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Résumé. Cet article étudie la relation conf qui a été proposée par E. Brinksma pour forma-
liser la notion de conformité aux tests. On sait que pour tester si une implémentation I est 
conforme à une spécification S (i.e. I conf S), la technique utilisée consiste à construire, à 
partir de S, un testeur canonique T (S) tel que, lorsque T (S) est synchronisé avec une im-
plémentation I, il atteint toujours un état terminal correct si, et seulement si, I conf S. Si I 
n’est pas conforme à S, le testeur canonique T (S) peut rester bloqué dans un état non termi-
nal où toute interaction avec I est impossible. Dans cet article, nous mettons en évidence le 
rôle de la relation d’équivalence associée à conf, appelée conf-eq, qui est une équivalence 
plus faible que l’équivalence de test, te. Cette propriété nous permet de définir le testeur ca-
nonique T (S) modulo conf-eq; alors qu’il était défini modulo te. Ce nouveau testeur cano-
nique est plus simple que le précédent, en ce sens que, contrairement à celui-ci, il peut con-
tenir moins de traces que la spécification S. Nous montrons enfin que, dans le cas de 
spécifications non auto-bloquantes, les deux testeurs sont te-équivalents. 
Mots-clés. FDT, LOTOS, algèbre de processus, test, testeur canonique, relation d’implé-
mentation, conformité, spécification, implémentation, abstraction. 

1. Introduction 
Une version anglaise de cet article a été publiée à PSTV XI [Leduc 91c]. 
Cet article se rapporte d’une part à la problématique de l’implémentation 

des spécifications formelles exprimées dans le langage LOTOS [ISO 8807, 
Bolognesi 87], et d’autre part aux tests de conformité des implémentations. 
Dans ce contexte, plusieurs problèmes sont actuellement non résolus. Nous 
allons les résumer avant de situer notre contribution. 
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La première difficulté est due au fait que le processus d’implémentation fait 
intervenir d’une part une spécification formelle servant de référence, et d’autre 
part une réalisation physique de cette spécification. Afin de résoudre ce 
problème, on ne considère pas la réalisation physique elle-même, mais plutôt 
un modèle de cette réalisation [Brinksma 86]. Ce modèle, que nous appelerons 
spécification d’implémentation ou simplement implémentation, sera dès lors 
exprimé en LOTOS tout comme la spécification elle-même. Cette façon de 
faire a l’avantage de traiter le problème de l’implémentation dans un 
formalisme unique, et de rendre possible l’inclusion d’une notion 
d’implémentation dans une théorie formelle. Il peut sembler irréaliste 
d’utiliser LOTOS comme modèle d’une réalisation physique; ce n’est effecti-
vement pas le domaine d’application idéal pour ce langage conçu initialement 
pour décrire des spécifications abstraites de normes de l’ISO. Toutefois, divers 
styles de spécifications ont été mis en évidence en LOTOS [Vissers 88] et 
permettent de moduler le niveau d’abstraction de la spécification. LOTOS 
peut même être utilisé comme un langage de programmation tel que C 
[Mañas 90] : la structure de la spécification et son niveau de détail (ou 
d’abstraction) est alors celui d’un programme C. Le code C généré à partir 
d’une telle spécification est à peine moins performant qu’un programme de 
même structure écrit directement en C. Dans cet article, nous travaillerons dès 
lors avec des modèles de réalisations, i.e. des implémentations, en LOTOS. 

Le fait de disposer d’un formalisme unique nous permet d’aborder le 
deuxième problème, à savoir la nature du lien devant exister entre une im-
plémentation conforme et sa spécification formelle. Le problème est double : 
il faut d’abord trouver les critères qui permettent de caractériser ce lien, et il 
faut ensuite les exprimer formellement. Ces formalisations peuvent se classer 
parmi deux grandes tendances : la conformité est caractérisée soit par une 
équivalence appropriée [Park 81, Brookes 84, de Nicola 84, de Nicola 87, 
Brinksma 87b, Hennessy 88, Milner 89], soit par une relation non nécessai-
rement symétrique telle qu’un préordre. 

Cette deuxième tendance est, selon nous, plus générale et plus appropriée 
car elle prend en compte le caractère asymétrique du lien entre implémentation 
et spécification [Brinksma 86, Brinksma 87b, Leduc 90, Leduc 91a, Leduc 
91b]. Au lieu de considérer que l’implémentation doive être équivalente à la 
spécification, l’idée consiste à définir une relation moins restrictive et habi-
tuellement asymétrique. Ces relations sont souvent appelées des relations 
d’implémentation. 

Ces relations ont été moins étudiées que les équivalences dans le contexte 
des techniques algébriques. Il n’existe d’ailleurs pas d’opinion bien établie sur 
la nature de ces relations d’implémentation, mais quelques tendances existent. 
Par exemple, il est souvent admis qu’une implémentation puisse être plus 
déterministe qu’une spécification. Selon cette vision, une relation 
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d’implémentation serait plutôt considérée comme un préordre (i.e. une relation 
réflexive et transitive). Un préordre, par son caractère asymétrique, définit un 
ordre partiel sur les systèmes. Si ce préordre est bien choisi, il peut être 
interprété comme une relation d’implémentation, i.e. si deux systèmes A et B 
sont tels que B est inférieur à A selon cet ordre, alors cela signifie que dans un 
certain sens B implémente A, ou B est une implémentation conforme de A. Par 
exemple, un critère pouvant être exprimé formellement par une telle relation 
est la réduction du non-déterminisme, i.e. B est une implémentation conforme 
de A si, et seulement si, B est une transformation de A par laquelle certains 
choix (volontairement) non déterministes de A ont été résolus. 

Quelques relations d’implémentation basées sur cette idée ont été définies. 
Ce sont en général - mais pas toujours - des préordres (e.g. en CSP [Brookes 
84, Hoare 85], en CCS [de Nicola 84], en LOTOS [Brinksma 87b]). C’est sur 
la relation de conformité, appelée conf, présentée dans [Brinksma 87b] que cet 
article se concentrera. Dans [Leduc 91b], une autre relation d’implémentation, 
appelée conf*, est également proposée et étudiée. 

Le concept de relation d’implémentation a aussi été introduit dans d’autres 
modèles formels (e.g. le wp-calcul [Dijkstra 76], la logique [Chandy 89], les 
machines à états ou les automates E/S [Lynch 81, Lamport 83, Lam 84, 
Lynch 87, Abadi 88, Merritt 89], et les systèmes de transitions modaux 
[Larsen 89]). 

Le troisième problème en relation avec l’implémentation des spécifications 
formelles est celui des tests de conformité. Un cadre général et une méthodo-
logie de test de conformité est étudiée à l’ISO [ISO 9646, Rayner 87]. Le 
problème crucial qui est actuellement non résolu est celui de la génération 
d’un ensemble adéquat de scénarios de tests à partir des spécifications for-
melles [Castanet 87, Favreau 87, Sarikaya 87a, Sarikaya 87b, Bochmann 88, 
Sabnani 88, Hogrefe 89, Sidhu 89, Vuong 89, Phalippou 91]. 

En LOTOS, le concept de testeur canonique associé à une spécification a 
été défini et étudié dans [Brinksma 86, Brinksma 87b, Brinksma 89] et mis en 
œuvre dans [Alderden 89, Wezeman 89, Wezeman 91]. Le testeur canonique 
est lui-même une spécification LOTOS qui décrit comment tester les implé-
mentations et déterminer si elles sont conformes ou non à la spécification. Le 
testeur canonique n’opère aucune sélection sur les séquences de tests; en fait, 
il est conçu pour tester exhaustivement les implémentations. C’est donc en 
quelque sorte une borne supérieure théorique sur la façon de tester. 

Le testeur canonique est basé sur la relation conf proposée pour formaliser 
la notion de conformité aux tests dans [Brinksma 89]. Cela signifie que la 
méthode de test proposée, qui se base sur une spécification S, rejette toute 
implémentation I qui ne satisfait pas la règle I conf S. La technique utilisée 
consiste à construire, à partir de S, un testeur canonique T (S) tel que, lorsqu’il 
est synchronisé avec une implémentation I, il atteint toujours un état terminal 
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correct1 si, et seulement si, I conf S. Si I n’est pas conforme à S, le testeur 
canonique T (S) peut rester bloqué dans un état non terminal où toute interac-
tion avec I est impossible. 

Cette propriété du testeur canonique montre que le problème du test et le 
concept de relation d’implémentation (ou de conformité) sont étroitement liés, 
puisque les définitions de conf et de T le sont. Ceci est d’ailleurs très logique 
puisque les tests de conformité ont avant tout comme objectif de tester des 
implémentations conformes.  

Dans cet article, nous montrons que certaines traces du testeur canonique 
sont inutiles et peuvent être supprimées. Intuitivement, les morceaux de scé-
narios de test que l’on supprime sont en quelque sorte des tests qui ne peuvent 
apporter aucune conclusion sur la conformité. Le testeur résultant peut tou-
jours tester exhaustivement les implémentations tout en étant un peu plus 
simple que le testeur canonique. Les scénarios de test de ce nouveau testeur 
restent quand même beaucoup trop nombreux, mais nous n’aborderons pas ici 
le problème d’une sélection adéquate de tests parmi ceux qui sont proposés 
par le testeur. 
Contenu de l’article 

Cet article présente d’abord brièvement différentes relations asymétriques 
existantes [Brinksma 87b], telles que red, ext, et la relation de conformité, 
conf .  

Nous montrons ensuite comment ces relations définissent naturellement des 
relations d’équivalence. Nous utilisons pour cela une relation générique imp 
pouvant être instanciée par les différentes relations red, ext et conf. 
L’équivalence associée naturellement à red et ext est l’équivalence de test, te 
[Brinksma 87b]. L’équivalence associée à conf est une équivalence, appelée 
conf-eq, plus faible que te. 

Le testeur canonique T (S) présenté dans [Brinksma 89] est, comme nous 
l’avons dit, basé sur la relation conf. T (S) est toutefois défini modulo te; ce 
qui peut sembler peu cohérent étant donné que l’équivalence associée à conf 
est plus faible que te.   

Partant de cette constatation, nous allons montrer que l’on peut définir T (S) 
modulo conf-eq, c’est -à-dire que si T est un testeur canonique de la spécifi-
cation S, et que T’ conf-eq T, alors T’ est aussi un testeur canonique : T’, 

                                         
1 Un état terminal correct de T (S) est un état où T (S) est supposé s’arrêter, i.e. T (S) a été 

conçu de telle sorte que, après certaines séquences, il puisse se comporter comme stop. 
Quand T (S) n’a pas atteint un tel état terminal, mais qu’il reste bloqué dans sa synchroni-
sation avec une implémentation I, ceci est considéré comme un état terminal incorrect, i.e. 
quand le processus composé I || T (S) est dans un tel état terminal, T (S) est encore 
capable d’exécuter certaines actions. 
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lorsqu’il est synchronisé avec une implémentation I, atteint toujours un état 
terminal correct si, et seulement si, I conf S. 

Cette caractérisation modulo conf-eq du testeur canonique a l’avantage de 
laisser plus de degrés de liberté pour définir T (S). Ce qui nous permet alors de 
trouver un testeur canonique plus simple, appelé Tm (S), pouvant contenir 
moins de traces que la spécification S; ce qui n’est pas le cas de T (S). 

Nous montrerons enfin que pour des spécifications non auto-bloquantes - ce 
qui est le cas des spécifications se terminant toujours avec succès telles que 
celles considérées dans [Brinksma 86, Brinksma 89]  - Tm et T sont te-équiva-
lents. 
2. Définitions et propriétés de quelques relations 

En LOTOS, quelques relations asymétriques ont été proposées dans 
[Brinksma 86, Brinksma 87b] comme candidates au rôle de relation 
d’implémentation. Nous les rappelons brièvement ci-dessous en utilisant un 
formalisme de traces et refus similaire à celui de CSP [Hoare 85].  
Notations 2.1 
L est un alphabet d’actions observables, i est l’action interne (i.e. non obser-

vable) et δ est l’action de terminaison correcte. 
P—a→P’ signifie que le processus P peut effectuer l’action a et, cette action 

faite, se comporter ultérieurement comme le processus P’.  
P—ik→P’ signifie que le processus P peut effectuer la séquence de k actions 

internes et, cette séquence faite, se comporter ultérieurement comme le 
processus P’.  

P—a.b→P’ signifie ∃ P”, tel que P—a→P”   ∧   P”—b→P’. 
P=a⇒P’ où a ∈ L, signifie ∃ k0, k1 ∈ N, tels que P—ik0.a.ik1→P’ 
P=a⇒ où a ∈ L, signifie que ∃ P’, tel que P=a⇒P’, i.e. P peut accepter 

l’action a. 
P=a≠> où a ∈ L, signifie ¬ (P=a⇒), i.e. P ne peut pas accepter (ou doit re-

fuser) l’action a. 
P=σ⇒P’ signifie que le processus P peut effectuer la séquence d’actions ob-

servables σ et, cette séquence faite, se comporter ultérieurement comme le 
processus P’. Plus précisément, si σ = a1…an où a1, … an ∈ L, alors  

 ∃ k0, … kn ∈ N, tels que P—ik0.a1.ik1.a2 …an.ikn→P’ 
P=σ⇒ signifie que ∃ P’, tel que P=σ⇒P’ 
P after σ = {P’ | P=σ⇒P’},  
 i.e. l’ensemble de toutes les expressions de comportement (ou états) acces-

sibles à partir de P  par la séquence σ. 
Tr (P) est l’ensemble des traces de P, i.e. {σ | P=σ⇒}; Tr (P) est un sous-

ensemble de L*. 
σ1 ≤ σ2  ssi ∃ σ3 ∈ L*, tel que σ1.σ3 = σ2 i.e. σ1 est un préfixe de σ2. 
σ1 < σ2  ssi ∃ σ3 ∈ L+, tel que σ1.σ3 = σ2 i.e. σ1 est un préfixe strict de σ2. 
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Out (P, σ) est l’ensemble des actions observables possibles après la trace σ, 
 i.e. Out (P, σ) =  {a ∈ L | σ.a ∈ Tr (P) }. 
Ref (P, σ) est l’ensemble des ensembles de refus de P après la trace σ, i.e.  
 Ref (P, σ) = {X ⊆ L | ∃ P’ ∈ P after σ, tel que P’=a≠>, ∀ a ∈ X};  
 Ref (P, σ) est un ensemble d’ensembles et un sous-ensemble de ℘ (L), le 

“power set” de L, i.e. l’ensemble des sous-ensembles de L. Un ensemble X 
⊆ L appartient à Ref (P, σ) ssi P peut effectuer la trace σ et, cette séquence 
faite, refuser toute action de l’ensemble X. 
Quelques interprétations possibles de la relation de conformité ont été pré-

sentées et formalisées dans [Brinksma 86, Brinksma 87b] par trois relations de 
base : conf, red et ext , et une relation d’équivalence : te . Nous en donnons les 
définitions précises ci-dessous. 
Définitions 2.2 
Soient les deux processus P1 and P2 . 
P1 conf P2 ssi ∀  σ ∈ Tr (P2), on a Ref (P1, σ) ⊆ Ref (P2, σ)  

 ou de façon équivalente, 
 ssi ∀  σ ∈ Tr (P2) ∩ Tr (P1), on a Ref (P1, σ) ⊆ Ref (P2, σ) 
   puisque si σ ∈ Tr (P2) − Tr (P1), alors Ref (P1, σ) = ∅ 
Intuitivement, P1 conf P2 ssi, placés dans tout environnement dont les traces 
sont limitées à celles de P2,  P1 ne peut pas être bloqué quand P2 ne peut pas 
l’être. Autrement dit, P1 se bloque moins souvent que P2 dans un tel 
environnement. conf a été choisie pour modéliser formellement la notion de 
conformité aux tests dans [Brinksma 89], et a été appelée pour cette raison 
la relation de conformité. 

P1 red P2   ssi (i) Tr (P1) ⊆ Tr (P2), et 
 (ii) P1 conf P2 

Intuitivement, si P1 red P2, P1 a moins de traces que P2, mais même dans un 
environnement dont les traces sont limitées à celles de P1, P1 se bloque 
moins souvent. red est la relation de réduction. 

P1 ext P2   ssi (i) Tr (P1) ⊇ Tr (P2), et 
 (ii) P1 conf P2 

Intuitivement, si P1 ext P2, P1 a plus de traces que P2, mais dans un 
environnement dont les traces sont limitées à celles de P2, il se bloque 
moins souvent. ext est la relation d’extension. 

te = red  ∩  red -1 = ext  ∩ ext -1 C’est l’équivalence de test. 
Proposition 2.3 [Brinksma 86] 

(i) conf ⊃ red 
(ii) conf ⊃ ext 
(iii) red et ext sont des préordres 
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(iv) conf est non transitive 

red ext

conf

te

 
Figure 2.1 : te, red, ext, conf 

La figure 2.1 illustre les positions relatives de ces différentes relations. 
3. Relation d’implémentation et équivalence associée 

Dans cette section, nous utilisons une relation générique imp afin de mo-
déliser une relation d’implémentation quelconque, à l’exception du fait qu’elle 
sera réflexive comme nous allons l’expliquer. Rappelons que la relation 
d’implémentation exprime formellement la notion de conformité à une spé-
cification. 

Imp doit être réflexive car la spécification est une implémentation conforme 
d’elle-même. En conséquence, nous considérerons dans le reste de cet article 
que imp est réflexive. 

Par contre, il n’est pas nécessaire que imp soit symétrique, puisque 
l’implémentation et la spécification ne sont pas interchangeables en général.  

Un point plus délicat est la transitivité de imp : doit-on exiger qu’une implé-
mentation conforme d’une implémentation conforme soit toujours une im-
plémentation conforme ? Si imp n’est pas transitive, une implémentation con-
forme ne peut pas être utilisée comme une spécification intermédiaire; ce qui 
n’est pas son rôle de toute façon. Nous n’exigerons donc pas de imp qu’elle 
soit transitive. Une étude détaillée de ce problème est présentée dans [Leduc 
91a]. La relation conf est d’ailleurs un exemple de relation non transitive. 

Nous allons montrer comment imp induit naturellement une équivalence, 
appelée imp–eq. 
Définition 3.1 
S1 imp-eq S2     ssi     {I | I imp S1} = {I | I imp S2} 

où {I | I imp S} désigne l’ensemble des implémentations I, conformes à S 
selon la relation imp. 

Intuitivement, deux spécifications sont équivalentes si, et seulement si, elles 
déterminent exactement le même ensemble d’implémentations conformes au 
sens de imp. 

Il est évident que imp-eq est réflexive, symétrique et transitive. Imp-eq est 
donc une équivalence quelle que soit la relation imp (même non réflexive). 

Si imp est considérée comme relation de référence, cette équivalence joue 
un rôle fondamental en ce sens qu’aucune distinction ne doit être faite entre 
deux spécifications autorisant les mêmes implémentations conformes. 
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L’équivalence est déduite naturellement de la relation d’implémentation. Le 
contraire n’est pas toujours possible. 

On pourrait penser que imp-eq est l’équivalence définie par imp ∩ imp-1: 
deux spécifications sont équivalentes si, et seulement si, chacune d’elles est 
une implémentation conforme de l’autre. Cependant, imp ∩ imp-1 n’est pas 
nécessairement une équivalence. 
Proposition 3.2 [Leduc 91a] 
imp-eq ⊆ imp ∩ imp-1 

Propositions 3.3 [Leduc 91a] 
imp est transitive ⇒ imp-eq = imp ∩ imp-1 

Dans ce cas, deux spécifications sont équivalentes si, et seulement si, 
chacune d’elles est une implémentation conforme de l’autre. 

Ainsi, quand imp est transitive, imp-eq peut être définie plus simplement 
comme suit : S1 imp-eq S2     ssi     S1 imp S2  ∧  S2 imp S1. 

4. Relations d’équivalence associées à red, ext et conf 
Proposition 4.1 [Brinksma 86] 
Red-eq = ext-eq = te 
Définition 4.2 
S1 conf-eq S2     ssi     {I | I conf S1} = {I | I conf S2} 

Cette définition est l’instanciation de la définition 3.1. 
Pour étudier la nature de cette équivalence conf-eq associée à conf, nous al-

lons d’abord rappeler quelques propositions importantes, et nous donnerons 
ensuite une autre définition de conf-eq. 
Propositions 4.3 [Leduc 91a] 
(i) conf-eq  ⊂ conf ∩ conf -1  
(ii) conf-eq ⊃ te  i.e., conf-eq est plus faible que l’équivalence de test 
(iii) conf-eq ∩ trace-eq = conf ∩ conf -1 ∩ trace-eq = te 
 ou de façon équivalente, ∀ P, Q, on a  
 P conf-eq Q ∧ (Tr (P) = Tr (Q)) 
 ⇔ P conf Q ∧ Q conf P ∧ (Tr (P) = Tr (Q))  
 ⇔ P te Q 

 Pour des processus ayant les mêmes traces, conf-eq et te sont identiques. 
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conf
conf-eq

red ext

 te

 
Figure 4.1 : conf-eq par rapport aux autres relations 

Tous ces résultats sont résumés à la figure 4.1 La partie hachurée est exac-
tement l’équivalence de test. Dans [Leduc 90], des exemples ont été trouvés 
afin de prouver que les inclusions sont strictes, c’est-à-dire qu’aucune zone de 
la figure n’est vide. 

Nous donnons maintenant une définition plus classique de conf-eq. 
Proposition 4.4 [Leduc 90] 
P conf-eq Q ssi 

 (a) P conf Q ∧ Q conf P, et 
  (i.e. ∀ σ ∈ Tr (P) ∩ Tr (Q), on a Ref (P, σ) = Ref (Q, σ)) 
 (b) ∀ σ ∈ Tr (P) − Tr (Q), on a L ∈ Ref (P, σ), et 
 (c) ∀ σ ∈ Tr (Q) − Tr (P), on a L ∈ Ref (Q, σ) 

5. conf-eq contre te 
Si conf est la relation d’implémentation de référence, l’équivalence de test 

n’est pas l’équivalence qui convient car, comme l’indique la proposition 4.3 
(ii), elle est plus forte que conf-eq : certains processus qui ne sont pas te-
équivalents définissent pourtant les mêmes ensembles d’implémentations con-
formes. 

Considérons l’exemple suivant où P conf-eq Q, mais ¬ (P te Q) : 
P = a; stop    et    Q = (a; stop [] a; b; stop). 
Si P et Q sont deux spécifications, elles définissent exactement les mêmes 

ensembles d’implémentations conformes (au sens de conf); en particulier 
P conf Q et Q conf P.  

Notons cependant que si P = a; stop et Q = (a; stop [] a; b; c; stop), nous 
n’avons plus P conf-eq Q car a; b; stop est une implémentation conforme à P 
mais pas à Q. Cela peut s’expliquer intuitivement par le fait qu’une implé-
mentation conforme à Q, peut ou non accepter b après a; mais si elle l’accepte, 
alors elle ne peut refuser c juste après, contrairement aux implémentations 
conformes à P. 
6. Simplification du testeur canonique 

Dans [Brinksma 87a], le concept de testeur canonique d’une spécification S 
a été introduit et appelé T (S). Ce T (S) est la spécification d’un testeur qui, 
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lorsqu’il est synchronisé avec un processus quelconque P, n’est bloqué dans 
son exécution que si P n’est pas conforme à S. Il a été prouvé que T (S), tel 
que défini dans [Brinksma 87a] (voir définition 6.1), existe toujours et est 
unique modulo l’équivalence de test, c’est-à-dire que si un autre processus Q 
répond aussi aux critères pour être le testeur canonique de S, alors Q te T (S). 
Cette section a pour but d’étendre ces résultats. 
Définition 6.1 (le testeur canonique) [Brinksma 87a] 

Soit une spécification S , T (S) est défini implicitement comme la solution X 
satisfaisant les deux équations suivantes : 
(i) Tr (X) = Tr (S) 
(ii) ∀ P, P conf S ⇔ (∀ σ ∈ L*, on a (L ∈ Ref(P||X,σ)  ⇒  L ∈ Ref(X,σ))) 

Cette définition caractérise T (S) uniquement par ses traces et refus1 après 
chaque trace; ce qui définit T (S) modulo te. (i) indique que le testeur cano-
nique est défini de façon à pouvoir tester toutes les traces de S. De plus, (ii) 
exprime que si le testeur canonique est synchronisé avec une implémentation 
P non conforme à S, alors le couple P || T (S) peut effectuer une séquence σ et 
puis se bloquer après σ, alors que le testeur offre encore des possibilités 
d’interaction. Inversement, si le testeur canonique est synchronisé avec une 
implémentation conforme P de S, il ne peut y avoir de blocage que si le testeur 
est arrivé dans un état terminal normal (qui est aussi, formellement parlant, un 
état de blocage). 
Exemple de testeur canonique 
Soit S := a; b; exit [] a; c; stop. 
On donne sans preuve que T (S) := a; (b; exit [] c; stop) modulo te. 
Les états terminaux corrects de T (S) sont atteints après les traces abδ et ac. 
Considérons les implémentations suivantes à titre d’illustration : 
I1 := a; b; exit est une implémentation conforme à S, puisque I1 || T (S) ne 

peut se bloquer qu’après la séquence abδ qui conduit aussi à un blocage 
de T (S) 

I2 := a; b; stop n’est pas une implémentation conforme à S, puisque I2 || T 
(S) peut se bloquer après la séquence ab qui ne conduit pas à un blocage 
de T (S): T (S) offre δ. 

                                         
1 Cette caractérisation d’un processus par ses traces et ses refus a d’abord été proposée en 

CSP par Hoare dans [Hoare 85] et en LOTOS par Brinksma dans [Brinksma 87a] où ce 
modèle est appelé “Failure Tree”. Un modèle semblable mais étendu est également déve-
loppé dans [Leduc 90]. Il faut noter que les traces et les refus satisfont certaines propriétés 
générales présentées dans les travaux cités (e.g. tout préfixe d’une trace est une trace; si X 
∈ Ref (P, σ) et si  X’ ⊆ X, alors X’ ∈ Ref (P, σ)). Ceci nous oblige, lorsque nous travail-
lons dans ce modèle, à vérifier que les ensembles de traces et de refus sont bien formés 
sous peine de traiter des processus irréels. Ces vérifications sont effectuées implicitement 
dans ce papier. 
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I3 := S  est une implémentation conforme à S, puisque I3 || T (S) ne 
peut se bloquer qu’après les séquences abδ ou ac qui conduisent aussi à 
un blocage de T (S) 

I4 := a; exit  n’est pas une implémentation conforme à S, puisque I4 || T 
(S) peut se bloquer après la séquence a qui ne conduit pas à un blocage 
de T (S): T (S) offre les actions b et c. 

Cette définition ne requiert pas l’introduction d’une action spéciale, ω, pour 
rapporter le succès d’un test, comme dans [de Nicola 84]. L’introduction de 
cette action spéciale peut toutefois toujours être réalisée, mais nous considé-
rons que ce n’est pas requis car cela relève purement de considérations pra-
tiques sur l’implémentation d’un testeur, e.g. il suffit d’ajouter une action 
spéciale ω dans T (S) avant qu’il n’atteigne stop. Remarquons que δ ne peut 
pas être utilisée comme action ω car la composition parallèle impose toujours 
une synchronisation sur l’action δ; ce qui est trop contraignant. 
Proposition 6.2 [Brinksma 87a,Brinksma 89,Leduc 90,Leduc 91c] 
Soit une spécification S , T (S) est défini par 
(i) Tr (T (S)) = Tr (S) 
(ii) ∀  σ ∈ Tr (S), ∀ A ⊆ L, on a 

 A ∈ Ref (T (S), σ)     ssi    (L − A ∈  Ref (S, σ)    ⇒    L ∈  Ref (S, σ)) 
Cette proposition donne une méthode de construction de T (S) à partir de S. 

Informellement, T (S) peut effectuer les mêmes séquences d’actions que S; 
cependant si, après une séquence σ, S peut refuser toute interaction de 
l’ensemble A ⊂ L, alors T (S) doit accepter au moins une interaction de 
l’ensemble L − A après la séquence σ. Dans le cas particulier où S peut être 
bloquée après la séquence σ (i.e. elle peut refuser L, c’est-à-dire qu’elle peut 
accéder à un état terminal), T (S) doit aussi avoir un état terminal accessible 
après la séquence σ. 
Propositions 6.3 [Brinksma 87a] 
(i) ∀ σ ∈ L*, on a L ∈ Ref (S, σ)    ⇔    L ∈ Ref (T (S), σ) 
(ii) ∀ S, T (S) existe et est unique modulo l’équivalence de test, te. 
(iii) ∀ S, on a T (T (S)) te S  

La proposition 6.3 (iii) est le meilleur résultat que l’on puisse atteindre 
puisque T (S) a été défini modulo te. 

Avant de généraliser les résultats de [Brinksma 87a, Brinksma 89], nous 
avons besoin de quelques propositions supplémentaires. 
Propositions 6.4 [Leduc 91c] 
(i) ∀ P, Q, on a P conf Q ∧ Q conf P ⇔ T(P) conf T(Q) ∧ T(Q) conf T(P) 
(ii) ∀ P, Q, on a P conf-eq Q ⇔ T (P) conf-eq T (Q) 
(iii) ∀ P, Q, on a P te Q ⇔ T (P) te T (Q) 

La proposition 6.4 (ii) est une généralisation de 6.4 (iii), et est une proposi-
tion clé de cet article. En effet, on sait que si deux spécifications S1 et S2 sont 
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conf-équivalentes (i.e. S1 conf-eq S2), les testeurs canoniques de S1 et S2 sont 
interchangeables, puisqu’ils doivent donner les mêmes verdicts de conformité 
pour les mêmes implémentations. Grâce à la proposition 6.4 (ii), on voit que 
c’est conf-eq, et non te, qui caractérise cette interchangeabilité. Dès lors, c’est 
modulo conf-eq, et non modulo te, qu’il faut définir T (S). Nous allons voir 
que cela va nous permettre de trouver un testeur canonique Tm (S) plus simple 
que T (S), et unique modulo conf-eq.  

La proposition suivante est la clé de cet article. Elle prouve que toutes les 
solutions X de l’équation 6.1 (ii) sont telles que X conf-eq T (S), et inverse-
ment. 
Proposition 6.5 [Leduc 91c] 
Soient S une spécification, et T (S) son testeur canonique. 
∀ X, (X conf-eq T (S)  ⇔  
 (∀ P, P conf S ⇔ (∀ σ ∈ L*, on a (L ∈ Ref (P||X,σ) ⇒ L ∈ Ref(X,σ))))) 

Si nous reprenons la définition 6.1 du testeur canonique, nous voyons que 
6.1 (ii) définit T (S) modulo conf-eq, et que 6.1 (i) ajoute une contrainte qui 
fixe T (S) modulo te. En effet, conf-eq ∩ trace-eq = te (cf. prop. 4.3 (iii)). 

Cette contrainte 6.1 (i) sur les traces est tout à fait arbitraire et ne se justifie 
ni en pratique, ni en théorie. Seule la deuxième contrainte 6.1 (ii) a un sens 
pour le test des implémentations. Elle permet à elle seule de définir un testeur 
qui fera dans tous les cas la distinction entre les implémentations conformes et 
les autres. Le fait d’enlever la contrainte 6.1 (i) permet en plus, comme nous 
allons le voir, de trouver un testeur canonique qui a en général moins de traces 
que T (S). 
Proposition 6.6 
Soient S une spécification et T(S) son testeur canonique, 
X conf-eq T (S)    ⇔ 
(i) ∀ σ ∈ Tr (X) ∩ Tr (S), on a Ref (X, σ) = Ref (T (S), σ), et 
(ii) ∀ σ ∈ Tr (X) – Tr (S), on a L ∈ Ref (X, σ), et 
(iii) ∀ σ ∈ Tr (S) – Tr (X), on a L ∈ Ref (S, σ). 

Ceci découle directement des définitions 4.4 et 6.1(i), et de la prop. 6.3(i). 
Il est évident que tout ensemble de processus peut être ordonné selon 

l’ordre partiel “a ses traces incluses dans les traces de”. En particulier, 
l’ensemble des solutions X de l’équation 6.1 (ii) peut être ordonné selon cette 
relation. Par les propositions 6.5 et 6.6, cet ensemble a un élément minimal X 
qui possède moins de traces que tous les autres. Nous allons formaliser cela en 
détail.  
Définition 6.7 
Min (S) est la spécification obtenue à partir de S en supprimant de S un en-
semble adéquat de traces selon la règle suivante : 

si ∀ σ’ ≥ σ, on a  L ∈ Ref (S, σ’), alors enlever toute séquence σ’ > σ. 
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On a donc directement 
 (i) Tr (Min (S)) ⊆ Tr (S) 
 (ii) ∀ σ ∈ Tr (S) – Tr (Min (S)), on a L ∈ Ref (S, σ) 

Proposition 6.8 
Min (S) est la solution X de l’équation “X conf-eq S ” ayant le moins de traces. 
Ceci découle directement des définitions 6.7 et 4.4 de conf-eq. 
Définition 6.9 
Le testeur canonique minimum de S, appelé Tm(S), est défini par Min (T(S)). 
Propositions 6.10 [Leduc 91c] 
(i) Tm (S) conf-eq T (S) 
(ii) Tm (S) te T (Min (S)) 
Tm (S) est donc déduit de S en deux étapes : 1) Construire S’ := Min (S), 

 2) Construire Tm (S) := T (S’). 
Tm (S)  a l’avantage d’être plus simple que T (S), comme le montre l’exemple 
suivant. 
Exemple 
Soient P et Q les processus suivants : 
P = a; stop [] b; stop     et    Q = (a; stop [] b; stop [] a; b; stop). 
Nous pouvons prouver que P conf-eq Q, mais que ¬ (P te Q). 
Les testeurs canoniques sont définis (modulo te) comme suit : 
T (P) := i; a; stop [] i; b; stop 
T (Q) := i; a; (b; stop [] i; stop) [] i; b; stop 
Tm (P) = T (P) 
Tm (Q) = T (P) est plus simple que T (Q). 
Un autre exemple très semblable où Tm et T sont te-équivalents 
Supposons que Q soit défini comme suit : 
Q = (a; stop [] b; stop [] a; b; c; stop). 
Les testeurs canoniques sont définis (modulo te) comme suit : 
T (Q) := i; a; (b; c; stop [] i; stop) [] i; b; stop 
Tm (Q) := i; a; (b; c; stop [] i; stop) [] i; b; stop  
Considérons les trois implémentations suivantes : 
I1 := b; stop [] a; stop est une implémentation conforme à Q, puisque I1 || T 

(Q) peut seulement se bloquer après les séquences a  ou b qui conduisent 
aussi à des blocages de T (Q) 

I2 := b; stop [] a; b; stop n’est pas une implémentation conforme à Q, puisque 
si T (Q) choisit d’exécuter b après a, I2 || T (Q) se bloque alors que T (Q) 
offre l’action c 

I3 := b; stop [] a; b; c; stop est une implémentation conforme à Q, puisque 
I3 || T (Q) peut seulement se bloquer après les séquences a, abc  ou b qui 
conduisent aussi à des blocages de T (Q) 
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La raison pour laquelle T (Q) ne peut pas être simplifié dans ce cas peut être 
comprise intuitivement sur les trois implémentations ci-dessus : si la branche 
i; stop était supprimée dans T (Q), alors I1 serait considérée comme une 
implémentation non conforme; si la branche b; c; stop était supprimée dans T 
(Q), alors I2 serait considérée comme une implémentation conforme. 

Le dernier exemple ci-dessus illustre aussi que l’on ne peut pas changer la 
règle de la définition 6.7 pour écrire : ∀ σ tel que  L ∈ Ref (S, σ), alors 
supprimer toute séquence σ’ > σ. 

La proposition suivante est le résultat principal de cet article. Il prouve que 
si S est une spécification, Tm (S) est le processus minimal (en termes de traces) 
qui peut tester (exhaustivement) toute implémentation et donner un verdict 
correct de conformité. 
Proposition 6.11 [Leduc 91c] 
Soit une spécification S. 
Tm (S) est la solution minimale X (c’est-à-dire qui a moins de traces que toutes 
les autres) satisfaisant l’équation : 
∀ P, P conf S  ⇔ ∀ σ ∈ L*, on a (L ∈ Ref (P || X, σ) ⇒ L ∈ Ref (X, σ)). 
Notons que si on se limite aux spécifications S ne pouvant se terminer 

qu’avec succès (ce qui est le cas des spécifications traitées dans [Brinksma 86, 
Brinksma 89]), nous allons montrer que Tm (S) te T (S); ce qui signifie que T 
(S) est le testeur canonique minimum dans ce cas. Ces résultats sont for-
malisés ci-dessous. 
Définitions 6.12 
(i) S est une spécification ne pouvant se terminer qu’avec succès si, et seule-

ment si, ∀ σ ∈ Tr (S), on a (L ∈ Ref (S, σ) ⇔ σ = σ’.δ)  
 où δ est l’action spéciale indiquant en LOTOS une terminaison correcte. 
(ii) Une spécification S est auto-bloquante  si, et seulement si, 

 ∃ σ ∈ Tr (S), telle que L ∈ Ref (S, σ) ∧ Out (S,σ) ≠ ∅ 
Informellement, une spécification ne pouvant se terminer qu’avec succès 

est une spécification qui ne peut refuser L qu’après l’action δ. Une spécifica-
tion est auto-bloquante si, et seulement si, elle peut refuser L après une cer-
taine trace σ alors qu’elle peut accepter au moins une action après σ. 
Proposition 6.13 [Leduc 91c] 
Si S est une spécification ne pouvant se terminer qu’avec succès, alors S n’est 
pas auto-bloquante. 

On pourrait penser que si S1 et S2 ne sont pas des spécifications auto-blo-
quantes, alors S1 te S2 ⇔ S1 conf-eq S2, mais ceci est faux comme l’illustre le 
contre-exemple suivant. 

Soient S1 := a; stop et S2 := i; a; stop [] b; stop. 
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Il est clair que S1 et S2 ne sont pas auto-bloquantes, et que S1 conf-eq S2, 
mais ¬ (S1 te S2). 

On pourrait alors penser que si S1 et S2 sont des spécifications ne pouvant se 
terminer qu’avec succès, alors S1 te S2 ⇔ S1 conf-eq S2, mais ceci est égale-
ment faux comme le montre le contre-exemple suivant. 

Soient S1 := a; exit et S2 := i; a; exit [] exit 
Il est clair que S1 et S2 sont des spécifications ne pouvant se terminer 

qu’avec succès, et que S1 conf-eq S2, mais ¬ (S1 te S2). 
Ces résultats nous empêchent d’obtenir directement la condition sous 

laquelle Tm et T sont te-équivalents. Néanmoins, ce résultat final est présenté 
dans la prochaine proposition. 
Proposition 6.14 [Leduc 91c] 
Si S n’est pas auto-bloquante, alors Tm (S) te T (S). 

Remarquons que cette condition n’est bien qu’une condition suffisante. Le 
second exemple suivant les propositions 6.10 montre qu’elle n’est pas néces-
saire en général : Q est auto-bloquante, mais Tm (Q) te T (Q). 

7. Conclusion 
Nous avons insisté sur le rôle d’une relation d’implémentation pour for-

maliser le lien entre une implémentation conforme et une spécification. La 
définition d’une relation d’implémentation (ou de conformité) est un préalable 
essentiel à la définition de toute forme de testeur (ou ensemble de scénarios de 
tests) devant permettre de certifier la conformité d’une implémentation. 

Partant d’une relation d’implémentation, nous avons montré qu’il est tou-
jours possible d’en déduire une relation d’équivalence associée, même si la 
relation d’implémentation n’est pas transitive. 

Nous avons ensuite adopté la relation conf comme relation 
d’implémentation, et nous avons montré que la relation d’équivalence associée 
est l’équivalence conf-eq plus faible que te.  

Ces résultats nous ont permis de montrer qu’il est possible de définir un tes-
teur canonique plus simple que celui défini dans [Brinksma 87a, Brinksma 
89], en ce sens que, contrairement à celui-ci, il peut avoir moins de traces que 
la spécification. 

Dans le cas de spécifications non auto-bloquantes - ce qui est le cas des spé-
cifications se terminant toujours avec succès telles que celles considérées dans 
[Brinksma 86, Brinksma 89] - les deux testeurs Tm et T sont te-équivalents. 

Finalement, soulignons que la méthodologie utilisée dans cet article, qui 
consiste à définir le testeur canonique modulo une équivalence associée à une 
relation d’implémentation adéquate, est très importante et nouvelle. Elle peut 
être utilisée de façon similaire pour d’autres relations d’implémentation. Plutôt 
que de déduire de rien un nouveau testeur canonique basé uniquement sur la 
définition 6.1 et la proposition 6.5, nous avons choisi de nous appuyer sur la 
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théorie du test de E. Brinksma et de montrer comment celle-ci peut être 
légèrement adaptée. Ceci a donné lieu à une définition de Tm en tant que 
simplification de T (cf. définition 6.9 associée à la proposition 6.11). 
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