphism.
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Heuristic. We describe a useful heuristic to devise the automaton in Figure 1 (and many
other ones in the article). Assume that the sequence g in Table 1 is the fixed point of a φ-
morphism µ. In this case, we start from a single letter gn, n ≥ 0, then iterate the morphism
a finite number of times (here, three times) and record the different factors obtained. Since
we assume that µ is a φ-morphism, we know precisely where the factors µi(gn) are located.

Precisely, if repF (n) = u, consider the Fibonacci representations of length |u|+ i having
u as a prefix. These words give the positions of the letters in µi(gn). Let α(i, n) and β(i, n)
be the first and last positions (Figure 3 may help the reader). So, formally, a t-type is a
(t+ 1)-tuple made of factors in prescribed positions depending only on n

(gn, gα(1,n) · · · gβ(1,n), . . . , gα(t,n) · · · gβ(t,n)).

g0 g1 · · · · · ·gn

n α(1, n) β(1, n)

µ(gn) µ2(gn)

α(2, n) β(2, n)

µ µ

Figure 3: Construction of a type.

Over a long prefix, we observe only six distinct 3-types (and this number remains stable
when the number of iterations increases). As an example, starting from g4 = 0, since
repF (4) = 101, this word can be extended to 1010 whose value is 7 and g7 = 1. Now
1010 can be extended to 10100 and 10101 giving g11g12 = 10. Finally these two Fibonacci
representations can again be extended to 101000, 101001 and 101010 giving g18g19g20 = 011.
This is the second line in Table 2. The reader may notice that the six elements in the column
µ2(gn) are pairwise distinct. The last column does not bring more information to distinguish
the rows of the table. So on this example, considering 2-types would have been enough.
However, 1-types are not enough: we cannot distinguish the first and last rows.

gn µ(gn) µ2(gn) µ3(gn)
0 1 0 1 10
1 0 1 10 011
2 1 10 011 11010
3 1 01 110 01011
4 0 11 010 11011
5 1 0 11 010

Table 2: The different 3-types when applying a φ-morphism to g.

Now we associate each symbol gn with its 3-type and get the infinite word

01|2|31|45|2|35|4|31|45|4|35|45| · · ·

8



where the vertical bars indicate the factorization of the Fibonacci word ab|a|ab|ab|a| · · · with
factors σ(a) = ab and σ(b) = a, the images of the letters by the Fibonacci morphism. From
this, we deduce the morphism µ given in Example 8: the image of the nth letter has to be
the nth block in the factorization. So 0 7→ 01, then 1 7→ 2 and so on. From the morphism,
it is a routine to obtain the DFA in Figure 1, see Definition 9.

Finally, one may define a coding ρ to recover the original sequence where each type
is mapped to the first element of the tuple. So, 0, 2, 3, 5 7→ 1 and 1, 4 7→ 0. This can
equivalently be performed by comparing the morphic word and the original sequence

01231452354314543545 · · ·
10110011110100101101 · · ·

and matching corresponding elements.

2.3 An automatic proof for K2

Now that g has been defined by a DFA fed with Fibonacci representations (and stored as
G.txt in Word Automata Lib), the set of P-positions (1) obtained by Komak et al. can be
described by the following commands:

def pposK2_asym "?msd_fib (a+b<=1) | En,x $phin(n,x) & a+1=x+G[n]

& b=x+n+G[n]":

def pposK2 "?msd_fib $pposK2_asym(a,b) | $pposK2_asym(b,a) ":

The resulting automaton has 27 states.
For the sake of presentation, let us recall some basics on combinatorial games.

Definition 10. A set S of positions is stable if, for all s, t ∈ S, s ̸= t, there is no move
between s and t. A set S of positions is absorbing, if for all t ̸∈ S, there exists s ∈ S such
that there is a move from t to s (or, t has an option in S).

It is a well-known property in graph theory that every acyclic graph has a unique kernel,
i.e., a stable and absorbing set of vertices. In a take-away game where tokens are removed
from piles, the corresponding game graph is acyclic: it is not possible to visit twice the same
position during a game.

Proposition 11 (Folklore). The sets of P- and N -positions of an impartial acyclic game
are uniquely determined by the following two properties:

1. Every move from a P-position leads to an N -position; equivalently there is no move
between two P-positions (stability property of P(G)).

2. From every N -position, there exists a move leading to a P-position (absorbing property
of P(G)).
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As observed in [23], it is then a routine test to check stability and absorbing property:

eval stableK2 "?msd_fib Ap,q,r,s (($pposK2(p,q) & $pposK2(r,s)

& p>=r & q>=s & p+q>2) => ((p=r & q=s) | (p>r & q>s & p+s!=q+r)))":

eval absorbingK2 "?msd_fib Ap,q (~$pposK2(p,q) => Ex,y

(x<=p & y<=q & $pposK2(x,y) & (p+y=q+x | p=x | q=y))) ":

These two commands return TRUE resulting in the following result, [19, Thm. 3]. From
Proposition 11, we immediately get an alternative proof of Theorem 2.

3 Towards an algebraic characterization for Kℓ

In [19], Komak et al. chose {(x, y) | x+ y ≤ 2} as set of terminal positions. It is natural to
consider a parameterized version where the set of terminal states is

{(x, y) ∈ N2 | x+ y ≤ ℓ}

for some ℓ ∈ N. The corresponding game is denoted by Kℓ. Note that the game K0 is
the classic Wythoff game. In this section, we obtain new results concerning the games K1

and K3.

3.1 The K1-game

Up to our knowledge, the game K1 does not seem to have been studied in the literature.
Computing the first P-positions of K1 and writing their Fibonacci expansions permitted us
to state a conjecture that can be tested with Walnut. This result is quite similar to the
famous characterization of the P-positions of Wythoff game obtained by Fraenkel [9].

Theorem 12. A position (a, b), with a ≤ b, is a P-position of the game K1, with a set of
terminal positions being {(x, y) | x + y ≤ 1} and Wythoff’s moves, if and only if repF (a)
ends with 0 and repF (b) = repF (a)1.

The candidate set of P-positions can be readily implemented.

reg end_zero msd_fib "(0|1)*0":

reg add_one {0,1} {0,1} "([0,0]|([0,1][1,1]*[1,0]))*[0,1]":

def pposK1_asym "?msd_fib (a=0 & b=0) | ($end_zero(a) & $add_one(a,b))":

def pposK1 "?msd_fib $pposK1_asym(a,b) | $pposK1_asym(b,a)":

The corresponding DFA is depicted in Figure 4. The sequence (an)n≥0 = 0, 2, 3, 5, 7, 8, 10, . . .
(first component of the P-positions) is referred to the Fibonacci-even numbers as A022342
(as binary expansion of even integers end with zero). The complementary sequence (bn)n≥0

appears in the OEIS as A003622.
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an repF (an) bn repF (bn)
0 ε 1 1
2 10 4 101
3 100 6 1001
5 1000 9 10001
7 1010 12 10101
8 10000 14 100001
10 10010 17 100101
11 10100 19 101001
13 100000 22 1000001
15 100010 25 1000101

Table 3: Representations of the first P-positions in K1.

(a,b): ?msd_fib $ppos_asym(a,b) | $ppos_asym(b,a) | (a=0 & b=0)

0

[0,0]
1[1,0]

2

[0,1]

3[0,1]

4

[1,0]

[1,0]

[0,0]

[0,1]

[0,0]

Figure 4: A DFA recognizing P-positions of K1.

Proof. The proof is a routine procedure. One has to check that the candidate set is stable
and absorbing:

eval stableK1 "?msd_fib Ap,q,r,s (($pposK1(p,q) & $pposK1(r,s) & p>=r & q>=s

& p+q>1) => ((p=r & q=s) | (p>r & q>s & p+s!=q+r)))":

eval absorbingK1 "?msd_fib Ap,q (~$pposK1(p,q) => Ex,y (x<=p & y<=q

& $pposK1(x,y) & (p+y=q+x | p=x | q=y)))":

Both commands evaluate to True. The conclusion follows from Proposition 11.
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3.2 The K3-game

The case of K3 is more interesting. In Figure 5, we have depicted the first P-positions of
K2 and K3. Green (resp. red) squares are P-positions of K3 (resp. K2). The common
P-positions are colored in blue.

Figure 5: Comparing P-positions of K2 (red) and K3 (green).

The first non-terminal P-positions (an, bn)n≥0 are given in Table 4. From now on, we take
this convention: in the indexing of the P -positions, we do not take terminal positions into
account. Thus, (a0, b0) represents the first non-terminal P-position. Due to the symmetry
of the game, we only consider sequences where an < bn.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
an 4 5 6 7 9 11 13 15 16 18 19 21 22 24 25 27 29 30
bn 8 10 12 14 17 20 23 26 28 31 33 36 38 41 43 46 49 51

Table 4: First (non-terminal) P-positions of K3, (n ≥ 0).

Theorem 13. There exists a Fibonacci-automatic function g3 : N → {0, 1, 2} such that, for
all n ≥ 0, the nth non-terminal P-position (an, bn) of K

3 is given by

an = ⌊(n+ 2)ϕ⌋+ g3(n+ 1)− 1 and bn = ⌊(n+ 2)ϕ2⌋+ g3(n+ 1) + 1. (3)

The first few values of g3(n) are

1221011221211111111121121121211211112111121111111211112 · · ·
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Using the heuristic described in Section 2.2, assuming that the above infinite word is gener-
ated by a φ-morphism, we obtain the morphism

µ3 : 0 7→ 01, 1 7→ 2, 2 7→ 34, 3 7→ 56, 4 7→ 7, 5 7→ 78,

6 7→ 9, 7 7→ ab, 8 7→ a, 9 7→ 56, a 7→ ab, b 7→ 7

and the coding
ρ3 : 0, 3, 5, 6, 8, a, b 7→ 1, 1, 2, 7, 9 7→ 2, 4 7→ 0.

We thus define g3(n) as the nth symbol in ρ3(µ
ω
3 (1)). Note that to produce enough value of

g3(n), we have to compute sufficiently many P-positions of W 3.

Proof. Since we have a morphism µ3 and a coding ρ3, we can store in Word Automata Lib a
text file K3.txt describing a 12-state DFAO. The transitions are given by µ3 and the outputs
by ρ3. Since we have a candidate set in the statement, (3) can be encoded as follows.

def pposK3_asym "?msd_fib (a+b<=3) | (En,x $phin(n+2,x)

& a+1=x+K3[n+1] & b=x+n+3+K3[n+1])":

def pposK3 "?msd_fib $pposK3_asym(a,b) | $pposK3_asym(b,a)":

Thanks to Proposition 11, we simply have to check stability and absorption of this set.

eval stableK3 "?msd_fib Ap,q,r,s (($pposK3(p,q) & $pposK3(r,s)

& p>=r & q>=s & p+q>3) => ((p=r & q=s) | (p>r & q>s & p+s!=q+r)))":

eval absorbingK3 "?msd_fib Ap,q (~$pposK3(p,q) => Ex,y

(x<=p & y<=q & $pposK3(x,y) & (p+y=q+x | p=x | q=y))) ":

Both commands return True (intermediate computations need at most 449 states).

3.3 Even further

For the game K4, we have applied the same procedure. The first non-terminal P-positions
(an, bn)n≥0 are given in Table 5. To get a long enough prefix, we have computed the first 600

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
an 5 6 7 8 9 11 13 15 17 19 20 22 23 25 26 28 29 31
bn 10 12 14 16 18 21 24 27 30 33 35 38 40 43 45 48 50 53

Table 5: First (non-terminal) P-positions of K4, (n ≥ 0).

P-positions (an, bn) with an ≤ bn (up to an close to 1000). From this, we conjectured that

an = ⌊(n+ 2)ϕ⌋+ g4(n+ 1) and bn = ⌊(n+ 2)ϕ2⌋+ g4(n+ 1) + 3, (4)

where the first few values of g4(n) are

12210001112111111010110110111111111111111111 · · · .

13



Having the first 600 values of g4(n), we apply the heuristic of Section 2.2. Note that here,
to be able to discern types correctly, we have to consider 4-types (there are distinct 4-
types whose restrictions to 3-types are equal). Since we have to take fourth iterations, this
explains why we need a longer prefix. We obtain 18 different 4-types and the heuristic gives
the following morphisms:

µ4 : 0 7→ 01, 1 7→ 2, 2 7→ 34, 3 7→ 56, 4 7→ 7, 5 7→ 89, 6 7→ a, 7 7→ bc, 8 7→ dc,

9 7→ d, a 7→ ef, b 7→ ef, c 7→ e, d 7→ 7g, e 7→ eh, f 7→ b, g 7→ d, h 7→ b

ρ4 : 0, 3, 7, 8, 9, b, c, d, e, h 7→ 1, 1, 2, a 7→ 2, 4, 5, 6, f, g 7→ 0

With g4(n) being the nth symbol of ρ4(µ
ω
4 (1)), we have a 18-state DFAO. Formulas (4)

translates in Walnut into

def pposK4_asym "?msd_fib (a+b<=4) | (En,x $phin(n+2,x) & (a=x+K4[n+1])

& (b=x+K4[n+1]+n+5))":

and we then follow exactly the same proof to get the result.

Theorem 14. The P-positions (a, b), with a ≤ b, of the game K4 with a set of terminal
positions being {(x, y) | x+ y ≤ 4} and Wythoff’s moves are characterized by (4).

Thus, aside from the fact that the morphisms µℓ and ρℓ used to describe the set of
P-positions are defined over increasingly large alphabets — which requires computing a suf-
ficiently long prefix — these preliminary results suggest that such a result could be extended
to any arbitrary value of the parameter ℓ. In Section 4, we give a recursive characterization
of the P-positions for all values of the parameter ℓ ≥ 1. From that result, we are able to
give with Corollary 19 the general behavior of the sequences (an)n≥0 and (bn)n≥0.

4 A recursive characterization for Kℓ

It is classical in the combinatorial game literature [7, 9, 10, 11] to have several characteri-
zations of the set of P-positions (algebraic, recursive, combinatorial, morphic, . . . ). In this
section, we provide a recursive characterization of the set of P-positions of Kℓ, for all ℓ ≥ 1.

First, we consider small values of the parameter (ℓ = 1 and ℓ = 2) and give an automatic
proof. It is then not difficult to state a general conjecture that we are able to prove by
classical methods (stability and absorption). Indeed, it is not possible to obtain an automated
parameterized proof. Here we clearly see how the two approaches complement each other:
Walnut allows us to conjecture general statements that are then proved in the classical way.

Let us recall our indexing convention: (a0, b0) is the first non-terminal P-position of Kℓ

(with a0 < b0). It is indeed not necessary to encode the terminal positions, which are set in
advance and known to both players.
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Let us begin with some classical and well-known results on Wythoff game before moving
on to the games discussed in this article. We recall the recursive definition of the P-positions
of Wythoff game K0, with our convention:

(a0, b0) = (1, 2) and ∀n ≥ 1,

{
an = MeX({ai, bi | i < n} ∪ {0}),
bn = an + n+ 1,

where MeX stands for minimum excluded value, i.e. the least non-negative integer not in the
set. In other words, MeXS = min(N \ S). So a1 = MeX{0, 1, 2} = 3 and b1 = a1 + 2 = 5,
then a2 = MeX{0, 1, 2, 3, 5} = 4 and b2 = a2 + 3 = 7 and so on.

We now turn to the games discussed in this paper. For K1 (see Table 3), we have the
following result.

Proposition 15. Define recursively the sequence (an, bn)n≥0 by

(a0, b0) = (2, 4) and ∀n ≥ 1,

{
an = MeX({ai, bi | i < n} ∪ {0, 1}),
bn = an + n+ 2.

The set non-terminal P-positions of K1 is {(an, bn) | n ≥ 0} ∪ {(bn, an) | n ≥ 0}.

Proof. It is clear from Theorem 12 that the sequences (an)n≥0 = 2, 3, 5, 7, . . . and (bn)n≥0 =
4, 6, 9, 12, . . . are a partition of N≥2. Indeed, any integer has a unique representation in the
Fibonacci system and each representation ends either with 0 or 01. We first define two
predicates respectively for the sets of pairs (an, n) and (bn, n). We simply make use of the
shift (observe that, in Table 3, suppressing the last zero from every representation in the
first column gives the set of all valid Fibonacci representations). We use n+ 1 instead of n
because of our indexing convention.

def pposK1_an "?msd_fib $shift(n+1,a)":

As an example, we have

eval test "?msd_fib $pposK1_an(2,0) & $pposK1_an(3,1) &

$pposK1_an(5,2) & $pposK1_an(7,3)":

and similarly, we shift twice and add 1 to get the last column in Table 3,

def pposK1_bn "?msd_fib Et,c $shift(n+1,t) & $shift(t,c) & b=c+1":

with

eval test "?msd_fib $pposK1_bn(4,0) & $pposK1_bn(6,1) &

$pposK1_bn(9,2) & $pposK1_bn(12,3)":

Since we have a partition, we only have to check that, for all n ≥ 0, bn = an + n+ 2, which
is readily verified with

eval test "?msd_fib An Ea,b $pposK1_an(a,n) & $pposK1_bn(b,n) & b=a+n+2":
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For K2, see Figure 5, we get the following recursive characterization.

Proposition 16. Define recursively the sequence (an, bn)n≥0 by

(a0, b0) = (3, 6) and ∀n ≥ 1,

{
an = MeX({ai, bi | i < n} ∪ {0, 1, 2}),
bn = an + n+ 3.

The set non-terminal P-positions of K2 is {(an, bn) | n ≥ 0} ∪ {(bn, an) | n ≥ 0}.

Proof. The sequence (an)n≥0 and (bn)n≥0 are Fibonacci-synchronized (see [27, Sec. 10.11])

def pposK2_an "?msd_fib Ex ($phin(n+2,x) & a+1=x+G[n+2])":

So this predicates defines the pairs (an, n) with n ≥ 0. As an example, the following command
returns True:

eval test "?msd_fib $pposK2_an(3,0) & $pposK2_an(4,1)

& $pposK2_an(5,2) & $pposK2_an(7,3)":

Similarly, the following predicates defines the pairs (bn, n) with n ≥ 0.

def pposK2_bn "?msd_fib Ex $phin(n+2,x) & b=x+n+2+G[n+2]":

eval test "?msd_fib $pposK2_bn(6,0) & $pposK2_bn(8,1)

& $pposK2_bn(10,2) & $pposK2_bn(13,3)":

The difference of indices with Section 2.3 comes from our indexing convention. The next
two commands show that the two sequences (an)n≥0 and (bn)n≥0 make a partition of N≥3:

eval covering "?msd_fib Ax (x>=3 => En ($pposK2_an(x,n) | $pposK2_bn(x,n)))":

eval notboth "?msd_fib ~(Em,n,x ($pposK2_an(x,m) & $pposK2_bn(x,n)))":

The first one means that every x ≥ 3 belongs to at least of the two sequences. The second
one means that there is no x ≥ 3 that is simultaneously of the form am and bn. Showing
the partition could have been defined with the predicate pposK2_asym. Synchronization is
only needed to show that bn − an − n = 3. So, finally, we can verify that if an = x, then
bn = x+ n+ 3.

eval alinkb "?msd_fib Ax (x>=3 => (En ($pposK2_an(x,n)

=> $pposK2_bn(x+n+3,n))))":

This could also be immediately derived from the expression (1). The fact that bn = an+n+3
and that the sequences (an)n≥0 and (bn)n≥0 make a partition of N≥3 imply the MeX definition
of the an’s (roughly speaking, gaps are filled with a’s).

Now that we have inspected the cases K1 and K2, the next statement seems natural.
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Theorem 17. Let ℓ ≥ 1 and define recursively (an, bn)n≥0 by

(a0, b0) = (ℓ+ 1, 2ℓ+ 2) and ∀n ≥ 1,

{
an = MeX({ai, bi | i < n} ∪ {0, 1, . . . , ℓ}),
bn = an + n+ ℓ+ 1.

(5)

The set of non-terminal P-positions of Kℓ is {(an, bn) | n ≥ 0} ∪ {(bn, an) | n ≥ 0}.

We will repeatedly use the following properties all along the proofs of the next three
results.

Lemma 18. For the sequences (5) defined above, we have the following properties.

1. The sequences (an)n≥0 and (bn)n≥0 are strictly increasing.

2. They make a partition of N>ℓ.

3. For each j > ℓ, there exist a unique n such that j = bn − an.

4. For all n, an+1 − an ∈ {1, 2} and bn+1 − bn ∈ {2, 3}. In particular, bn+1 − bn =
an+1 − an + 1.

Proof. These properties obviously follow from the MeX definition, we provide a proof for the
sake of completeness.

From the MeX definition, each an is a new integer strictly larger than an−1, so (an)n≥0 is
strictly increasing. Moreover bn = an + ℓ+ 1 + n > bn−1, hence (bn)n≥0 is strictly increasing
and the two sequences are disjoint.

Suppose some j > ℓ never appears in the two sequences and take the smallest such j.
Since (an)n≥0 is increasing, let n be minimal such that an > j. By minimality of j, all
integers in {ℓ + 1, . . . , j − 1} already appear among ai, bi for i < n, so j is the smallest
unused integer at step n, forcing an = j, a contradiction. Hence (an)n≥0 and (bn)n≥0 form a
partition of N>ℓ.

The identity bn − an = n + ℓ + 1 shows that for each j > ℓ there is a unique n with
j = bn − an. Finally, since an+1 is the MeX of the previous values, it cannot exceed an + 2,
for otherwise either an + 1 or an + 2 would be unused and smaller; thus an+1 − an ∈ {1, 2}.
From bn = an + ℓ+ 1 + n we obtain bn+1 − bn = (an+1 − an) + 1 ∈ {2, 3}.

Proof of Theorem 17. Let P be the union of set {(an, bn) | n ≥ 0} ∪ {(bn, an) | n ≥ 0} and
the set of terminal positions {(x, y) | x + y ≤ ℓ}. We use Proposition 11 and prove the
stability and absorption of P .

Stability. Let (x, y) be in P . We may assume that x+ y > ℓ because there is no allowed
move from a terminal position. So let (x, y) be of the form (an, bn) for some n ≥ 0. We have
to show that every move leads to a position not in P . The case (bn, an) is symmetric and
not discussed below.
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• A vertical move will lead to a position (an, y
′) with 0 ≤ y′ < bn. Since an ≥ ℓ + 1,

for all n ≥ 0, (an, y
′) is not a terminal position: an + y′ > ℓ. To get a contradiction,

assume that (an, y
′) is in P . Then (an, y

′) is either of the form (am, bm) or (bm, am).

– If (an, y
′) = (am, bm), then an = am and since the sequence (an)n≥0 is increasing,

we get n = m and thus y′ = bn contradicting y′ < bn.

– If (an, y
′) = (bm, am) then an = bm but this contradicts the fact that

{an | n ≥ 0} ∩ {bn | n ≥ 0} = ∅.

• The proof is the same for a horizontal move leading to (x′, bn) with 0 ≤ x′ < an.

• Now consider a diagonal move leading to a position (an − t, bn − t) for some t ∈
{1, . . . , an}. First, such a position is not a terminal one because

an − t+ bn − t = an + bn − 2t ≥ an + bn − 2an = n+ ℓ+ 1 > ℓ.

Assume that (an − t, bn − t) is of the form (am, bm), then

bm − am = bn − t− (an − t) = n+ ℓ+ 1

and thus, m = n implying t = 0, a contradiction.

Finally, assume that (an − t, bn − t) is of the form (bm, am), then

bm − am = an − t− (bn − t) = −(n+ ℓ+ 1) < 0,

which is again a contradiction because bm − am = m+ ℓ+ 1 > 0.

Absorption. Let (x, y) a position not in P . In particular, x + y > ℓ. We have to prove
that there is a move from (x, y) into P . By symmetry, we may assume that x ≤ y.

• Case 1: y − x ≤ ℓ. We will prove that there is a diagonal move leading to a terminal
position. Consider the quantity

t =

⌈
x+ y − ℓ

2

⌉
.

Since x+ y > ℓ, t ≥ 1. Note that

x+ y − ℓ = 2x+ (y − x)− ℓ ≤ 2x.

Hence t ≤ x and (x, y) → (x − t, y − t) is a legal move. To conclude with this part,
(x− t, y − t) is a terminal move:

x− t+ y − t ≤ x+ y − (x+ y − ℓ) = ℓ.
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• Case 2: y− x > ℓ. There exists a unique n ≥ 0 such that y− x = n+ ℓ+ 1 = bn − an.

– If x ≥ an, consider t = x− an. If t > 0, we can play the diagonal move (x, y) →
(x− t, y − t) = (an, y − x+ an) = (an, bn). If t = 0, then x = an and thus y = bn,
but (x, y) is not in P . So this case does not occur.

– If x ≤ ℓ < an, then a vertical move (x, y) → (x, 0) leads to a terminal position.

– If ℓ < x < an, then x is of the form am or bm for some m (because we have a
partition of N>ℓ). If x = am, since the sequence (an)n≥0 is increasing m < n. So
y > bm because y − x = bn − an > bm − am. A vertical move (x, y) → (x, bm) =
(am, bm) is thus enough. Finally, if x = bm, observe that y ≥ x = bm > am, so
consider the move (x, y) → (x, am) = (bm, am).

We now show that the points (an, bn) remain at bounded distance from a line of slope ϕ
(see, for instance, Figure 5). In the proof, recursively indexed sequences of the form xxn

will play an important role. Note that the solution of Wythoff satisfies the complementary
equation xxn = yn − 1, see [16, 17, 18]. Our approach is in the same spirit as found in [12]
where uniform bounds for MeX-defined complementary sequences are derived.

Corollary 19. For the sequences defined by (5), there exist a bounded function λℓ : N → Z
such that, for all n,

an = ⌊(n+ ℓ)ϕ⌋+ λℓ(n).

So, in particular, bn = ⌊(n+ ℓ)ϕ2⌋+ λℓ(n) + 1.

Proof. Let

Sn :=
n∑

k=1

(ak − ak−1 − 1).

Since ak − ak−1 = 2 if and only if some bj is inserted between ak−1 and ak, we have that

Sn = #{i | bi < an},

that is b0 < b1 < · · · < bSn−1 < an < bSn . We set S0 = 0 and S1 = · · · = Sℓ = 0, Sℓ+1 = 1
and (Sn)n≥0 is non-decreasing.

The interval [a0, an] contains n+1 terms aj’s and Sn terms bj’s, i.e., n+1+Sn = an−a0+1.
Since a0 = ℓ+ 1, we have

an = ℓ+ 1 + n+ Sn. (6)

By definition of Sn, we have

bSn−1 < an < bSn

⇔ aSn−1 + Sn − 1 + ℓ+ 1 < an < aSn + Sn + ℓ+ 1

⇔ aSn−1 − 1 < an − Sn − ℓ− 1 < aSn

⇔ aSn−1 ≤ an − Sn − ℓ− 1 < aSn .
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Now using (6),

ℓ+ 1 + Sn − 1 + SSn−1 ≤ n < ℓ+ 1 + Sn + SSn

⇔ SSn−1 − 1 ≤ n− ℓ− 1− Sn < SSn

Note that SSn − SSn−1 = aSn − aSn−1 − 1 ∈ {0, 1}. So, if SSn − SSn−1 = 0, then the integer
n − ℓ − 1 − Sn belongs to [SSn − 1, SSn), and is thus equal to SSn − 1. If SSn − SSn−1 = 1,
then n− ℓ− 1− Sn belongs to [SSn − 2, SSn). Consequently,

n− ℓ− 1− Sn = SSn − 1− ϵn, for some ϵn ∈ {0, 1}.

That is,
Sn + SSn = n− ℓ+ ϵn.

We want to prove that |an − nϕ| is bounded by a constant. Thanks to (6), observe that

an − nϕ = ℓ+ 1 + Sn − (ϕ− 1)n = ℓ+ 1 + Sn −
n

ϕ
.

So it is enough to bound |Dn|, where

Dn := Sn −
n

ϕ
.

We have

Sn + SSn = Dn +
n

ϕ
+DSn +

Sn

ϕ
= n− ℓ+ ϵn

and
Sn

ϕ
=

1

ϕ

(
Dn +

n

ϕ

)
.

Putting these together, we get(
1 +

1

ϕ

)
Dn +DSn + n

(
1

ϕ
+

1

ϕ2

)
= n− ℓ+ ϵn.

Hence,
ϕDn = −ℓ+ ϵn −DSn

and
ϕ |Dn| ≤ ℓ+ |DSn| . (7)

We claim that, for all n,

|Dn| ≤
ℓ

ϕ− 1
= ϕℓ.

Note that for i ≤ ℓ, |Di| = i/ϕ < ℓ/(ϕ − 1) = ϕℓ. We proceed by contradiction. Assume
that there exists a minimal N > ℓ such that |DN | > ϕℓ. We have SN < N , so by minimality
of N ,

|DSN
| ≤ ϕℓ.
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From (7), we have

|DN | ≤
ℓ

ϕ
+

|DSN
|

ϕ
≤ ℓ

ϕ
+

ϕℓ

ϕ
=

(
1

ϕ
+ 1

)
ℓ = ϕℓ,

which is a contradiction. Consequently, using (6),

an − ⌊(n+ ℓ)ϕ⌋ = an − (n+ ℓ)ϕ+ {(n+ ℓ)ϕ} = ℓ(1− ϕ) + 1 +Dn + {(n+ ℓ)ϕ},

which is a bounded function. The form of bn comes again from the fact that bn = an + n+
ℓ+ 1.

The following statement is an immediate consequence of the previous corollary. However,
we provide a proof because we develop arguments (about density) different from those used
earlier. This result is in fact weaker than the previous one: the asymptotic behavior described
below is that an − nϕ = o(n). However, it does not yield a bounded discrepancy an − nϕ =
O(1) as in Corollary 19: the points (an, bn) remain at bounded distance from a line of slope ϕ.

Corollary 20. For the sequences defined by (5), the following limits exist:

lim
n→∞

an
n

= ϕ and lim
n→∞

bn
n

= ϕ2.

Proof. Let
πA(x) := #{n | an < x} and πB(x) := #{n | bn < x}.

Since a0 < · · · < an−1 < an, we have πA(an) = n and similarly, πB(bn) = n. Since the two
sequences make a partition of N>ℓ, for every integer x > ℓ+ 1, we have

πA(x) + πB(x) = x− ℓ− 1. (8)

Particularly, πA(bn) + πB(bn) = bn − ℓ− 1. Using πB(bn) = n, we get2

πA(bn) = bn − n− ℓ− 1 = an.

Consider
α := lim sup

n→∞

an
n

and β := lim inf
n→∞

an
n
.

From Lemma 18, we have 2 ≥ α ≥ β ≥ 1. Our aim is to show that α = β.
The intervals [an, an+1) make a partition of N>ℓ. If x ∈ [an, an+1), then πA(x) ∈ {n, n+1}

and
n+ 1

an+1

· n

n+ 1︸ ︷︷ ︸
→1

=
n

an+1

<
πA(x)

x
≤ n+ 1

an
=

n

an
· n+ 1

n︸ ︷︷ ︸
→1

.

2With the notation of the proof of Corollary 19, Sn = πB(an).
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From this, we deduce that

lim sup
x→∞

πA(x)

x
= lim sup

n→∞

n

an
=

1

lim infn→∞
an
n

=
1

β
.

Similarly, the intervals [bn, bn+1) make a partition of N>2ℓ+1. If x ∈ [bn, bn+1), then

an
bn

· bn
bn+1︸︷︷︸
→1

=
πA(bn)

bn+1

≤ πA(x)

x
≤ πA(bn+1)

bn
=

an+1

bn+1

· bn+1

bn︸︷︷︸
→1

.

So

lim sup
x→∞

πA(x)

x
= lim sup

n→∞

an
bn

.

Let g(x) = x
x+1

. First observe that

an
bn

=
an
n

an
n
+ 1 + ℓ+1

n

.

Second, ∣∣∣∣anbn − g
(an
n

)∣∣∣∣ =
∣∣∣∣∣ an

n
an
n
+ 1 + ℓ+1

n

− g
(an
n

)∣∣∣∣∣ =
∣∣∣∣∣ an

n
(− ℓ+1

n
)(

an
n
+ 1 + ℓ+1

n

) (
an
n
+ 1

)∣∣∣∣∣ → 0.

The function g is continuous and strictly increasing on [0,+∞). Hence,

1

β
= lim sup

x→∞

πA(x)

x
= lim sup

n→∞

an
bn

= lim sup
n→∞

g
(an
n

)
= g

(
lim sup
n→∞

an
n

)
= g(α) =

α

α + 1
.

Proceeding in the same way with lim inf, we get

1

α
=

β

β + 1
.

Hence, α + 1 = βα = β + 1 and therefore, α = β meaning that the sequence (an/n)n≥1 is
converging to α. Note that

bn
n

=
an
n

+ 1 +
ℓ+ 1

n
→ α + 1, if n → ∞.

The proof also shows that (πA(n)/n)n≥1 converges to 1/α. Proceeding as before, the intervals
[bn, bn+1) make a partition of N>2ℓ+1. If x ∈ [bn, bn+1), then πB(x) ∈ {n, n+ 1} and

n+ 1

bn+1

· n

n+ 1︸ ︷︷ ︸
→1

=
n

bn+1

<
πB(x)

x
≤ n+ 1

bn
=

n

bn
· n+ 1

n︸ ︷︷ ︸
→1

.
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From this, we deduce that

lim sup
x→∞

πB(x)

x
= lim sup

n→∞

n

bn
=

1

lim infn→∞
bn
n

=
1

α + 1
.

Since
πA(x) + πB(x)

x
→ 1 (from (8)) and

πA(x)

x
→ 1

α
,

it follows that πB(x)
x

is converging to 1
α+1

as x → ∞. We thus get

1 =
1

α
+

1

α + 1
.

Since 1 ≤ α ≤ 2, we obtain that the limit α is the golden ratio ϕ = (1 +
√
5)/2.

Remark 21. One may also ask whether or not, the sequences (an)n≥0 and (bn)n≥0 studied here
can be complementary Beatty sequences. In [1], it is shown that the prefix P = (cn)1≤n≤L

of length L a sequence (cn)n≥1 is a spectrum, i.e., of the form ⌊nα + β⌋ for some reals α, β,
if and only if d(P ) < d(P ) where

d(P ) = max
1≤i<k≤L

ck − ck−i − 1

i
and d(P ) = max

1≤i<k≤L

ck − ck−i + 1

i
.

For ℓ ≥ 2, the prefix of length L of the corresponding sequence (an)n≥0 is such that

d(P ) =
2ℓ+ 1

ℓ+ 1
> d(P ) =

ℓ+ 1

ℓ
.

Hence (an)n≥0 is not a spectrum.
For the game K1, the situation is different; we have (with our convention where (a0, b0) =

(2, 4))
an = ⌊(n+ 1)ϕ− 1⌋ and bn = ⌊(n+ 1)ϕ2 − 1⌋.

For more on complementary sequences, we refer the reader to [8, 21].

5 A morphic characterization for K1, K2, K3, . . .

The morphic characterization, as introduced in [7], is given by the Fibonacci word. If we
start indexing letters of the Fibonacci word f with 1, the indices of the letters a (resp. b)
in f correspond to the sequence (an)n≥0 (resp. (bn)n≥0)

n 1 2 3 4 5 6 7 8 9 10 · · ·
f a b a a b a b a a b · · ·

We say that f codes the P-positions: the indices of the nth letter a and the nth letter b in f
give (an−1, bn−1), n ≥ 1. The reader can notice that the first a and b occur in positions (1, 2),
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the second a and b in positions (3, 5) and so on. For more on morphic characterization, see
[5, Sec. 3.2] where Wythoff game is coined as the “Fibonacci game”, showing the interplay
between combinatorial games and combinatorics on words.

In this section, the various morphisms fℓ and gℓ have been obtained with the heuristic of
Section 2.2. We also use the commands pposK1_an, pposK1_bn, pposK2_an and pposK2_bn

introduced at the beginning of Section 4.

Proposition 22. The non-terminal P-positions (an, bn)n≥0 of K1 are coded by the morphic
word g1(f

ω
1 (0)) where, indexing of the letters starts with 2 and f1 is a φ-morphism over a

5-letter alphabet:

f1 : 0 7→ 01, 1 7→ 2, 2 7→ 34, 3 7→ 31, 4 7→ 2,

g1 : 0, 1, 3 7→ a, 2, 4 7→ b.

n 2 3 4 5 6 7 8 9 10 11 · · ·
fω
1 (0) 0 1 2 3 4 3 1 2 3 1 · · ·

g1(f
ω
1 (0)) a a b a b a a b a a · · ·

Proof. We turn f1 and g1 into an automaton stored in Word Automata Library where out-
puts are 1 and 2 instead of a and b. Let w be the corresponding infinite word. We have to
check that for all an (resp. bn), the corresponding symbol in w is 1 (resp. 2). Since Walnut
is indexing infinite words from 0, we must have

∀n ≥ 3, wan−2 = 1 and wbn−2 = 2.

That is verified thanks to

eval matcha "?msd_fib An (Ex (($pposK1_an(x,n)) => (F1G1[x-2]=1)))":

eval matchb "?msd_fib An (Ex (($pposK1_bn(x,n)) => (F1G1[x-2]=2)))":

Proposition 23. The non-terminal P-positions (an, bn)n≥0 of K2 are coded by the morphic
word g2(f

ω
2 (0)), where indexing of the letters starts with 3 and f2 is a φ-morphism over a

16-letter alphabet:

f2 : 0 7→ 01, 1 7→ 2, 2 7→ 34, 3 7→ 56, 4 7→ 7, 5 7→ 89, 6 7→ (10), 7 7→ (11)(12), 8 7→ (10)(13),

9 7→ (14), 10 7→ (10)(13), 11 7→ 56, 12 7→ (15), 13 7→ 5, 14 7→ 89, 15 7→ (11)(12),

g2 : 0, 1, 2, 4, 6, 8, 9, 11, 12, 13, 14, 15 7→ a, 3, 5, 7, 10 7→ b.

n 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 · · ·
fω
2 (0) 0 1 2 3 4 5 6 7 8 9 10 11 12 10 13 14 10 13 · · ·

g2(f
ω
2 (0)) a a a b a b a b a a b a a b a a b a · · ·
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Proof. Same proof as the previous one. We turn f2 and g2 into an automaton and check

eval matcha "?msd_fib An (Ex (($pposK2_an(x,n)) => (F2G2[x-3]=1)))":

eval matchb "?msd_fib An (Ex (($pposK2_bn(x,n)) => (F2G2[x-3]=2)))":

One proceed in the same way for the next value of ℓ.

Proposition 24. The non-terminal P-positions (an, bn)n≥0 of K3 are coded by the morphic
word g3(f

ω
3 (0)), where indexing of the letters starts with 4 and f3 is a φ-morphism over a

22-letter alphabet:

f3 : 0 7→ 01, 1 7→ 2, 2 7→ 34, 3 7→ 56, 4 7→ 7, 5 7→ 89, 6 7→ (10), 7 7→ (11)(12), 8 7→ (13)(12),

9 7→ (14), 10 7→ (15)(16), 11 7→ (14)(17), 12 7→ (18), 13 7→ (14)(17), 14 7→ (19)(12),

15 7→ (18)(20), 16 7→ (21), 17 7→ (18), 18 7→ (13)(12), 19 7→ (19)(12), 20 7→ (14), 21 7→ (15)(16),

g3 : 0, 1, 2, 3, 5, 7, 9, 11, 12, 14, 16, 18, 21 7→ a, 4, 6, 8, 10, 13, 15, 17, 19, 20 7→ b.

Remark 25. When applying the heuristic, to get f2 and g2 right (resp. f3 and g3), we had
to consider 4-types (resp. 5-types).

6 Blocking Wythoff

Larsson characterized [20, Thm. 1.1] the set of P-positions of W 2, a variant of Wythoff game
where one option may be blocked, see Figure 6. We provide an automatic proof of this result.

Theorem 26. The set of P-positions of W 2 is given by

R2 = {(0, 0)} ∪ {{n, 2n+ 1} | n ≥ 0} ∪ {{2⌊nϕ⌋+ 2, 2⌊nϕ2⌋+ 2} | n ≥ 0}.

Definition 27. It is convenient to define the options of a position (for Wythoff’s moves) by

def optW "?msd_fib (c=a & d<b) | (c<a & d=b) | (a+d=c+b & c<a)":

This means that (a, b, c, d) belongs to the set if and only if there is a Wythoff move from the
position (a, b) to (c, d), i.e., (c, d) is an option of (a, b).

Proof. The set R2 can be defined by

def pposW2_asym "?msd_fib En,a,b ((x=0 & y=0) | (x=n & y=2*n+1) |

($phin(n,a) & $phi2n(n,b) & x=2*a+2 & y=2*b+2))":

def pposW2 "?msd_fib $pposW2_asym(a,b) | $pposW2_asym(b,a)":
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requiring a 73 states automaton.
We again use Proposition 11. Clearly, for each P-position (p, q), at most one of its options

(r, s) is a P-position (if this is the case, the previous player will forbid this option). The
following formula expresses that, if there is indeed such a P-position (r, s), then for any other
option (a, b), if it is also a P-position, then it must coincide with (r, s).

eval stable "?msd_fib Ap,q ($pposW2(p,q) =>

(Er,s ($pposW2(r,s) & $optW(p,q,r,s)) =>

(Aa,b ($optW(p,q,a,b) & $pposW2(a,b)) => (a=r&b=s))))":

intermediate computations require 6452 states and the result is TRUE.
Similarly, for each N -position (p, q), there is at at least two P-positions (r, s) ̸= (t, u) in

its set of options. So that the previous player cannot forbid both of these. This is expressed
as

eval absorbing "?msd_fib Ap,q (~$pposW2(p,q) =>

Er,s,t,u ($optW(p,q,r,s) & $optW(p,q,t,u)

& (r!=t|s!=u) & $pposW2(r,s) & $pposW2(t,u)))":

intermediate computations require 34813 states and return TRUE.

We also provide an automatic proof of the following result from [20].

Theorem 28. The set of P-positions of W 3 where 2 options may be blocked is given by

R3 = {(0, 0)} ∪ {{n, 2n+ 1}, {n, 2n+ 2} | n ≥ 0}.

Proof. The set R2 can be defined by

def pposW3_asym "?msd_fib En ((x=0 & y=0) | (x=n & y=2*n+1) | (x=n&y=2*n+2))":

def pposW3 "?msd_fib $pposW3_asym(a,b) | $pposW3_asym(b,a)":

requiring 28 states.
The strategy is the same as for W 2 using Proposition 11. For each P-position (p, q), at

most two of its options (r, s) and (t, u) are P-positions (here, the previous player may forbid
two options). The following formula expresses that if there is indeed such P-positions, then
for any other option (a, b), if it is also a P-position, then it must coincide with (r, s) or (t, u).

eval stableW3 "?msd_fib Ap,q ($pposW3(p,q) =>

(Er,s,t,u ($pposW3(r,s) & $pposW3(t,u) & $optW(p,q,r,s) & $optW(p,q,t,u)

& (r!=t|s!=u)) =>

(Aa,b ($optW(p,q,a,b) & $pposW3(a,b)) => ((a=r&b=s)|(a=t&r=u)))))":

Similarly, for each N -position (p, q), there is at at least three P-positions in its set of options.
So that the previous player cannot forbid all of these. This is expressed as
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eval absorbW3 "?msd_fib Ap,q (~$pposW3(p,q) =>

Er,s,t,u,v,w ($optW(p,q,r,s) & $optW(p,q,t,u) & $optW(p,q,v,w)

& (r!=t|s!=u) & (r!=v|s!=w) & (v!=t|w!=u)

& $pposW3(r,s) & $pposW3(t,u) & $pposW3(v,w)))":

Both commands evaluate to TRUE, intermediate computations requiring at most 116141
states.

Figure 6: The P-positions of W 2 and W 3.

7 About redundant moves

A classical question about game is the following. Can we modify the rule-set in such a way
that the set of P-positions remains the same? One can add any move provided that it does
not permit to move between two P-positions breaking the stability of the set. So we focus
on the question of removing a move. With a smaller rule-set, stability trivially still holds.
The question thus concerns absorption. Let us recall what a redundant move is.

Definition 29. A move of a game G is said to be redundant if removing it from the rule-set
does not change the set of P-positions of G.

It is shown in [25] that the classical Wythoff’s game has no redundant move. This result
has also been verified automatically with Walnut in [23]. Using a similar approach, we show
that the variations of Wythoff game considered in this paper have no redundant move.
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7.1 No redundant moves in Kℓ, ℓ ≤ 4

We follow the procedure described in [23]. For each move m, that is, for all pairs of the set⋃
i>0

{(i, 0), (0, i), (i, i)},

one needs to check that there exists an N -position (p, q) such that m is the only winning
move leading to a P-position. This shows that m is necessary to preserve the absorbing
property, and thus the set of P-positions.

This can be expressed in Walnut using the following three commands (one for each type
of move). We make use of Definition 27 for the options optW. We illustrate this on the
game K2:

eval nr_1 "?msd_fib Ai (i>0 => (Ep,q ~$pposK2(p,q) & $pposK2(p-i,q)

& (Ar,s ((r!=p-i & s!=q & $optW(p,q,r,s)) => ~$pposK2(r,s)))))":

eval nr_2 "?msd_fib Ai (i>0 => (Ep,q ~$pposK2(p,q) & $pposK2(p,q-i)

& (Ar,s ((r!=p & s!=q-i & $optW(p,q,r,s)) => ~$pposK2(r,s)))))":

eval nr_3 "?msd_fib Ai (i>0 => (Ep,q ~$pposK2(p,q) & $pposK2(p-i,q-i)

& (Ar,s ((r!=p-i & s!=q-i & $optW(p,q,r,s)) => ~$pposK2(r,s)))))":

All three commands evaluate to TRUE, with intermediate steps computing automata with up
to 2130 states.

Theorem 30. Let ℓ ∈ {1, 2, 3, 4}. The game Kℓ has no redundant move, i.e., removing any
move from the rule-set change the set of P-positions.

Proof. Simply repeat the above three commands, replacing the predicate pposK2 conve-
niently. The longest computation is for nr_3 and K4, which requires up to 5140 states.

7.2 No redundant moves in W 2 and W 3

Let us first consider the gameW 2. Here, we have to take into account the blocking maneuver:
since the opponent can forbid one option, a move m is non-redundant if there exists an N -
position (p, q) with exactly two options in P that can be reached using two moves m and m′

respectively.
Indeed, if m is withdrawn from the rule-set, then m′ will be the only option remaining

to go from (p, q) to a P-position. Since the previous player may prevent the next one from
playing along this move, the absorbing property is not satisfied, and m is thus necessary to
preserve the set of P-positions.

Again, this can be expressed in Walnut. Let us start with a move of the form (i, 0). The
first formula defines the set of pairs (i, j) such that there exists an N -position (p, q) from
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which there are exactly two distinct moves of the form (i, 0) and (j, 0), with i ̸= j, leading
to P-positions. Any option (r, s) from (p, q) which is a P-position is thus reached using one
of these two. If a pair belongs to this set, then (i, 0) and (j, 0) are non-redundant. The
second (resp. third) formula handles the situation where there exists an N -position (p, q)
from which exactly two moves of the form (i, 0) and (0, j) (resp. (i, 0) and (j, j)) are leading
to P-positions. Here, there is no restriction on i and j because we use different types of
moves.

def opt2W2a "?msd_fib i!=j & Ep,q (p>=i & p>=j & ~$pposW2(p,q)

& $pposW2(p-i,q) & $pposW2(p-j,q)

& Ar,s (($optW(p,q,r,s) & $pposW2(r,s))

=> ((r=p-i& s=q) | (r=p-j& s=q))))":

def opt2W2b "?msd_fib Ep,q (p>=i & q>=j & ~$pposW2(p,q)

& $pposW2(p-i,q) & $pposW2(p,q-j)

& Ar,s (($optW(p,q,r,s) & $pposW2(r,s))

=> ((r=p-i& s=q) | (r=p& s=q-j))))":

def opt2W2c "?msd_fib Ep,q (p>=i & p>=j & q>=j & ~$pposW2(p,q)

& $pposW2(p-i,q) & $pposW2(p-j,q-j)

& Ar,s (($optW(p,q,r,s) & $pposW2(r,s))

=> ((r=p-i& s=q) | (r=p-j& s=q-j))))":

Intermediate computations for each of these formulas require around 11000 states. Now, we
evaluate

eval opt2W2 "?msd_fib Ai (i>0=> (Ej ($opt2W2a(i,j)|$opt2W2b(i,j)

|$opt2W2c(i,j))))":

which returns True. This means that (i, 0) is a non-redundant move, for all i > 0. By
symmetry, this is also the case for a move (0, i).

We now consider moves of the form (i, i). The strategy is similar. We just have to ensure
in the third formula that the moves (i, i) and (j, j) are distinct with i ̸= q.

def opt2W2d "?msd_fib Ep,q (p>=i & q>=i & p>=j & ~$pposW2(p,q)

& $pposW2(p-i,q-i) & $pposW2(p-j,q)

& Ar,s (($optW(p,q,r,s) & $pposW2(r,s))

=> ((r=p-i& s=q-i) | (r=p-j& s=q))))":

def opt2W2e "?msd_fib Ep,q (p>=i & q>=i & q>=j & ~$pposW2(p,q)

& $pposW2(p-i,q-i) & $pposW2(p,q-j)

& Ar,s (($optW(p,q,r,s) & $pposW2(r,s))

=> ((r=p-i& s=q-i) | (r=p& s=q-j))))":
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def opt2W2f "?msd_fib i!=j & Ep,q (p>=i & q>=i & ~$pposW2(p,q)

& $pposW2(p-i,q-i) & $pposW2(p-j,q-j)

& Ar,s (($optW(p,q,r,s) & $pposW2(r,s))

=> ((r=p-i& s=q-i) | (r=p-j& s=q-j))))":

We evaluate

eval opt2W2 "?msd_fib Ai (i>0 => (Ej ($opt2W2d(i,j)|$opt2W2e(i,j)

|$opt2W2f(i,j))))":

returning True and consequently, we have the following result.

Theorem 31. The game W 2 (resp. W 3) has no redundant move, i.e., removing any move
from the rule-set change the set of P-positions.

For the sake of readability, the commands for W 3 are given in appendix.

8 Conclusions

The deep connections existing between combinatorial games and numeration systems have
long been exploited by many authors [6, 7, 9, 10, 11], particularly to determine in polynomial
time whether a given position is a P-position. Wythoff game and many of its variants are
closely related to the Fibonacci numeration system. In this article, following the line of our
previous work [23], we take these ideas one step further providing more evidence. Using
a decidable theory implemented in the freely available software Walnut, we have obtained
many results with little effort! These examples are particularly well-suited because the
Fibonacci numeration system admits a simple automaton recognizing addition. This ensures
that the automata produced during intermediate formula-reduction steps hopefully remain
of manageable size.

The starting point of this article was the rather unexpected connection between Hofs-
tadter’s G-sequence A005206 and the combinatorial game K2 introduced by Komak et al.
[19]. This led us to generalize K2 to a family of games Kℓ. It would therefore be interest-
ing to relate this family to the generalized Hofstadter sequences studied in [22], for which
connections with numeration systems are of interest A005374, A005375, A005376, A100721.
This could also be linked to Narayana representations as discussed in [28]. In particular,
can one define an analogue of the function g from Proposition 4 and Theorem 2 for other
values of the parameter ℓ? We did not pursue this direction, as our aim was to obtain
Fibonacci-automatic functions g2, g3, g4 with Proposition 6 and Theorems 13 and 14.

On a different aspect, although there is no unique logical formula that defines properties
such as stability or absorption, one can observe in our automatic proofs that the order of
magnitude of the automata constructed by Walnut differs between the games Kℓ (for ℓ ≤ 4)
with a few thousand states on the one hand and the games with blocking maneuvers W 2

and W 3 on the other, with more than 105 states. Thus, one could in some sense quantify —
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assuming a notion of minimal representation/logical formula can be defined — the complexity
of a combinatorial game by the size of the automata involved in the proof characterizing its
P-positions. Of course, this is reasonable for games having a description within the same
numeration system, since the size of the automaton recognizing addition plays a role in these
constructions.

References

[1] M. Boshernitzan, A. S. Fraenkel, Nonhomogeneous spectra of numbers, Disc. Math. 34
(1981), 325–327.

[2] V. Bruyère, G. Hansel, Bertrand numeration systems and recognizability, Theoret. Com-
put. Sci. 181 (1997), 17–43.

[3] A. Cobham, Uniform tag systems, Math. Systems Theory 6 (1972), 164–192.

[4] F. M. Dekking, On Hofstadter’s G-Sequence, J. Int. Seq. 26 (2023), Article 23.9.2.
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9 Appendix

Here are the commands showing that W 3 has no redundant move. With the command
opt2W3_mn, we consider a move of the first kind (i, 0) and two moves of kind m and n ; the
three being pairwise distinct. Moves of the second (resp. third) kind are of the form (0, i)
and (i, i). When at least two moves are of the same kind, we have to ensure that they are
distinct.

def opt2W3_11 "?msd_fib i!=j & j!=k & i!=k & Ep,q (p>=i & p>=j & p>=k

& ~$pposW3(p,q) & $pposW3(p-i,q) & $pposW3(p-j,q) & $pposW3(p-k,q)

& Ar,s (($optW(p,q,r,s) & $pposW3(r,s))

=> ((r=p-i & s=q) | (r=p-j & s=q) | (r=p-k & s=q))))":

def opt2W3_12 "?msd_fib i!=j & Ep,q (p>=i & p>=j & q>=k & ~$pposW3(p,q)

& $pposW3(p-i,q) & $pposW3(p-j,q) & $pposW3(p,q-k)

& Ar,s (($optW(p,q,r,s) & $pposW3(r,s))

=> ((r=p-i & s=q) | (r=p-j & s=q) | (r=p & s=q-k))))":

def opt2W3_22 "?msd_fib j!=k & Ep,q (p>=i & q>=j & q>=k & ~$pposW3(p,q)

& $pposW3(p-i,q) & $pposW3(p,q-j) & $pposW3(p,q-k)

& Ar,s (($optW(p,q,r,s) & $pposW3(r,s))

=> ((r=p-i & s=q) | (r=p & s=q-j) | (r=p & s=q-k))))":

def opt2W3_13 "?msd_fib i!=j & Ep,q (p>=i & p>=j & p>=k & q>=k

& ~$pposW3(p,q) & $pposW3(p-i,q) & $pposW3(p-j,q) & $pposW3(p-k,q-k)

& Ar,s (($optW(p,q,r,s) & $pposW3(r,s))

=> ((r=p-i & s=q) | (r=p-j & s=q) | (r=p-k & s=q-k))))":

def opt2W3_23 "?msd_fib Ep,q (p>=i & q>=j & p>=k & q>=k & ~$pposW3(p,q)

& $pposW3(p-i,q) & $pposW3(p,q-j) & $pposW3(p-k,q-k)

& Ar,s (($optW(p,q,r,s) & $pposW3(r,s))

=> ((r=p-i & s=q) | (r=p & s=q-j) | (r=p-k & s=q-k))))":

def opt2W3_33 "?msd_fib j!=k & Ep,q (p>=i & p>=j & q>=j & p>=k & q>=k

& ~$pposW3(p,q) & $pposW3(p-i,q) & $pposW3(p-j,q-j) & $pposW3(p-k,q-k)
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& Ar,s (($optW(p,q,r,s) & $pposW3(r,s))

=> ((r=p-i & s=q) | (r=p-j & s=q-j) | (r=p-k & s=q-k))))":

and finally, we check:

eval redundantW3_1 "?msd_fib Ai (i>0

=> Ej,k ($opt2W3_11(i,j,k) | $opt2W3_12(i,j,k) | $opt2W3_22(i,j,k) |

$opt2W3_13(i,j,k) | $opt2W3_23(i,j,k) | $opt2W3_33(i,j,k)))":

By symmetry, we do not have to consider a first move of the second kind. But we still have
to consider a first move of the third kind.

def opt3W3_11 "?msd_fib j!=k & Ep,q (p>=i & q>=i & p>=j & p>=k

& ~$pposW3(p,q) & $pposW3(p-i,q-i) & $pposW3(p-j,q) & $pposW3(p-k,q)

& Ar,s (($optW(p,q,r,s) & $pposW3(r,s))

=> ((r=p-i & s=q-i) | (r=p-j & s=q) | (r=p-k & s=q))))":

def opt3W3_12 "?msd_fib Ep,q (p>=i & q>=i & p>=j & q>=k

& ~$pposW3(p,q) & $pposW3(p-i,q-i) & $pposW3(p-j,q) & $pposW3(p,q-k)

& Ar,s (($optW(p,q,r,s) & $pposW3(r,s))

=> ((r=p-i & s=q-i) | (r=p-j & s=q) | (r=p & s=q-k))))":

def opt3W3_22 "?msd_fib j!=k & Ep,q (p>=i & q>=i & q>=j & q>=k

& ~$pposW3(p,q) & $pposW3(p-i,q-i) & $pposW3(p,q-j) & $pposW3(p,q-k)

& Ar,s (($optW(p,q,r,s) & $pposW3(r,s))

=> ((r=p-i & s=q-i) | (r=p & s=q-j) | (r=p & s=q-k))))":

def opt3W3_13 "?msd_fib i!=k & Ep,q (p>=i & q>=i & p>=j & p>=k & q>=k

& ~$pposW3(p,q) & $pposW3(p-i,q-i) & $pposW3(p-j,q) & $pposW3(p-k,q-k)

& Ar,s (($optW(p,q,r,s) & $pposW3(r,s))

=> ((r=p-i & s=q-i) | (r=p-j & s=q) | (r=p-k & s=q-k))))":

def opt3W3_23 "?msd_fib i!=k & Ep,q (p>=i & q>=i & q>=j & p>=k & q>=k

& ~$pposW3(p,q) & $pposW3(p-i,q-i) & $pposW3(p,q-j) & $pposW3(p-k,q-k)

& Ar,s (($optW(p,q,r,s) & $pposW3(r,s))

=> ((r=p-i & s=q-i) | (r=p & s=q-j) | (r=p-k & s=q-k))))":

def opt3W3_33 "?msd_fib i!=j & j!=k & i!=k & Ep,q

(p>=i & q>=i & p>=j & q>=j & p>=k & q>=k & ~$pposW3(p,q)

& $pposW3(p-i,q-i) & $pposW3(p-j,q-j) & $pposW3(p-k,q-k)

& Ar,s (($optW(p,q,r,s) & $pposW3(r,s))

=> ((r=p-i & s=q-i) | (r=p-j & s=q-j) | (r=p-k & s=q-k))))":
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eval redundantW3_2 "?msd_fib Ai (i>0

=> Ej,k ($opt3W3_11(i,j,k) | $opt3W3_12(i,j,k) | $opt3W3_22(i,j,k) |

$opt3W3_13(i,j,k) | $opt3W3_23(i,j,k) | $opt3W3_33(i,j,k)))":
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