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Résumé. Cet article étudie la relation conf qui a été proposée par E. Brinksma pour forma-
liser la notion de conformité aux tests. On sait que pour tester si une implémentation / est
conforme a une spécification S (i.e. I conf S), la technique utilisée consiste a construire, a
partir de S, un testeur canonique 7 (S) tel que, lorsque T (S) est synchronisé avec une im-
plémentation /, il atteint toujours un état terminal correct si, et seulement si, I conf S. Si [
n’est pas conforme a S, le testeur canonique 7 (S) peut rester bloqué dans un état non termi-
nal ol toute interaction avec I est impossible. Dans cet article, nous mettons en évidence le
role de la relation d’équivalence associée a conf, appelée conf-eq, qui est une équivalence
plus faible que 1’équivalence de test, te. Cette propriété nous permet de définir le testeur ca-
nonique 7 (S) modulo conf-eq; alors qu’il était défini modulo te. Ce nouveau testeur cano-
nique est plus simple que le précédent, en ce sens que, contrairement a celui-ci, il peut con-
tenir moins de traces que la spécification S. Nous montrons enfin que, dans le cas de
spécifications non auto-bloquantes, les deux testeurs sont te-équivalents.

Mots-clés. FDT, LOTOS, algebre de processus, test, testeur canonique, relation d’implé-
mentation, conformité, spécification, implémentation, abstraction.

1. Introduction
Une version anglaise de cet article a ét€ publiée a PSTV XI [Leduc 91c].
Cet article se rapporte d’une part a la problématique de 1’implémentation
des spécifications formelles exprimées dans le langage LOTOS [ISO 8807,
Bolognesi 87], et d’autre part aux tests de conformité des implémentations.
Dans ce contexte, plusieurs problemes sont actuellement non résolus. Nous
allons les résumer avant de situer notre contribution.
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La premiere difficulté est due au fait que le processus d’implémentation fait
intervenir d’une part une spécification formelle servant de référence, et d’autre
part une réalisation physique de cette spécification. Afin de résoudre ce
probleme, on ne considere pas la réalisation physique elle-méme, mais plut6t
un modele de cette réalisation [Brinksma 86]. Ce modele, que nous appelerons
spécification d’implémentation ou simplement implémentation, sera des lors
exprimé en LOTOS tout comme la spécification elle-méme. Cette facon de
faire a l’avantage de traiter le probleme de I’implémentation dans un
formalisme wunique, et de rendre possible D’inclusion d’une notion
d’implémentation dans une théorie formelle. Il peut sembler irréaliste
d’utiliser LOTOS comme modele d’une réalisation physique; ce n’est effecti-
vement pas le domaine d’application idéal pour ce langage concu initialement
pour décrire des spécifications abstraites de normes de I’ISO. Toutefois, divers
styles de spécifications ont ét€¢ mis en évidence en LOTOS [Vissers 88] et
permettent de moduler le niveau d’abstraction de la spécification. LOTOS
peut méme éEtre utilisé comme un langage de programmation tel que C
[Mafias 90] : la structure de la spécification et son niveau de détail (ou
d’abstraction) est alors celui d’un programme C. Le code C généré a partir
d’une telle spécification est a peine moins performant qu’un programme de
méme structure écrit directement en C. Dans cet article, nous travaillerons des
lors avec des modeles de réalisations, i.e. des implémentations, en LOTOS.

Le fait de disposer d’un formalisme unique nous permet d’aborder le
deuxieme probleme, a savoir la nature du lien devant exister entre une im-
plémentation conforme et sa spécification formelle. Le probleme est double :
il faut d’abord trouver les criteres qui permettent de caractériser ce lien, et il
faut ensuite les exprimer formellement. Ces formalisations peuvent se classer
parmi deux grandes tendances : la conformité est caractérisée soit par une
équivalence appropriée [Park 81, Brookes 84, de Nicola 84, de Nicola 87,
Brinksma 87b, Hennessy 88, Milner 89], soit par une relation non nécessai-
rement symétrique telle qu’un préordre.

Cette deuxieme tendance est, selon nous, plus générale et plus appropriée
car elle prend en compte le caractere asymétrique du lien entre implémentation
et spécification [Brinksma 86, Brinksma 87b, Leduc 90, Leduc 91a, Leduc
91b]. Au lieu de considérer que 1I’'implémentation doive €tre équivalente a la
spécification, 1’idée consiste a définir une relation moins restrictive et habi-
tuellement asymétrique. Ces relations sont souvent appelées des relations
d’implémentation.

Ces relations ont ét€é moins étudiées que les équivalences dans le contexte
des techniques algébriques. Il n’existe d’ailleurs pas d’opinion bien établie sur
la nature de ces relations d’implémentation, mais quelques tendances existent.
Par exemple, il est souvent admis qu’une implémentation puisse €tre plus
déterministe qu’une spécification. Selon cette vision, une relation
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d’implémentation serait plutdt considérée comme un préordre (i.e. une relation
réflexive et transitive). Un préordre, par son caractere asymétrique, définit un
ordre partiel sur les systemes. Si ce préordre est bien choisi, il peut Etre
interprété comme une relation d’implémentation, i.e. si deux systemes A et B
sont tels que B est inférieur a A selon cet ordre, alors cela signifie que dans un
certain sens B implémente A, ou B est une implémentation conforme de A. Par
exemple, un critere pouvant &tre exprimé formellement par une telle relation
est la réduction du non-déterminisme, i.e. B est une implémentation conforme
de A si, et seulement si, B est une transformation de A par laquelle certains
choix (volontairement) non déterministes de A ont été résolus.

Quelques relations d’implémentation basé€es sur cette idée ont été€ définies.
Ce sont en général - mais pas toujours - des préordres (e.g. en CSP [Brookes
84, Hoare 85], en CCS [de Nicola 84], en LOTOS [Brinksma 87b]). C’est sur
la relation de conformité, appelée conf, présentée dans [Brinksma 87b] que cet
article se concentrera. Dans [Leduc 91b], une autre relation d’implémentation,
appelée conf*, est également proposée et étudiée.

Le concept de relation d’implémentation a aussi été introduit dans d’autres
modeles formels (e.g. le wp-calcul [Dijkstra 76], la logique [Chandy 89], les
machines a états ou les automates E/S [Lynch 81, Lamport 83, Lam 84,
Lynch 87, Abadi 88, Merritt 89], et les systemes de transitions modaux
[Larsen 89]).

Le troisieme probleme en relation avec I’implémentation des spécifications
formelles est celui des tests de conformité. Un cadre général et une méthodo-
logie de test de conformité est étudiée a I'ISO [ISO 9646, Rayner 87]. Le
probleme crucial qui est actuellement non résolu est celui de la génération
d’un ensemble adéquat de scénarios de tests a partir des spécifications for-
melles [Castanet 87, Favreau 87, Sarikaya 87a, Sarikaya 87b, Bochmann 88,
Sabnani 88, Hogrefe 89, Sidhu 89, Vuong 89, Phalippou 91].

En LOTOS, le concept de testeur canonique associ€ a une spécification a
été défini et étudié dans [Brinksma 86, Brinksma 87b, Brinksma 89] et mis en
ceuvre dans [Alderden 89, Wezeman 89, Wezeman 91]. Le testeur canonique
est lui-méme une spécification LOTOS qui décrit comment tester les implé-
mentations et déterminer si elles sont conformes ou non a la spécification. Le
testeur canonique n’opere aucune sélection sur les séquences de tests; en fait,
il est congu pour tester exhaustivement les implémentations. C’est donc en
quelque sorte une borne supérieure théorique sur la facon de tester.

Le testeur canonique est basé sur la relation conf proposée pour formaliser
la notion de conformité aux tests dans [Brinksma 89]. Cela signifie que la
méthode de test proposée, qui se base sur une spécification S, rejette toute
implémentation / qui ne satisfait pas la regle I conf S. La technique utilisée
consiste a construire, a partir de S, un testeur canonique 7 (S) tel que, lorsqu’il
est synchronisé avec une implémentation /, il atteint toujours un état terminal
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correct! si, et seulement si, I conf S. Si I n’est pas conforme a S, le testeur
canonique 7 (§) peut rester bloqué dans un état non terminal ou toute interac-
tion avec [ est impossible.

Cette propriété du testeur canonique montre que le probleme du test et le
concept de relation d’implémentation (ou de conformité) sont étroitement liés,
puisque les définitions de conf et de T le sont. Ceci est d’ailleurs tres logique
puisque les tests de conformité ont avant tout comme objectif de tester des
implémentations conformes.

Dans cet article, nous montrons que certaines traces du testeur canonique
sont inutiles et peuvent &tre supprimées. Intuitivement, les morceaux de scé-
narios de test que I’on supprime sont en quelque sorte des tests qui ne peuvent
apporter aucune conclusion sur la conformité. Le testeur résultant peut tou-
jours tester exhaustivement les implémentations tout en étant un peu plus
simple que le testeur canonique. Les scénarios de test de ce nouveau testeur
restent quand méme beaucoup trop nombreux, mais nous n’aborderons pas ici
le probleme d’une sélection adéquate de tests parmi ceux qui sont proposeés
par le testeur.

Contenu de l’article

Cet article présente d’abord bricvement différentes relations asymétriques
existantes [Brinksma 87b], telles que red, ext, et la relation de conformité,
conf .

Nous montrons ensuite comment ces relations définissent naturellement des
relations d’équivalence. Nous utilisons pour cela une relation générique imp
pouvant é&tre instanciée par les différentes relations red, ext et conf.
L’équivalence associée naturellement a red et ext est ’équivalence de test, te
[Brinksma 87b]. L’équivalence associée a conf est une équivalence, appelée
conf-eq, plus faible que te.

Le testeur canonique 7 (S) présenté dans [Brinksma 89] est, comme nous
I’avons dit, basé sur la relation conf. T (S) est toutefois défini modulo te; ce
qui peut sembler peu cohérent étant donné que I’équivalence associée a conf
est plus faible que te.

Partant de cette constatation, nous allons montrer que 1’on peut définir 7 (S)
modulo conf-eq, c’est -a-dire que si T est un testeur canonique de la spécifi-
cation S, et que T’ conf-eq T, alors T’ est aussi un testeur canonique : 77,

1 'Un état terminal correct de T (S) est un état ot T (S) est supposé s’arréter, i.e. T (S) a été
congu de telle sorte que, apres certaines séquences, il puisse se comporter comme stop.
Quand T (S) n’a pas atteint un tel état terminal, mais qu’il reste bloqué dans sa synchroni-
sation avec une implémentation /, ceci est considéré comme un état terminal incorrect, i.e.
quand le processus composé I /I T (S) est dans un tel état terminal, 7 (S) est encore
capable d’exécuter certaines actions.
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lorsqu’il est synchronisé avec une implémentation /, atteint toujours un état
terminal correct si, et seulement si, I conf S.

Cette caractérisation modulo conf-eg du testeur canonique a I’avantage de
laisser plus de degrés de liberté pour définir 7' (S). Ce qui nous permet alors de
trouver un testeur canonique plus simple, appelé T,, (S), pouvant contenir
moins de traces que la spécification S; ce qui n’est pas le cas de T (S).

Nous montrerons enfin que pour des spécifications non auto-bloquantes - ce
qui est le cas des spécifications se terminant toujours avec succes telles que
celles considérées dans [Brinksma 86, Brinksma 89] - 7, et T sont te-équiva-
lents.

2. Définitions et propriétés de quelques relations

En LOTOS, quelques relations asymétriques ont ét€ proposées dans
[Brinksma 86, Brinksma 87b] comme candidates au r6le de relation
d’implémentation. Nous les rappelons brievement ci-dessous en utilisant un
formalisme de traces et refus similaire a celui de CSP [Hoare 85].

Notations 2.1

L est un alphabet d’actions observables, i est 1’action interne (i.e. non obser-
vable) et J est I’action de terminaison correcte.

P—a—P’ signifie que le processus P peut effectuer I’action a et, cette action
faite, se comporter ultérieurement comme le processus P’.

P—i*—P’ signifie que le processus P peut effectuer la séquence de k actions
internes et, cette séquence faite, se comporter ultérieurement comme le
processus P’.

P—a.b—P’ signifie A P”, tel que P—a—P” A P”—b—P’.

P=a=P’ ol a €L, signifie T k,, k, EN, tels que P—i*0.a.i* =P’

P=a=> ou a € L, signifie que 3 P’, tel que P=a=P’, i.e. P peut accepter
I’action a.

P=az> ol a € L, signifie = (P=a=>), i.e. P ne peut pas accepter (ou doit re-
fuser) I’action a.

P=0=P’ signifie que le processus P peut effectuer la s€équence d’actions ob-
servables o et, cette séquence faite, se comporter ultérieurement comme le
processus P’. Plus précisément, si 0 = a,...a,0ua,, ...a, € L, alors
Jk,, ...k, EN, tels que P—i*.a,.i" a, ..a,i""—P’

P=o0= signifie que 3 P’, tel que P=o=P’

P after o= {P’ | P=0o=P’},

1.e. I’ensemble de toutes les expressions de comportement (ou états) acces-
sibles a partir de P par la séquence oO.

Tr (P) est I’ensemble des traces de P, i.e. {o | P=o=};, Tr (P) est un sous-
ensemble de L*.

0, <0, ssido; €EL*, tel que 0,.0; = 0, 1.e. 0; est un préfixe de o,.

0, < 0, ssido; EL+, tel que 0,.0; = 0, i.e. 0; est un préfixe strict de o,.
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Out (P, o) est I’ensemble des actions observables possibles apres la trace o,
i.e. Out (P, 0) = {a €L oa &Tr (P) }.

Ref (P, o) est ’ensemble des ensembles de refus de P apres la trace o, i.e.
Ref (P, o) ={X C L1 3P’ €P after o, tel que P'=a=>, Va €X};
Ref (P, o) est un ensemble d’ensembles et un sous-ensemble de & (L), le
“power set” de L, i.e. I’ensemble des sous-ensembles de L. Un ensemble X
C L appartient a Ref (P, o) ssi P peut effectuer la trace o et, cette séquence
faite, refuser toute action de I’ensemble X.

Quelques interprétations possibles de la relation de conformité ont été pré-
sentées et formalisées dans [Brinksma 86, Brinksma 87b] par trois relations de
base : conf, red et ext , et une relation d’équivalence : te . Nous en donnons les
définitions précises ci-dessous.

Définitions 2.2
Soient les deux processus P, and P, .
P, confP, ssi V o&Tr(P,),onaRef(P,, o) CRef(P,, 0)
ou de facon équivalente,
ssi V. o€Tr(P,) NTr (P,), on a Ref (P,, o) C Ref (P,, 0)
puisque si c €Tr (P,) - Tr (P,), alors Ref (P,, 0) = &

Intuitivement, P, conf P, ssi, placés dans tout environnement dont les traces

sont limitées a celles de P,, P, ne peut pas étre bloqué quand P, ne peut pas

I’€tre. Autrement dit, P, se bloque moins souvent que P, dans un tel

environnement. conf a été choisie pour modéliser formellement la notion de

conformité aux tests dans [Brinksma 89], et a été appelée pour cette raison
la relation de conformité.
P,red P, ssi (i) Tr(P,) CTr(P,),et
(ii) P, conf P,

Intuitivement, si P, red P,, P, a moins de traces que P,, mais méme dans un

environnement dont les traces sont limitées a celles de P,, P, se bloque

moins souvent. red est la relation de réduction.
P,ext P, ssi (i) Tr(P;) 2Tr(P,),et
(ii) P, conf P,

Intuitivement, si P, ext P,, P, a plus de traces que P,, mais dans un

environnement dont les traces sont limitées a celles de P,, il se bloque

moins souvent. ext est la relation d’extension.
te =red N red ' =ext Next-! C’est I’équivalence de test.

Proposition 2.3 [Brinksma 86]
(1) conf Dred
(11) conf D ext

(i11) red et ext sont des préordres
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(iv) conf est non transitive

Figure 2.1 : te, red, ext, conf

La figure 2.1 illustre les positions relatives de ces différentes relations.

3. Relation d’implémentation et équivalence associée

Dans cette section, nous utilisons une relation générique imp afin de mo-
déliser une relation d’implémentation quelconque, a 1’exception du fait qu’elle
sera réflexive comme nous allons l’expliquer. Rappelons que la relation
d’implémentation exprime formellement la notion de conformité a une spé-
cification.

Imp doit €tre réflexive car la spécification est une implémentation conforme
d’elle-méme. En conséquence, nous considérerons dans le reste de cet article
que imp est réflexive.

Par contre, il n’est pas nécessaire que imp soit symétrique, puisque
I’implémentation et la spécification ne sont pas interchangeables en général.

Un point plus délicat est la transitivité de imp : doit-on exiger qu’une implé-
mentation conforme d’une implémentation conforme soit toujours une im-
plémentation conforme ? Si imp n’est pas transitive, une implémentation con-
forme ne peut pas €tre utilis€ée comme une spécification intermédiaire; ce qui
n’est pas son role de toute facon. Nous n’exigerons donc pas de imp qu’elle
soit transitive. Une étude détaillée de ce probleme est présentée dans [Leduc
91a]. La relation conf est d’ailleurs un exemple de relation non transitive.

Nous allons montrer comment imp induit naturellement une équivalence,
appelée imp—eq.

Définition 3.1

S, imp-eq S, ssi {Il1impS,;}={1/1imp S,}
ou {I/Iimp S} désigne I’ensemble des implémentations /, conformes a S
selon la relation imp.

Intuitivement, deux spécifications sont équivalentes si, et seulement si, elles
déterminent exactement le méme ensemble d’implémentations conformes au
sens de imp.

Il est évident que imp-eq est réflexive, symétrique et transitive. Imp-eq est
donc une équivalence quelle que soit la relation imp (mé€me non réflexive).

Si imp est considérée comme relation de référence, cette équivalence joue
un role fondamental en ce sens qu’aucune distinction ne doit étre faite entre
deux spécifications autorisant les mémes implémentations conformes.
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L’équivalence est déduite naturellement de la relation d’implémentation. Le
contraire n’est pas toujours possible.

On pourrait penser que imp-eq est 1’équivalence définie par imp M imp™:
deux spécifications sont équivalentes si, et seulement si, chacune d’elles est
une implémentation conforme de I’autre. Cependant, imp /1 imp”’ n’est pas
nécessairement une équivalence.

Proposition 3.2 [Leduc 91a]
imp-eq Cimp N imp’’

Propositions 3.3 [Leduc 91a]
imp est transitive = imp-eq = imp ) imp™”

Dans ce cas, deux spécifications sont équivalentes si, et seulement si,
chacune d’elles est une implémentation conforme de ’autre.

Ainsi, quand imp est transitive, imp-eq peut étre définie plus simplement
comme suit : S, imp-eq S, ssi S;impS, A S,impS,.

4. Relations d’équivalence associées a red, ext et conf

Proposition 4.1 [Brinksma 86]
Red-eq = ext-eq = te

Définition 4.2
S, conf-eq S, ssi {IlIconfS,}={IIIconfS,}

Cette définition est I’instanciation de la définition 3.1.

Pour étudier la nature de cette équivalence conf-eq associée a conf, nous al-
lons d’abord rappeler quelques propositions importantes, et nous donnerons
ensuite une autre définition de conf-eq.

Propositions 4.3 [Leduc 91a]
(i) conf-eq Cconf M conf’
(1) conf-eq Dte 1.e., conf-eq est plus faible que 1’équivalence de test
(iii) conf-eq N trace-eq = conf M conf™ M trace-eq = te
ou de fagon équivalente, V' P, Q, on a
P conf-eq Q A (Tr (P) =Tr (Q))
< PconfQ 2 QconfP A (Tr(P)=Tr(Q))
< PteQ
Pour des processus ayant les mémes traces, conf-eq et te sont identiques.
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Figure 4.1 : conf-eq par rapport aux autres relations

Tous ces résultats sont résumés a la figure 4.1 La partie hachurée est exac-
tement 1’équivalence de test. Dans [Leduc 90], des exemples ont été trouvés
afin de prouver que les inclusions sont strictes, c’est-a-dire qu’aucune zone de
la figure n’est vide.

Nous donnons maintenant une définition plus classique de conf-eq.
Proposition 4.4 [Leduc 90]

P conf-eq Q ssi
(a) PconfQ A Q confP, et
(i.e. Vo&Tr (P) NTr(Q), on a Ref (P, o) = Ref (Q, 0))
(b) Vo&Tr(P)-Tr(Q),onal €Ref (P, 0), et
(c) Vo&Tr(Q)-Tr(P),onal ERef(Q, 0)

5. conf-eq contre te
Si conf est la relation d’implémentation de référence, 1’équivalence de test

n’est pas I’équivalence qui convient car, comme I’indique la proposition 4.3
(i1), elle est plus forte que conf-eq : certains processus qui ne sont pas te-
équivalents définissent pourtant les mémes ensembles d’implémentations con-
formes.

Considérons I’exemple suivant ou P conf-eq Q, mais = (P te Q) :

P=a;stop et Q= (a;stop][]a;b; stop).

Si P et Q sont deux spécifications, elles définissent exactement les mémes
ensembles d’implémentations conformes (au sens de conf); en particulier
P conf Q et Q conf P.

Notons cependant que si P = a, stop et Q = (a, stop [] a; b; c; stop), nous
n’avons plus P conf-eq Q car a; b; stop est une implémentation conforme a P
mais pas a Q. Cela peut s’expliquer intuitivement par le fait qu'une implé-
mentation conforme a Q, peut ou non accepter b apres a; mais si elle ’accepte,
alors elle ne peut refuser ¢ juste apres, contrairement aux implémentations
conformes a P.

6. Simplification du testeur canonique
Dans [Brinksma 87a], le concept de testeur canonique d’une spécification S
a été introduit et appelé T (S). Ce T (S) est la spécification d’un testeur qui,
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lorsqu’il est synchronisé avec un processus quelconque P, n’est bloqué dans
son exécution que si P n’est pas conforme a §. Il a été prouvé que T (S), tel
que défini dans [Brinksma 87a] (voir définition 6.1), existe toujours et est
unique modulo 1’équivalence de test, c’est-a-dire que si un autre processus Q
répond aussi aux criteres pour étre le testeur canonique de S, alors Q te T (S).
Cette section a pour but d’étendre ces résultats.

Définition 6.1 (le testeur canonique) [Brinksma 87a]
Soit une spécification S , T (S) est défini implicitement comme la solution X
satisfaisant les deux équations suivantes :
(1) Tr(X) =Tr (S)
(i) VP, PconfS < (Vo&EL* ona (L ERef(PlIX,0) = L €Ref(X,0)))
Cette définition caractérise T (S) uniquement par ses traces et refus! apres
chaque trace; ce qui définit 7" (S) modulo te. (i) indique que le testeur cano-
nique est défini de facon a pouvoir tester toutes les traces de S. De plus, (i1)
exprime que si le testeur canonique est synchronisé avec une implémentation
P non conforme a §, alors le couple P /I T (S) peut effectuer une séquence o et
puis se bloquer apres o, alors que le testeur offre encore des possibilités
d’interaction. Inversement, si le testeur canonique est synchronisé avec une
implémentation conforme P de §, il ne peut y avoir de blocage que si le testeur
est arrivé dans un €tat terminal normal (qui est aussi, formellement parlant, un
état de blocage).

Exemple de testeur canonique

Soit § :=a; b, exit [] a; c; stop.

On donne sans preuve que T (S) := a; (b; exit [] ¢; stop) modulo te.

Les états terminaux corrects de 7 (S) sont atteints apres les traces abd et ac.
Considérons les implémentations suivantes a titre d’illustration :

1; := a; b; exit est une implémentation conforme a S, puisque 1; // T (S) ne
peut se bloquer qu’apres la séquence abd qui conduit aussi a un blocage
de T(S)

L, :=a; b; stop  n’est pas une implémentation conforme a S, puisque I, // T
(S) peut se bloquer apres la séquence ab qui ne conduit pas a un blocage
de T (S): T (S) offre 6.

I Cette caractérisation d’un processus par ses traces et ses refus a d’abord été proposée en
CSP par Hoare dans [Hoare 85] et en LOTOS par Brinksma dans [Brinksma 87a] ou ce
modele est appelé “Failure Tree”. Un modele semblable mais étendu est également déve-
loppé dans [Leduc 90]. I1 faut noter que les traces et les refus satisfont certaines propriétés
générales présentées dans les travaux cités (e.g. tout préfixe d’une trace est une trace; si X
€ Ref (P, 0) et si X’ C X, alors X” € Ref (P, 0)). Ceci nous oblige, lorsque nous travail-
lons dans ce modele, a vérifier que les ensembles de traces et de refus sont bien formés
sous peine de traiter des processus irréels. Ces vérifications sont effectuées implicitement
dans ce papier.
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L;:=§ est une implémentation conforme a S, puisque 15 // T (S) ne
peut se bloquer qu’apres les séquences abd ou ac qui conduisent aussi a
un blocage de T ()

L, := a; exit n’est pas une implémentation conforme a §, puisque 1, // T
(S) peut se bloquer apres la s€quence a qui ne conduit pas a un blocage
de T (S): T (S) offre les actions b et c.

Cette définition ne requiert pas 1’introduction d’une action spéciale, w, pour
rapporter le succes d’un test, comme dans [de Nicola 84]. L’introduction de
cette action spéciale peut toutefois toujours étre réalisée, mais nous considé-
rons que ce n’est pas requis car cela releve purement de considérations pra-
tiques sur 'implémentation d’un testeur, e.g. il suffit d’ajouter une action
spéciale w dans T (§) avant qu’il n’atteigne stop. Remarquons que 6 ne peut
pas étre utilisée comme action w car la composition parallele impose toujours
une synchronisation sur 1’action d; ce qui est trop contraignant.

Proposition 6.2 [Brinksma 87a,Brinksma 89,L.educ 90,Leduc 91c]
Soit une spécification S , 7 (S) est défini par
@) Tr (T (S)) =Tr (S)
)V o€Tr(S), VACL,ona
A ERef(T(S),0) ssi (L-AE Ref(S,0) = L &E Ref(S, 0))

Cette proposition donne une méthode de construction de 7' (S) a partir de S.
Informellement, 7 (S) peut effectuer les mémes séquences d’actions que S;
cependant si, apres une séquence o, S peut refuser toute interaction de
I’ensemble A C L, alors T (§) doit accepter au moins une interaction de
I’ensemble L — A apres la séquence o. Dans le cas particulier ou S peut €tre
bloquée apres la s€équence o (i.e. elle peut refuser L, c’est-a-dire qu’elle peut
accéder a un état terminal), 7 (S) doit aussi avoir un état terminal accessible
apres la séquence o.

Propositions 6.3 [Brinksma 87a]
(i) VoELs,ona LERef(S,0) < LERef(T(S) o)
(i) V'S, T (S) existe et est unique modulo 1’équivalence de test, te.
(iii)) VS, ona T(T(S)) te S
La proposition 6.3 (iii) est le meilleur résultat que I’on puisse atteindre
puisque 7 (S) a été défini modulo ze.
Avant de généraliser les résultats de [Brinksma 87a, Brinksma 89], nous
avons besoin de quelques propositions supplémentaires.
Propositions 6.4 [Leduc 91c]
(i) VP, Q,onaPconfQ aQ confP < T(P)conf T(Q) » T(Q) conf T(P)
(i) VP, Q,on a P conf-eq Q < T (P) conf-eq T (Q)
(i) VP,Q,onaPteQ < T (P)teT (Q)
La proposition 6.4 (ii) est une généralisation de 6.4 (iii), et est une proposi-
tion clé de cet article. En effet, on sait que si deux spécifications S, et S, sont
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conf-équivalentes (i.e. S; conf-eq S,), les testeurs canoniques de S, et S, sont
interchangeables, puisqu’ils doivent donner les mémes verdicts de conformité
pour les mémes implémentations. Grace a la proposition 6.4 (ii), on voit que
c’est conf-eq, et non te, qui caractérise cette interchangeabilité. Des lors, c’est
modulo conf-eq, et non modulo te, qu’il faut définir 7 (S). Nous allons voir
que cela va nous permettre de trouver un testeur canonique 7, (S) plus simple
que T (S), et unique modulo conf-eq.

La proposition suivante est la clé de cet article. Elle prouve que toutes les
solutions X de 1’équation 6.1 (i1) sont telles que X conf-eq T (S), et inverse-
ment.

Proposition 6.5 [Leduc 91c]
Soient S une spécification, et T (S) son testeur canonique.
VX, (X conf-eqT(S) <

(VP,PconfS < (Vo&L* ona(L ERef (PlIX,0) =L €Ref(X,0)))))

Si nous reprenons la définition 6.1 du testeur canonique, nous voyons que
6.1 (i1) définit T (S) modulo conf-eq, et que 6.1 (i) ajoute une contrainte qui
fixe T (S) modulo te. En effet, conf-eq N trace-eq = te (cf. prop. 4.3 (iii)).

Cette contrainte 6.1 (i) sur les traces est tout a fait arbitraire et ne se justifie
ni en pratique, ni en théorie. Seule la deuxieme contrainte 6.1 (i1) a un sens
pour le test des implémentations. Elle permet a elle seule de définir un testeur
qui fera dans tous les cas la distinction entre les implémentations conformes et
les autres. Le fait d’enlever la contrainte 6.1 (i) permet en plus, comme nous

allons le voir, de trouver un testeur canonique qui a en général moins de traces
que 7'(S).

Proposition 6.6

Soient S une spécification et 7(S) son testeur canonique,

X conf-eqT(S) <

(1) Vo&Tr(X)NTr(S), onaRef (X, o) =Ref(T(S), 0),et

(i) Vo&Tr(X)-Tr(S),onal €ERef(X, 0),et

(i) Vo&Tr(S)-Tr(X),onal ERef (S, 0).

Ceci découle directement des définitions 4.4 et 6.1(1), et de la prop. 6.3(1).

Il est évident que tout ensemble de processus peut €tre ordonné selon
I’ordre partiel “a ses traces incluses dans les traces de”. En particulier,
I’ensemble des solutions X de 1’équation 6.1 (ii) peut étre ordonné selon cette
relation. Par les propositions 6.5 et 6.6, cet ensemble a un €lément minimal X
qui possede moins de traces que tous les autres. Nous allons formaliser cela en
détail.

Définition 6.7
Min (S) est la spécification obtenue a partir de S en supprimant de S un en-
semble adéquat de traces selon la regle suivante :

si Vo =o0,ona L €ERef(S, 0’), alors enlever toute s€quence o’ > O.
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On a donc directement
(1) Tr (Min (S)) CTr (S)
(i) Vo&Tr(S)-Tr(Min(S)),onal €Ref (S, o)

Proposition 6.8
Min (S) est la solution X de 1’équation “X conf-eg S ” ayant le moins de traces.
Ceci découle directement des définitions 6.7 et 4.4 de conf-eq.

Définition 6.9
Le testeur canonique minimum de S, appelé T, (S), est défini par Min (T(S)).

Propositions 6.10 [Leduc 91c]

1T, (S)conf-eq T (S)

() 7, (S) te T (Min (S))

T, (S) est donc déduit de S en deux étapes : 1) Construire S° := Min (S),

2) Construire 7, (S) := T (S’).

T, (S) al’avantage d’étre plus simple que 7 (S), comme le montre 1’exemple

suivant.

Exemple

Soient P et Q les processus suivants :

P =a;stop [] b;stop et Q=(a;stop][]Db; stop][]a; b, stop).

Nous pouvons prouver que P conf-eq Q, mais que = (P te Q).

Les testeurs canoniques sont définis (modulo te) comme suit :

T (P):=1i;a, stop[]i; b, stop

T (Q):=i;a; (b, stop[]i; stop)[]i;b; stop

T, (P)=T(P)

T, (Q) =T (P)est plus simple que T (Q).

Un autre exemple tres semblable ou 7', et T sont fe-équivalents

Supposons que Q soit défini comme suit :

O = (a, stop [] b, stop [] a; b; c; stop).

Les testeurs canoniques sont définis (modulo te) comme suit :

T(Q):=i;a; (b, c;stop[]i;stop)[]i;b; stop

T, (0Q):=i;a;(b;c;stop[]i;stop)[]i;b; stop

Considérons les trois implémentations suivantes :

I; :=b; stop [] a; stop  est une implémentation conforme a Q, puisque I; /I T
(Q) peut seulement se bloquer apres les séquences a ou b qui conduisent
aussi a des blocages de 7' (Q)

I, := b, stop [] a; b; stop n’est pas une implémentation conforme a Q, puisque
si T (Q) choisit d’exécuter b apres a, I, I T (Q) se bloque alors que T (Q)
offre I’action ¢

I; :=b; stop [] a; b; c; stop est une implémentation conforme a Q, puisque
I; Il T (Q) peut seulement se bloquer apres les séquences a, abc ou b qui
conduisent aussi a des blocages de 7' (Q)
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La raison pour laquelle T (Q) ne peut pas €tre simplifié dans ce cas peut étre
comprise intuitivement sur les trois implémentations ci-dessus : si la branche
i; stop était supprimée dans T (Q), alors I; serait considérée comme une
implémentation non conforme; si la branche b; c; stop était supprimée dans T
(Q), alors I serait considérée comme une implémentation conforme.

Le dernier exemple ci-dessus illustre aussi que I’on ne peut pas changer la
regle de la définition 6.7 pour écrire : V otel que L € Ref (S, o), alors
supprimer toute séquence o’ > O.

La proposition suivante est le résultat principal de cet article. Il prouve que
si § est une spécification, T, (S) est le processus minimal (en termes de traces)
qui peut tester (exhaustivement) toute implémentation et donner un verdict
correct de conformité.

Proposition 6.11 [Leduc 91c]
Soit une spécification S.
T, (S) est la solution minimale X (c’est-a-dire qui a moins de traces que toutes
les autres) satisfaisant 1’équation :
VP,PconfS & Vo&L* ona(LERef(Pll X, o)=L ERef (X, 0)).
Notons que si on se limite aux spécifications § ne pouvant se terminer
qu’avec succes (ce qui est le cas des spécifications traitées dans [Brinksma 86,
Brinksma 89]), nous allons montrer que 7, (S) te T (S); ce qui signifie que T
(S) est le testeur canonique minimum dans ce cas. Ces résultats sont for-
malisés ci-dessous.

Définitions 6.12
(1) S est une spécification ne pouvant se terminer qu’avec succes si, et seule-
mentsi, Vo&Tr(S),ona(L ERef(S, o) < 0=0".0)

ou ¢ est I’action spéciale indiquant en LOTOS une terminaison correcte.
(i1) Une spécification S est auto-bloquante si, et seulement si,

Jo ETr (S), telle que L ERef (S, o) A Out (S,0) # &

Informellement, une spécification ne pouvant se terminer qu’avec succes
est une spécification qui ne peut refuser L qu’apres 1’action §. Une spécifica-
tion est auto-bloquante si, et seulement si, elle peut refuser L apres une cer-
taine trace o alors qu’elle peut accepter au moins une action apres O.

Proposition 6.13 [Leduc 91c]
Si § est une spécification ne pouvant se terminer qu’avec succes, alors S n’est
pas auto-bloquante.

On pourrait penser que si S; et S, ne sont pas des spécifications auto-blo-
quantes, alors S; te S, < §; conf-eq S, mais ceci est faux comme I’illustre le
contre-exemple suivant.

Soient S; := a; stop et S, :=i; a; stop [] b, stop.
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Il est clair que S; et S, ne sont pas auto-bloquantes, et que S; conf-eq S,
mais = (S; te S>).

On pourrait alors penser que si §; et S, sont des spécifications ne pouvant se
terminer qu’avec succes, alors S; te S; < S; conf-eq S,, mais ceci est égale-
ment faux comme le montre le contre-exemple suivant.

Soient S; := a; exitet S, :=i; a; exit [] exit

Il est clair que S; et S, sont des spécifications ne pouvant se terminer
qu’avec succes, et que S; conf-eq S,, mais = (S te S>).

Ces résultats nous empéchent d’obtenir directement la condition sous
laquelle T,, et T sont te-€quivalents. Néanmoins, ce résultat final est présenté
dans la prochaine proposition.

Proposition 6.14 [Leduc 91c]
Si .S n’est pas auto-bloquante, alors 7, (S) te T (S).

Remarquons que cette condition n’est bien qu’une condition suffisante. Le
second exemple suivant les propositions 6.10 montre qu’elle n’est pas néces-
saire en général : Q est auto-bloquante, mais 7,, (Q) te T (Q).

7. Conclusion

Nous avons insisté sur le role d’une relation d’implémentation pour for-
maliser le lien entre une implémentation conforme et une spécification. La
définition d’une relation d’implémentation (ou de conformité) est un préalable
essentiel a la définition de toute forme de testeur (ou ensemble de scénarios de
tests) devant permettre de certifier la conformité d’une implémentation.

Partant d’une relation d’implémentation, nous avons montré qu’il est tou-
jours possible d’en déduire une relation d’équivalence associée, méme si la
relation d’implémentation n’est pas transitive.

Nous avons ensuite adopté la relation conf comme relation
d’implémentation, et nous avons montré que la relation d’équivalence associée
est I’équivalence conf-eq plus faible que te.

Ces résultats nous ont permis de montrer qu’il est possible de définir un tes-
teur canonique plus simple que celui défini dans [Brinksma 87a, Brinksma
89], en ce sens que, contrairement a celui-ci, il peut avoir moins de traces que
la spécification.

Dans le cas de spécifications non auto-bloquantes - ce qui est le cas des spé-
cifications se terminant toujours avec succes telles que celles considérées dans
[Brinksma 86, Brinksma 89] - les deux testeurs 7,, et T sont te-€quivalents.

Finalement, soulignons que la méthodologie utilisée dans cet article, qui
consiste a définir le testeur canonique modulo une équivalence associée a une
relation d’implémentation adéquate, est tres importante et nouvelle. Elle peut
étre utilisée de facon similaire pour d’autres relations d’implémentation. Plut6t
que de déduire de rien un nouveau testeur canonique basé uniquement sur la
définition 6.1 et la proposition 6.5, nous avons choisi de nous appuyer sur la
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théorie du test de E. Brinksma et de montrer comment celle-ci peut Etre
légerement adaptée. Ceci a donné lieu a une définition de 7,, en tant que
simplification de 7 (cf. définition 6.9 associ€e a la proposition 6.11).
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